Cross sections for charge transfer of hydrogen beams in gases and vapors in the energy range 10 eV –10 keV

Cross sections for charge transfer of hydrogen beams in gases and vapors in the energy range 10 eV –10 keV

ATOMIC DATA AND NUCLEAR CROSS DATA TABLES SECTIONS GASES FOR CHARGE AND VAPORS 22,491-525 TRANSFER IN THE ENERGY (1978) OF HYDROGEN RANGE...

1MB Sizes 178 Downloads 60 Views

ATOMIC

DATA

AND NUCLEAR

CROSS

DATA TABLES

SECTIONS GASES

FOR CHARGE

AND VAPORS

22,491-525

TRANSFER

IN THE

ENERGY

(1978)

OF HYDROGEN RANGE

10 Ev-10

BEAMS

IN

KEV

H. TAWARA Nuclear

Engineering Department, Kyushu University Fukuoka 812, Japan

Cross sections are presented in graphical form for the charge transfer in various gases and vapors of hydrogen beams (H+, Ho, and H-) with laboratory energy ranging from 10 eV to 10 keV. This compilation is intended to be an addendum to a previous paper in Rev. Mod. Phys. 45, 179 (1973). The references have been covered through August 1978.

0092-640X/78/0226-0491$02.00/0 Copyright 0 1978 by Academic Press, Inc. All rights of reproduction in any form reserved.

491

Atomic

Data and Nuclear

Data Tables.

Vol. 22, No. 6. December

1976

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

CONTENTS

INTRODUCTION........................................... References for the Introduction EXPLANATION

OF GRAPHS

492

AND TABLES

. . . . . . . . . . . . . . . . 494

GRAPHS I.

o{H+

+ B + Ho + B+}, oio . . . . . . . . . . . . . . . . . . . . . . . . . 495 Hz, He, N&, Oz, Ne, Ar, Kr, Xe, CHI, NH3, HzO, CO, C02, CsHlo, Li, Na, Mg, K, Rb, Cs, Pb

II.

a{H+

+ B + H- + BZ+}, cr-l . . . . . . . . . . . . . . . . . . . . . . , 500 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, Li, Na, Mg, K, Cs, Pb

III.

u{H”

+ B + H+ + B + e}, ao1 . . . . . , . . . . . . . . . . . . . . . , 504 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, CHI, NH3, HzO, CO, NO, COz, HI, Mg, Cs, Pb

IV.

o{H”

+ B --, H- + B+}, ooel . . . . . . . . . . . . . . . . . . . . . . . . 508 Hz, He, Ns, 02, Ne, Ar, Kr, Xe, CO, NO, HI, Mg, Cs, Pb

V.

cr{H- + B + Ho + B + e}, (+-1o . . . . . . . . . . . . . . . . . . . . . 512 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, CO, NO, Mg, Cs

VI.

cr{H- + B + H+ + B + 2e}, o--11 . . . . . . . . . . . . . . . . . . . 515 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, Cs

TABLES

I-VI.

REFERENCES

Lists of Measurements of ulo, cl-I, U-II........................................... FOR GRAPHS

AND TABLES

INTRODUCTION It has been recognized that the charge-transfer processes of hydrogen beams play an important role in plasma physics, radiation physics, astrophysics, and particle accelerators. In plasma physics, especially in fusion reactor experiments, the injection of neutral hydrogen beams is one of the most promising methods for the effective trapping of ions into the toroidal plasma. These neutral beams are generally produced through electron capture by proton beams. Similarly, the production of intense negative hydrogen-ion beams is important because the injection of the negative-ion beam is also thought to be an effective method for

col, (T~-~, ulo, 518

. . . . . . . . . . . . . . . . 523

ion trapping. The neutral particles escaping from the plasma contain some useful information on the plasma itself and can be used for diagnosing the plasma characteristics. For these purposes, data are required on the charge transfer of hydrogen beams, especially at energies lower than a few keV. There are some reviewsle6 on these charge-transfer processes but the energy is generally limited from a few keV to some tens of MeV. Also, there are a number of measurements of the cross sections for charge transfer, but there is no systematic compilation of data at lower energies. In this paper, we compile in graphical form experimental data (up to August 1978) on the charge

492

Atomic

Data and Nuclear

Data Tables,

Vol. 22, No. 6. December

1979

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

charge-transfer processes already have been given in some references.1,6 Here only a short description is given. In hydrogen beams, the following charge-transfer processes take place (B is the target atom, B+ and B2+ are the slow target ions, and e is a slow electron):

transfer in various gases and vapors of protons (H+), hydrogen atoms (HO), and negative hydrogen ions (H-) with incident energy between 10 and 10 000 eV. It is hoped that this compilation can be an addendum to our previous work.6 Detailed discussions on the

1. H+ impact H+ + B + H+ + B+ + e (url = (T:):

pure ionization

-+ Ho + B+

(ulo):

one-electron

capture

+ H- + B*+

(VI-1):

two-electron

capture

2. Ho impact Ho + B + Ho + B+ + e (ooo = crd): pure ionization + H+ + B + e (u&:

one-electron

stripping

+ H- + B+

one-electron

capture

(uo-1):

3. H- impact pure ionization

H- + B -+ H- + B+ + e (uplel = UC,): + Ho + B + e (u-~~):

one-electron

stripping

+ H+ + B + 2e (u-~~):

two-electron

stripping.

secondary slow ions. In the third method, the secondary slow ions and electrons are measured, neglecting the charge state of the incident projectiles after collision. Sometimes the equilibrium and retardation methods are also used.6 The cross sections which can be determined from various experimental methods for different incident ion beams are summarized in the following table:

Here (+ij denotes the cross section for the chargetransfer process from the initial charge state i to the final charge statej. ui means the ionization cross section for the incident ion with the charge state k. To determine the cross section for the chargetransfer process, the following three methods are generally used: the attenuation, the growth, and the condenser methods. In the first two methods, only the fast beams are observed, neglecting the charge state of

Incident Experimental Method

Hf

Particle

HO

Growth

UIO,

Attenuation

(+lO + Ul-1

Condenser Slow Ion Slow Electron Total Charge

u: + u10 + 2u+1 uf (+lO + 2u,-I

Cl-1

co13

UOl

493

H-

uo-1

+

u-10,

u-10

go-1

u; + uo-1 u; + UOl (+Ol

-

uo-1

Atomic

u-11

+

u-11

Ui,

U’~ + u-10 + 2u-,, (T-10 + 2u-1,

Data and Nuclear

Data Tables,

Vol. 22, No. 8. December

1978

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

In some methods, for example in the attenuation and condenser methods, the measured cross sections are not always those for a single process but those for the sum of two or more processes. However, in many collision processes, the cross sections for two-electron transfer processes are small, compared with those for single-electron transfer processes. It is important to consider the following points when these compiled data are used:

3. Some measurements have indicated that there is a finite difference (-5%) in the charge-transfer cross sections between H and D beams at energies less than 200 eV. This is thought to be due to the difference in scattering cross sections. However, more systematic measurements should be made before a definite conclusion on the difference is drawn from the observations. 4. Errors in the measured data are usually claimed to be lo%-20% for stable gas targets. However, for metal vapors, errors are often larger than those in gas targets.

