Mlcroelectron. Reliab., Vol. 25, No. 5, pp. 949-958, 1985. Printed in Great Britain.
0026-2714J8553.00 +.00 © 1985 Pergamon Press Ltd.
COST-BENEFIT ANALYSIS OF ONE-SERVER TWO-U~IT IMPERFECT SWITCH SYSTEM WITH DEGRADATION • M,N. GOPALAN and S.S. WAGHMARE Department of Mathematics, Indian Institute of Technology, Powai, Bombay 400076, India
(Received for Publication 16 April |985)
A BS TRACT This paper deals %~ith the cost-benefit l-server
2-unit system with imperfect
(units/switch)
are not
The successive distributed
after the repair.
repair times of each item are arbitrarily
w]tile the successive
ing some salvage value.
failure rates are-constants,
repairable
any salvage value.
incurr-
The switch
and is scrapped only when both the units
The expected revenue,
due to different
it is discarded
After a fixed number of failures
the unit is scrapped without
are scrapped.
of
switch where the items
'as good as new'
If repair of a unit is not possible
is alWayS
analysis
expected
busy period
types of repairs of units/swltch,
expected
salvage value and expected number of repair completions t h e switch, cos t-benefit I.
all in [ O , t ~ ,
are obtained
to carry out the
analysis.
INTRODUCTION Gopalan
and Waghmare
[ 1,2,~ 3 have recently discussed
some exten.~ions of l-server switch. also,
The assumptions
are as follows (a)
f~al
of
2-unit system with imperfect
made, qulte common in literature
•
A failed unit is repairable
i.e. there are no
failures. (b)
After repair of an item is over,
as new' thereby implying s ~ e
constant
it is 'as .good
repair r a t e and
same repair time density throughout. Situations
may arise where the above assumptions
are
M
950 not Justiflable-
N GOPALAN and S S W A G H M A ~
The purpose of this paper is to carry out
the cost-beneflt analysis in such cases. The ~ d e l
is as
fol lows : Upon failure of a unit an instantaneous decides possibility of the repair. and the number of the repairs
i, a fixed number,
inspection
If the repair is possible
completed so far, is less than
it is sent for the repair.
If the unit
is not repairable it is d i s c a r d e d incurring some s a l v a g e value.
After
(l+l)-th failure it is scrapped.
The switch
is always repairable and it is scrapped only when both the units are scrapped. 2.
NOTATIONS
M = U S ~,i
if the item under o o n s i d e r a t i o n is a unit if the item under eonsideration is the switch failure rate of the item after
(i-])th r e p a i r
comp i etio n gM, i(o),
GM, I(.)
pdf
and
sf
of the r e p a i r time of the
item after i-th failure C i (u)
revenue due to a unit with failure rate in an uninterrupted interv~l of length
Pl
AU, i u
probability that a unit is repairable after i-th failure
(.,.,o)
status of a unit,
another unit and that of the
switch respectively W
'working'
UR
condition of an item
'under repair'
WR
condition of an item
'waits for repair' condition of an item 'scrapped' condition of an item
S
'standby' condition of a u ~ t
SUi # ~S I
salvage value of the unit and the switch after i-th failure indicator function of a set A
IA
The S t a t e Space O
( W, S ,
W )
1
CuR,
. )
,
w,
951
Reliability analysis 2
(--,
W,
W )
S
{w,
S, U R }
4
(UR, Wa.
W )
5
(UR, --.
W )
6
(UR,
7
(--,--,-
8
(--,
w, UR )
9
(WR,
S, UR )
10
(--,
S, UR )
II
(UR, WR, W R )
12
(UR, --, WR )
13
(-- , WR, U R )
W, WR ) )
expected revenue in [ O,u ] when the
Rm (i, J,k,u)
initial state is m
and i,Jok are the
number of the repairs completed of the items described by the state m order,
in that
m = I,Z,°..,15, e.g. Ro(i,J,k,u)
denotes the expected revenue in [ O,u 3 when the initial state is
0
and the
number of repairs completed of the operating unit, standby unit and the switch are i, j,k respectively S m (i. J ,k,u)
expected salvage value incurred in ~ O , u 3
BM (i, j,k,U) mer
expected busy period in [ O , t ] of the server due to r-th type repair of the item
~.
E~ECTED ~ N U m With
M
I~
ql - - 1 - P i "
with the initial state
m.
