Cyclic oxycarbene and vinylidene complexes of ruthenium with (PP) and (NN) type ligands

Cyclic oxycarbene and vinylidene complexes of ruthenium with (PP) and (NN) type ligands

Inorganica Chimica Acta 344 (2003) 49 /60 www.elsevier.com/locate/ica Cyclic oxycarbene and vinylidene complexes of ruthenium with (P  P) and (N  ...

406KB Sizes 0 Downloads 41 Views

Inorganica Chimica Acta 344 (2003) 49 /60 www.elsevier.com/locate/ica

Cyclic oxycarbene and vinylidene complexes of ruthenium with (P  P) and (N  N) type ligands /

/

Antoni Keller a,*, Beata Jasionka a, Tadeusz Glowiak a, Aleksei Ershov b, Renata Matusiak a b

a Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, PL-50-383 Wroclaw, Poland Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 2, St. Petersburg 198904, Russia

Received 15 May 2002; accepted 16 September 2002

Abstract       trans-[(dppm)2 ClRuC(CH2 )3 O] (2) (dppm/Ph2PCH2PPh2) and trans-[(dppm)2 ClRuC(CH2 )2 CH(CH)3 O] (3) cations were obtained from the reaction of cis -[RuCl2(dppm)2] (1) with 3-butyn-1-ol and 4-pentyn-2-ol, respectively. cis -Dichlororuthenim complex [RuCl2((dppene)(bpy)] (4) (dppene /Ph2PCHCHPPh2, bpy /2,2?-bipyridyl) also reacts with terminal alkynes e.g.    4-pentyn-2-ol and phenylacetylene to give cis-chloro-(oxycarbene)[(dppene)(bpy)ClRuC(CH2 )2 CH(CH)3 O] (5) and cis -chloro(vinylidene)[(dppene)(bpy)ClRu /C /CHPh]  (6) cations. cis -[RuCl2(bpy)2] (7) also react with 4-pentyn-2-ol to give dioxacyclic    carbene dication cis-[(bpy)2 Ru(C(CH2 )2 CH(CH)3 O)2 ]2 (8). In the reaction of RuCl2(PPh3)3 (9) with 3-butyn-1-ol the dimer / 2 [(PPh3 )2 ClRuC(CH2 )3 O]2 (10) was obtained. The new synthesis method of 1 and cis -[RuCl2(dppm)2]×/2MeOH (1a) is also presented. These complexes have been fully characterized by IR, 1H, 13C{H} and 31P{H} NMR) and single crystal X-ray diffraction for 2, 3, 5 and 1a. The catalytic activity of 10 in reactions of ROMP of norbornene was also studied. # 2002 Elsevier Science B.V. All rights reserved. /

Keywords: Carbenes; Ruthenium; Phosphines; Crystal structure; ROMP

1. Introduction Chemistry of ruthenium /carbon multiple bonds has experienced much progress in recent years. Several vinylidene [1 /15], allenylidene [8,11,16 /20] and carbene [9,12,13,18,21/29] compounds are of permanent interest, which arises from their potential as reactive intermediates in organic and organometallic synthesis as well as in catalytic processes [30 /37]. There are few types of carbene complexes of ruthenium, for example Grubbs type complexes [31,37/40], complexes containing Nheterocyclic ligands [31,41 /43], Hofmann type cationic complexes [23,31,44,45] or the cationic ruthenium complex of Werner, which presumably rearranges to a

* Corresponding author. Tel.: /48-71-229 281; fax: /48-71-328 2348. E-mail address: [email protected] (A. Keller).

carbene complex in situ [46,47]. The cationic carbenes exhibit much higher ring-opening metathesis polymerization (ROMP) reactivity in solution than had been reported for any other ruthenium system [44 /47]. Also cationic allenylidene ruthenium complexes have been described as metathesis-active precursor complex [48]. Many complexes of this type were synthesized from phosphine complexes as precursors. Ruthenium phosphine complexes exhibit a rich reactivity toward terminal alkynes. For example, reaction of cis -[RuCl2(P /P)2] (P /P /diphosphine ligands) with excess of acetylene and in the presence of 2 equiv. of NaPF6 produced the vinylidene [14,15] or allenylidene [20] complexes. Electrophilicity of the a-carbon of vinylidene complexes, making possible easy addition nucleophiles as alcohols [49 /52], amines [50,53,54], phosphines [55,56], and fluoride [57], is characteristic of vinylidene complexes, and in most cases it leads to formation of respective carbene complexes.

0020-1693/02/$ - see front matter # 2002 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 0 - 1 6 9 3 ( 0 2 ) 0 1 3 1 3 - 0

50

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

In this work: (i) a new synthesis method of cis [RuCl2(dppm)2] (1) is reported; (ii) new oxacyclic carbene and vinylidene complexes of ruthenium were synthesized; (iii) their structural chracterization is presented; and (iv) the catalytic activity in ROMP reaction of norbornene was studied.

2. Results and discussion 2.1. cis -[RuCl2(dppm)2] ×/2CH3OH (1a) The complex cis -[RuCl2(dppm)2] (1) and its analogues are substrates for synthesis of many compounds with Ru /carbon multiple bonds [14,15,20,58]. The precursor complex 1 was synthesized directly from RuCl3 ×/H2O in the presence of PPh3 and dppm in amyl alcohol with high yield (approximately 80%). The now exploited method is easier and more efficient than that known in the literature [58 /60]. Recrystallization from CH2Cl2/CH3OH solution leads to the methanolic solvate 1a. The molecular structure of the complex is shown in Fig. 1. Experimental crystallographic data are given in Table 1, and selected bond lengths and angles are continued in Tables 2 and 3. The complex 1a ¯ crystallizes in triclinic crystal system (space group P1); while non-solvated complex 1 is monoclinic (space group P 21/n) [63]. Table 4 shows lengths and angles of existing hydrogen bonds. The H-bonds in the molecule of 1a are formed between two methanol molecules and between molecule of methanol and chlorine atom (Fig. 1). The bond lengths of C /O in methanol molecules are ˚ , respective lengths of O /H 1.438(3) and 1.386(4) A ˚ . In 1a and 1, the angles bonds are 0.94(6) and 0.82 A Cl /Ru /Cl are smaller than the ideal ones (i.e. 908) and are 84.37(3) (Table 2) and 85.50(1)8 [51], respectively. The H-bond type interactions cause that the bonds Ru / Cl are slightly longer if compared to 1 (for 1a: Ru /

Table 1 Crystal data and structure refinement for [RuCl2(dppm)2]×/2CH3OH (1a) Empirical formula Formula weight Temperature (K) ˚) l (A Crystal system Space group Unit cell dimensions ˚) a (A ˚) b (A ˚) c (A a (8) b (8) g (8) ˚ 3) V (A Z Dcalc (mg m 3) Absorption coefficient (mm1) F (000) Crystal size (mm) Data collection Diffractometer Radiation type Theta range for data collection (8) Index ranges

