Counterexamples to the article “Oscillation and global attractivity in hematopoiesis model with delay time”

Counterexamples to the article “Oscillation and global attractivity in hematopoiesis model with delay time”

Applied Mathematics and Computation 168 (2005) 973–980 www.elsevier.com/locate/amc Counterexamples to the article ‘‘Oscillation and global attractiv...

194KB Sizes 0 Downloads 27 Views

Applied Mathematics and Computation 168 (2005) 973–980

www.elsevier.com/locate/amc

Counterexamples to the article ‘‘Oscillation and global attractivity in hematopoiesis model with delay time’’ S.J. Yang, B. Shi *, D.C. Zhang, M.J. Gai Institute of Applied Mathematics, Naval Aeronautical Engineering Academy, Yantai, Shandong 264001, PR China

Abstract In this paper, we give some counterexamples to the article ‘‘oscillation and global attractivity in hematopoiesis model with delay time’’, [Appl. Math. Comput., 136 (2– 3) (2003) 241–250]. Ó 2004 Elsevier Inc. All rights reserved. Keywords: Counterexamples; Attractivity; Differential equations

1. Introduction In the recent paper of Saker [1], the author considered the differential equation _ ¼ pðtÞ

bpm ðt  sÞ  cpðtÞ 1 þ pn ðt  sÞ

*

Corresponding author. E-mail address: [email protected] (B. Shi).

0096-3003/$ - see front matter Ó 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2004.09.023

ð1Þ

974

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

with initial value s 6 t 6 0; /ð0Þ > 0; / 2 C½½s; 0; Rþ ;

pðtÞ ¼ /ðtÞ;

ð2Þ

where s, b, c 2 (0, 1), m, n 2 N. Assume that Eq. (1) has a unique positive equilibrium p > 1 and satisfies the equation bpm ¼ cp: 1þ pn

ð3Þ

Then the author obtains the following main results: Theorem 2.1 (Saker [1]). Assume that (2) holds and n > m. Then other positive solutions of Eq. (1) which does not oscillate about p satisfies lim pðtÞ ¼  p:

ð4Þ

t!1

Theorem 2.5 (Saker [1]). Assume that (2) holds, n > m and bðn  mÞð p þ p2 Þ

nþm1

 bmð p þ p1 Þ

m1

ð1 þ ðp þ p1 Þn Þ2

p ecs s < : 2

ð5Þ

Then every positive solution of Eq. (1) satisfies lim pðtÞ ¼  p;

t!1

where p1 ¼  p  csð p þ f bsÞ and p2 ¼  p þ f bs. First we sketch the proof of Theorem (2.1) which is given in Saker [1]. Proof. To prove this theorem we assume that pðtÞ > p for t sufficiently large (the proof when pðtÞ <  p is similar and will be omitted). Set pðtÞ ¼  p þ zðtÞ: Then z(t) > 0 for t sufficiently large. The change of variables above reduces Eq. (1) to the equation m

z_ ðtÞ þ czðtÞ þ c p¼

bðp þ zðt  sÞÞ n: 1 þ ð p þ zðt  sÞÞ

But from (3) we have z_ ðtÞ þ czðtÞ þ

b pm bð p þ zðt  sÞÞm  ¼ 0: n 1þ p 1 þ ð p þ zðt  sÞÞn

As pðtÞ >  p, we have z(t) > 0. Then, for t sufficiently large, we have

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

z_ ðtÞ þ

975

 m b pm ð1 þ  pn Þð p þ zðt  sÞÞ 1  60 n pm ð1 þ ð 1þ pn p þ zðt  sÞÞ Þ

or  m b pm ð1 þ pn Þð p þ zðt  sÞÞ 1 m < 0: z_ ðtÞ 6  n  1 þ pn p þ zðt  sÞÞ Þ p ð1 þ ð

ð6Þ

Then z(t) is decreasing. So, z(ts) > z(t). Also lim zðtÞ ¼ a; 2 ½0; 1Þ exists:

t!1

We prove that a = 0. Otherwise a > 0. Then there exist e 2 (0, a) and Te > 0 such that for t P Te, ae < z(t) < a + e. As z(t) is decreasing, we have a  e < zðt  sÞ: Then from (6) we have n

z_ ðtÞ þ

m

b pm ð1 þ ð p þ a  eÞ Þ  bð1 þ  pn Þð p þ a  eÞ 6 0; t P T e : n n ð1 þ  p Þð1 þ ðp þ a  eÞ Þ

ð7Þ

Integrating (7) from Te to 1, we obtain a contradiction. Then a = 0. So z(t) tends to zero. Therefore limt!1 pðtÞ ¼  p. The proof is complete. h In section 2, we shall give some counterexamples to show that Theorem (2.1) and Theorem (2.5) are not true. Consequently, the above proof is invalid.