[O,t3 A = [i +I_<13
~:
and
ZJ+I_~13
we have No(i,J,k,t)
-
Ci+ l (t)e-(~u'l÷l+ ~N,k+1 )t
t + 1%,i~a O
e
-(~u,i~+
~S'k+l)u [
÷ IA P i ÷ l ~ (i,J,k,t-u) ÷ ~i+IIA + IAC) R ~(i,j,k,t-a)
du
ci+ 1
(u)
952
M.N. t
GOPALANand
S. S. WAGHMARE
- (Xs " + 1 +
)u
÷ R~ (i,J,k~t-u) ]du =
cj+, (t) %.,+I (t) e- ~ ' * e t t ~ . j . + kSek.)U[c + f g u , i ~ (u)
J+1 (u)
o
+ RO (Je£*Z.k,t-u)]du t
+/o gu, i ~ (u) (I -
•~%S,k+lu)•-~u*j÷lu [Cj+1 (u)
+ R3(J,i+l,k.t-~1)] du + $tgu.i+l (u)e-XS'k+ZU f u XU.J+1e-~U"j+lw [Cj+~w; O O + Is P j d ~
(J,i+l,k,t=tl)
+(qjdIB + IBC) a2(J,i+l,k,t-u)]dwdu
÷['o
°su
-~U,j +1v
÷ ~O %,I+1 (u) O Sek÷l
-
e_~S,k÷lv)Cj+I
SO %,j+le
Cj+1 (w)dw
3
R3(l,J,k,t) - ci+ i (t) QS,k÷I (t) e- ~ u , i + I t u
+ IA Pi+1 R1 (i,J.k~l,t-u) +(qi+1 IA+ IAc)R2 (i,J.k+l,t-u) ]dvdu t -~. i+lU[C + Io gS, k+l (u) e i÷i (u) + % (i.J.k+1,t-u)]du R2Ci,J,k,t) = Cj+I (t)e (~U'J+I+ ~kS,k+l)t
t
Rg(l'J'k't) " S gS,k+l (u)"I%1(i,J,k+l,t-u)du O
Reliability
analysis
953
t
RlO(laJakat) m f gSak~l (u) RR(i#Jak~lat-U)~ 0
(laJ#k#t) = Cj~ (t)~S#k~1 (t) •-~'j+It t #. .-%.j+l" + I gs.k+l (u) ~ "~.j+1 [cj~ (v~
0
f IB PJ+I R6(J*i#k+l*t-u)]dv du t j~S, k+l u = I gU#i+l (u) RE(J#i+l#k#t-u)dU O
R5(i,j#k#t)
÷ /t gu,i÷l (u) (i-e-~s" k+l u) ~ o ¢ J , l + l # k , t - u ) d u 0 This system of equations can be solved by Laplace Transform Technique (LTT) for 4.
Ro(O#O,O,t)-
EXPECTED SJ~LVAGE VAI]JE IN
[-0# t 3
t - (kU,i+l ÷ XS, k+l) u[i So(i#J#k,t) = 1 % , i + I e A PI+ISI (i,J,k,t-~1) 0
+(IAqi+l÷ IAC) (SUI+I+ S E (i#J,k,t-~))~du t - (~'k+l + kUoi+l) uS 3 (i#J#k#t-u) du + I AS,k+le O S 1 (i,J,k#t)
= ~
0
t gu#i+l (U) e- (~U, J+l + XS#k+l )S O (J,i+l ,k#t-u) du
+ f t gu,i+l (u) (l--e--(~" k+lU) e-~U#J+lUs~ (J#i÷l#k,t-u) du O t + 1%.i+i 0
(u) (I~-
~ # j+l u) e-~.~#k+l u[i
X SI (J,i+l,ktt--u)+(IBqj+l+ IBC ) (SUj+1 + SE(J,i÷l#k , t-u) 3du u (u) O~ ~S,k+l "~S*k+IV(l- e-~U#J+IV)dv t + 1%,i+i 0
u (ul 1%,j+I 0
"
--~U, j+iv
(i -
jkS,k~IV
X EIB PJ+I Sg'(J'i+1#k#t'~) ÷ (IB qJ+l + IBC)
ldv
B Pj+I
954
M. N. GOPALAN and S. S. W A G H M A R E
X (SUj+1+ SIo(J, i+l, k, t-u))~dU S2 (l.J,ket)
= ~ t J k U t j + l u ( l - e "AS'k+lu) S 8 ( i , J e k . 0
t - u ) du
+ft -~U, J+l u e-~Sek+l u 0 kU~J+le [IB PJ+I X Ss(i,j,k , t-u) + (IB qj÷l+ IBC) X (SUj+1 + SS k ) ~du t
+ ~ gS, k+1 0
(u)
e-~u" I+I u
S O (i,J,k+1,t-u)du
t %,i÷i u S~(i,J,k,t) = I gS#k+l (u) J SO (1,J,k+l,t-u)du 0 t -~U,i ÷1u ) +f (u) (l-e 0 gse k+l
BPj, 1 S 1 (i,J,k+l,t-u)
+(I B qj+l + I c) (SUj+I+ SE(i,J,k+l,t-u))Jdu B t
S 8 (i,J,k,t)
=
I gStk+1 (u%.(l-e-~'j+lu) O
B
Pj÷iSs(J,l,k+1, t'u~.