1. In some measurements by the condenser method, only slow-electron or ion-production cross sections ((T-,(T+) are determined. However, these cross sections are, in many cases, the sum of the ionization cross sections ((T*) and the charge-transfer cross sections. It is possible to estimate the cross section for the chargetransfer processes from this measurement only when the ionization cross section is small. In some collisions such as Ho + Xe, the slow-electron and ionproduction cross sections are nearly equal (l-25 keV). In this case, it is not possible to determine the charge-transfer cross section without measuring both slow electrons and ions. For such cross sections, u- or (T+ is shown to distinguish them from pure chargetransfer cross sections. In such cases, m- should be taken as an upper limit of the charge-transfer cross section mol.

Acknowledgments The author would like to express his sincere thanks to Prof. K. Takayanagi, Prof. H. Suzuki, and the members of the Atomic Data Study Group for Fusion at Institute for Plasma Physics, Nagoya University, for their support and help during the course of this work. Various arrangements for drawing the graphs by Dr. S. Ohtani and Dr. T. Kato are highly acknowledged. References for the Introduction 1. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958) 2. H. D. Betz, Rev. Mod. Phys. 44, 465 (1972) 3. R. C. Dehmel, H. K. Chau, and H. H. Fleishmann, ATOMIC DATA 5, 231 (1973)

2. In most measurements, no detailed description is given of the effect of scattering processes which becomes significantly important at energies lower than a few hundred eV. Due to the scattering loss of the beam charge-transferred in the collision, the observed cross sections may be too low, depending on the measuring geometry, as seen in the scattering of data at lower energies.

EXPLANATION

4. H. H. Lo and W. L. Fite, ATOMIC DATA 1, 305 (1970) 5. V. S. Nikolaev,

8, 269 (1965)

6. H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973)

OF GRAPHS

AND TABLES

Energy

Of incident

Cross Section u-9 c+

Per target atom or molecule Cross section for slow-electron,

Measurement Method A C DC E G MS R

Attenuation method Condenser method Differential cross-section Equilibrium method Growth method Mass-separation method Retardation method

For details of methods,

Sov. Phys. -Usp.

beam; in keV on Graphs, in eV in Tables slow-ion production

measurement

see Ref. 6

494

Atomic

Data and Nuclear

Data Tables.

Vol. 22. NO. 6. December

1978

GRAPHS

I. a{H+

+ B + Ho + B+}, crlo, where B is Hz, He, Nt, or 0,

See page 494 for Explanation of Graphs and Tables loH’+H,

- H” l Cramer ‘

curran

m Gustafson o Kwpman + McClure 1 Stedeford x Williams

lo-

zs z b

lo-

lo-

b lo-

I

H’+O, l

-

l

Monnom

A

Stedeford

“I

o Koopman * Stebbings ’ Stedeford

.+ Gilbody Gustafson Koopman x McNeal

o0 0

lo-‘+



+ H’

10.”

-

I ,,,,I

1 , I,,,, 0.1

1 Energy (E,,-keV)

10

496

GRAPHS

I. (T{H+ + B + Ho + B+}, vlo, where B is Ne, Ar, Kr, or Xe See page 494 for Explanation of Graphs and Tables

10-‘4‘

I I’

“I

lo-

I II-

I ’ 8 “I

H* + Ar - H”

Ii* + Ne - H”

Hasted o Koopman Monnom . Stedeford I Williams

0 Monnom I) Stedeford x Williams

l

q

10.

r 1

0

0

x a d

s

.7 5 2 lo-

x

q

.

d :

lo-

. ..

.

.

D . . . .

. I ,,,,I

10 I

10

o + 4 x

Hasted Koopman Maier Stedeford Williams

l

o + A X 0

10

+

4

+ -

+

+

“““‘I

0

8

+

“0

$2 0

0

OlO .

10-16 -

10

10 1

0.1 Energy

IE,b-keV)

10

10

Hasted Koopman Maier Stedeford Williams Morgan (D’)

OO ++



+ +t+++

z “E s % ,0-M-

+

I I t,J 1

I

K+Xe-H’ l

I 11111 0.1

1

0.1 Ensw

(E,,-keV)

GRAPHS

lo-“= H’+CH,

I 8 ’ “1 _

+ H”

0 a 0 + lo-‘+

-

0

I

1 , OIlI

I

,rrl

K+NH,+H” K+NH,-H”

+ Berkner 0 Kcx~pman . McNeal to..)

lo‘-

497

I. c+{H+ + B 4 Ho + B+}, ulo, where B is CH4, NH3, H20, or CO See page 494 for Explanation of Graphs and Tables

Coplan Gilbody Koopman McNeal lo.)

-

0 +

-it u

0 n lo-‘I-

lo-‘6-

. 10-I’

I ,,,,I 0.01

I ,,,J

I,,141 1

0.1

10

7-

1

,

,” “I

H’+COl

A + 0 0

Berkner Cable Coplan oagnac Koopman

H”

e Berkner l Gilbody 0 Gustafsm l McNeal to.)

I ,,,,I

I .I a.1 0.1

1 Energy

(El,,-keVI

1

6.1 Energv (E,,b-keVl

10

498

GRAPHS

I. u{H+

+ B + Ho + B+}, clo, where B is COz, CsHlo, Li, or Na

See page 494 for Explanation of Graphs and Tables lo-

lo-

lo-

10.

;I

“E v E: - lo-

5

+

z o lo-

lo-

lo-

Ly

lo-

lo10

10. H’+Li-H”

Gruebler 0 Gruebler

l

I r “‘I K+b-+

(H’) @‘I

I ““I

I ”

H’

. Gruebler o Gruebler

(H’) (D’)

0 .

10

.a

.

0’

0 .O. 0.