2. Counterexamples Consider the following differential equation x_ ðtÞ ¼

bxm ðt  sÞ  cxðtÞ 1 þ xmþ1 ðt  sÞ

ð8Þ

with initial value xðtÞ ¼ /ðtÞ;

s 6 t 6 0; /ð0Þ > 0; / 2 C½½s; 0; Rþ ;

ð9Þ

where s, b, c 2 (0, 1) and m P 4. Then the initial value problem of (8) and (9) is an example of the initial value problem of (1) and (2). First, we list some lemmas which will be needed in the following proofs. Lemma 1 (Saker [1]). Assume that n P m and p(t) is the solution of the initial value problem (1) and (2) in (0,1), Then 0 < P ðtÞ < A;

976

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

where 8   > < max /ð0Þ; bc ;   A¼ xm > 1 : max /ð0Þ; bc 1þx n ;

if n ¼ m; if n > m;

1

where x1 ¼



1n

m nm

.

Lemma 2 (Guo et al. [2]). Assume that #ðtÞ; xðtÞ 2 C 1 ½J ; R are lower and upper solutions of the initial value problem u_ ¼ f ðt; uÞ;

uð0Þ ¼ u0 ;

respectively, and there exists a positive constant L such that for every t2J,x P y, f ðt; xÞ  f ðt; yÞ 6 Lðx  yÞ: Then for every t 2 J, we have #ðtÞ 6 xðtÞ; where f ðt; uÞ 2 C½J  R; R. Remark 1. By Lemma 2, the solution of inequality x_ ðtÞ þ cxðtÞ 6 bm ;

xð0Þ 6 /ð0Þ;

satisfies

  b b xðtÞ 6 m þ /ð0Þ  m ect ; c c

ð10Þ

where  is a positive constant. Lemma 3. Assume that sffiffiffi!mþ1 rffiffiffiffiffiffiffiffiffiffiffiffi!m1 b ðm þ 1Þ mþ1 m P 4 and ¼ : c 2 m1

ð11Þ

Then Eq. (8) has a unique positive equilibrium x and satisfies x > 1. Proof. Consider equation bxm ¼ cx: 1 þ xmþ1 For x > 0, we have 1 þ xmþ1 ¼

b m1 x : c

ð12Þ

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

From (11), it is easy to see that x ¼ Let

qffiffiffiffiffiffiffiffiffiffiffi

bðm1Þ cðmþ1Þ

977

is a positive solution of Eq. (12).

b f ðxÞ ¼ 1 þ xmþ1  xm1 : c Then f ðxÞ ¼ 0; and ðm  1Þb m2 x f_ ðxÞ ¼ ðm þ 1Þxm  c   bðm  1Þ m2 2 ¼ ðm þ 1Þx x  cðm þ 1Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi! bðm  1Þ bðm  1Þ ¼ ðm þ 1Þxm2 x þ x : cðm þ 1Þ cðm þ 1Þ So, if 0 < x < x, we have f_ ðxÞ < 0; if x > x, q weffiffiffiffiffiffiffiffiffiffi haveffi f_ ðxÞ > 0. That is, equation bðm1Þ f(x) = 0 has a unique positive solution x ¼ cðmþ1Þ . Also, Eq. (8) has a unique positive equilibrium x. From (11), it is easy to see that sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi bðm  1Þ x ¼ > 1: cðm þ 1Þ The proof is complete.

h

Remark 2. From Lemma 3, we see that if (11) holds, then Eq. (8) satisfies (3). Theorem 1. Assume that (11) and 1  m1 c 0 < /ðtÞ 6  6 < 1; s 6 t 6 0; /ð0Þ ¼  b

ð13Þ

hold. Then the solutions of the initial value problem (8) and (9) satisfies 0 < xðtÞ 6 : Proof. From (13), we have /ð0Þ ¼  P

b m  : c

From (8) and Lemma 1, we have if 0 6 t 6 s, x_ ðtÞ 6 bxm ðt  sÞ  cxðtÞ 6 bm  cxðtÞ:

