ATOMIC
DATA
AND NUCLEAR
CROSS
DATA TABLES
SECTIONS GASES
FOR CHARGE
AND VAPORS
22,491-525
TRANSFER
IN THE
ENERGY
(1978)
OF HYDROGEN RANGE
10 Ev-10
BEAMS
IN
KEV
H. TAWARA Nuclear
Engineering Department, Kyushu University Fukuoka 812, Japan
Cross sections are presented in graphical form for the charge transfer in various gases and vapors of hydrogen beams (H+, Ho, and H-) with laboratory energy ranging from 10 eV to 10 keV. This compilation is intended to be an addendum to a previous paper in Rev. Mod. Phys. 45, 179 (1973). The references have been covered through August 1978.
0092-640X/78/0226-0491$02.00/0 Copyright 0 1978 by Academic Press, Inc. All rights of reproduction in any form reserved.
491
Atomic
Data and Nuclear
Data Tables.
Vol. 22, No. 6. December
1976
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
CONTENTS
INTRODUCTION........................................... References for the Introduction EXPLANATION
OF GRAPHS
492
AND TABLES
. . . . . . . . . . . . . . . . 494
GRAPHS I.
o{H+
+ B + Ho + B+}, oio . . . . . . . . . . . . . . . . . . . . . . . . . 495 Hz, He, N&, Oz, Ne, Ar, Kr, Xe, CHI, NH3, HzO, CO, C02, CsHlo, Li, Na, Mg, K, Rb, Cs, Pb
II.
a{H+
+ B + H- + BZ+}, cr-l . . . . . . . . . . . . . . . . . . . . . . , 500 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, Li, Na, Mg, K, Cs, Pb
III.
u{H”
+ B + H+ + B + e}, ao1 . . . . . , . . . . . . . . . . . . . . . , 504 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, CHI, NH3, HzO, CO, NO, COz, HI, Mg, Cs, Pb
IV.
o{H”
+ B --, H- + B+}, ooel . . . . . . . . . . . . . . . . . . . . . . . . 508 Hz, He, Ns, 02, Ne, Ar, Kr, Xe, CO, NO, HI, Mg, Cs, Pb
V.
cr{H- + B + Ho + B + e}, (+-1o . . . . . . . . . . . . . . . . . . . . . 512 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, CO, NO, Mg, Cs
VI.
cr{H- + B + H+ + B + 2e}, o--11 . . . . . . . . . . . . . . . . . . . 515 Hz, He, Nz, 02, Ne, Ar, Kr, Xe, Cs
TABLES
I-VI.
REFERENCES
Lists of Measurements of ulo, cl-I, U-II........................................... FOR GRAPHS
AND TABLES
INTRODUCTION It has been recognized that the charge-transfer processes of hydrogen beams play an important role in plasma physics, radiation physics, astrophysics, and particle accelerators. In plasma physics, especially in fusion reactor experiments, the injection of neutral hydrogen beams is one of the most promising methods for the effective trapping of ions into the toroidal plasma. These neutral beams are generally produced through electron capture by proton beams. Similarly, the production of intense negative hydrogen-ion beams is important because the injection of the negative-ion beam is also thought to be an effective method for
col, (T~-~, ulo, 518
. . . . . . . . . . . . . . . . 523
ion trapping. The neutral particles escaping from the plasma contain some useful information on the plasma itself and can be used for diagnosing the plasma characteristics. For these purposes, data are required on the charge transfer of hydrogen beams, especially at energies lower than a few keV. There are some reviewsle6 on these charge-transfer processes but the energy is generally limited from a few keV to some tens of MeV. Also, there are a number of measurements of the cross sections for charge transfer, but there is no systematic compilation of data at lower energies. In this paper, we compile in graphical form experimental data (up to August 1978) on the charge
492
Atomic
Data and Nuclear
Data Tables,
Vol. 22, No. 6. December
1979
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
charge-transfer processes already have been given in some references.1,6 Here only a short description is given. In hydrogen beams, the following charge-transfer processes take place (B is the target atom, B+ and B2+ are the slow target ions, and e is a slow electron):
transfer in various gases and vapors of protons (H+), hydrogen atoms (HO), and negative hydrogen ions (H-) with incident energy between 10 and 10 000 eV. It is hoped that this compilation can be an addendum to our previous work.6 Detailed discussions on the
1. H+ impact H+ + B + H+ + B+ + e (url = (T:):
pure ionization
-+ Ho + B+
(ulo):
one-electron
capture
+ H- + B*+
(VI-1):
two-electron
capture
2. Ho impact Ho + B + Ho + B+ + e (ooo = crd): pure ionization + H+ + B + e (u&:
one-electron
stripping
+ H- + B+
one-electron
capture
(uo-1):
3. H- impact pure ionization
H- + B -+ H- + B+ + e (uplel = UC,): + Ho + B + e (u-~~):
one-electron
stripping
+ H+ + B + 2e (u-~~):
two-electron
stripping.
secondary slow ions. In the third method, the secondary slow ions and electrons are measured, neglecting the charge state of the incident projectiles after collision. Sometimes the equilibrium and retardation methods are also used.6 The cross sections which can be determined from various experimental methods for different incident ion beams are summarized in the following table:
Here (+ij denotes the cross section for the chargetransfer process from the initial charge state i to the final charge statej. ui means the ionization cross section for the incident ion with the charge state k. To determine the cross section for the chargetransfer process, the following three methods are generally used: the attenuation, the growth, and the condenser methods. In the first two methods, only the fast beams are observed, neglecting the charge state of
Incident Experimental Method
Hf
Particle
HO
Growth
UIO,
Attenuation
(+lO + Ul-1
Condenser Slow Ion Slow Electron Total Charge
u: + u10 + 2u+1 uf (+lO + 2u,-I
Cl-1
co13
UOl
493
H-
uo-1
+
u-10,
u-10
go-1
u; + uo-1 u; + UOl (+Ol
-
uo-1
Atomic
u-11
+
u-11
Ui,
U’~ + u-10 + 2u-,, (T-10 + 2u-1,
Data and Nuclear
Data Tables,
Vol. 22, No. 8. December
1978
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
In some methods, for example in the attenuation and condenser methods, the measured cross sections are not always those for a single process but those for the sum of two or more processes. However, in many collision processes, the cross sections for two-electron transfer processes are small, compared with those for single-electron transfer processes. It is important to consider the following points when these compiled data are used:
3. Some measurements have indicated that there is a finite difference (-5%) in the charge-transfer cross sections between H and D beams at energies less than 200 eV. This is thought to be due to the difference in scattering cross sections. However, more systematic measurements should be made before a definite conclusion on the difference is drawn from the observations. 4. Errors in the measured data are usually claimed to be lo%-20% for stable gas targets. However, for metal vapors, errors are often larger than those in gas targets.