C52H52Cl2O2P4Ru 1004.79 100(1) 0.71073 triclinic ¯/ /P1 10.926(2) 11.728(2) 20.252(4) 77.72(3) 75.13(3) 68.57(3) 2314.3(7) 2 1.442 0.634 1036 0.10/0.10/0.15 Kuma KM4CCd Mo Ka 2.62 /27.00

/135/h 5/7, /145/k 5/14, / 255/l 5/25 Reflection collected/unique 15 757/9691 [Rint /0.0293] Solution and refinement direct method [61,62] Refinement method full-matrix least-squares on F2 Data [I /2s (I )]/parameters 8465/751 Final R indices [I /2s (I )] R1 /0.0294, wR2 /0.0676 R indices (all data) R1 /0.368, wR2 /0.704 Extinction coefficient 0.0000(3) Goodness-of-fit on F2 1.030 Largest difference peak and hole 0.655 and /0.602 ˚ 3) (e A

Table 2 ˚ ) for [RuCl2(dppm)2]×/2CH3OH (1a) Selected bond lengths (A Bond lengths Ru /Cl(1) Ru /Cl(2) Ru /P(11) Ru /P(12) Ru /P(21) Ru /P(22)

2.4602(9) 2.4767(11) 2.3407(9) 2.2998(9) 2.3095(11) 2.3526(10)

P(11)/C(1a) P(12)/C(1a) P(21)/C(1a) P(22)/C(2a) O(1)/C(1) O(2)/C(2)

1.843(2) 1.852(2) 1.850(2) 1.845(2) 1.438(3) 1.386(4)

Table 3 Selected bond angles (8) for RuCl2(dppm)2]×/2CH3OH (1a)

Fig. 1. Perspective view of the complex cis -[RuCl2(dppm)2]×/2CH3OH (1a) (50% probability ellipsoids).

Bond angles Cl(1) /Ru /Cl(2) Cl(1) /Ru /P(11) Cl(1) /Ru /P(12) Cl(1) /Ru /P(21) Cl(1) /Ru /P(22) P(12)/Ru /P(11)

84.37(3) 93.02(3) 163.03(2) 90.06(3) 93.93(3) 71.77(3)

P(21)/Ru/P(22) P(11)/Ru/P(22) P(12)/Ru/P(22) P(21)/Ru/P(11) P(12)/Ru/P(21)

72.51(3) 170.42(2) 102.09(3) 100.91(3) 99.98(3)

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

51

Table 4 Hydrogen-bonds (lengths and angles) for RuCl2(dppm)2]×/2CH3OH (1a) D/H  H

d (D/H) ˚) (A

O(1)/H(1)  Cl(2) 0.94(6) O(2)/H(5)  O(1) 0.82(6)

d (H  A) ˚) (A

d (D  A) ˚) (A

/(D/H/A) (8)

2.32(6) 1.96(6)

3.164(2) 2.748(3)

150(5) 160(4)

˚ , Table 2; for Cl(1) /2.4602(9), Ru /Cl(2) /2.4767(11) A ˚ 1: Ru /Cl /2.437(3) A [63]). These changes reflect in the IR spectra in the range of frequencies of n (Ru /Cl) (for 1: n (Ru /Cl) /302 and 281 cm 1, for 1a: n (Ru /Cl) / 300 and 269 cm 1). Some differences are also observed in the angles P /Ru /P (for 1a: P(21) /Ru /P(11) / 100.91(3), P(12) /Ru /P(21) /99.98(3)8, Table 3 and P(1A) /Ru /P(2A)* /103.6(1), P(2A) /Ru /P(2A)* / 101.6(1)8 [63]).

Fig. 2. Perspective     / C(CH2 )3 O] (2).

view

of

the

cation

/

trans-[(dppm)2 ClRu/

   2.2. /trans-[(dppm)2 ClRuC(CH2 )3 O]PF6 (2)

Complex 1 undergoes reaction with 3-butyn-1-ol in the presence of NaPF6 yielding oxacyclic carbene 2 as air-stable light-yellow crystals, with 93% yield after crystallization. In the IR spectrum of this complex one observes, among others, the bands characteristic of PF6 anion (n(P /F) /839, d (F /P /F)/558 cm 1) and one band in the range of frequencies of n (Ru /Cl) at 304 cm 1. The structure of this complex corresponds to the trans -chloro(carbene)ruthenium complex as indicated by 31P and 13C NMR: the equivalence of the four 31P nuclei (d //10.3) and the low-frequency resonance as a quintet of the (Ru /C ) carbon nucleus (d /305.36, 2JPC /9.5). Moreover, the cyclic oxycarbene is evidenced by the resonances at 82.10, 23.39 and 46.99 ppm. A similar chemical shift for carbene carbon    has been reported for /[Cp(PPh3 )2 RuC(CH2 )3 O]PF6    (d /300.5) [64], [LOEt (PPh3 )2 RuC(CH2 )3 O]PF6 (d /    305.2) [65], [(h6 -C6 Me6 )Cl(DPVP)RuC(CH2 )3 O]PF6 (d /313.25) [66], [(h5 -C5 Me5 )(DPVP)2 Ru/    6 /C(CH ) O]PF 2 3 6 (d /229.50) [67] and [(h -C6 Me6 )/    The /(PMe )ClRu C(CH ) O]PF 3 2 3 6 (d /317.38) [68]. /(CH2) / protons resonate as multiples between 3.3 and 0.9 ppm (d /3.33, /CH2 /O /, 3JHH /7.4 Hz; d / 1.65, /C /CH2 /, 3JHH /7.4 Hz; d /0.92, /CH2 /CH2 / CH2 /, 3JHH /7.4 Hz). Values of the proton chemical shifts of the cyclocarbene ligand are shifted towards higher fields, compared to the respective ones in the complex 10 (see Section 4) and also in other complexes with this cyclic carbene ligand [64 /68]. The molecular structure of 2 has been determined by X-ray diffraction study (Fig. 2). Experimental crystal-

Table 5 Crystal data and structure refinement for /trans-[(dppm)2 ClRu/    / C(CH2 )3 O]PF6 (2) Empirical formula Formula weight Temperature (K) ˚) l (A Crystal system Space group Unit cell dimensions ˚) a (A ˚) b (A ˚) c (A b (8) ˚ 3) V (A Z Dcalc (mg m 3) Absorption coefficient (mm1) F (000) Crystal size (mm) Data collection Diffractometer Radiation type Theta range for data collection (8) Index ranges Reflection collected/unique Solution and refinement Refinement method Data [I /2s (I )]/parameters Final R indices [I /2s (I )] R indices (all data) Extinction coefficient Goodness-of-fit on F2 Largest difference peak and hole ˚ 3) (e A