0 0

“E 0 2 10

10

I ,,,,I

10-I’ 0.01

I1 0.1

I,, J

a.,1 1

Energy (Ebb-keV)

10

10

I ,,,,I

I LIIIl 0.1

I’, 1

Energy

(E,,-keV)

D

GRAPHS

499

I. cr{H+ + B + Ho + B+}, u,~, where B is Mg, K, Rb, or Cs See page 494 for Explanation of Graphs and Tables

H++K+ H’+Mg+

H”

+

H”

+ 0 Berkner ot

+ Futch

0 +

. Gruebler o Gruebler

0

+

10-14-

l

+

(H’l ID*) ++

lnoue

z+ + 00 +.

0.0 +

10-9

1 ,,,,I 0.01

I I1161 0.1

“,

l0 0. 0 .

+

++++

-

-

I I I, .l

I 11

.*

+

z_ E Q ,&II

lo-‘6

.a .*0

10

I

‘7L

o Girniur x Girnius

(D’) fH’)

10-t’

-

. Gruebler D Schlachter + Schlachter b *Spiess

IH’I (D’)

0

0

i 2 t

. . lo-‘5

-

10-16 -

10-l’

I ,*n.I 0.01

I I *.,I 0.1

I I L, 1

Energy (Ebb-k+/)

iy

10

500

GRAPHS

I. a{H+

+ B + Ho + B+}, vlo, where B is Pb

See page 494 for Explanation of Graphs and Tables

I .,,.I

I L III1 0.1

I I.< 1

Energy (E,,-keVl

GRAPHS

II. a{H+

+ B + H- + B2+}, CT-~, where B is H2 or He

See page 494 for Explanation of Graphs and Tables H’+ H, + H-

A ’ + 0

+ Fogel 0 Williams

Fog4 Kozlov McClure Williams

+ + 01 +

lo-”

-

+

0

0 0

0.

_

. l .

. . . . 10-Z’ -

lo-‘1 1

0.1 Energy (Ebb-keVl

10

0.01

I 0.1

I ‘I,,. III

I I I #.I 1 Energy

lEb,-keV) lEh,-keV)

10

GRAPHS

II. a{H+

+ B + H- + B2+}, CT-~, where B is N2, 02, Ne, or Ar

See page 494 for Explanation of Graphs and Tables 10 H*+N,

+ H-

0

o Fogel

0 Fogel

10

LT. -5 ? c 10

10.

lo-

L 10

r ““I K+Ar-r

I ’ “‘I

1 iIf

H

. + Fog& 0 Williams

d Afrosimov + Fogel l Kozlov 0 Williams

. l In + to 0 o < 0

.

0

.

I, I Energy (Ebb--k&l

,,,I

I I,,,l 0.1

I ,,< 1

Energy lE,,-keV)

GRAPHS II. o{H+ + B + H- + B2+}, ulml, where B is Kr, Xe, Li, or Na See page 494 for Explanation of Graphs and Tables

10-‘6yj lo-‘%

H’+Kr-

H-

1 III,

I ’ “‘I

H’+Xe+H-

+ Fogel 0 Williams l Morgsn (D’)

+ Fogel . Korlov 0 Williams lo-‘*

I

I 1 “‘I

-

Q

-9.0 .-

lo-“-

-

l + a.3 b

t

+ 00

-

.* .rE 0 ,0-s

lo-‘0

-

10-=lC 0.01

1

0.1

16

10-I H’+Na+

. Gruebler 0 Gruebler

H-

. Gruebler 0 Gruebler

(H’) (D’)

(H’) ID’)

10-I

z5 I 0 10-I

10-I

I

I I ,,.I

I1111 0.1

L 1

Energy tEh,,-keV)

lo-’

1 t

I

I1

1,111

I 1

0.1 Energy (E,,-keV)

I ,‘(

GRAPHS

II. cr{H+ + B * H- + B2+}, (T~-~, where B is Mg, K, Cs, or Pb See page 494 for Explanation of Graphs and Tables

lo-‘91 0.01

1 I1.11

I ,>,,I 0.1

I, 1

I, 10

. Baragiola

0.1

1 Energy

(E,,,

- k&J

10

10-10 0.01

I ‘III1

I, 0.1

,,,I

1 1

Energy I&,,-keW

,lmLul 10

GRAPHS

III.

a{H”

+ B + H+ + B + e}, aol, where B is Hz, He, NZ, or O2

See page 4% ‘for Explanation of Graphs and Tables

+

x = + A 0 *

Bartlett Curran Fleishmann (u.) McClure McNeal (0.1 Noda l Stier 0 Williams . RouseI 0 Smith

l

lo-‘6

x 0 0 A

-

Fleishmann ((1.1 McNeal (0.) Stier Williams RousDel Smith

s:-

A ‘.“t ‘8.0 0 -

$P I+ 8 ” d 2 ,5 t

+ 10-I’

-

P’ +’ ++”

+‘, ++

q

+ ++

++ ++

lo-‘*

-

10-19 0.01

10-t

10-I

“E u 2 lo-

lo-

loEnergy (E,

- keVb

+

++ +

I 0.1

1

10

GRAPHS

III.

v{H”

505

+ B + H+ + B + e}, uol, where B is Ne, Ar, Kr, or Xe

See page 494 for Explanation of Graphs and Tables

10.16 -

+

Fleishmann

l

McNeal

A

Monnom

x 0 0

Stier Williams Roussel

to.)

Dehmel lo.1 A Donahue + Fleishmann (0.1 0 McNeal ((I.) 0 Monnom x Stier o Williams A Roussd . Van Zyl

l

lo.1

;-‘ 2 2 10-I’

r

++++ ++ +t+ lo-”

+* .

-

10-q 0.01

1

,

I

I

IllI

,

I

I,,,

I

0.1

,I

I,

1

10

Energy lElab-keV)

. Dehmel ((I.) + McNeal (0.1 o Williams x Roussd

* + o 0 . A

10-16-

Dehmel (0.) McNeal lo.1 Williams Morgan ID”1 Morgan (H-1 Roussd

++ ++ +

0

-*+*

0 0 0

. . l*

“E v 2

..

-

.

. l .* x

.

lo-“-

lo-”

-

10-1 0.1

1 Energy (E .i,-

keV1

10

0.01

0.1

1 Energy (Eh,--keV)

10

506

GRAPHS

III.

cr{H” + B + H+ + B + e}, crol, where B is CH4, NH3, H20, or CO See page 494 for Explanation of Graphs and Tables

lo-“. lo-”

I

I -

H”+CH,

I

,I,,

f

,

,,11*1 ,,llCcl

+- H’ + o

10-=t ++J ++-

Dehmel McNeal Smith

(0.) Co.) (a.)