1. In some measurements by the condenser method, only slow-electron or ion-production cross sections ((T-,(T+) are determined. However, these cross sections are, in many cases, the sum of the ionization cross sections ((T*) and the charge-transfer cross sections. It is possible to estimate the cross section for the chargetransfer processes from this measurement only when the ionization cross section is small. In some collisions such as Ho + Xe, the slow-electron and ionproduction cross sections are nearly equal (l-25 keV). In this case, it is not possible to determine the charge-transfer cross section without measuring both slow electrons and ions. For such cross sections, u- or (T+ is shown to distinguish them from pure chargetransfer cross sections. In such cases, m- should be taken as an upper limit of the charge-transfer cross section mol.
Acknowledgments The author would like to express his sincere thanks to Prof. K. Takayanagi, Prof. H. Suzuki, and the members of the Atomic Data Study Group for Fusion at Institute for Plasma Physics, Nagoya University, for their support and help during the course of this work. Various arrangements for drawing the graphs by Dr. S. Ohtani and Dr. T. Kato are highly acknowledged. References for the Introduction 1. S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958) 2. H. D. Betz, Rev. Mod. Phys. 44, 465 (1972) 3. R. C. Dehmel, H. K. Chau, and H. H. Fleishmann, ATOMIC DATA 5, 231 (1973)
2. In most measurements, no detailed description is given of the effect of scattering processes which becomes significantly important at energies lower than a few hundred eV. Due to the scattering loss of the beam charge-transferred in the collision, the observed cross sections may be too low, depending on the measuring geometry, as seen in the scattering of data at lower energies.
EXPLANATION
4. H. H. Lo and W. L. Fite, ATOMIC DATA 1, 305 (1970) 5. V. S. Nikolaev,
8, 269 (1965)
6. H. Tawara and A. Russek, Rev. Mod. Phys. 45, 178 (1973)
OF GRAPHS
AND TABLES
Energy
Of incident
Cross Section u-9 c+
Per target atom or molecule Cross section for slow-electron,
Measurement Method A C DC E G MS R
Attenuation method Condenser method Differential cross-section Equilibrium method Growth method Mass-separation method Retardation method
For details of methods,
Sov. Phys. -Usp.
beam; in keV on Graphs, in eV in Tables slow-ion production
measurement
see Ref. 6
494
Atomic
Data and Nuclear
Data Tables.
Vol. 22. NO. 6. December
1978
GRAPHS
I. a{H+
+ B + Ho + B+}, crlo, where B is Hz, He, Nt, or 0,
See page 494 for Explanation of Graphs and Tables loH’+H,
- H” l Cramer ‘
curran
m Gustafson o Kwpman + McClure 1 Stedeford x Williams
lo-
zs z b
lo-
lo-
b lo-
I
H’+O, l
-
l
Monnom
A
Stedeford
“I
o Koopman * Stebbings ’ Stedeford
.+ Gilbody Gustafson Koopman x McNeal
o0 0
lo-‘+
”
+ H’
10.”
-
I ,,,,I
1 , I,,,, 0.1
1 Energy (E,,-keV)
10
496
GRAPHS
I. (T{H+ + B + Ho + B+}, vlo, where B is Ne, Ar, Kr, or Xe See page 494 for Explanation of Graphs and Tables
10-‘4‘
I I’
“I
lo-
I II-
I ’ 8 “I
H* + Ar - H”
Ii* + Ne - H”
Hasted o Koopman Monnom . Stedeford I Williams
0 Monnom I) Stedeford x Williams
l
q
10.
r 1
0
0
x a d
s
.7 5 2 lo-
x
q
.
d :
lo-
. ..
.
.
D . . . .
. I ,,,,I
10 I
10
o + 4 x
Hasted Koopman Maier Stedeford Williams
l
o + A X 0
10
+
4
+ -
+
+
“““‘I
0
8
+
“0
$2 0
0
OlO .
10-16 -
10
10 1
0.1 Energy
IE,b-keV)
10
10
Hasted Koopman Maier Stedeford Williams Morgan (D’)
OO ++
’
+ +t+++
z “E s % ,0-M-
+
I I t,J 1
I
K+Xe-H’ l
I 11111 0.1
1
0.1 Ensw
(E,,-keV)
GRAPHS
lo-“= H’+CH,
I 8 ’ “1 _
+ H”
0 a 0 + lo-‘+
-
0
I
1 , OIlI
I
,rrl
K+NH,+H” K+NH,-H”
+ Berkner 0 Kcx~pman . McNeal to..)
lo‘-
497
I. c+{H+ + B 4 Ho + B+}, ulo, where B is CH4, NH3, H20, or CO See page 494 for Explanation of Graphs and Tables
Coplan Gilbody Koopman McNeal lo.)
-
0 +
-it u
0 n lo-‘I-
lo-‘6-
. 10-I’
I ,,,,I 0.01
I ,,,J
I,,141 1
0.1
10
7-
1
,
,” “I
H’+COl
A + 0 0
Berkner Cable Coplan oagnac Koopman
H”
e Berkner l Gilbody 0 Gustafsm l McNeal to.)
I ,,,,I
I .I a.1 0.1
1 Energy
(El,,-keVI
1
6.1 Energv (E,,b-keVl
10
498
GRAPHS
I. u{H+
+ B + Ho + B+}, clo, where B is COz, CsHlo, Li, or Na
See page 494 for Explanation of Graphs and Tables lo-
lo-
lo-
10.
;I
“E v E: - lo-
5
+
z o lo-
lo-
lo-
Ly
lo-
lo10
10. H’+Li-H”
Gruebler 0 Gruebler
l
I r “‘I K+b-+
(H’) @‘I
I ““I
I ”
H’
. Gruebler o Gruebler
(H’) (D’)
0 .
10
.a
.
0’
0 .O. 0.
0 0
“E 0 2 10
10
I ,,,,I
10-I’ 0.01
I1 0.1
I,, J
a.,1 1
Energy (Ebb-keV)
10
10
I ,,,,I
I LIIIl 0.1
I’, 1
Energy
(E,,-keV)
D
GRAPHS
499
I. cr{H+ + B + Ho + B+}, u,~, where B is Mg, K, Rb, or Cs See page 494 for Explanation of Graphs and Tables
H++K+ H’+Mg+
H”
+
H”
+ 0 Berkner ot
+ Futch
0 +
. Gruebler o Gruebler
0
+
10-14-
l
+
(H’l ID*) ++
lnoue
z+ + 00 +.
