International Journal of Heat and Mass Transfer 115 (2017) 180–191
Contents lists available at ScienceDirect
International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt
CVFEM for influence of external magnetic source on Fe3O4-H2O nanofluid behavior in a permeable cavity considering shape effect M. Sheikholeslami a,⇑, S.A. Shehzad b,⇑ a b
Department of Mechanical Engineering, Babol Noshiravni University of Technology, Babol, Iran Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000, Pakistan
a r t i c l e
i n f o
Article history: Received 10 June 2017 Received in revised form 9 July 2017 Accepted 10 July 2017
Keywords: Nanofluid External magnetic source Shape effect Porous media MFD viscosity Natural convection
a b s t r a c t This research is made to show the impact of external magnetic source on Fe3O4 – water nanofluid treatment in a permeable cavity. Shape factor effect on nanofluid properties are taken into account. Final equations are derived by means of vorticity stream function formulation. Control volume based finite element method is employed for solving final formulae. Figures are depicted for various values of radiation parameter, Darcy number, Fe3O4 –water volume fraction, Rayleigh number and Hartmann number. Results reveal that selecting Platelet shaped nanoparticles results the highest heat transfer rate. Nanofluid velocity and heat transfer rate decrease with augment of Hartmann number. Ó 2017 Elsevier Ltd. All rights reserved.
1. Introduction In order to improve heat transfer rate, several ways offered. One of them is Nanotechnology. Rashidi et al. [1] reported the effect of Lorentz forces on nanofluid mixed convection in a wavy channel. Sheikholeslami and Rokni [2] simulated the impact of melting heat transfer on nanofluid flow in existence of magnetic field. Beg et al. [3] reported the bio-nanofluid transportation by means of both nanofluid models. Sheikholeslami and Shehzad [4] demonstrated the nanofluid natural convection in a permeable media by means LBM. Garoosi et al. [5] utilized the two phase model for nanofluid flow in presence of external heating. Sheikholeslami and Shehzad [6] reported the influence of radiation on ferrofluid flow. They considered MFD viscosity. Sheikholeslami and Bhatti [7] demonstrated the effect of nanoparticles shape on nanofluid forced convection. Khan et al. [8] investigated the influence of heat generation on transient nanofluid flow on a wedge. Garoosi et al. [9] reported the application of nanofluid in a heat exchanger. Their result showed that situation of the hot tube has sensible effect on temperature. Sheikholeslami and Bhatti [10] utilized active method for heat transfer augmentation in an enclosure filled with nanofluid. Mesoscopic approach has been used by Sheikholeslami and Ellahi [11] for a three dimensional problem. ⇑ Corresponding authors. E-mail addresses:
[email protected] (M. Sheikholeslami),
[email protected] (S.A. Shehzad). http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.045 0017-9310/Ó 2017 Elsevier Ltd. All rights reserved.
Feng et al. [12] presented a numerical simulation for melting of nanofluid in a cavity. Sheikholeslami and Rashidi [13] investigated nanofluid convective heat transfer in existence of variable magnetic field. Impact of variable Kelvin forces on magnetic nanofluid flow has been simulated by Sheikholeslami Kandelousi [14]. Heat flux boundary condition has been utilized by Sheikholeslami and Shehzad [15] to investigate the magnetic nanofluid flow in porous media. Nanoparticle transportation in a channel in presence of Lorentz forces was demonstrated by Akbar et al. [16]. Sheikholeslami et al. [17] studied the impact of radiation on distribution of nanofluid. Sheikholeslami and Zeeshan [18] employed mesoscopic method for CuO-water nanofluid flow in a porous cavity. In recent years, different researchers published articles about nanofluid flow [19–45]. This article deals with influence of non-uniform magnetic field on nanofluid convective flow inside an enclosure by means of CVFEM. Roles of Darcy number, radiation parameter, Fe3O4-water volume fraction, shape of nanoparticle, Hartmann and Rayleigh numbers are examined. 2. Problem statement Fig. 1 shows the sample element and boundary conditions of current geometry. As shown in Fig. 2, external magnetic source affect the nanofluid flow. H; Hx ; Hy are:
181
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
Nomenclature K H V; U Da Ra T Nu Ha
X; W
Permeability Magnetic field Vertical and horizontal dimensionless velocity Darcy number Rayleigh number Fluid temperature Nusselt number Hartmann number
b
q r l
dimensionless vorticity & stream function Thermal expansion coefficient Fluid density Electrical conductivity Dynamic viscosity
Subscripts s Solid particle nf Nanofluid f Base fluid
Greek symbols h dimensionless temperature f Rotation angle
Fig. 1. (a) Geometry and the boundary conditions with; (b) A sample triangular element and its corresponding control volume.