C54H50ClF6OP5Ru 1120.31 293(2) 1.5418 monoclinic P 21/n 12.927(3) 22.745(5) 19.134(4) 107.10(3) 5377(2) 4 1.384 4.710 2288 0.12 /0.12 /0.15 Kuma KM4 Cu Ka 3.1 /80.5 /165/h 5/15, 05/k 5/29, 0 5/l 5/24 11 035/11 035 direct method [61,62] full-matrix least-squares on F2 6233/584 R1 /0.0476, wR2 /0.1231 R1 /0.1142, wR2 /0.1324 0.00012(2) 0.881 1.392 and /0.624

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

52

Table 6    ˚ ) for trans-[(dppm)2 ClRuC(CH2 )3 O]PF6 (2) Selected bond lengths (A Bond lengths Ru /C(1) Ru /Cl Ru /P(11) Ru /P(12) Ru /P(21) Ru /P(22) P(11)/C(11) P(11)/C(21) P(11)/C(5)

1.929(4) 2.4740(14) 2.3944(11) 2.3754(12) 2.3701(12) 2.3518(11) 1.822(4) 1.823(5) 1.829(4)

P(21)/C(51) P(21)/C(61) P(21)/C(6) O/C(1) O/C(4) C(1)/C(2) C(2)/C(3) C(3)/C(4)

1.820(5) 1.835(5) 1.840(5) 1.325(5) 1.482(6) 1.512(6) 1.512(7) 1.496(7)

Table 7    Selected bond angles (8) for trans-[(dppm)2 ClRuC(CH2 )3 O]PF6 (2) Bond angles C(1)/Ru/Cl C(1)/Ru/P(11) C(1)/Ru/P(12) C(1)/Ru/P(21) C(1)/Ru/P(22) P(11)/Ru /Cl P(12)/Ru /Cl P(21)/Ru /Cl

176.14(13) 96.59(12) 97.56(12) 88.38(12) 91.09(13) 79.77(4) 82.49(4) 91.72(4)

P(22)/Ru /Cl P(22)/Ru /P(21) P(22)/Ru /P(11) P(22)/Ru /P(12) P(21)/Ru /P(11) P(21)/Ru /P(12) P(12)/Ru /P(11)

92.60(4) 71.5(1) 171.96(4) 106.27(4) 110.99(4) 173.73(4) 70.46(4)

lographic data are given in Table 5, and selected bond lengths and angles are collected in Tables 6 and 7. The structure shows an octahedral coordination type for the ruthenium atom with the apical positions occupied by the chloride and the carbene ligands. The Cl /Ru /C(1) linkage seems to be orthogonal to the plane of four phosphorus atoms (C(1) /Ru /P(22) /91.09(13), C(1) / Ru /P(21) /88.38(12)8 and P(22) /Ru /Cl /92.60(4), but C(1) /Ru /P(12) / P(21) /Ru /Cl /91.72(4)8, 97.56(12), C(1) /Ru /P(11)/96.59(12), P(12) /Ru / Cl /82.49(4) and P(11) /Ru /ClRu /Cl /79.77(4)8) and is almost linear (Cl/Ru /C(1) /176.14(13)8). The five-membered ring of the cyclic oxycarbene ligand is not planar. It has an envelope-type conformation, where the angle between the planes O /C(1) /C(2) /C(4) and C(2) /C(3) /C(4) is 26.6(5)8. In other complexes with this oxacyclic carbene the five-membered ring also showed the typical puckered-envelope conformation, e.g. in    [(h5 -C5 Me5 )(DPVP)2 RuC(CH2 )3 O] [67], with deviation from planarity of /0.609 (C(27)), /0.1445 (C(28)), /0.1731 (C((29)), /0.1400 (C(30)) and /0.05058 (O(1)). The Ru /C(1) (carbene) bond length, 1.929(4) ˚ , is similar to the Ru /C distances found in other A ruthenium-oxacyclic carbenes, e.g. [LOEt (PPh3 )2 Ru/     ˚ ) [65], [(h6 -C6 Me6 )Cl/ (1.870(13) A / C(CH ) O] 2 3     ˚ ) [66] or (1.9558(7) A /(DPVP)Ru C(CH ) O] 2 3     5 ˚ ) [67]. [(h -C5 Me5 )(DPVP)2 RuC(CH2 )3 O] (1.942 A

˚ ) is similar to The Ru /Cl bond length (2.4740(14) A those found in many other Ru(II) compounds [14,39,60,63,66].    2.3. /trans-[(dppm)2 ClRuC(CH2 )2 CH(CH)3 O]PF6 × CH2 Cl2 (3)

Reaction of 1 with 4-pentyn-2ol and NaPF6 leads to light-yellow, stable in air complex 3 (yield 92%). Its IR spectrum exhibits one band in n(Ru /Cl) region at 309 cm 1. The cyclic oxycarbene is evidenced by the resonances at 304.97 for the sp2-carbene carbon (2JPC /8.2 Hz), 93.38 for the methine carbon (/C H(CH3)/) 59.33 and 30.78 for C H2 carbons and also at 19.92 ppm for methyl carbon ( /CH(C H3)/). The 31P{H} spectrum shows resonances of two dppm ligands as the AA?BB? pattern. In the 1H NMR spectrum the protons of oxacyclic carbene resonate as multiplets between 3.36 and 0.56 ppm (the protons of CH2 groups are non-equivalent) and 0.48 ppm (methyl protons). The 2-oxa-3-methylcyclopentylidene complex 3 has been characterized by X-ray crystallography and a view of the cation is shown in Fig. 3. The experimental crystallographic data are given in Table 8. Selected bond distances and angles are listed in Tables 9 and 10. The mean Ru /C, Ru /Cl and Ru /P distances are comparable to those for 2 (Table 6), although the Ru /C ˚ ) distance is slightly longer (for 2: 1.9229(4) (1.945(8) A ˚ ), while Ru /Cl (2.4595(18) A ˚ ) is slightly shorter (for 2: A ˚ ). Also comparable are the bond lengths in 2.4740(14) A the carbene rings. The Cl /Ru /C linkage is linear (C(3) /Ru /Cl(1) / 178..6(2)8) and seems to be orthogonal to the plane of

Fig. 3. Perspective view  of   trans-[(dppm)2 ClRuC(CH2 )2 CH(CH)3 O] (3).

the

cation

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

53

Table 8 Crystal data and structure refinement for /trans-[(dppm)2 ClRu/    / C(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (3)

Table 10 Selected bond angles (8)    / C(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (3)