++

+

++

I ““I

& +

1 ’ “J

I

Ho+ NH, + H*

+ + +2 +

+ McNeal

(o.)

+ +$

l *

+

.

+

+

0

.**

0

.*

lo-16 -

_

+ + +++

10-16 7

00

0

.* : 0

. .= .* “E 0

-

.’.’

“E u i 0 ,0-l’-

0

lo-“-

10-l.I,,,,,i 0.01

I Lllll

lo-‘* 1

0.1

H’+H,Od

0.01

I I I,, 10

H’

l

0 Dagnac

10-16 -

z-

I 1

0.1

10-16 -

-

“E s &

s g ,047

rl + 0 0

Dehmel (0.) Donahue McNeal (CL) Pilipenko Smith

-

lo-“_

.

10-L’ -

lo-”

0.1

1 Energy (E,,-keV)

10

-

10-‘9 I 0.01

1

0.1 Energy f E,

-ksV)

10

GRAPHS

H”+NO-

III. a{H”

+ B + H+ + B + e}, uol, where B is NO, COP, HI, or Mg See page 494 for Explanation of Graphs and Tables

H+

0 Pilipenko

. .

H”+Mg-

o Pradel

10-I'

H’

0 Berkner + Futch

-

o+

7 d 2

+ lo-”

-

10-19 -

I

10-m 0.01

I

I,,11

1 ,,,,I

1 I III 1

0.1 Energy (E,,-keV)

10

10.‘91 0.01

I I ,,.I

I ,,,,I Energy

I .I, 1

0.1 (E,,,-keV)

GRAPHS

III.

a{H”

+ B + H+ + B + e}, sol, where B is Cs or Pb

See page 494 for Explanation of Graphs and Tables

H”+PbH”+ Cs-

.

ii’

H’

Schlachter

0 Schlachter

IH’)

l

(17 1

Baragiola

10-16 -

“E 0 2

.

lo-“-

lo-”

,

81

I,,,,

I1

I I #,,I

I ,<

0.1

T

10-q

1

I ,,,,I 0.01

I 11111

Energy (E,,-keV)

I I1 1

0.1

10

Energy (E,,,-keV)

GRAPHS

IV. o{H”

+ B +- H- + B+}, @O-l, where B is Hz or He

See page 494 for Explanation of Graphs and Tables

A Curran l McClure + Stier o Williams x Roussel

A

00 .+ I x X.

lo-“x

I

AAi a-f go+:

8

0

x x I

z-

x

4

-

2 lo-“-

x

” ”

I

.

.

x

.. .

0 “E 0 i

_ . lo-‘9

-

10-19 -

10-1’

I 0.01

I

I

I

0.1

I 1

Energy lE,,-keV)

10

GRAPHS

IV. u{H”

+ B -+ H- + B+}, co-1, where B is NP, 02, Ne, or Ar

See page 494 for Explanation of Graphs and Tables

H’+O*+H-

H” + N, + H0 + n

Pillipenko Stier

Pilipenko Stier

0

+

van Zyl

10-l’

-

CT 5 i

10.16

I -

,

I

-

lo-”

--

lo-‘9

-

I ,l,lU

H”+N~-H. ROUael + Stier o Williams

A Donahue + Stier o Williams l

Roussel

+o+o 10-I’ -

0

0

o+ 0

_

+

. “E

.-

3

f .

lo-‘“.

l :

.

.

.

.

.

. . .

. lo-”

lo:o. lo-“0 0.01

I

I

I

,111

I

-

.

t

I

0.1

Energy (E,,-keV)

I,,,

I 1

I

I

,,,b 10

10-19. 0.01

4

I

I

I,,,

I

I

I

0.1

,,,I

4 1

Energy (Eh,-keV)

I,

,i,L 10

510

GRAPHS

IV. a{H”

+ B + H- + B+}, go-r, where B is Kr, Xe, CO, or NO

See page 494 for Explanation of Graphs and Tables

+ RouPel 0 Williams

lo-'6--

-‘ 5 2

10-l'--

+’ + +

+ + lo-"-

10-16

5

K+CO-H-

I

H"+NO-H-

OOD6%’

+ Donahue 0 Pilipenko

,

I

0

0 Pilipenko

0”

0 lo-"

+

c

I

E i lo-"

10."

10-l" 1

0.1 Energy (E,.,-keVl

10

0.01

1

0.1 Energy (E,,,-

keVl

1"

511

IV. cr{H” + B -+ H- + B+}, co-I, where B is HI, Mg, Cs, or Pb See page 494 for Explanation of Graphs and Tables

GRAPHS

l(

I ““I D +MgH H’+Mg-

H”+Hl+H

I I “‘I

I i ‘I’-

HH

0 Berkner

0 Pradel

00

l(

“E 2 f

1c i

10

1o-20 I 0.01

I ,,*,I

1 ‘,,,I

11.1,

0.1

1

10

10

I. 1 H”+Pb-

0 . 0

Cisneros (0) Schlachter (HI Schalchter (D)

+

Spies

0

0 q

0

0

o+ n

.

10-16 e

10

H-

0.1

1 Energy (E,,,-keV)

512

GRAPHS

V. a{H-

+ B + Ho + B + e}, v-lo, where B is Hz, He, N2, or 0,

See page 494 for Explanation of Graphs and Tables

‘O-m

I

H-+ HI - Ii”

10.”

A Hasted a Muschlitz x Fiisley l Simpson + Stier A Whittier 0 Williams

x Bailly o Champion A Hasted A Rirlev 0 Simpson + Stedeford l Stier 0 Williams

+++ +

++

+

+ 00

‘O-“t”

++ cl0

+

“E v z d 10

10-1, 0.01

+

i

* Bailey l

+ Pilipenko Risley 0 Stier

Champion + Risley 0 Stier

l

6

10-d 1

0.1 Energy (E,,--keV)

10

0.01

I *,,,I

,I,.,,

I ,,,J 1

0.1 tnergy

(E,,,-keVI

10

GRAPHS

V. u{H-

513

+ B -+ Ho + B + e}, umlo, where B is Ne, Ar, Kr, or Xe

See page 494 for Explanation of Graphs and Tables

h 10-15 .

-.- . x* i 0 ,j



. . . . pm* xxxxs

** “I

.

.

.

;,xx’

2,

l *

.

.&’

l

+

a,,

ijp”“’

+

x

.-

lo-‘6

- Bailey . Champion

l *

*

l +’

.2*

-

x Bailey A Bydin

A Hasted

. Champion

+ Stedeford

A Hasted

Stier 0 Williams

l

q

Rirley

v Simpson + Stedeford 10-I’

0 Stier

-

0 Williams I-

Y 10

10-18 0.01

lo-”

I

,I,,,,

I ,,,,I 0.1

_

,

-

H-+Xe+H”

,

,

1

, , , ,

I

I

I,,,

1

l Bydin h Hasted + Stedeford o Williams

lo-” -

a MorganID- ) .