Hy ¼ ða xÞ Hx ¼ ðy bÞ
1 2 c ½ðb yÞ þ ða xÞ2 ; 2p
c
2p
2
1
½ðb yÞ þ ða xÞ2 ;
0:5
H ¼ ðH2y þ H2x Þ :
ð1Þ ð2Þ ð3Þ
3. Governing equation and simulation 3.1. Governing formulation Convective nanofluid flow in existence of non-uniform magnetic field is considered using non-Darcy model. The PDEs are [30]:
@u @v ¼ ; @x @y
ð4Þ
! @2u @2u @P þ lnf l20 rnf H 2y u þ rnf l20 H x H y v @y2 @x2 @x lnf @u @u v ; uþ u ¼ ðqnf Þ @x @y K !
lnf @P y rnf H x u l2 H þ l20 H 0 x rnf H x v @y K @v @v þ ðT T c Þbnf g qnf ¼ qnf v ; uþ @x @y
lnf
@2v @2v þ @x2 @y2
ð5Þ
v
ð6Þ
182
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
9 8 7 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 -7 -8 -9
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
(a) H ( x , y )
(b) Hx ( x , y )
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19
(c) Hy ( x , y ) Fig. 2. Contours of the (a) magnetic field strength H; (b) magnetic field intensity component in x direction Hx; (c) magnetic field intensity component in y direction Hy.
knf
@2T @2T þ @y2 @x2
!
@qr ¼ @y
v
@T @T ðqC p Þnf ; þu @y @x
4re @T 4 ; T 4 ffi 4T 3c T 3T 4c : ½qr ¼ 3bR @y ðqbÞnf ; ðqC p Þnf , qnf and
qnf ¼ qf ð1 /Þ þ qs / ð7Þ
rnf ¼ rf
3/ðr1 1Þ þ1 ; ð1 r1Þ/ þ ð2 þ r1Þ
ð10Þ
r1 ¼ rs =rf :
ð11Þ
ln f is calculate as [46]:
rnf are calculated as:
ðqbÞnf ¼ ðqbÞf ð1 /Þ þ ðqbÞs /;
ð8Þ
ðqC p Þnf ¼ ðqC p Þf ð1 /Þ þ ðqC p Þs /
ð9Þ
lnf ¼ ð0:035l20 H 2 þ 3:1l0 H 27886:4807/2 þ 4263:02/ þ 316:0629Þe0:01T knf can be obtained as [19]:
ð12Þ
183
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191 Table 1 Thermo physical properties of water and nanoparticles.
Pure water Fe3 O4
qðkg=m3 Þ
C p ðj=kgKÞ
kðW=mkÞ
dp ðnmÞ
rðX mÞ1
997.1 5200
4179 670
0.613 6
– 47
0:05 25000
Table 2 The values of shape factor of different shapes of nanoparticles [24]. m
Spherical
3
Platelet
5.7
Cylinder
4.8
Brick
3.7
knf mðkf kp Þ/ þ ðkp kf Þ/ þ mkf þ kp þ kf ¼ kf mkf þ ðkf kp Þ/ þ kf þ kp
ð13Þ
Tables 1 and 2 show the properties of nanofluid and shape factor values. Vorticity and stream function can be employed to eliminate pressure source terms:
xþ
@u @ v @w @w ¼ v ; ¼ u: ¼ 0; @y @x @x @y
ð14Þ Fig. 3. Comparison of temperature profile between the present results and numerical results by Khanafer et al. [49] Gr ¼ 104 , / ¼ 0:1 and Pr ¼ 6:8ðCu WaterÞ.
Dimensionless parameters are defined as:
ðb; aÞ ; L uL vL ðx; yÞ T Tc ;h ¼ ;V ¼ ; ðX; YÞ ¼ ; DT ¼ q00 L=kf ; U¼ L anf anf DT
ðHy ; Hx ; HÞ ¼
ðHy ; Hx ; HÞ H0
; ðb; aÞ ¼
ð15Þ
xL2 W¼ ;X ¼ : anf anf w
@Y 2
þXþ
@2W @X 2
¼ 0;
ð16Þ
! @X @X A5 A2 @ 2 X @ 2 X þ UþV ¼ Pr @X @Y A1 A4 @Y 2 @X 2 A6 A2 @U @V 2 @U 2 @V Hy Hx Hx þ Hy H y Hx þ PrHa2 A1 A4 @X @X @Y @Y þ Pr Ra
on
Nusselt
number
when
Ha
So equations change to:
@2W
Table 5 Effect of shape of nanoparticles Da ¼ 100; Ra ¼ 105 ; Rd ¼ 0:8; / ¼ 0:04.