ð14Þ

978

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

That is, x_ ðtÞ þ cxðtÞ 6 bm : By Remark 1 and (14), we have   b b xðtÞ 6 m þ /ð0Þ  m ect 6 /ð0Þ 6 : c c By induction, we can prove for t 2 ½0; ks; k 2 N 0 < xðtÞ 6 : The proof is complete.

h

Remark 3. From Theorem 1, it is easy to see that Saker [1, Theorem 2.1] is not true. Consider equation x_ ðtÞ ¼

bxm ðt  sÞ  cxðtÞ 1 þ xmþ3 ðt  sÞ

ð15Þ

with initial value (9), where s, b, c 2 (0,1) and m P 6. Lemma 4. Assume that  mþ3  m1 b 4 mþ3 mþ3 4 m P 6 and ¼ : c 4 m1 Then Eq. (15) has a unique positive equilibrium x ¼

ð16Þ 

bðm1Þ cðmþ3Þ

14

and satisfies x > 1.

Proof. Similar to the that in the proof of Lemma 3, it is easy to be shown and we will omit it. h Theorem 2. Assume that (13) and (16) hold. Then the solutions of the initial value problem (15) and (9) satisfies 0 < xðtÞ 6 : Proof. Similar to the proof of Theorem 1, it is easy to be proved and we will omit it. h Remark 4. From Theorem 2, it is easy to see that Saker [1, Theorem 2.1], is not true either. Consider equation x_ ðtÞ ¼

bxm ðt  sÞ  cxðtÞ 1 þ xmþ5 ðt  sÞ

with initial value (9), where s, b, c 2 (0,1) and m P 8.

ð17Þ

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

979

Lemma 5. Assume that m P 8 and

 mþ5  m1 b 6 mþ5 mþ5 6 ¼ : c 6 m1

ð18Þ 1

Þ6 and satisfies x > 1. Then Eq. (17) has a unique positive equilibrium x ¼ ðbðm1Þ cðmþ5Þ Proof. Similar to that in the proof of Lemma 3, it is easy to be shown and we will omit it. h Theorem 3. Assume that (13) and (18) hold. Then the solutions of the initial value problem (17) and (9) satisfies 0 < xðtÞ 6 : Proof. Similar to that in the proof of Theorem 1, it is easy to be shown and we will omit it. h Lemma 6. Assume that (9) holds and m P 8. Then there exists a s0 > 0 such that 5bðx þ x2 Þ

2mþ4

 bmðx þ x1 Þ

m1

mþ5 2

p ecs0 s0 < ; 2

ð1 þ ðx þ x1 Þ Þ where x1 ¼ x  csðx þ f bsÞ; x2 ¼ x þ f bs.

ð19Þ

Proof. Let

h  m1 i ct 2mþ4 b 5ð2x þ f btÞ  m 2x  ctðx þ f btÞ e t gðtÞ ¼ : h i  mþ5 2 1 þ 2x  ctðx þ f btÞ

It is obvious that lim gðtÞ ¼ 0: t!0

So, there exists a s0 > 0 such that p gðs0 Þ < : 2 Then it is easy to see that (19) is true. Now we consider equation x_ ðtÞ ¼

bxm ðt  s0 Þ  cxðtÞ 1 þ xmþ5 ðt  s0 Þ

ð20Þ

with initial value xðtÞ ¼ /ðtÞ;

s0 6 t 6 0; /ð0Þ > 0; / 2 C½½s0 ; 0; Rþ ;

ð21Þ

980

S.J. Yang et al. / Appl. Math. Comput. 168 (2005) 973–980

where b,c2(0,1) and m P 8. From Lemma 6, we have (19). Then by Saker [1, Theorem 2.5], every solution of the initial problem (20) and (21) satisfies lim xðtÞ ¼ x:

t!1

But from Theorem 3, the solutions of the initial problem (20) and (21) satisfies 0 < xðtÞ 6  < x. That is, Saker [1, Theorem 2.5], is not true.

Acknowledgment This work is supported by the Distinguished Expert Science Foundation of the Naval Aeronautical Engineering Academy.

References [1] S.H. Saker, Oscillation and global attractivity in hematopoiesis model with delay time, Applied Mathematics and Computation 136 (2–3) (2003) 241–250. [2] D.J. Guo, J.X. Sun, Z.L. Liu, Functional Methods of Nonlinear Ordinary Differential Equations, Shandong Science and Technology Press, Jinan, 1995, in Chinese.