0.0 +
10-9
1 ,,,,I 0.01
I I1161 0.1
“,
l0 0. 0 .
+
++++
-
-
I I I, .l
I 11
.*
+
z_ E Q ,&II
lo-‘6
.a .*0
10
I
‘7L
o Girniur x Girnius
(D’) fH’)
10-t’
-
. Gruebler D Schlachter + Schlachter b *Spiess
IH’I (D’)
0
0
i 2 t
. . lo-‘5
-
10-16 -
10-l’
I ,*n.I 0.01
I I *.,I 0.1
I I L, 1
Energy (Ebb-k+/)
iy
10
500
GRAPHS
I. a{H+
+ B + Ho + B+}, vlo, where B is Pb
See page 494 for Explanation of Graphs and Tables
I .,,.I
I L III1 0.1
I I.< 1
Energy (E,,-keVl
GRAPHS
II. a{H+
+ B + H- + B2+}, CT-~, where B is H2 or He
See page 494 for Explanation of Graphs and Tables H’+ H, + H-
A ’ + 0
+ Fogel 0 Williams
Fog4 Kozlov McClure Williams
+ + 01 +
lo-”
-
+
0
0 0
0.
_
. l .
. . . . 10-Z’ -
lo-‘1 1
0.1 Energy (Ebb-keVl
10
0.01
I 0.1
I ‘I,,. III
I I I #.I 1 Energy
lEb,-keV) lEh,-keV)
10
GRAPHS
II. a{H+
+ B + H- + B2+}, CT-~, where B is N2, 02, Ne, or Ar
See page 494 for Explanation of Graphs and Tables 10 H*+N,
+ H-
0
o Fogel
0 Fogel
10
LT. -5 ? c 10
10.
lo-
L 10
r ““I K+Ar-r
I ’ “‘I
1 iIf
H
. + Fog& 0 Williams
d Afrosimov + Fogel l Kozlov 0 Williams
. l In + to 0 o < 0
.
0
.
I, I Energy (Ebb--k&l
,,,I
I I,,,l 0.1
I ,,< 1
Energy lE,,-keV)
GRAPHS II. o{H+ + B + H- + B2+}, ulml, where B is Kr, Xe, Li, or Na See page 494 for Explanation of Graphs and Tables
10-‘6yj lo-‘%
H’+Kr-
H-
1 III,
I ’ “‘I
H’+Xe+H-
+ Fogel 0 Williams l Morgsn (D’)
+ Fogel . Korlov 0 Williams lo-‘*
I
I 1 “‘I
-
Q
-9.0 .-
lo-“-
-
l + a.3 b
t
+ 00
-
.* .rE 0 ,0-s
lo-‘0
-
10-=lC 0.01
1
0.1
16
10-I H’+Na+
. Gruebler 0 Gruebler
H-
. Gruebler 0 Gruebler
(H’) (D’)
(H’) ID’)
10-I
z5 I 0 10-I
10-I
I
I I ,,.I
I1111 0.1
L 1
Energy tEh,,-keV)
lo-’
1 t
I
I1
1,111
I 1
0.1 Energy (E,,-keV)
I ,‘(
GRAPHS
II. cr{H+ + B * H- + B2+}, (T~-~, where B is Mg, K, Cs, or Pb See page 494 for Explanation of Graphs and Tables
lo-‘91 0.01
1 I1.11
I ,>,,I 0.1
I, 1
I, 10
. Baragiola
0.1
1 Energy
(E,,,
- k&J
10
10-10 0.01
I ‘III1
I, 0.1
,,,I
1 1
Energy I&,,-keW
,lmLul 10
GRAPHS
III.
a{H”
+ B + H+ + B + e}, aol, where B is Hz, He, NZ, or O2
See page 4% ‘for Explanation of Graphs and Tables
+
x = + A 0 *
Bartlett Curran Fleishmann (u.) McClure McNeal (0.1 Noda l Stier 0 Williams . RouseI 0 Smith
l
lo-‘6
x 0 0 A
-
Fleishmann ((1.1 McNeal (0.) Stier Williams RousDel Smith
s:-
A ‘.“t ‘8.0 0 -
$P I+ 8 ” d 2 ,5 t
+ 10-I’
-
P’ +’ ++”
+‘, ++
q
+ ++
++ ++
lo-‘*
-
10-19 0.01
10-t
10-I
“E u 2 lo-
lo-
loEnergy (E,
- keVb
+
++ +
I 0.1
1
10
GRAPHS
III.
v{H”
505
+ B + H+ + B + e}, uol, where B is Ne, Ar, Kr, or Xe
See page 494 for Explanation of Graphs and Tables
10.16 -
+
Fleishmann
l
McNeal
A
Monnom
x 0 0
Stier Williams Roussel
to.)
Dehmel lo.1 A Donahue + Fleishmann (0.1 0 McNeal ((I.) 0 Monnom x Stier o Williams A Roussd . Van Zyl
l
lo.1
;-‘ 2 2 10-I’
r
++++ ++ +t+ lo-”
+* .
-
10-q 0.01
1
,
I
I
IllI
,
I
I,,,
I
0.1
,I
I,
1
10
Energy lElab-keV)
. Dehmel ((I.) + McNeal (0.1 o Williams x Roussd
* + o 0 . A
10-16-
Dehmel (0.) McNeal lo.1 Williams Morgan ID”1 Morgan (H-1 Roussd
++ ++ +
0
-*+*
0 0 0
. . l*
“E v 2
..
-
.
. l .* x
.
lo-“-
lo-”
-
10-1 0.1
1 Energy (E .i,-
keV1
10
0.01
0.1
1 Energy (Eh,--keV)
10
506
GRAPHS
III.
cr{H” + B + H+ + B + e}, crol, where B is CH4, NH3, H20, or CO See page 494 for Explanation of Graphs and Tables
lo-“. lo-”
I
I -
H”+CH,
I
,I,,
f
,
,,11*1 ,,llCcl
+- H’ + o
10-=t ++J ++-
Dehmel McNeal Smith
(0.) Co.) (a.)
++
+
++
I ““I
& +
1 ’ “J
I
Ho+ NH, + H*
+ + +2 +
+ McNeal
(o.)
+ +$
l *
+
.
+
+
0
.**
0
.*
lo-16 -
_
+ + +++
10-16 7
00
0
.* : 0
. .= .* “E 0
-
.’.’