+(IB qj+l + IBC ) (SSj÷1 ÷ SSk) ~du t -~U, J+l u) S2(J,i÷l,k,t-u)du Ss(i,J,k,t) = f gu,i+1 (u) ( l - e O t -~S'k+lU) (j,i+1,k, t-u) du +I gu,i+l (u) (l-e $10 O t S9(i,J,k,t) = IO gsS k+l (u) S 1 (i,J,k÷l,t-u)du t SIo(i'J'k't)= ~ gS,k+1 (u) S2(i,J,k+l,t-u)du O This system of eouations can be solved by L~f for So(O#O, Oot). 5.
EXPECTED BUSY PERIOD DUE TO r-TH TYPE OF REPAIR OF AN ITEM
t AVo~4er(l*Jek't) = 0~ ~U. l+le (~U'i+I+ ~S'k+l)U E IA PI+I
X AV~r(i,J,k,t-u) + (qi+l IA + I c ) A
X AV~r(i,J,k,t-u)~du
955
Reliability analysis
÷~tAs,k+le- 0~U*i÷I+ kS"k÷l )UAvBM2er(i.J,k,t-u)du O
AVer ~, J ,k,t) " ~ , i+l (t)x [M-u.
=i+i3
+~tgu,i+1 (u)j (~U,j+l +kS'k+l)%l BM (J,i+1,k,t-~)dU O AVo •r
t
+I gu,i+l (u) (l-e-~u'
j+lu)e~SOk+lu[pj+I xB
O
X AVl~4r(j,i+l,k,t-u) ÷ (qJ÷l IB + IBc) X Av~j.i+l.k~t--u) ] du +It ~,i+l (u) (1-e-~S,R+lu) e-~U,i+lUAv~ J,l+l,k,t-u'du O t u -~S,k+lv (l-e-~U" J+lv)dv +[O~ gu,i+l (u)~ ~,k~le t u -~U. +O~ gu,i+l (U)o~ ~,J+l e J+IV (I e-~S'k+IV)dv~
X~pj+llB Av~(Joi+l~kot-u)+(IBqj+l+ IBc)
BM
X AVlo.~, i+l, k, t-u) du m
AVer (i,j,k,t) - I[M= S, r = k+l 3 GS'k+I (t) t j~U •i+lU BM +~O gS,k+l (u) AVo, r (i,j,k,t-u)du t +~ O gs,k+l (u) (I- e-~'U'i+lu)[PJ+I IA BM (i,j,k+l,t-u) + (qi+lIA+ IAC) X AV l,r X AVer (i,J~ k+l e t-u)~du BM r (i,J,k,t) Ave,
du O m
AV r(i'J'k't)= I~M = S. r = k+l~ GS'k+l(t)
956
M . N . CyOPALANand S. S. WAGHMARE
t Av~oMr (i, J ,k+l ,t-U) ~u + I gsok+l (u) O BM (i,J,k,t)-
I
A~8. r
[M=s.