+

+

d Hasted + Stedeford 0 Williams

1 I I 1 ,,,I

I

I

I I , , , I

0.1

1 Energy (Ebb -k&9

’ 00

l

* Bydin

I

.

l .** .

+A

0.01

I

,

,114

+

A

lo-..1

10

Energy IE,,-KeV)

+

a+

t

+

514

GRAPHS

V. a{H-

+ B --, Ho + B + e}, urnlo, where B is CO, NO, Mg, or Cs See page 494 for Explanation of Graphs and Tables

1c L

Ii-+NO+H

0 Pilipenko 10

10-15 -

zi v

4 2

d 10

10.16 _

10

lo-“-

10

1o-tq 0.01

I”-‘-

r

I ’ ’

I 1

I”

I I llal

I I ,t,l

0.1

I , I UJ 1

10

1

10

~

. . ‘..

+ Leslie OShss 10‘”

10-15 --

z 4 f

-

^ 5 j

lo-16

lo-16 -

--

0 Berkner

lo-”

r

10-I’

-

10-l"

0.01

0.1 Energy (E,,-keVI

GRAPHS

VI. u{H-

+ B 4 H+ + B + 2e}, w-11, where B is HP, He, Nz, or 0,

See page 494 for Explanation of Graphs and Tables c H-+

H-+H,+H+

10-I’

-

i 2 5 0 ,0.‘8

-

.

+ Fogel l Timone 0 Williams

. .*O

He-

H+

&O-J + Fogel 0 Williams

lo-‘*-

ALI

lo-‘q 0.01

t





H-+N,



I”’

.I

10

“’

+ H+

0 Fogel

0 Fogel

lo-'6

-

10-16 -

0

i 0 f 10-I’

--

10-18 7

0.1 Energy lE,,-keV)

1

10

10-19 0.01

I

I

I

I,,,1

, 0.1

I

I III,

1 I’& 1

Energy tE,,-keV)

0

516

GRAPHS

VI. a{H-

+ B + H+ + B + 2e}, CT-11, where B is Ne, Ar, Kr, or Xe See page 494 for Explanation of Graphs and Tables

\

H-+Ne*H+

_

0 o + Fogel 0 Williams 10-I’

H-+Ar-H+

0 ot + Fogel 0 Williams

0

_

10-I’

-

,d : d ,0-l*-

lo-‘*-

t

,,-2.10 0.01

10-

I

H-+Kr-

H+

o Fogd

10-16 -

lo-

7

;:

d ,3

4 2 lo-“-

lo-‘*

lo-

-

lo-

lo0.1

1 Energy (E,,-keV)

10

0.1

1

10

GRAPHS

VI. a{H- + B + H+ + B + 2e), u-II, where B is Cs See page 494 for Explanation of Graphs and Tables

loHm+Cs-

H+

lo-

“E 0 j lo-

lo-

10-z I

I I I ,,I 0.1

I #,,,I

I I,,, 1

Energy (E,,-keV)

10

517

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

TABLE I. A List of Measurements of cl0

Year

Energy range (eV

Hasted

195 1

lo- 800

Hasted

1952

loo-

bbittier Stedeford-Hasted

Authors

Target

Method

Ar.Kr,Xe

C

37

1.000

Ar

C

38

1954

4.000-70.000

Ha

A

88

1955

100-40.000

C

80

G+E

81

C

32

C

19

MS

36

D, CD+)

C

17

Ha

C

1%

C

79

C

34

H,,He,Ne,Ar

Reference

Kr,Xe

Stier-Emmett

1956

3.000-200.000

Ha,He,N,,Ot. Ne,Ar

Gilbody-Hasted

1957

10-40.000

1959

2.400-60.000

1960

25-900

1960

4-400

1961

50-400

1964

40- 10.000

Gordeev-Panov

1964

1.000-40.000

Hollricher

1965

1.500-30.000

Ha J’a

C

40

McClure

1966

2.000-117.000

H,,H

G

51

Williams

1966

2.000-50.000

H,,He,Ne,Ar

G

89

H,,Ar,Kr,Xe

C

42

V-J

C

11

G

31

C

43

C

44

Curran

-et

al -.

Gustaffson-

N,,C’-‘JHa

HaJaaQJ

Lindholm Cramer-Marcus

Cramer Stebbings

--et

al.

HZ

$90 H,,N,,Ar

Kr,Xe

Koopman

1967

70- lOS0

Cable

1967

180-460

Futch-Moses

1967

4.000-50.000

Koopman

1.968

40- 1.500

Koopman

1968

100-1.500

WcNeal-Clark

1969

1.000-25.000

Becker-Scharman

1969

1.500-30.000

1969

500-20.000

1969

Dagnac

,CO, ,H,‘J

QQ .NH,

52

C(O- a+,

Na

6

cs

G

73

5.000-70.000

%?

G

7

1970

2.000-60.000

Ha0

1970

30-500

1970

300- 70.000

-et -.al

1970

1.000-20.000

al.

1970

2.500

1970

1.000-25.000

et --* et --. --et

al al.

Coplan-Ogilvie Berkner

N,,O,

C

Schlachter Berkner

Mg

et --*

al

al

He-3,He-4

G+E

21

H,O,COs,NH,

DC

15

CO.CH,,H,O

C

8

G

35

G

77

CeF,,

Gruebler Spiess McNeal

--et

Li,Na,K,Cs cs CO,CO,,NHa,

C(u

,q)

54

%

See page 494for Explanation of Graphs and Tables

518

Atomic

Data and Nuclear

Data Tables,

Vol. 22, NO. 6. December

1978

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

TABLE

I, continued

Energy Authors

Spiess

Year

--et

al.

1noue Maier

II

Baragiolla

range Target

(ev)

Method

Reference

1972

500-3.000

CS

G

78

1972

150-8.000

K

G

41

1972

0.5-100

Kr,Xe

C

47

1973

7.500-40.000

Pb

G

9

G

55

Monnom

et --

al.

1975

100-Z.

Morgan

--et

al.

1976

1.2.50-25.000

X.2

G

56

1977

550-2.000

Rb

G

33

Girnius

et --

al.

TABLE

500

II. A List of Measurements

Energy Authors

Fogel

--et

al.