Empirical formula C56H54Cl3F6OP5Ru Formula weight 1219.26 ˚) l (A 0.71073 Temperature (K) 100(1) Crystal system monoclinic Space group P 21/n Unit cell dimensions ˚) a (A 12.753(2) ˚) b (A 22.862(3) ˚) c (A 19.594(4) b (8) 107.15(10) ˚ 3) V (A 5458.1(11) Z 4 Dcalc (mg m 3) 1.484 0.641 Absorption coefficient (mm1) F (000) 2488 Crystal size (mm) 0.20 /0.20 /0.20 Data collection Diffractometer Kuma KM4CCd Radiation type Mo Ka Theta range for data collection (8) 3.15 /25.00 Index ranges /15 5/h 5/15, /275/k 5/27, /20 5/l 5/23 Reflection collected/unique 30 687/9577 [Rint /0.1278] Solution and refinement direct method [61,62] Refinement method full-matrix least-squares on F2 Data [I /2s (I )]/parameters 7398/650 Final R indices [I /2s (I )] R1 /0.0918, wR2 /0.2161 R indices (all data) R1 /0.1159, wR2 /0.2320 Goodness-of-fit on F2 1.120 Largest difference peak and hole 1.634 and /1.351 ˚ 3) (e A

Bond angles C(3) /Ru /Cl(1) C(3) /Ru /P(11) C(3) /Ru /P(12) C(3) /Ru /P(21) C(3) /Ru /P(22) P(11)/Ru /Cl(1) P(12)/Ru /Cl(1) P(21)/Ru /Cl(1)

Table 9 ˚) Selected bond lengths (A    / C(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (3) Bond lengths Ru /C(3) Ru /Cl(1) Ru /P(11) Ru /P(12) Ru /P(21) Ru /P(22) P(11)/C(1) P(12)/C(1)

1.945(8) 2.4595(18) 2.3591(19) 2.352(2) 2.3847(19) 2.380(2) 1.853(8) 1.839(8)

for

P(21)/C(2) P(22)/C(2) O(1)/C(3) O(1)/C(6) C(3)/C(4) C(4)/C(5) C(5)/C(6) C(6)/C(7)

trans-[(dppm)2 ClRu/

/

1.830(7) 1.824(7) 1.332(8) 1.493(9) 1.501(11) 1.528(10) 1.522(11) 1.525(14)

four phosphorus atoms (C(3) /Ru /P(11) /87.5(2), C(3) /Ru /P(12) /91.7(2), Cl(1) /Ru /P(11) /91.99(6), Cl(1) /Ru /P(12) /89.36(7), but C(3) /Ru /P(21) / 97.0(2), C(3) /Ru /P(22) /98.2(2), Cl(1) /Ru /P(21) / 83.51(6) and Cl(1) /Ru /P(22) /80.76(7)8). The five   membered ring [C(CH2 )2 CH(CH)3 O] has an also envelope-type conformation (Fig. 3). The angle, in this case, between the planes C(4) /C(3) /O(1)/C(6) and C(4) / C(5) /C(6) is 24.3(8)8. The deviations from the plane

178.6(2) 87.5(2) 91.7(2) 97.0(2) 98.2(2) 91.99(6) 89.36(7) 83.51(6)

for

/

trans-[(dppm)2 ClRu/

P(22)/Ru/Cl(1) P(12)/Ru/P(11) P(22)/Ru/P(21) P(12)/Ru/P(22) P(11)/Ru/P(21) P(12)/Ru/P(21) P(11)/Ru/P(22)

80.76(7) 71.62(7) 70.95(7) 170.07(7) 175.36(7) 107.12(7) 109.49(7)

C(4) /C(3) /O(1)/C(6) of the C(5) and C(7) carbons are 0.391(14) and 0.980(18)8, respectively.    2.4. /[(dppene)(bpy)ClRuC(CH2 )2 CH(CH)3 O]PF6 × CH2 Cl2 (5)

Reactions of cis -[RuCl2(P/P)2] type complexes with terminal alkynes in the presence of NaPF6 always lead to appropriate cationic trans -complexes [14,15]. As can be seen from the results presented below, replacing the (P /P) type ligand by a ligand of (N /N) type, causes this reaction to form appropriate cis -chloro-carbene or -vinylidene cationic complexes. In the reaction of cis dichlororuthenim complex [RuCl2(dppene)(bpy)] (4) with 4-pentyn-2-ol and NaPF6 we found an air-stable, yellow cis -chloro(oxycarbene) complex 5 was formed in 89% yield after crystallization. Its IR spectrum exhibit the bands n (P/F) /841, d (F /P /F)/558 cm 1 and one band of n(Ru /Cl) at 305 cm 1. Two 31P{H} NMR signals (doublets) are observed for dppene ligand at d/ 87.81 (d, 1P, 2JPP /11.73 Hz) and 76.90 (d, 1P, 2JPP / 11.73 Hz) and signal for PF6 at d //130.00 ppm (sept, 1JPF /711.3 Hz). The carbene carbon was observed in the 13C{H} NMR spectrum as a doublet of doublets at 313.49 ppm (2JPC /17.2 and 11.4 Hz). For comparison, the carbene carbon of 3 gave a signal at 304.97 ppm in the 13C{H} NMR spectrum. The values of resonances of 2-oxa-3-methylcyclopentylidene carbons (95.16, 57.63, 30.16 and 20.35 ppm) are also comparable to those for 3. In the 1H NMR spectrum the protons of 2-oxa-3-methylcyclopentylidene resonate as multiplets between 3.87 and 0.69 ppm (at lower field than in 3), and in this case the resonance of the methine proton (/O /CH(CH3) /) occurs at higher field (d / 3.58) than that of protons of methylene group (/C / CHH /; d /3.87). Most probably, it is a result of a ring current effect of the bpy ring (N(18), C(19), . . .) on the H(25b) (Fig. 4), the magic angle u /59.48. The molecular structure of the cation of 5 is shown in Fig. 4. The experimental crystallographic data are collected in Table 11, and a selection of bond distances and angles is given in Tables 12 and 13. The structural data show a distorted octahedral coordination for the

54

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60 Table 12 Selected bond lengths    / C(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (5) Bond lengths Ru /C(21) Ru /N(12) Ru /N(18) Ru /P(1) Ru /P(2) Ru /Cl(1) P(1) /C(1) P(2) /C(2) C(1) /C(2) C(21)/O(22)

Fig. 4. Perspective view of the cation /[(dppene)(bpy)ClRu/     / C(CH2 )2 CH(CH)3 O] (5) (50% probability ellipsoids.