ð17Þ
Spherical Brick Cylinder Platelet
@h @h UþV ¼ @X @Y
@2h @X
2
þ
@2h @Y
0
10
7.072375 7.120273 7.196075 7.258503
5.865269 5.901963 5.960649 6.009695
!
2
þ
4 1 @2h Rd 2 : 3 A4 @Y
ð18Þ
and dimensionless parameters are
A3 A22 @h Pr A5 A2 ; A1 A24 @X Da A1 A4
Table 3 Comparison of Nuav e along curved wall for different grid resolution at Ra ¼ 105 , Da ¼ 100; / ¼ 0:04; Rd ¼ 0:8, Ha ¼ 10; Ec ¼ 105 and Pr ¼ 6:8. 51 151
61 181
71 211
81 241
91 271
101 301
6.007844
6.008708
6.009695
6.010115
6.012651
6.016738
Table 4 Average Nusselt number versus at different Grashof number under various strengths of the magnetic field at P r = 0.733. Ha
0 10 50 100
Gr ¼ 2 105
Gr ¼ 2 104 Present
Rudraiah et al. [48]
Present
Rudraiah et al. [48]
2.5665 2.26626 1.09954 1.02218
2.5188 2.2234 1.0856 1.011
5.093205 4.9047 2.67911 1.46048
4.9198 4.8053 2.8442 1.4317
184
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
-2
-8 -14 0.15 -18
0.2
0.1
0.25
0.05
Fig. 4. Impact of nanofluid volume fraction on streamlines (right) and isotherms (left) contours (nanofluid (/ ¼ 0:04)(––) and pure fluid(/ ¼ 0) ( )) when Ra ¼ 105 ; Da ¼ 100; Rd ¼ 0:8; Ha ¼ 0.
-4
-1 0 0.2
-18
0.15
-18 0.1 0.25 0. 35
0.05
Fig. 5. Impact of radiation parameter on streamlines (right) and isotherms (left) contours (Rd ¼ 0:8 (––), Rd ¼ 0 (—)) when Ra ¼ 105 ; Da ¼ 100; / ¼ 0:04; Ha ¼ 0.
Raf ¼ gbf L3 DT=ðaf tf Þ; Prf ¼ tf =af ; Ha ¼ Ll0 H0
qffiffiffiffiffiffiffiffiffiffiffiffiffi rf =lf ;
and boundary conditions are:
Da ¼ K= L2 ; Ec ¼ ðlf af Þ=½ðqC P Þf DT L2 ;
ðqC p Þnf ðqbÞnf qnf ; A2 ¼ ; A3 ¼ ; qf ðqC p Þf ðqbÞf lnf knf rnf A4 ¼ ; A5 ¼ ;A ¼ ; Rd ¼ 4re T 3c =ðbR kf Þ kf lf 6 rf
A1 ¼
@h ¼ 1:0 @n on outer wall h ¼ 0:0 @h on other walls ¼0 @n on all walls W ¼ 0:0 on inner wall
ð19Þ
ð20Þ
Ha=0
0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.15 0.05
Ha=10
Da=100
Ha=0
Da=0.01
0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
Ha=10
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
0.65 0.6 0.5 0.4 0.3 0.25 0.2 0.15 0.1 0.05
-0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.1
-0.005 -0.01 -0.015 -0.02 -0.025 -0.03 -0.035 -0.04 -0.045 -0.05 -0.055 -0.06
-0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4
-0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 -0.09 -0.1 -0.11 -0.12
Fig. 6. Influence of Da; Ha on streamlines (right) and isotherms (left) contours when / ¼ 0:04; Ra ¼ 103 .
185
Ha=0
0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1
Ha=0
-0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4 -0.45 -0.5 -0.55 -0.6 -0.65
0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
-0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5 -5.5
Ha=10
Da=0.01
0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
Ha=10
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
-0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1 -1.1 -1.2 -1.3 -1.4 -1.5
Da=100
186
Fig. 7. Influence of Da; Ha on streamlines (right) and isotherms (left) contours when / ¼ 0:04; Ra ¼ 104 .