“E u i 0 ,0-l’-
0
lo-“-
10-l.I,,,,,i 0.01
I Lllll
lo-‘* 1
0.1
H’+H,Od
0.01
I I I,, 10
H’
l
0 Dagnac
10-16 -
z-
I 1
0.1
10-16 -
-
“E s &
s g ,047
rl + 0 0
Dehmel (0.) Donahue McNeal (CL) Pilipenko Smith
-
lo-“_
.
10-L’ -
lo-”
0.1
1 Energy (E,,-keV)
10
-
10-‘9 I 0.01
1
0.1 Energy f E,
-ksV)
10
GRAPHS
H”+NO-
III. a{H”
+ B + H+ + B + e}, uol, where B is NO, COP, HI, or Mg See page 494 for Explanation of Graphs and Tables
H+
0 Pilipenko
. .
H”+Mg-
o Pradel
10-I'
H’
0 Berkner + Futch
-
o+
7 d 2
+ lo-”
-
10-19 -
I
10-m 0.01
I
I,,11
1 ,,,,I
1 I III 1
0.1 Energy (E,,-keV)
10
10.‘91 0.01
I I ,,.I
I ,,,,I Energy
I .I, 1
0.1 (E,,,-keV)
GRAPHS
III.
a{H”
+ B + H+ + B + e}, sol, where B is Cs or Pb
See page 494 for Explanation of Graphs and Tables
H”+PbH”+ Cs-
.
ii’
H’
Schlachter
0 Schlachter
IH’)
l
(17 1
Baragiola
10-16 -
“E 0 2
.
lo-“-
lo-”
,
81
I,,,,
I1
I I #,,I
I ,<
0.1
T
10-q
1
I ,,,,I 0.01
I 11111
Energy (E,,-keV)
I I1 1
0.1
10
Energy (E,,,-keV)
GRAPHS
IV. o{H”
+ B +- H- + B+}, @O-l, where B is Hz or He
See page 494 for Explanation of Graphs and Tables
A Curran l McClure + Stier o Williams x Roussel
A
00 .+ I x X.
lo-“x
I
AAi a-f go+:
8
0
x x I
z-
x
4
-
2 lo-“-
x
” ”
I
.
.
x
.. .
0 “E 0 i
_ . lo-‘9
-
10-19 -
10-1’
I 0.01
I
I
I
0.1
I 1
Energy lE,,-keV)
10
GRAPHS
IV. u{H”
+ B -+ H- + B+}, co-1, where B is NP, 02, Ne, or Ar
See page 494 for Explanation of Graphs and Tables
H’+O*+H-
H” + N, + H0 + n
Pillipenko Stier
Pilipenko Stier
0
+
van Zyl
10-l’
-
CT 5 i
10.16
I -
,
I
-
lo-”
--
lo-‘9
-
I ,l,lU
H”+N~-H. ROUael + Stier o Williams
A Donahue + Stier o Williams l
Roussel
+o+o 10-I’ -
0
0
o+ 0
_
+
. “E
.-
3
f .
lo-‘“.
l :
.
.
.
.
.
. . .
. lo-”
lo:o. lo-“0 0.01
I
I
I
,111
I
-
.
t
I
0.1
Energy (E,,-keV)
I,,,
I 1
I
I
,,,b 10
10-19. 0.01
4
I
I
I,,,
I
I
I
0.1
,,,I
4 1
Energy (Eh,-keV)
I,
,i,L 10
510
GRAPHS
IV. a{H”
+ B + H- + B+}, go-r, where B is Kr, Xe, CO, or NO
See page 494 for Explanation of Graphs and Tables
+ RouPel 0 Williams
lo-'6--
-‘ 5 2
10-l'--
+’ + +
+ + lo-"-
10-16
5
K+CO-H-
I
H"+NO-H-
OOD6%’
+ Donahue 0 Pilipenko
,
I
0
0 Pilipenko
0”
0 lo-"
+
c
I
E i lo-"
10."
10-l" 1
0.1 Energy (E,.,-keVl
10
0.01
1
0.1 Energy (E,,,-
keVl
1"
511
IV. cr{H” + B -+ H- + B+}, co-I, where B is HI, Mg, Cs, or Pb See page 494 for Explanation of Graphs and Tables
GRAPHS
l(
I ““I D +MgH H’+Mg-
H”+Hl+H
I I “‘I
I i ‘I’-
HH
0 Berkner
0 Pradel
00
l(
“E 2 f
1c i
10
1o-20 I 0.01
I ,,*,I
1 ‘,,,I
11.1,
0.1
1
10
10
I. 1 H”+Pb-
0 . 0
Cisneros (0) Schlachter (HI Schalchter (D)
+
Spies
0
0 q
0
0
o+ n
.
10-16 e
10
H-
0.1
1 Energy (E,,,-keV)
512
GRAPHS
V. a{H-
+ B + Ho + B + e}, v-lo, where B is Hz, He, N2, or 0,
See page 494 for Explanation of Graphs and Tables
‘O-m
I
H-+ HI - Ii”
10.”
A Hasted a Muschlitz x Fiisley l Simpson + Stier A Whittier 0 Williams
x Bailly o Champion A Hasted A Rirlev 0 Simpson + Stedeford l Stier 0 Williams
+++ +
++
+
+ 00
‘O-“t”
++ cl0
+
“E v z d 10
10-1, 0.01
+
i
* Bailey l
+ Pilipenko Risley 0 Stier
Champion + Risley 0 Stier
l
6
10-d 1
0.1 Energy (E,,--keV)
10
0.01
I *,,,I
,I,.,,
I ,,,J 1
0.1 tnergy
(E,,,-keVI
10
GRAPHS
V. u{H-
513
+ B -+ Ho + B + e}, umlo, where B is Ne, Ar, Kr, or Xe
See page 494 for Explanation of Graphs and Tables
h 10-15 .
-.- . x* i 0 ,j
”
. . . . pm* xxxxs
** “I
.
.
.
;,xx’
2,
l *
.
.&’
l
+
a,,
ijp”“’
+
x
.-
lo-‘6
- Bailey . Champion
l *
*
l +’
.2*
-
x Bailey A Bydin
A Hasted
. Champion
+ Stedeford
A Hasted
Stier 0 Williams
l
q
Rirley
v Simpson + Stedeford 10-I’
0 Stier
-
0 Williams I-
Y 10
10-18 0.01
lo-”
I
,I,,,,
I ,,,,I 0.1
_
,
-
H-+Xe+H”
,
,
1
, , , ,
I
I
I,,,
1
l Bydin h Hasted + Stedeford o Williams
lo-” -
a MorganID- ) .