Table 11 Crystal data and structure refinement for /[(bpy)(dppene)ClRu/    / C(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (5) Empirical formula Formula weight ˚) l (A Temperature (K) Crystal system Space group Unit cell dimensions ˚) a (A ˚) b (A ˚) c (A b (8) ˚ 3) V (A Z Dcalc (mg m 3) Absorption coefficient (mm1) F (000) Crystal size (mm) Data collection Diffractometer Radiation type Theta range for data collection (8) Index ranges Solution and refinement Reflection collected/unique Refinement method Data [I /2s (I )]/parameters Final R indices [I /2s (I )] R indices (all data) Goodness-of-fit on F2 Largest difference peak and ˚ 3) hole (e A

C42H40Cl3F6N2OP3Ru 1003.09 0.71073 100(1) monoclinic P 21/c 15.554(3) 16.903(3) 17.481(4) 113.37(3) 4218.9(15) 4 1.579 0.739 2032 0.20/0.20/0.20 Kuma KM4CCd Mo Ka 3.50 /25.00 /16 5/h 5/18, /195/k 5/20, /20 5/l 5/17 direct method [61,62] 23 426/7417 [Rint /0.374] full-matrix least-squares on F2 6455/577 R1 /0.0590, wR2 /0.1481 R1 /0.0671, wR2 /0.1545 1.092 3.878 and /2.446

ruthenium atom. The chloride occupies cis position to the cyclic oxycarbene, the C(21) /Ru /Cl(1) angle is 91.79(15)8, and trans position to phosphorus of dppene

1.936(5) 2.207(4) 2.162(4) 2.2644(14) 2.2943(12) 2.4668(14) 1.820(4) 1.811(5) 1.321(7) 1.305(6)

91.79(15) 171.74(16) 97.64(17) 92.52(15) 84.46(14) 75.03(14) 82.91(4) 92.59(10)

/

[(bpy)(dppene)ClRu/

C(21)/C(25) O(22)/C(231) O(22)/C(232) C(231)/C(261) C(231)/C(24) C(232)/C(24) C(232)/C(262) C(24)/C(25) C(231)/C(232)

Table 13 Selected bond angles (8)    / C(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (5) Bond angles C(21)/Ru /Cl(1) C(21)/Ru /N(12) C(21)/Ru /N(18) C(21)/Ru /P(1) C(21)/Ru /P(2) N(18)/Ru/N(12) P(1) /Ru /P(2) N(12)/Ru/P(1)

˚) (A

for

/

1.525(7) 1.495(17) 1.551(16) 1.51(2) 1.551(18) 1.346(19) 1.49(2) 1.480(8) 0.610(13)

[(bpy)(dppene)ClRu/

N(18)/Ru/P(1) N(12)/Ru/P(2) N(18)/Ru/P(2) N(12)/Ru/Cl(1) N(18)/Ru/Cl(1) P(1)/Ru/Cl(1) P(2)/Ru/Cl(1)

100.61(11) 102.62(10) 175.78(10) 83.58(10) 82.64(11) 174.20(4) 93.65(4)

( /P(1) /Ru /Cl(1) /174.20(4)8). The nitrogen atom of bpy occupies trans position to the carbene carbon (/ C(21) /Ru /N(12)/171.74(16)8). The Ru /C(21) bond ˚ ) is comparable to that in 3 (1.945(8) A ˚ ) and (1.936(5) A ˚ ). The is slightly longer compared to that in 2 (1.929(4) A ˚ is very similar to Ru /Cl(1) bond length of 2.4668(4) A those in other cyclic oxycarbene complexes presented here (Tables 6 and 10). The Ru /N(bpy) bond distances are a bit different (Ru /N(12)/2.207(4) and Ru / ˚ ). Also slightly different are the N(18)/2.162(4) A bond distances of Ru /P(dppene) (Ru /P(1) / ˚ ). The five2.2644(14) and Ru /P(2) /2.2943(12) A membered ring in 2 and 3 has the envelope-type conformation (Figs. 2 and 3), while the cyclic oxycarbene ligand in 5 has disordered structure, either the envelope-type or planar conformation (Fig. 4). 2.5. [(dppene)(bpy)ClRu /C /CHPh]PF6 (6) Complex 4 also reacts with other terminal acetylenes in the presence of NaPF6. For example, reaction with phenylacetylene leads to stable in air, yellow vinylidene complex, 6, with 88% yield. In its IR spectrum, among others, the bands characteristic for PF6 (n(P /F)/840 and d(F /P /F) /556 cm 1) and one band of n(Ru /Cl) at 312 cm 1 were observed. The structure of this complex also corresponds to the cis -chloro(vinylidene)ruthenium complex. Thus, its catalytic activity in

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

ROMP of norbornene is probable [69]. Its NMR spectra are consistent with that structure. In 13C{H} NMR the (Ru /C) carbon nucleus resonance occurs in low field as a doublet of doublets (d /371.47; 2JPC /22.9 and 17.2 Hz). The (/C HPh) carbon resonance was observed as a singlet at d /114.64. Two 31P{H} NMR signals (doublets) of dppene are observed at 78.74 and 72.55 ppm (2JPP /7.0 Hz) and also the signal of PF6 at d /130.00 ppm (sept, 1JPF /711.3 Hz). In 1H NMR the (/CHPh) resonance (doublet of doublets) is observed in high field (d /4.11; 4JPH /4.0 and 3.0 Hz) and is typical of vinylideneruthenium complexes, for example of trans [(P /P)2Ru /C /CHR] type complexes (P/P /dppm, d /1.80 /4.30 [14]; P /P /dppe, d /2.15 /3.96 [15]).    2.6. /cis-[(bpy)2 lRu(C(CH2 )2 CH(CH)3 O)2 ](PF6 )2 (8)

The reactions of cis -[RuCl2(bpy)2] (7) with 4-pent-2-ol (2.2 equiv.) in the presence of NaPF6 (2 equiv.) produced light-brown, air stable dioxacyclic carbene complex 8 with 50% yield. Its IR spectrum contains the bands characteristic of anion PF6 (n(P /F) /840, d (F/P /F) /557 cm 1) and no bands of the n (Ru / Cl). The 31P{H} NMR spectrum shows a septet at d //130.00 (1JPF /711.3 Hz, 2P). The structure of the complex corresponds to the cis -dioxacyclic-carbene complexes of ruthenium as indicated by NMR spectra. In the 13C{H} NMR spectrum two low-frequency resonance as a singlet of the (Ru /C) carbon nucleus at d /313.46 and 313.38 (for 5 d /313.49) are observed. Also other carbon nuclei of the two oxacyclic carbenes resonate as singlets (/C H(CH3)/ 93.54 and 93.29; /C / C H2 / 55.30 and 55.20; /C H2 / 30.64 and 29.89; /CH(C H3) / 21.80 and 21.58). This spectrum also exhibits resonances of all carbon nuclei of two bpy ligands. The protons of two 2-oxa-3-methylcyclopentylidenes (/O /CH /, /C /CHH /, /CHH / and /CH3) resonate as multiplets between 5.13 and 1.11 ppm.    2.7. /[(PPh3 )2 ClRuC(CH2 )3 O]2 (PF6 )2 (10)