Nz,Ne,A

of vl-1

range

Year

feW

1956

9.500-29.000

Targel

Method

H,.He,N,,O,,

Reference

G

27

G

30

Ne,Ar Fogel

et --

al.

1959

5.000-50.000

H,,He,Ne,Ar, Kr.Xe

Afrosimov

-et

Kozlov

--et

-.al

al.

McClure

1960

5.000-180.000

1963

500-5.000

1963

6.000-50.000

Williams

2.000-50.000

Ar H,,Ar,Kr

45

%

48

H,,He,Ne,Ar,

90

Kr,Xe Futch-Moses

1967

Schlachter

--et

Gruebler Spiess

--et --et

al.

al.

Baragiolla Cisneros

--et

al.

al.

4.000-50.000

Mg

31

500-20.000

CS

73

Li,Na,K,Cs

35

1970

1.000-20.000

1970

2.500

CS

77

1973

7.500-40.000

Pb

9

1976

250-1.250

CS

13

Morgan

--et

al.

1976

1.250-25.000

Xl?

56

Morgan

--et

al.

1978

1.100-80.000

Mg

57

See page 494 for Explanation

519

of Graphs

and Tables

Atomic

Data and Nuclear

Data Tables.

Vol. 22, No. 6. December

1979

Charge Transfer of H Beams in Gases andVapors

H. TAWARA

TABLE

Authors

III.

Year

Stier-Barnett

1956

A List of Measurements

Energy range (eW 3.000-200.000

of vol

Target

Method

Reference

H,,He,N,,O,,

G+E

81

G

29

Ne,Ar

Fogel

--et

al.

1958

5.000-40.000

H,,He,N,,%,

Ne.Ar,Kr,Xe CUlTall-

DOlX+hlJe

1960

4.000-35.000

Hz

C+A

20

1961

8.000-40.000

Ar,CO

C+A

24

Pilipenko-Fogel

1962

5.000-20.000

H,,N,,O,,CO

G

63

Pilipenko-Fogel

1963

5.000-30.000

G

64

Williams

1967

2.000-50.000

G

91

Donahue-Hushfar

NO H,,He,Ne,Ar,Kr, Xe

Futch-Moses

1967

4.000-50.000

Mg

G

31

McClure

1968

1.250-117.000

HZ

G

51

1969

500-20.000

cs

G

73

1969

5.000-70.000

k3

G

7

Fleishmann-Young

1969

so- 1.000

H,,He,Ne,Ar

C(U-)

25

Fleishmam-Young

1969

SO-800

N* 4

C(U-1

24

McNeal-Clark

1969

1.000-25.000

C(O-,O+l

52

1970

1.000-25.000

C(u-,U+)

53

C(u-,q)

54

Schlachter

--et

Berkner

--’et

t&Neal

al.

al

et ---

al

N2 H,,He,O,,Ne. Ar,Kr,Xe

McNeal

1970

1.000-25.000

CO,C’.$,CH,, %

Dagnac

--et

al.

1970

2.000-60.000

Barnett-Ray

1972

300-10.000

Baragiolla

1973

7.500-40.000

1973

80-2.000

Dehmel

--et

al.

40 “24 Pb Ar,Kr.Xe,CO. co,

G+E

21

G

5

G

9

C(U-)

22

‘Mb

Pradel

--et

al.

1974

500-3.000

HI

G

66

Monnon

--et

al.

1975

100-2.000

N*,Ne,Ar

G

55

Noda

1976

200-5.000

Hz&

G

60

Smith

1976

250-5.000

C

75

--et

al.

H,,He,N,,O,, C0,~2,W,

Cisneros Morgan

--’et --et

Roussel

al al.

-et

-.al

1976

500-2.000

N2

G

14

1976

1.250-25.000

Xe

G

56

1977

500-3.000

G

70

Ar

C

86

Nz,Oz

C

87

H,.He,Ne,Ar, Kr,Xe

Van

Zyl

Van

Zyl

--et --et

al. al.

1977

250-S.

1978

50-3.000

000

See page 494 for Explanation of Graphs and Tables

520

Atomic

Data and Nuclear

Data Tables.

Vol. 22. No. 6, December

1979

Charge Transfer of H Beams in Gases and Vapors

H. TAWARA

TABLE

IV. A List of Measurements

Energy Authors

Year

Stier-Barn&t

1956

of cowl

range

(eV) 3.000-200.000

H,,He,N,,D,,

Method

Reference

G+E

81

C

20

Ne,Ar

HP

1960

4.000-35.000

Donahue-Hushfar

1961

8.000-40.000

Ar,CO

C

24

Pilipenko-Fogel

1962

5.000-50.000

H,J2,0,,C0

G

63

Pilipenko-Fogel

1963

5.000-35.000

NO

G

64

McClure

1964

6.000-120.000

Hz

G

49

Williams

1967

2.000-50.000

G

91

H,,He.Ne,Ar, Kr,Xe

Schlachter Berkner Spiess

-et

1969

500-20.000

CS

G

73

1969

5.000-70.000

Mg

G

7

1970

2.500

CS

G

77

1973

7.500-40.000

Pb

G

9

-.al

1974

500-3.000

HI

G

66

--et

1976

250-1.250

CS

G

13

1976

1.250-25.000

Xe

G

56

1977

soo-

H,,He,Ne,h.

G

70

C

87

et --* --et

al -*

al al.

Baragiolla Pradel

-et

Cinsneros Morgan Rouse1

et --

al.

al.

et --.

al

3.000

Kr,Xe Van

Zyl

--et

al.

1978

so- 3.000

Nz,Oz

See page 494 for Explanation of Graphs and Tables

521

Atomic

Data and Nuclear

Data Tables.

Vol. 22. No. 6. December

1978

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

TABLE V. A List of Measurements of (+-IO

Year

Energy range (eV)

Hasted

1952

100-2.500

Whittier

1954

4.000-70.000

Stedeford-Hasted

1955

100-40.000

Authors

Target

Method

Reference

C

38

A

as

C

80

C

39

G

81

He,Ne,Ar,Kr, Xe HZ He,Ne,Ar,Kr, Xe

Hasted-Smith

1956

10-2.700

Stier-Barnett

1956

4.000-300.000

Hz H,,He,N,,02, Ne,Ar

Muschlitz

et al --*

1956

4-400

H*

C

58

Muschlitz

et al --*

1957

4-400

HZ

C

59

Bailey

1957

S-350

He,Ne,Ar

C

3

Pilipenko

--et al.