+
+
d Hasted + Stedeford 0 Williams
1 I I 1 ,,,I
I
I
I I , , , I
0.1
1 Energy (Ebb -k&9
’ 00
l
* Bydin
I
.
l .** .
+A
0.01
I
,
,114
+
A
lo-..1
10
Energy IE,,-KeV)
+
a+
t
+
514
GRAPHS
V. a{H-
+ B --, Ho + B + e}, urnlo, where B is CO, NO, Mg, or Cs See page 494 for Explanation of Graphs and Tables
1c L
Ii-+NO+H
0 Pilipenko 10
10-15 -
zi v
4 2
d 10
10.16 _
10
lo-“-
10
1o-tq 0.01
I”-‘-
r
I ’ ’
I 1
I”
I I llal
I I ,t,l
0.1
I , I UJ 1
10
1
10
~
. . ‘..
+ Leslie OShss 10‘”
10-15 --
z 4 f
-
^ 5 j
lo-16
lo-16 -
--
0 Berkner
lo-”
r
10-I’
-
10-l"
0.01
0.1 Energy (E,,-keVI
GRAPHS
VI. u{H-
+ B 4 H+ + B + 2e}, w-11, where B is HP, He, Nz, or 0,
See page 494 for Explanation of Graphs and Tables c H-+
H-+H,+H+
10-I’
-
i 2 5 0 ,0.‘8
-
.
+ Fogel l Timone 0 Williams
. .*O
He-
H+
&O-J + Fogel 0 Williams
lo-‘*-
ALI
lo-‘q 0.01
t
’
’
H-+N,
’
I”’
.I
10
“’
+ H+
0 Fogel
0 Fogel
lo-'6
-
10-16 -
0
i 0 f 10-I’
--
10-18 7
0.1 Energy lE,,-keV)
1
10
10-19 0.01
I
I
I
I,,,1
, 0.1
I
I III,
1 I’& 1
Energy tE,,-keV)
0
516
GRAPHS
VI. a{H-
+ B + H+ + B + 2e}, CT-11, where B is Ne, Ar, Kr, or Xe See page 494 for Explanation of Graphs and Tables
\
H-+Ne*H+
_
0 o + Fogel 0 Williams 10-I’
H-+Ar-H+
0 ot + Fogel 0 Williams
0
_
10-I’
-
,d : d ,0-l*-
lo-‘*-
t
,,-2.10 0.01
10-
I
H-+Kr-
H+
o Fogd
10-16 -
lo-
7
;:
d ,3
4 2 lo-“-
lo-‘*
lo-
-
lo-
lo0.1
1 Energy (E,,-keV)
10
0.1
1
10
GRAPHS
VI. a{H- + B + H+ + B + 2e), u-II, where B is Cs See page 494 for Explanation of Graphs and Tables
loHm+Cs-
H+
lo-
“E 0 j lo-
lo-
10-z I
I I I ,,I 0.1
I #,,,I
I I,,, 1
Energy (E,,-keV)
10
517
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
TABLE I. A List of Measurements of cl0
Year
Energy range (eV
Hasted
195 1
lo- 800
Hasted
1952
loo-
bbittier Stedeford-Hasted
Authors
Target
Method
Ar.Kr,Xe
C
37
1.000
Ar
C
38
1954
4.000-70.000
Ha
A
88
1955
100-40.000
C
80
G+E
81
C
32
C
19
MS
36
D, CD+)
C
17
Ha
C
1%
C
79
C
34
H,,He,Ne,Ar
Reference
Kr,Xe
Stier-Emmett
1956
3.000-200.000
Ha,He,N,,Ot. Ne,Ar
Gilbody-Hasted
1957
10-40.000
1959
2.400-60.000
1960
25-900
1960
4-400
1961
50-400
1964
40- 10.000
Gordeev-Panov
1964
1.000-40.000
Hollricher
1965
1.500-30.000
Ha J’a
C
40
McClure
1966
2.000-117.000
H,,H
G
51
Williams
1966
2.000-50.000
H,,He,Ne,Ar
G
89
H,,Ar,Kr,Xe
C
42
V-J
C
11
G
31
C
43
C
44
Curran
-et
al -.
Gustaffson-
N,,C’-‘JHa
HaJaaQJ
Lindholm Cramer-Marcus
Cramer Stebbings
--et
al.
HZ
$90 H,,N,,Ar
Kr,Xe
Koopman
1967
70- lOS0
Cable
1967
180-460
Futch-Moses
1967
4.000-50.000
Koopman
1.968
40- 1.500
Koopman
1968
100-1.500
WcNeal-Clark
1969
1.000-25.000
Becker-Scharman
1969
1.500-30.000
1969
500-20.000
1969
Dagnac
,CO, ,H,‘J
QQ .NH,
52
C(O- a+,
Na
6
cs
G
73
5.000-70.000
%?
G
7
1970
2.000-60.000
Ha0
1970
30-500
1970
300- 70.000
-et -.al
1970
1.000-20.000
al.
1970
2.500
1970
1.000-25.000
et --* et --. --et
al al.
Coplan-Ogilvie Berkner
N,,O,
C
Schlachter Berkner
Mg
et --*
al
al
He-3,He-4
G+E
21
H,O,COs,NH,
DC
15
CO.CH,,H,O
C
8
G
35
G
77
CeF,,
Gruebler Spiess McNeal
--et
Li,Na,K,Cs cs CO,CO,,NHa,
C(u
,q)
54
%
See page 494for Explanation of Graphs and Tables
518
Atomic
Data and Nuclear
Data Tables,
Vol. 22, NO. 6. December
1978
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
TABLE
I, continued
Energy Authors
Spiess
Year
--et
al.
1noue Maier
II
Baragiolla
range Target
(ev)
Method
Reference
1972
500-3.000
CS
G
78
1972
150-8.000
K
G
41
1972
0.5-100
Kr,Xe
C
47
1973
7.500-40.000
Pb
G
9
G
55
Monnom
et --
al.
1975
100-Z.
Morgan
--et
al.
1976
1.2.50-25.000
X.2
G
56
1977
550-2.000
Rb
G
33
Girnius
et --
al.
TABLE
500
II. A List of Measurements
Energy Authors
Fogel
--et
al.
Nz,Ne,A
of vl-1
range
Year
feW
1956
9.500-29.000
Targel
Method
H,.He,N,,O,,
Reference
G
27
G
30
Ne,Ar Fogel
et --
al.