RuCl2(PPh3)3 (9) also reacts with 3-butyn-1-ol and NaPF6 to give a light-brown, stable in air complex of    the composition [(PPh3 )2 ClRuC(CH2 )3 O]PF6 : This complex is, most probably, dimeric 10, where Cl  ions form two Ru /Cl /Ru bridges, similar to the carbene complexes of Hofmann and coworkers [45]. Confirmation of such structure could be existence of two bands in its IR spectrum in the range of frequencies of n(Ru /Cl) (313 and 260 cm1). The cyclic oxycarbene is evidenced by the resonance at 305.58 (t, 2JPC /14.1 Hz), 81.56, 21.77 and 56.11 ppm in the 13C{1H} NMR spectrum. They are similar to the respective ones appearing in the 13 C{1H} NMR spectrum 2. Except proton resonance of PPh3 ligands, the 1H NMR spectrum exhibits proton

55

resonances of cyclic oxycarbene ligand at 3.65 (t, /CH2 /O /), 2.56 and 2.43 ppm (AB, /C /CH2 /), 1.26 (m, /CH2 /CH2 /CH2 /). The /(CH2)3 / protons resonances are shifted towards low fields when compared to respective ones for 2 (d 3.33, 1.65 and 0.92, respectively). Two 31P{1H} NMR signals (doublets) of PPh3 are observed at d /45.43 and 42.77 ppm. The precursor of 10, complex 9 is an active catalyst for polymerization of norbornene (NB) in CH2Cl2 and even in ethyl alcohol [70]. In CH2Cl2, after 18 h, (complex concentration [M] /0.1 mmol, norbornene 2.5 g, T /50 8C) the yield of the polynorbornene (PNB) was 69% [70]. We obtained 96% conversion of NB in PhCl ([M] /0.088 mmol, [M]/[NB]/1/100) at room temperature but after 32 h. Stereoselectivity of this system was not high. Spectroscopic (IR, [71,72] 1H, 13 C{1H} NMR [72 /74]) investigations of the obtained polymer showed that the ratio of cis /trans isomers was ¯ w was equal 0.6. Its weight-average molecular weight M 5 ¯ ¯ to 1.96 /10 , while M w =M n 1:30: Addition of 3butyn-1-ol ([M]/[HC /C(CH2)2OH] /1/2, [M] /0.088 mmol, [M]/[NB] /1/100, room temperature, reaction time 48 h) to this system causes drastic lowering of its catalytic activity. The yield of polymer was only 2.9%, but with 100% stereoselectivity (100% of the cis form). The weight-average molecular weight was also lower ¯ w =M ¯ n 2:5): It is known that car¯ w 5104 ; M (/M benes with hetero-atoms are not good catalysts for metathesis reaction [30] and additionaly, in this case, the 3-butyl-1-ol can block the coordination site of the metal. The 1H NMR investigations of the system RuCl2(PPh3)3 /HC /C(CH2)2OH in PhCl-d5 [M]/[HC / C(CH2)2OH] /1/2) show that in this system some amount of the complex with cyclic oxycarbene ligand was formed (d 3.88 (t, 2H, /CH2 /CH2 /O /, 3JHH / 7.54 Hz), 1.67 (m, 2H, /CH2 /CH2 /CH2 /), and 2.08 ppm (t, 2H, /C /CH2 /CH2 /, 3JHH /7.61 Hz). The cationic carbene Ru(II) complexes have been described as metathesis-active initiating complexes [44 / 47]. It was concluded that this type of complexes with cis -phosphines exhibit much higher ROMP reactivity in solution than had been reported for any other ruthenium-system [44,45]. In the system with dicationic complex 10 ([Ru] /0.09 mmol, [Ru]/[NB] /1/100, tr / 20 h) at room temperature and in argon atmosphere or in air, the yield of ROMP of NB was very low (2 and 1.2% yield of PNB, respectively) but stereoselectivity was high (85 and 86% trans -polymer, respectively). The values of weight-average molecular weights of these ¯ w 1:4105 polymers are meaningfully different: M ¯ n 5:67) and 1.5 /104 (air ¯ w =M (argon atmosphere, (/M ¯ w =M ¯ n  1:69): At 60 8C and in argon, atmosphere, M the yield of polymer increased to 51%. Stereoselectivity of the reaction increased, too, (89% trans -polymer), but the weight-average molecular weight increased insignif¯ w =M ¯ n  3:20): The increase ¯ w 1:6105 ; M icantly (/M

56

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

of the catalytic activity of the system with 10 with temperature can be explained that the monomeric form of the precursor complex can be more easily obtained in higher temperatures (reaction (1)).    [(PPh3 )2 ClRuC(CH2 )3 O]2 2    D  0 2[(PPh3 )2 ClRuC(CH2 )3 O] (1) The Hofmann carbenes were formed in solution in similar reaction, i.e. by dissociation of the dicationic dimers [75]. Addition of Lewis acid (LA) e.g. SnCl4 ([Ru]/[LA]/ 2/1) to the system 10 /NB causes an increase of its activity even in room temperature (33% yield of PNB after 20 h). Most probably, the attack of LA on the chloride bridge facilitates dissociation of the dimer to monomers.

3. Conclusion The structure of trans -[(P /P)2ClRu /CR]  complexes is more thermodynamic stable than that of cis structures. Replacing the (P /P) type ligand by a (N /N) ligand (e.g. bpy) caused that cis -chloro(/CR) structure of appropriate cationic complexes was formed. The ( / CR) ligands replaced the chloride in trans position to nitrogen of (N /N) ligand in the precursor complex. The trans influence of nitrogen atom on the chloride caused that in the case of complexes with two (N /N) ligands (e.g. bpy) the cis -( /CR)2 /ruthenium complexes (e.g. / CR /2-oxa-3-methylcyclopentylidene) was formed. The appropriate ruthenium complexes with (N /N) ligands can be useful, among others, in homogeneous catalysis. Synthesis and study of catalytic activities of these complexes are under investigation.