1966

3.000-30.000

O,,NO,CO

C

65

Bydin

1966

200-7.000

He,Ne,Ar,Kr,Xe

C

10

Williams

1967

2.000-50.000

H,,He,Ne,Ar,Kr, Xe

G

92

Berkner

et al -d

1969

5.000-70.000

Mg

G

7

Spiess

--et al.

1970

2.500

cs

G

77

Bailey

--et al.

1970

10-350

O*

C

4

Leslie

--et al.

1971

2.000-30.000

cs

G

46

Simpson-Gilbody

1972

4.000-30.000

H,,He,Ar

A

74

Risley-Geballe

1974

200-10.000

H,,He,N,,Oz.+Q

A

68

Risley

1974

200- 10.000

Hz,He,Nz,Oz.Ar

A

69

1976

2-100

He,N*,Ne.Ar

C

12

1976

1.250-25.000

Xe

G

56

Champion Morgan

--et al. --et al.

TABLE VI. A List of Measurements of (T-~~

Authors Fogel

Tisone

--et al. et al --.

Williams

Year

Energy range (eW

1957

5.000-40.000

1965

500-4.000

1967

2.000-50.000

Target H,,He,N,,O,, Ne,Ar,Kr,Xe HZ H,.He,Ne.Ar

Method

Reference

G

2a

G

82,83

G

92

Leslie

et al --.

1971

2.000-30.000

cs

G

46

Morgan

--et al.

1976

1.250-25.000

Xe

G

56

See page 494 for Explanation of Graphs and Tables

522

Atomic Data and Nuclear Date Tables. Vol. 22, No. 6. December 1978

Charge Transfer of H Beams in Gases and Vapors

H. TAWARA

REFERENCES

V.V. Phys. V.V. Phys. 3

Afrosimov,

R.N.

2, 2080

(1958)

Afrosimov,

R.N.

I,

T.L.

FOR GRAPHS AND TABLES

Ilin

and N.V.

Fedorenko,

Ilin

and

Solovev,

E.A.

Soviet

Phys.-Tech.

Soviet

Phys.-Tech.

661 (1960)

Bailey,

C.J.

May and E.E.

Muschlitz,

J.

them.

Phys.

26,

1446

(1957) 4

T.L.

Bailey

5

C.F.

Barnett

and P. Mahadevan,

6

M. Becker

7

K.H.

Berkner,

R.V.

8

K.H.

Berkner,

R.V.

9

A. Baragiola

10

Y.R.

Bydin,

Soviet

11

P.G.

Cable,

University

and J.A. and

N.

Scharmann,

A.

Phys.

them.

Nucl.

Ray,

Fusion

52,

179 (1970)

12, 65 (1972)

Z. Naturforsch,

G,

Pyle

and J.W. Stearns,

Phys.

Rev.

Pyle

and J.W.

Nucl.

Fusion

lo,

145 (1970)

Meth.

110,

503 (1973)

and E.E.

Stearns,

Salvattelli,

Phys.

Nucl.

-JETP 22,

854 (1969)

Instr.

178,

248 (1969)

762 (1966)

of Maryland

Tech.

Note no. BN-499,

1967

(unpublished) 12

R.L.

Champion,

L.D.

Doverspike

and S.K.

Lam, Phys.

Rev.

Ag,

617

(1976) 13

C. Cisneros,

I. Alvarez,

C.F.

Barn&t,

and J.A.

Ray,

Phys.

Rev.

1. Alvarez,

C.F.

Barrett,

and J.A.

Ray,

Phys.

Rev.

J.

Phys.

Al4-, 76 (1976) 14

C. Cisneros, (1976)

AE,

84

15

M.A.

Coplan

16

W.H. Cramer

and J.H.

Simons.

J. them.

Phys.

;la,

1272 (1957)

17

W.H. Cramer

and A.B.

Marcus,

J.

Phys.

32,

186 (1960)

18

W.H. Cramer,

Phys.

35,

19

R. Curran,

20

R. Curran

21

R.

22

R.C.

and K.W. Ogilvie,

J. T.M.

R.

and

Donahue,

Blanc

D.

Dehmel, 2,

Donahue

and T.M.

Dagnac,

Phys.

them.

and

0.

Merger,

them.

them.

(1970)

836 (1961) Kasner,

W.H.

Phys.

Phys.

Rev. 118,

Molina,

J.

Rev. 114,

490 (1959)

1233 (1960)

Phys.

Fleishmann

H.H.

S2-, 4154

82.

1239 (1970)

and M. Steinberg,

J.

them.

5111 (1973)

23

T.M.

Donahue

and F. Hushfar,

24

H.H.

Fleishmann

and R.A.

Young,

Phys.

Letters

25

H.H.

Fleishmann

and

Young,

Phys.

Rev.

26

H.H.

Fleishmann,

R.A.

C.F.

Barrett

Phys.

Rev. 124,

and J.A.

Ray,

138 (1961) z,

178,

287 (1969) 254

Phys.

(1969)

Rev.

E,

569

(1974) 27

I.M.

Fogel

and R.V.

Mitin,

28

I.M.

Fogel

and

Ankudinov

V.A.

Soviet

Phys.

and R.E.

-JETP 2, 334 (1956) Slabospitskii,

Soviet

Phys.

-JETP 1, 382 (1957) 29

I.M. Soviet

30

I.M.

Fogel, Phys. Fogel.

V.A.

Ankudinov,

D.V.

Pilipenko

and N.V.

Topolia,

-JETP 1, 400 (1958) R.V.

Mitin.

V.F.

Korlov

and N.D.

Romashko.

Soviet

Phys.

-JETP 8, 390 (1959)

523

Atomic

Data and Nuclear

Data Tables.

Vol. 22. No. 6, Decemb~

,978

H. TAWARA

Charge Transfer of H Beams in Gases and Vapors

REFERENCES

31

A.H.

Futch

32

H.B.

Gilbody

33

R.J. 505

and

FOR GRAPHS AND TABLES

Morses,

K.G.

and J.B.

Girnius,

UCRL-70251

Hasted,

Proc.

L.W. Anderson

(1966)

Roy.

Sot.

and E. Stabl.

E,

Nucl.

334 (1957) Instr.

Meth.

143,

(1977)

34

Y. Gordeev

and M.N.

Panov,

35

W. Gruebler,

P.A.

Schmelzbach,

Acta 5,

Soviet

Phys.

-Tech.

E. Konig

Phys.

!& 656 (1964)

and P. Marmier,

Helv.

Phys.

254 (1970)

36

E. Gustaffson

and E. Lindholm,

37

J.B.

Hasted,

Proc.

Roy.

See. m,

421 (1951)

38

J.B.

Hasted,

Proc.

Roy.

Sot.