1959
5.000-50.000
H,,He,Ne,Ar, Kr.Xe
Afrosimov
-et
Kozlov
--et
-.al
al.
McClure
1960
5.000-180.000
1963
500-5.000
1963
6.000-50.000
Williams
2.000-50.000
Ar H,,Ar,Kr
45
%
48
H,,He,Ne,Ar,
90
Kr,Xe Futch-Moses
1967
Schlachter
--et
Gruebler Spiess
--et --et
al.
al.
Baragiolla Cisneros
--et
al.
al.
4.000-50.000
Mg
31
500-20.000
CS
73
Li,Na,K,Cs
35
1970
1.000-20.000
1970
2.500
CS
77
1973
7.500-40.000
Pb
9
1976
250-1.250
CS
13
Morgan
--et
al.
1976
1.250-25.000
Xl?
56
Morgan
--et
al.
1978
1.100-80.000
Mg
57
See page 494 for Explanation
519
of Graphs
and Tables
Atomic
Data and Nuclear
Data Tables.
Vol. 22, No. 6. December
1979
Charge Transfer of H Beams in Gases andVapors
H. TAWARA
TABLE
Authors
III.
Year
Stier-Barnett
1956
A List of Measurements
Energy range (eW 3.000-200.000
of vol
Target
Method
Reference
H,,He,N,,O,,
G+E
81
G
29
Ne,Ar
Fogel
--et
al.
1958
5.000-40.000
H,,He,N,,%,
Ne.Ar,Kr,Xe CUlTall-
DOlX+hlJe
1960
4.000-35.000
Hz
C+A
20
1961
8.000-40.000
Ar,CO
C+A
24
Pilipenko-Fogel
1962
5.000-20.000
H,,N,,O,,CO
G
63
Pilipenko-Fogel
1963
5.000-30.000
G
64
Williams
1967
2.000-50.000
G
91
Donahue-Hushfar
NO H,,He,Ne,Ar,Kr, Xe
Futch-Moses
1967
4.000-50.000
Mg
G
31
McClure
1968
1.250-117.000
HZ
G
51
1969
500-20.000
cs
G
73
1969
5.000-70.000
k3
G
7
Fleishmann-Young
1969
so- 1.000
H,,He,Ne,Ar
C(U-)
25
Fleishmam-Young
1969
SO-800
N* 4
C(U-1
24
McNeal-Clark
1969
1.000-25.000
C(O-,O+l
52
1970
1.000-25.000
C(u-,U+)
53
C(u-,q)
54
Schlachter
--et
Berkner
--’et
t&Neal
al.
al
et ---
al
N2 H,,He,O,,Ne. Ar,Kr,Xe
McNeal
1970
1.000-25.000
CO,C’.$,CH,, %
Dagnac
--et
al.
1970
2.000-60.000
Barnett-Ray
1972
300-10.000
Baragiolla
1973
7.500-40.000
1973
80-2.000
Dehmel
--et
al.
40 “24 Pb Ar,Kr.Xe,CO. co,
G+E
21
G
5
G
9
C(U-)
22
‘Mb
Pradel
--et
al.
1974
500-3.000
HI
G
66
Monnon
--et
al.
1975
100-2.000
N*,Ne,Ar
G
55
Noda
1976
200-5.000
Hz&
G
60
Smith
1976
250-5.000
C
75
--et
al.
H,,He,N,,O,, C0,~2,W,
Cisneros Morgan
--’et --et
Roussel
al al.
-et
-.al
1976
500-2.000
N2
G
14
1976
1.250-25.000
Xe
G
56
1977
500-3.000
G
70
Ar
C
86
Nz,Oz
C
87
H,.He,Ne,Ar, Kr,Xe
Van
Zyl
Van
Zyl
--et --et
al. al.
1977
250-S.
1978
50-3.000
000
See page 494 for Explanation of Graphs and Tables
520
Atomic
Data and Nuclear
Data Tables.
Vol. 22. No. 6, December
1979
Charge Transfer of H Beams in Gases and Vapors
H. TAWARA
TABLE
IV. A List of Measurements
Energy Authors
Year
Stier-Barn&t
1956
of cowl
range
(eV) 3.000-200.000
H,,He,N,,D,,
Method
Reference
G+E
81
C
20
Ne,Ar
HP
1960
4.000-35.000
Donahue-Hushfar
1961
8.000-40.000
Ar,CO
C
24
Pilipenko-Fogel
1962
5.000-50.000
H,J2,0,,C0
G
63
Pilipenko-Fogel
1963
5.000-35.000
NO
G
64
McClure
1964
6.000-120.000
Hz
G
49
Williams
1967
2.000-50.000
G
91
H,,He.Ne,Ar, Kr,Xe
Schlachter Berkner Spiess
-et
1969
500-20.000
CS
G
73
1969
5.000-70.000
Mg
G
7
1970
2.500
CS
G
77
1973
7.500-40.000
Pb
G
9
-.al
1974
500-3.000
HI
G
66
--et
1976
250-1.250
CS
G
13
1976
1.250-25.000
Xe
G
56
1977
soo-
H,,He,Ne,h.
G
70
C
87
et --* --et
al -*
al al.
Baragiolla Pradel
-et
Cinsneros Morgan Rouse1
et --
al.
al.
et --.
al
3.000
Kr,Xe Van
Zyl
--et
al.
1978
so- 3.000
Nz,Oz
See page 494 for Explanation of Graphs and Tables
521
Atomic
Data and Nuclear
Data Tables.
Vol. 22. No. 6. December
1978
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
TABLE V. A List of Measurements of (+-IO
Year
Energy range (eV)
Hasted
1952
100-2.500
Whittier
1954
4.000-70.000
Stedeford-Hasted
1955
100-40.000
Authors
Target
Method
Reference
C
38
A
as
C
80
C
39
G
81
He,Ne,Ar,Kr, Xe HZ He,Ne,Ar,Kr, Xe
Hasted-Smith
1956
10-2.700
Stier-Barnett
1956
4.000-300.000
Hz H,,He,N,,02, Ne,Ar
Muschlitz
et al --*
1956
4-400
H*
C
58
Muschlitz
et al --*
1957
4-400
HZ
C
59
Bailey
1957
S-350
He,Ne,Ar
C
3
Pilipenko
--et al.
1966
3.000-30.000
O,,NO,CO
C
65
Bydin
1966
200-7.000
He,Ne,Ar,Kr,Xe
C
10
Williams
1967
2.000-50.000
H,,He,Ne,Ar,Kr, Xe
G
92
Berkner
et al -d
1969
5.000-70.000
Mg
G
7
Spiess
--et al.