4. Experimental 4.1. General data All experiments were performed under Ar atmosphere with standard Schlenk techniques and vacuum-line procedure. Solvents were purified and distilled under Ar from appropriate agents. Norbornene was purified according to the literature [76]. The complexes 4, 7 and 9 were synthesized by the methods described in the literature [77 /79]. The IR spectra were measured using an Impact 400 (Nicolet) spectrophotometer. The (1H, 13 C, 31P) NMR spectra were recorded on a Bruker 300 spectrometer. ROMP reaction of norbornene was monitored by gas chromatography (HP-5890II/5971A). The weight-aver¯ w ) and the number-average age molecular weight (/M

¯ n ) of the obtained polymers were molecular weight (/M determined by gel permeation chromatography (GPC) using polystyrene calibration (HPLC-HP109011 with DAD /UV /Vis and RJ detector HP1047A). 4.2. Synthesis of cis -[RuCl2(dppm)2] (1) and cis [RuCl2(dppm)2] ×/2MeOH (1a)

To RuCl3 ×/H2O (0.316 g, 1.52 mmol), dppm (1.22 g, 3.17 mmol), PPh3 (1.12 g, 4.27 mmol) and 50 ml of amyl alcohol was added. The mixture was refluxed under N2 by at least 3 h. The yellow precipitate was filtered of, washed with amyl alcohol (5 ml), MeOH/ether (3 /5 ml) and ether (3 /5 ml) and next dried in vacuo. The product was recrystallized from CH2Cl2/C5H12. (Yield of cis -[RuCl2(dppm)2]: 78%.) Recrystallization from CH2Cl2/MeOH leads to 1a. Anal . for 1. Calc. for C50H44Cl2P4Ru: C, 63.84; H, 4.71; Cl, 7.54; P, 13.17. Found: C, 63.86; H, 4.72; Cl, 7.58; P, 13.10%. IR (Nujol mulls): n (Ru /Cl), 302 (m) and 281 (m) cm1. Anal . for 1a. Calc. for C52H52Cl2O2P4Ru: C, 62.16; H, 5.22; Cl, 7.06; P, 12.33. Found: C, 62.15; H, 5.23; Cl, 7.02; P, 12.27%. IR (Nujol mulls): n (Ru /Cl), 300 (m) and 269 (m) cm 1.

4.3. Synthesis of oxacyclic carbenes 2, 3, 5, 8, 10 and vinylidene 6 To the solution of complex 1, 4, 7 and/or 9 (0.4 mmol) in CH2Cl2 (50 ml), NaPF6 in 1:2 molar ratio, and appropriate of terminal alkyne (0.81 mmol) was added. The mixture was stirred for 24 h at room temperature. Filtration of the solution of the product removed NaCl. The solvent of the filtrate was removed under vacuum and the precipitate was washed with Et2O (in the case of 10 also with EtOH). The precipitate was dissolved in small volume (approximately 20 ml) of CH2Cl2 (in the case of 8, approximately 40 ml) and the pure complexes were obtained by crystallization (in the case of 8, the CH2Cl2 solution was first evaporated to 1/ 2 volume under vacuum) from CH2Cl2/n-C5H12 or C6H14.    4.3.1. /trans-[(dppm)2 ClRuC(CH2 )3 O]PF6 (2) From 376 mg of 1 (0.4 mmol), 134 mg NaPF6 (0.8 mmol) and 41 ml of 3 butyl-1-ol (0.81 mmol) was isolated 416 mg of light-yellow crystals of 2 (93%). Anal . Calc. for C54H50ClF6OP5Ru: C, 57.89; H, 4.50; Cl, 3.16; P, 13.82. Found: C, 57.91; H, 4.51; Cl, 3.20; P, 13.78%. IR (KBr and Nujol mulls): n (P/F), 839 (vs); d (F /P /F), 558 (m); n (Ru /Cl), 304 (m) cm 1. 1H NMR (CD2Cl2): d 7.54 /7.20 (m, 40H, Ph); 5.62, 5.32 (4H, PCH2P, ABX4, 2JHAHB /15.9, j2JPHA/4JPHAj/4.5,

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

j2JPHB/4JPHBj /5.0 Hz); 3.33 (t, 2H, /CH2 /O /, 3 JHH /7.4 Hz) 1.65 (t, 2H, /C /CH2 /CH2 /, 3JHH / 7.4 Hz), 0.92 (q, 2H, /CH2 /CH2 /CH2 /, 3JHH /7.4 Hz) ppm. 13C{1H} NMR (CDCl3): d 305.36 (quint, Ru /C , 2JPC /9.5 Hz), 134.87 /129.23 (48C, Ph), 82.10 (s, /CH2 /C H2 /O /), 58.14 (s, /C /C H2 /CH2 /), 46.99 (quint, PC H2P, j1JPC/3JPCj/11.5 Hz), 23.39 (s, /CH2 /C H2 /CH2 /) ppm. 31P{1H} NMR (CDCl3): d /10.30 (s, P /dppm), /144.00 (sept, PF6, 1JPF /708.0 Hz) ppm.    4.3.2. /trans-[(dppm)2 ClRuC(CH2 )2 CH(CH)3 O]PF6 × CH2 Cl2 (3) From 376 mg of 1 (0.4 mmol), 134 mg NaPF6 (0.8 mmol) and 65 ml of 4 pentyn-2-ol (0.81 mmol) was isolated 449 mg of light-yellow crystals of 3 (92%). Anal . Calc. for C56H54Cl3F6OP5Ru: C, 55.16; H, 4.46; Cl, 8.72; P, 12.70. Found: C, 55.19; H, 4.47; Cl, 8.76; P, 12.67%. IR (KBr and Nujol mulls): n(P /F), 841 (vs); d (F/P /F), 558 (m); n (Ru /Cl), 309 (m) cm 1. 1H NMR (CD2Cl2): d 7.60 /7.00 (m, 40H, Ph); 5.49 and 5.37 (ABX4, 4H, PCH2P, 2JHAHB /16.5, j2JPHA/4JPHAj/ 4.4, j2JPHB/4JPHBj/4.6 Hz); 3.36 (ddq, 1H, /O / CHa(CH3) /, 3JHaCH3 /6.2, 3JHaHb /6.4, 3JHaHb? /9.2 Hz), 2.23 (ABXY, 1H, /C /CHgHg? /, 2JHgHg? /19.5, 3 JHgHb? /9.2, 3JHgHb /5.8 Hz), 1.41 (ABXY, 1H, /C / CHgHg? /, 2JHgHg? /19.5, 3JHg?Hb /9.7, 3JHg?Hb? /9.2 Hz), 1.20 (m, 1H, /CHbHb? /), 0.56 (apparent dq, 1H, /CHbHb? /, 3JHb?Hb /12.6, 3JHb?Ha /3JHb?Hg /3JHb?Hg? / 9.2 Hz), 0.48 (d, 3H, /CH(CH3)/, 3JCH3Ha /6.2 Hz) ppm. 13C{1H} NMR (CD2Cl2): d 304.40 (quint, Ru /C , 2 JPC /8.2 Hz), 136.40 /129.25 (48C, Ph), 93.38 (s, /O / C H(CH3)/), 59.33 (s, /C /C H2 /), 47.04 (quint, P / C H2 /P /, j1JPC/3JPCj/12.2 Hz), 30.78 (s, /C H2 / CH(CH3)/), 19.92 (s, /O /CH(C H3) /) ppm. 31P{1H} NMR (CD2Cl2): d /130.00 (sept, P F6, 1JPF /711.3 Hz) ppm.    4.3.3. /[(dppene)(bpy)ClRuC(CH2 )2 CH(CH)3 O]PF6 × CH2 Cl2 (5) From 290 mg of 4 (0.4 mmol), 134 mg NaPF6 (0.8 mmol) and 65 ml of 4-pentyn-2-ol (0.81 mmol) was isolated 356 mg of yellow crystals of 5 (89%). Anal . Calc. for C42H38Cl3F6N2OP3Ru: C, 50.39; H, 3.83; Cl, 10.62; N, 2.80. Found: C, 50.40; H, 3.85; Cl, 10.65; N, 2.79%. IR (KBr and Nujol mulls): n(P /F) 841 (vs); d (F /P /F) 557 (m); n(Ru /Cl) 305 (m) cm 1. 1 H NMR (CD2Cl2): d 8.53 and 8.49 (dd, 1H6 and 1H6? (bpy), 3JH6H5 /3JH6?H5 /5.9, 4JH6H4 /4JH6?H4? / 0.8 Hz), 7.91 (d, 2H, (H3,3? bpy), 3JH4H4 /3JH3?H4? /7.9 Hz), 7.74 (apparent tm, 2H, (H4,4? bpy), 3 JH4H5 /3JH4?H5? /3JH4H3 /3JH4?H3? /7.9 Hz), 7.58 /6.75 (m, 2H, (H5,5? bpy); 20H, (Ph); 2H, (/PCHCHP /)), 3.87 (ABXY, 1H, /C /CHgHg?/, 2JHgHg? /20.5, 3JHgHb? /