235 (1952)

39

J.8.

Hasted

40

0. Hollricher,

41

N. Inoue.

42

D.W.

Koopman,

Phys.

Rev.

43

D.W. Koopman,

Phys.

Rev. 166,

and R.A.

44

D.W. Koopman,

45

V.F.

2,

Fogel

K.P.

Sarver

219 (1960)

Soo. E,

349 (1956)

130 (1972) (1967)

79

57 (1968)

Phys.

Y.M.

Roy.

8,

41 (1965)

154,

J. chew

Kozlov,

Proc.

187,

Fusion

Fysik

E,

Smith,

Z. Phys. Nucl.

Arkiv

49,

and

5203 (1968) Stratienko,

V.A.

Soviet

Phys.

-JETP 17,

1226 (1963) 46

T.E.

47

W.B. Maier

48

G.W. McClure,

Phys.

Rev.

49

G.W. McClure,

Phys.

Rev. 134,

A1226

50

G.W. McClure,

Phys.

Rev. 148,

47 (1966)

51

G.W. McClure,

Phys.

Rev. 166,

22 (1968)

52

R.J.

McNeal

53

R.J.

McNeal,

D.C.

54

R.J.

McNeal,

J. them.

55

Leslie, II,

and

G. Monnom,

Rev. A&

D.C.

2818,

T.J.

Morgan,

Phys.

Rev.

57

T.J.

Morgan

58

E.E.

Muschlitz,

59

E.E.

Rev. g,

408 (1971)

1636 (1963) (1964)

J. Geophys.

and R.A. Phys.

Phys.

1256 (1972)

132,

Clark,

Clark

M. Eliot,

Paris 56

Phys.

and L.W. Anderson,

Res. 2,

Klingberg,

53,

4308

J. Guidini

5065

Phys.

(1969)

Rev. g,

131 (1970)

(1970)

and P.G.

Valckx,

C.R.

Acad.

Sci.

425 (1975) K.H. 2,

Berkner,

W.G. Graham,

R.V.

Pyle

and J.W. Stearns,

664 (1976)

and F. Eriksen,

Phys.

Letters

@,

198 (1978)

T.L.

Bailey

and J.H.

Simons,

J.

them.

Phys.

3,

T.L.

Bailey

and J.H.

Simons,

J.

chew

Phys.

2,

1202 (1956) Muschlitz,

711 (1957) 60

N. Noda,

J. Phys.

Sot.

61

R.E.

Olson,

Phys.

62

R.E.

Olson,

IEEE NS-23,

63

D.V.

Pilipenko

and Y.M.

Fogel,

Soviet

Phys.

-JETP Is.

646 (1962)

64

D.V.

Pilipenko

and Y.M.

Fogel,

Soviet

Phys.

-JETP 11.

1222 (1963)

Letters

Japan 41, e,

625 (1976) 83 (1975)

971 (1976)

524

Atomic

Data and Nuclear

Data Tables.

Vol. 22, No. 6. December

1978

Charge Transfer of H Beams in Gases and Vapors

H. TAWARA

REFERENCES

65

D.V.

Pilipenko,

965

V.A.

Gusev

and Y.M.

Fogel,

Soviet

Phys.

-JETP 22,

(1966)

66

P. Pradel

67

P. Pradel,

68

J.S.

Risley

69

J.S.

Risley,

70

F. Roussel,

Phys.

and F. Roussel, F. ~oussel,

Rev. e,

E.R.

Nucl.

Instr.

Meth.

Schlachter,

A.S.

121,

111 (1974)

G. Spiess

and V. Valance,

797 (1974)

and

R.

Geballe,

Phys.

s,

Rev. g,

2485 (1974)

731 (1974)

and G. Spiess,

on their

Salvatelli,

Phys.

Rev.

P. Pradel

See discussions 71

FOR GRAPHS AND TABLES

previous

Phys. data

G. Lantschner

Rev.

(ref.

AE,

1854 (1977).

67).

and W. Meckbach,

J. Phys.

82,

772

(1969) 72

F.

73

A.S.

Schwirzke,

2.

Phys.

Schlachter,

157,

R.J.

510

(1960)

Bjorkholm,

W. Haeberli,

Phys.

74

F.R.

Simpson

and H.B.

75

K.A.

Smith,

76

W.S. Snow, R.D.

77

G. Spiess,

A. Valance

and P. Pradel,

78

G. Spiess,

A. Valance

and P. Pradel,

79

R.F.

Stebbings,

2349

(1964)

J.

80

M.D.

Geophys.

J.B.H.

Rev. 177,

D.H.

Res. 81,

E,

N.W. Geis and R.D.

and R. Geballe,

Smith

and F.B.

and C.F.

J. Phys.

1959 (1972) Rundel,

2231 (1976)

Rundel

A.C.H.

Stedeford

L.W. Anderson,

184 (1960)

Gilbody,

Duncan,

Loyd,

Phys.

Reg.

178,

Phys.

Letters

z,

Phys.

Rev. &,

and H. Ehrhardt,

Hasted,

Barnett,

Proc.

81

P.M.

Stier

82

G.C.

Tisone

and L.M.

Branscomb,

Phys. Bull.

83

G.C.

Tisone

and L.M.

Branscomb,

JILA

84

V.N.

Tuan,

G. Gautherin

V.N.

Tuan,

A.S.

114,

499 (1974)

and A.S.

Rev.

434 (1970) 746 (1972)

J. Geophys.

Roy.

Sot.

103,

896 (1956)

Am. Phys. report

(1969)

228

E,

Sot.

no.20,

Res. 69,

466 (1955)

2, 535 (1964) (1964)

Schlachter,

Phys.

Rev.

and G. Gautherin,

Nucl.

Instr.

As,

1242

(1974) 85

86

B. Van Zyl,

Schlachter

T.Q.

Le, H. Neumann and R.C.

Amme, Phys.

Meth.

Rev. g,

1871

(1977) 87 B.Van Zyl,

H. Neumann,

T.Q.

Le, and R.C.

Amme, Phys.

Rev.

Ag,

506

(1978) 88

A.C.

Whittier,

Can. J. Phys. and D.N.F.

32,

275 (1954)

89

J.F.

Williams

90

J.F.

Williams,

Phys.

Rev.

Dunbar, l&l,

7 (1966)

Phys.

Rev. 149,

91

J.F.

Williams,

Phys.

Rev.

153,

116 (1967)

92

J.F.

Williams,

Phys.

Rev. 154,

62 (1966)

9 (1967)

525

Atomic

Data and Nuclear

Data Tables,

Vol. 22, No. 6, December

1978