1970
2.500
cs
G
77
Bailey
--et al.
1970
10-350
O*
C
4
Leslie
--et al.
1971
2.000-30.000
cs
G
46
Simpson-Gilbody
1972
4.000-30.000
H,,He,Ar
A
74
Risley-Geballe
1974
200-10.000
H,,He,N,,Oz.+Q
A
68
Risley
1974
200- 10.000
Hz,He,Nz,Oz.Ar
A
69
1976
2-100
He,N*,Ne.Ar
C
12
1976
1.250-25.000
Xe
G
56
Champion Morgan
--et al. --et al.
TABLE VI. A List of Measurements of (T-~~
Authors Fogel
Tisone
--et al. et al --.
Williams
Year
Energy range (eW
1957
5.000-40.000
1965
500-4.000
1967
2.000-50.000
Target H,,He,N,,O,, Ne,Ar,Kr,Xe HZ H,.He,Ne.Ar
Method
Reference
G
2a
G
82,83
G
92
Leslie
et al --.
1971
2.000-30.000
cs
G
46
Morgan
--et al.
1976
1.250-25.000
Xe
G
56
See page 494 for Explanation of Graphs and Tables
522
Atomic Data and Nuclear Date Tables. Vol. 22, No. 6. December 1978
Charge Transfer of H Beams in Gases and Vapors
H. TAWARA
REFERENCES
V.V. Phys. V.V. Phys. 3
Afrosimov,
R.N.
2, 2080
(1958)
Afrosimov,
R.N.
I,
T.L.
FOR GRAPHS AND TABLES
Ilin
and N.V.
Fedorenko,
Ilin
and
Solovev,
E.A.
Soviet
Phys.-Tech.
Soviet
Phys.-Tech.
661 (1960)
Bailey,
C.J.
May and E.E.
Muschlitz,
J.
them.
Phys.
26,
1446
(1957) 4
T.L.
Bailey
5
C.F.
Barnett
and P. Mahadevan,
6
M. Becker
7
K.H.
Berkner,
R.V.
8
K.H.
Berkner,
R.V.
9
A. Baragiola
10
Y.R.
Bydin,
Soviet
11
P.G.
Cable,
University
and J.A. and
N.
Scharmann,
A.
Phys.
them.
Nucl.
Ray,
Fusion
52,
179 (1970)
12, 65 (1972)
Z. Naturforsch,
G,
Pyle
and J.W. Stearns,
Phys.
Rev.
Pyle
and J.W.
Nucl.
Fusion
lo,
145 (1970)
Meth.
110,
503 (1973)
and E.E.
Stearns,
Salvattelli,
Phys.
Nucl.
-JETP 22,
854 (1969)
Instr.
178,
248 (1969)
762 (1966)
of Maryland
Tech.
Note no. BN-499,
1967
(unpublished) 12
R.L.
Champion,
L.D.
Doverspike
and S.K.
Lam, Phys.
Rev.
Ag,
617
(1976) 13
C. Cisneros,
I. Alvarez,
C.F.
Barn&t,
and J.A.
Ray,
Phys.
Rev.
1. Alvarez,
C.F.
Barrett,
and J.A.
Ray,
Phys.
Rev.
J.
Phys.
Al4-, 76 (1976) 14
C. Cisneros, (1976)
AE,
84
15
M.A.
Coplan
16
W.H. Cramer
and J.H.
Simons.
J. them.
Phys.
;la,
1272 (1957)
17
W.H. Cramer
and A.B.
Marcus,
J.
Phys.
32,
186 (1960)
18
W.H. Cramer,
Phys.
35,
19
R. Curran,
20
R. Curran
21
R.
22
R.C.
and K.W. Ogilvie,
J. T.M.
R.
and
Donahue,
Blanc
D.
Dehmel, 2,
Donahue
and T.M.
Dagnac,
Phys.
them.
and
0.
Merger,
them.
them.
(1970)
836 (1961) Kasner,
W.H.
Phys.
Phys.
Rev. 118,
Molina,
J.
Rev. 114,
490 (1959)
1233 (1960)
Phys.
Fleishmann
H.H.
S2-, 4154
82.
1239 (1970)
and M. Steinberg,
J.
them.
5111 (1973)
23
T.M.
Donahue
and F. Hushfar,
24
H.H.
Fleishmann
and R.A.
Young,
Phys.
Letters
25
H.H.
Fleishmann
and
Young,
Phys.
Rev.
26
H.H.
Fleishmann,
R.A.
C.F.
Barrett
Phys.
Rev. 124,
and J.A.
Ray,
138 (1961) z,
178,
287 (1969) 254
Phys.
(1969)
Rev.
E,
569
(1974) 27
I.M.
Fogel
and R.V.
Mitin,
28
I.M.
Fogel
and
Ankudinov
V.A.
Soviet
Phys.
and R.E.
-JETP 2, 334 (1956) Slabospitskii,
Soviet
Phys.
-JETP 1, 382 (1957) 29
I.M. Soviet
30
I.M.
Fogel, Phys. Fogel.
V.A.
Ankudinov,
D.V.
Pilipenko
and N.V.
Topolia,
-JETP 1, 400 (1958) R.V.
Mitin.
V.F.
Korlov
and N.D.
Romashko.
Soviet
Phys.
-JETP 8, 390 (1959)
523
Atomic
Data and Nuclear
Data Tables.
Vol. 22. No. 6, Decemb~
,978
H. TAWARA
Charge Transfer of H Beams in Gases and Vapors
REFERENCES
31
A.H.
Futch
32
H.B.
Gilbody
33
R.J. 505
and
FOR GRAPHS AND TABLES
Morses,
K.G.
and J.B.
Girnius,
UCRL-70251
Hasted,
Proc.
L.W. Anderson
(1966)
Roy.
Sot.
and E. Stabl.
E,
Nucl.
334 (1957) Instr.
Meth.
143,
(1977)
34
Y. Gordeev
and M.N.
Panov,
35
W. Gruebler,
P.A.
Schmelzbach,
Acta 5,
Soviet
Phys.
-Tech.
E. Konig
Phys.
!& 656 (1964)
and P. Marmier,
Helv.
Phys.
254 (1970)
36
E. Gustaffson
and E. Lindholm,
37
J.B.
Hasted,
Proc.
Roy.
See. m,
421 (1951)
38
J.B.
Hasted,
Proc.
Roy.
Sot.
235 (1952)
39
J.8.