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10
0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
-0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5 -5.5 -6 -6.5 -7 -7.5 -8
Ha=0
-2 -4 -6 -8 -10 -12 -14 -16 -18
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12
Da=100
0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05
Ha=10
Ha=10
Da=0.01
Ha=0
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
Fig. 8. Influence of Da; Ha on streamlines (right) and isotherms (left) contours when / ¼ 0:04; Ra ¼ 105 .
187
188
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
Ha = 5 , Da = 50 ,φ = 0.04
Ha = 5 , Ra = 10 4 ,φ = 0.04
Ra = 10 4 , Da = 50 ,φ = 0.04
Rd = 0.4 , Ha = 5 , φ = 0.04
Rd = 0.4 , Ra = 10 4 , φ = 0.04
Rd = 0.4 , Da = 50 , φ = 0.04
Fig. 9. Effects of Da; Ha and Ra on average Nusselt number.
Nuloc ; Nuav e over the hot wall can be calculated as:
Nuloc
! 1 knf knf 4Rd 1 1þ ; ¼ 3 h kf kf
Nuav e ¼
1 S
Z
ð21Þ
S
Nuloc ds: 0
3.2. Numerical procedure
ð22Þ
Benefits of both finite element and finite volume methods are combined in CVFEM. This method utilizes triangular element (see Fig. 1(b)). Upwind approach is utilized for advection term. GaussSeidel approach is applied to solve the algebraic equations. More details can be found in [47].
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
Ha = 5 , Da = 50 ,φ = 0.04
Ha = 5 , Ra = 10 4 , φ = 0.04
Ra = 10 4 , Da = 50 ,φ = 0.04
Rd = 0.4 , Ha = 5 ,φ = 0.04
Rd = 0.4 , Da = 50 ,φ = 0.04
189
Rd = 0.4 , Ra = 10 4 ,φ = 0.04 Fig. 9 (continued)
4. Grid independency and code accuracy
5. Results and discussion
Various grids should be examined to mesh independency analysis. According to Table 3, a mesh size of 81 241 can be selected. This FORTRAN code has good accuracy for MHD flow as demonstrated in Table 4 [48]. The correctness of CVFEM code for nanofluid simulation is shown in Fig. 3 [49].
Effect of external magnetic source on Fe3O4-water hydrothermal treatment in a permeable enclosure is demonstrated. Magnetic field dependent viscosity of nanofluid is considered. Shape effect of nanoparticles on knf is taken into consideration. CVFEM is employed to find the influences of Darcy number (Da ¼ 0:01 to
190
100),
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191
radiation
parameter
ðRd ¼ 0 to 0:8Þ,
Rayleigh
number
(Ra ¼ 103 ; 104 ; 105 ), volume fraction of Fe3O4 (/ ¼ 0% to 4%), shape factor and Hartmann number (Ha ¼ 0 to 10). Effect of shape factor on Nuav e is discussed in table 5. The highest Nuav e is caused by Platelet, followed by Cylinder, Brick and Spherical. So, Platelet shape was selected for further investigation. Fig. 4 illustrates the influence of adding nanoparticles in the base fluid on velocity and temperature contours. Temperature gradient reduces with augment of /. jWmax j increases with adding nanoparticles into the base fluid. Fig. 5 shows the impact of radiation parameter on isotherms and streamlines. Increasing radiation parameter leads to augment in thermal boundary layer thickness. In existence of Lorentz forces, impact of radiation parameter on flow style becomes no sensible. Figs. 6, 7 and 8 depicts the influence of Da; Ra; Ha; Rd on isotherms and streamlines. In conduction mode (low Reynolds number), streamline shows one rotating eddy. In existence of magnetic field, the main eddy moves downward. The distortion of isotherms becomes less than before. As buoyancy forces enhances, thermal plume generates. As Darcy number enhances, convective mode becomes stronger and rate of heat transfer enhances. Effect of significant parameters on Nuav e is demonstrated in Fig. 9. The formula for Nuav e is:
Nuav e ¼ 15:28 1:12Rd 6:6 logðRaÞ 0:18Da þ 0:47Ha þ 1:07Rd logðRaÞ þ 0:32Rd Da 0:44Rd Ha
ð23Þ
þ 0:08Da logðRaÞ 0:11Ha logðRaÞ 0:3Da Ha 0:9Rd þ 0:85ðlogðRaÞÞ þ 0:15ðDa Þ 0:07ðHa Þ 2
2
2
2