~=k+i]
GS°k+I (t)
t +f gS,k+l (u) (l-e-)'u°j +lu) Pj ÷I IBAV~ M (j,i ,k+l, t--u5du O
AV~r(i'J'k't)=
I[M = U. r = i÷1 ~ %,I+I (t) t jAS, k+l u BM (j,i+l ,k,t-u) dU +~ gu,i*l (u) AV2, r O t (l_e-~ S °k+l u) +f guoi÷l (u) AviE~Oo~J,i+l°k.t-u)du 0
AV
'r(i'J'k't)= I E M
-- S, r = k+l
t +I gS,k÷l (uSAv~M-(i'J" k+i, t-u)du O
The LTT
~0~
can be applied to obtain
t ~: (i,j,k,t) = f Av ~'~ (u) du ~mor O m°r
6.
EXPECTED NUMBER OF REPAIR COMPLETION~ IN [ O,t OF 'DHE SWITCH With
A = Ei + 1 < 13
and
B = [ j + 1 < I']
t =
[ IA
e
0
+ IAc (~(i,j,k,t-~/) ]du t - (~S,k+l +~U,I+I )u S + I ~S,k~l e ~ (i, ~,k,t-u%,du 0
t
- ¢%, j+i +~, k÷1 ~u ~
~ (i, J,k#t) = I gu,l÷l (u) e O
(j,i+l,k,t-u} du
t +I gu#i+l (u%'e-~S#k+lU (I- e -Au'j+lu) 0
Reliability analysis
957
X[IB(PJ+I
~ (..J,i+1,k,t-U)+ qj+1 "~ (J,i+1,k,t-u))
+ IBC ~
(J,i+l,k, t-u) ]du
-~S'k+lU)e-~U#~+IU~(J,i+1,k,t-u)du t + O~gU•i+i (U) (I--e t 0
" " rUA --~' k+lV (I-e-~U" j+Iv ..,e ) 0 S#kv±
+ I gu,i+l ~ujj
XEIB(Pj+1 ~(j.i+l,k,t-u)+ qj+l ~So(j'i+l'k't-u)) + IBc ~ 0 (j' i+l. E, t-u) ]du t u -~U, j+l v --XS,k+iV + I gU,i+l (u) I ~,j+l e (l-e )
0
0
S X[IB(Pj+I ~%(j,i+1,k,t-u)+qj+l~10(J#i+l,k,t-~) S ÷ IBc ~i0 (j,i+l, k# t-u)|du
~(i.J,k,t) = It gS,k+l (u) (i- e -XU'i +lu ) [ IA( "I 0 S
+ PJ+I |L~(i,J.k+l,t-u)+ qj+l~2(i,J,k+l.t-u)) + IAc(l + ~.~(i,J, k*l, t-u.%)]du + It gS.k+l (u)e-~U' i+lUEl + ~0S(isj,k+let_u)]d u 0 ~(i#J,k#t)
[t e--~U'j+lu(1 e-~'&'k+lU) q(i,~#k#t-u)du --"0 ~8 t --hU.j ÷iu --~k+l u +f ~, j+le e IB (qj+l 0 ,s
+ PJ+I ~(i,J. k+l# t-uJdu ~(i,j,k,t) = I gS,k÷l (u) 0
÷ ~ (l,j,k+l,t-u) du
t 0
=/t 0 gu, j~4
(u) e- s'k*lu ~ (J,i+1,k, t-u)du
958
M.N. GOPALA.~ and S. S. WAGHMARE t ,. -~S,k+l u. S +f gu,i~4 (U) ~ 1 - - e )~lo(J,i+l, k,t-~)du 0 ~OS (O,O,O,t) •
The LTT can be applied to obtain
7°
COST--BENEFIT ANALYSIS Expected net gain 1
= R0(O,O,O,t) + So(O,C.O.t) -
where
m Z
~o~ (t)
Csm I d
Cuel, CSw i~
-1
= Z % , i ~0~ (t)
I cost per.~ unit
i-th t},pe repair time
of unit, and switch respectively S m = ~0 (O,O,O,t). REFEREN CES M.N. GOPALAN
and
S.S. WAGH~L%RE, Cost-beneflt Analysis of
l-server 2-unit Imperfect Switch System with Multistage Repairs (Accepted for Publication in Microelectronics and Rellab.) • M.N. GOPALAN
and
S.S. WAGHMARE,
Cost-benefit Annlysis of
1-server P.-unit Imperfect Switch System wi~h Delayed Repair (Accepted for Publication in Microelectronics and Reliab.). M.N° GOPALAN
and
5.S. WAGHMARE, Cost-benefit Analysis of
l-server b-unit Replacement System with Imperfect Switch. (Accepted for Publication in M/croelectronics and Reliab° ),