Hasted
40
0. Hollricher,
41
N. Inoue.
42
D.W.
Koopman,
Phys.
Rev.
43
D.W. Koopman,
Phys.
Rev. 166,
and R.A.
44
D.W. Koopman,
45
V.F.
2,
Fogel
K.P.
Sarver
219 (1960)
Soo. E,
349 (1956)
130 (1972) (1967)
79
57 (1968)
Phys.
Y.M.
Roy.
8,
41 (1965)
154,
J. chew
Kozlov,
Proc.
187,
Fusion
Fysik
E,
Smith,
Z. Phys. Nucl.
Arkiv
49,
and
5203 (1968) Stratienko,
V.A.
Soviet
Phys.
-JETP 17,
1226 (1963) 46
T.E.
47
W.B. Maier
48
G.W. McClure,
Phys.
Rev.
49
G.W. McClure,
Phys.
Rev. 134,
A1226
50
G.W. McClure,
Phys.
Rev. 148,
47 (1966)
51
G.W. McClure,
Phys.
Rev. 166,
22 (1968)
52
R.J.
McNeal
53
R.J.
McNeal,
D.C.
54
R.J.
McNeal,
J. them.
55
Leslie, II,
and
G. Monnom,
Rev. A&
D.C.
2818,
T.J.
Morgan,
Phys.
Rev.
57
T.J.
Morgan
58
E.E.
Muschlitz,
59
E.E.
Rev. g,
408 (1971)
1636 (1963) (1964)
J. Geophys.
and R.A. Phys.
Phys.
1256 (1972)
132,
Clark,
Clark
M. Eliot,
Paris 56
Phys.
and L.W. Anderson,
Res. 2,
Klingberg,
53,
4308
J. Guidini
5065
Phys.
(1969)
Rev. g,
131 (1970)
(1970)
and P.G.
Valckx,
C.R.
Acad.
Sci.
425 (1975) K.H. 2,
Berkner,
W.G. Graham,
R.V.
Pyle
and J.W. Stearns,
664 (1976)
and F. Eriksen,
Phys.
Letters
@,
198 (1978)
T.L.
Bailey
and J.H.
Simons,
J.
them.
Phys.
3,
T.L.
Bailey
and J.H.
Simons,
J.
chew
Phys.
2,
1202 (1956) Muschlitz,
711 (1957) 60
N. Noda,
J. Phys.
Sot.
61
R.E.
Olson,
Phys.
62
R.E.
Olson,
IEEE NS-23,
63
D.V.
Pilipenko
and Y.M.
Fogel,
Soviet
Phys.
-JETP Is.
646 (1962)
64
D.V.
Pilipenko
and Y.M.
Fogel,
Soviet
Phys.
-JETP 11.
1222 (1963)
Letters
Japan 41, e,
625 (1976) 83 (1975)
971 (1976)
524
Atomic
Data and Nuclear
Data Tables.
Vol. 22, No. 6. December
1978
Charge Transfer of H Beams in Gases and Vapors
H. TAWARA
REFERENCES
65
D.V.
Pilipenko,
965
V.A.
Gusev
and Y.M.
Fogel,
Soviet
Phys.
-JETP 22,
(1966)
66
P. Pradel
67
P. Pradel,
68
J.S.
Risley
69
J.S.
Risley,
70
F. Roussel,
Phys.
and F. Roussel, F. ~oussel,
Rev. e,
E.R.
Nucl.
Instr.
Meth.
Schlachter,
A.S.
121,
111 (1974)
G. Spiess
and V. Valance,
797 (1974)
and
R.
Geballe,
Phys.
s,
Rev. g,
2485 (1974)
731 (1974)
and G. Spiess,
on their
Salvatelli,
Phys.
Rev.
P. Pradel
See discussions 71
FOR GRAPHS AND TABLES
previous
Phys. data
G. Lantschner
Rev.
(ref.
AE,
1854 (1977).
67).
and W. Meckbach,
J. Phys.
82,
772
(1969) 72
F.
73
A.S.
Schwirzke,
2.
Phys.
Schlachter,
157,
R.J.
510
(1960)
Bjorkholm,
W. Haeberli,
Phys.
74
F.R.
Simpson
and H.B.
75
K.A.
Smith,
76
W.S. Snow, R.D.
77
G. Spiess,
A. Valance
and P. Pradel,
78
G. Spiess,
A. Valance
and P. Pradel,
79
R.F.
Stebbings,
2349
(1964)
J.
80
M.D.
Geophys.
J.B.H.
Rev. 177,
D.H.
Res. 81,
E,
N.W. Geis and R.D.
and R. Geballe,
Smith
and F.B.
and C.F.
J. Phys.
1959 (1972) Rundel,
2231 (1976)
Rundel
A.C.H.
Stedeford
L.W. Anderson,
184 (1960)
Gilbody,
Duncan,
Loyd,
Phys.
Reg.
178,
Phys.
Letters
z,
Phys.
Rev. &,
and H. Ehrhardt,
Hasted,
Barnett,
Proc.
81
P.M.
Stier
82
G.C.
Tisone
and L.M.
Branscomb,
Phys. Bull.
83
G.C.
Tisone
and L.M.
Branscomb,
JILA
84
V.N.
Tuan,
G. Gautherin
V.N.
Tuan,
A.S.
114,
499 (1974)
and A.S.
Rev.
434 (1970) 746 (1972)
J. Geophys.
Roy.
Sot.
103,
896 (1956)
Am. Phys. report
(1969)
228
E,
Sot.
no.20,
Res. 69,
466 (1955)
2, 535 (1964) (1964)
Schlachter,
Phys.
Rev.
and G. Gautherin,
Nucl.
Instr.
As,
1242
(1974) 85
86
B. Van Zyl,
Schlachter
T.Q.
Le, H. Neumann and R.C.
Amme, Phys.
Meth.
Rev. g,
1871
(1977) 87 B.Van Zyl,
H. Neumann,
T.Q.
Le, and R.C.
Amme, Phys.
Rev.
Ag,
506
(1978) 88
A.C.
Whittier,
Can. J. Phys. and D.N.F.
32,
275 (1954)
89
J.F.
Williams
90
J.F.
Williams,
Phys.
Rev.
Dunbar, l&l,
7 (1966)
Phys.
Rev. 149,
91
J.F.
Williams,
Phys.
Rev.
153,
116 (1967)
92
J.F.
Williams,
Phys.
Rev. 154,
62 (1966)
9 (1967)
525
Atomic
Data and Nuclear
Data Tables,
Vol. 22, No. 6, December
1978