where Da ¼ 0:01Da; Ha ¼ 0:1Ha. Nusselt enhances with augment of buoyancy forces and permeability of porous media. Temperature gradient reduces with increase of Hartmann number. Also, Nusselt number enhances with rise of radiation number. 6. Conclusions Effect of external magnetic source on magnetic nanofluid behavior in a porous enclosure has been presented. Shape factor and magnetic field effects on thermal conductivity and viscosity of nanofluid are taken into consideration. Temperature distribution and flow style are reported for different values of radiation parameter, Hartmann, Darcy and Rayleigh numbers. Outputs illustrate that choosing Platelet shape of nanoparticles leads to greatest Nusselt number. Furthermore, Nusselt number reduces with augment of Lorentz forces. Darcy and Rayleigh numbers can enhance the temperature gradient. References [1] M.M. Rashidi, M. Nasiri, M. Khezerloo, N. Laraqi, Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls, J. Magnet. Magnet. Mater. 401 (2016) 159–168. [2] M. Sheikholeslami, H.B. Rokni, Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field, Int. J. Heat Mass Transf. 114 (2017) 517–526. [3] O.A. Beg, M.M. Rashidi, M. Akbari, A. Hosseini, Comparative numerical study of single-phase and two-phase models for bio-nanofluid transport phenomena, J. Mech. Med. Biol. 14 (2014) 1450011. [4] M. Sheikholeslami, S.A. Shehzad, Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM, Int. J. Heat Mass Transf. 113 (2017) 796–805. [5] F. Garoosi, B. Rohani, M.M. Rashidi, Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating, Powder Tech. 275 (2015) 304–321. [6] M. Sheikholeslami, S.A. Shehzad, Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity, Int. J. Heat Mass Transf. 109 (2017) 82–92. [7] M. Sheikholeslami, M.M. Bhatti, Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles, Int. J. Heat Mass Transf. 111 (2017) 1039–1049.
[8] M. Khan, M. Azam, A.S. Alshomrani, Effects of melting and heat generation/ absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge, Int. J. Heat Mass Transf. 110 (2017) 437–446. [9] F. Garoosi, F. Hoseininejad, M.M. Rashidi, Numerical study of heat transfer performance of nanofluids in a heat exchanger, Appl. Thermal Eng. 105 (2016) 436–455. [10] M. Sheikholeslami, M.M. Bhatti, Active method for nanofluid heat transfer enhancement by means of EHD, Int. J. Heat Mass Transf. 109 (2017) 115–122. [11] M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transf. 89 (2015) 799–808. [12] Y. Feng, H. Li, L. Li, L. Bu, T. Wang, Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method, Int. J. Heat Mass Transf. 81 (2015) 415–425. [13] M. Sheikholeslami, M.M. Rashidi, Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid, J. Taiwan Inst. Chem. Eng. 56 (2015) 6–15. [14] M.S. Kandelousi, Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition, Eur. Phys. J. Plus 129 (2014) 248. [15] M. Sheikholeslami, S.A. Shehzad, Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition, Int. J. Heat Mass Transf. 106 (2017) 1261–1269. [16] N.S. Akbar, M. Raza, R. Ellahi, Interaction of nano particles for the peristaltic flow in an asymmetric channel with the induced magnetic field, Eur. Phys. J. Plus 129 (2014) 155. [17] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, J. Magnet. Magnet. Mater. 374 (2015) 36–43. [18] M. Sheikholeslami, A. Zeeshan, Mesoscopic simulation of CuO-H2O nanofluid in a porous enclosure with elliptic heat source, Int. J. Hydrogen Energy 42 (2017) 15393–15402. [19] M. Sheikholeslami, M. Sadoughi, Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles, Int. J. Heat Mass Transf. 113 (2017) 106–114. [20] M. Sheikholeslami, Lattice Boltzmann Method simulation of MHD non-Darcy nanofluid free convection, Phys. B 516 (2017) 55–71. [21] M. Sheikholeslami, H.B. Rokni, Free convection of CuO-H2O nanofluid in a curved porous enclosure using mesoscopic approach, Int. J. Hydrogen Energy 42 (2017) 14942–14949. [22] R. Kumar, S. Sood, M. Sheikholeslami, S.A. Shehzad, Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations, J. Colloid Interf. Sci. 505 (2017) 253–265. [23] M. Sheikholeslamia, H.B. Rokni, Effect of melting heat transfer on nanofluid flow in existence of magnetic field considering Buongiorno Model, Chinese J. Phys. 55 (2017) 1115–1126. [24] M. Sheikholeslami, Influence of magnetic field on nanofluid free convection in an open porous cavity by means of Lattice Boltzmann Method, J. Mol. Liq. 234 (2017) 364–374. [25] M. Sheikholeslami, A. Zeeshan, Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM, Comput. Methods Appl. Mech. Eng. 320 (2017) 68–81. [26] M. Sheikholeslami, Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann Method, J. Mol. Liq. 231 (2017) 555–565. [27] M. Sheikholeslami, M. Shamlooei, Fe3O4- H2O nanofluid natural convection in presence of thermal radiation, Int. J. Hydrogen Energy 42 (2017) 5708–5718. [28] M. Sheikholeslami, T. Hayat, A. Alsaedi, Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using Lattice Boltzmann Method, Int. J. Heat Mass Transf. 108 (2017) 1870– 1883. [29] M. Sheikholeslami, Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder, J. Mol. Liq. 229 (2017) 137–147. [30] M. Sheikholeslami, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A 381 (2017) 494–503. [31] M. Sheikholeslami, Influence of Lorentz forces on nanofluid flow in a porous cylinder considering Darcy model, J. Mol. Liq. 225 (2017) 903–912. [32] M. Sheikholeslami, H.B. Rokni, Nanofluid two phase model analysis in existence of induced magnetic field, Int. J. Heat Mass Transf. 107 (2017) 288–299. [33] M. Sheikholeslami, T. Hayat, A. Alsaedi, S. Abelman, EHD nanofluid force convective heat transfer considering electric field dependent viscosity, Int. J. Heat Mass Transf. 108 (2017) 2558–2565. [34] M. Sheikholeslami, Influence of Coulomb forces on Fe3O4-H2O nanofluid thermal improvement, Int. J. Hydrogen Energy 42 (2017) 821–829. [35] M. Sheikholeslami, T. Hayat, A. Alsaedi, Numerical study for external magnetic source influence on water based nanofluid convective heat transfer, Int. J. Heat Mass Transf. 106 (2017) 745–755. [36] I.S. Shivakumara, M. Dhananjaya, C. Ng, Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer, Int. J. Heat Mass Transf. 84 (2015) 167–177. [37] M. Sheikholeslami, H.B. Rokni, Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall, J. Mol. Liq. 232 (2017) 390–395.
M. Sheikholeslami, S.A. Shehzad / International Journal of Heat and Mass Transfer 115 (2017) 180–191 [38] M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3-water nanofluid considering thermal radiation: A numerical study, Int. J. Heat Mass Transf. 96 (2016) 513–524. [39] M. Sheikholeslami, A.J. Chamkha, Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall, Numer. Heat Transf. Part A 69 (2016) 781–793. [40] M. Sheikholeslami, A.J. Chamkha, Flow and convective heat transfer of a ferronanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field, Numer. Heat Transf. Part A 69 (2016) 1186–1200. [41] M. Sheikholeslami, H.B. Rokni, Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force, Comput. Methods Appl. Mech. Eng. 317 (2017) 419–430. [42] M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, J. Magnet. Magnet. Mater. 416 (2016) 164–173. [43] M. Sheikholeslami, M.M. Rashidi, Non-uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects, J. Braz. Soc. Mech. Sci. Eng. 38 (2016) 1171–1184.
191
[44] M. Sheikholeslami, K. Vajravelu, M.M. Rashidi, Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field, Int. J. Heat Mass Transf. 92 (2016) 339–348. [45] M. Sheikholeslami, M.M. Rashidi, Ferrofluid heat transfer treatment in the presence of variable magnetic field, Eur. Phys. J. Plus 130 (2015) 115. [46] L. Wang, Y. Wang, X. Yan, X. Wang, Biao Feng, Investigation on viscosity of Fe3O4 nanofluid under magnetic field, Int. Commun. Heat Mass Transf. 72 (2016) 23–28. [47] M. Sheikholeslami, D.D. Ganji, External magnetic field effects on hydrothermal treatment of nanofluid, William Andrew, Elsevier, Print Book, 2016, pp. 1–354, ISBN: 9780323431385. [48] N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, Effect of a magnetic field on free convection in a rectangular enclosure, Int. J. Eng. Sci. 33 (1995) 1075–1084. [49] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transf. 46 (2003) 3639–3653.