57

8.2, 3JHgHb /5.9 Hz), 3.58 (ddq, 1H, /O /CHa(CH3) /, 3 JHaCH3 /6.4, 3JHaHb /6.1, 3JHaHb? /9.2 Hz), 2.67 (ABXY, 1H, /C /CHgHg? /, 2JHgHg? /20.5, 3JHg?Hb / 10.5, 3JHg?Hb? /10.0 Hz), 1.51 (m, 1H, /CHbHb? /), 1.41 (m, 1H, /CHbHb? /), 0.69 (d, 3H, /CH(CH3) /, 3 JCH3Ha /6.4 Hz) ppm. 13C{1H} NMR (CD2Cl2): d 313.49 (dd, Ru /C , 2JPC /17.2 and 11.4 Hz), 157.76 (s, 2C, C2 and C2? (bpy)), 155.24 and 154.00 (s, C6 and C6? (bpy)), 151.97 (dd, 1C, /PC HCHP /, 1JPC /44.9, 2 JPC /24.8 Hz), 147.45 (dd, 1C, /PCHC HP /, 1JPC / 44.6, 2JPC /24.8 Hz), 140.70 and 139.11 (s, C4 and C4? (bpy)), 135.40 /129.50 (24C, Ph), 125.85 and 125.03 (s, C5 and C5? (bpy)), 123.65 (s, 2C, C3 and C3? (bpy)), 95.16 (s, /O /C H(CH3)/), 57.63 (s, /C /C H2 /), 30.16 (s, /C H2 /CH(CH3)/), 20.35 (s, /O /CH(C H3) /) ppm. 31 P{1H} NMR (CD2Cl2): d 87.81 and 76.91 (d, 2P, /P CHCHP /, 2JPP /11.73), /130.00 (sept, P F6, 1 JPF /711.3 Hz) ppm.

4.3.4. [(dppene)(bpy)ClRu/C /CHPh]PF6 (6) From 290 mg of 4 (0.4 mmol), 134 mg NaPF6 (0.8 mmol) and 88 ml of phenylacetylenel (0.81 mmol) was isolated 329 mg of yellow crystals of 6 (88%). Anal . Calc. for C44H36ClF6N2OP3Ru: C, 56.45; H, 3.88; Cl, 3.79; N, 2.99; P, 9.93. Found: C, 56.43; H, 3.89; Cl, 3.81; N, 2.97; P, 9.91%. IR (KBr and Nujol mulls): n (P/F) 840 (vs); d (F/P /F) 556 (m); n (Ru /Cl) 312 (m) cm 1. 1H NMR (CD2Cl2): d 8.37 (dd, 2H, H6,6? (bpy), 3 JH6H5 /3JH6?H5 /7.9, 4JH6H4 /4JH6?H4? /1.3 Hz), 8.24 3 (dd, 2H, H3,3? (bpy), JH3H4 /3JH3?H4? /7.9, 4 4 JH3H5 / JH3?H5? /1.5 Hz), 7.72 /7.68 (dd, 1H4 and 1H4? (bpy), 3JH4H5 /3JH4?H5? /3JH4H3 /3JH4?H3? /7.9, 4 JH4H6 /4JH4?H6? /1.3 Hz), 7.58 /6.46 (m, 2H, (H5,5? bpy); 2H, (PCHCHP); 25H, (Ph)), 4.11 (dd, 1H, / CHPh, 4JPH /4.0 and 2.8 Hz) ppm. 13C{1H} NMR (CD2Cl2): d 371.47 (dd, Ru /C , 2JPC /22.9 and 17.2 Hz), 156.60 and 155.06 (s, C2 and C2? (bpy)), 153.46 and 152.73 (s, C6 and C6? (bpy)), 151.13 (dd, 1C, /PC HCHP /, 1JPC /47.7, 2JPC /22.9 Hz), 148.35 (dd, 1C, /PCHC HP /, 1JPC /52.4, 2JPC /21.9 Hz), 140.90 (s, 2C, C4,4? (bpy)), 134.40 /126.70 (30C, Ph), 125.28 (s, 2C, C5,5? (bpy)), 124.27 (s, 2C, C3,3? (bpy)), 114.64 (s, / C HPh) ppm. 31P{1H} NMR (CD2Cl2): d 78.74 and 72.55 (d, 2P, /P CHCHP /, 2JPP /7.0), /130.00 (sept, P F6, 1JPF /711.3 Hz) ppm.    4.3.5. /cis-[(bpy)2 Ru(C(CH2 )2 CH(CH)3 O)2 ](PF6 )2 (8) From 194 mg of 7 (0.4 mmol), 134 mg NaPF6 (0.8 mmol) and 65 ml of 4-pentyn-2-ol (0.81 mmol) was isolated (after repeatedly recrystalization) 171 mg of light-brown crystals of 8 (50%). Anal . Calc. for C30H32F12N4O2P2Ru: C, 41.34; H, 3.70; N, 6.43; P, 7.11. Found: C, 41.36; H, 3.71; N, 6.41; P, 7.08%. IR (KBr): n (P/F) 840 (vs); d (F /P /F)

58

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

557 (m) cm 1. 1H NMR (CD2Cl2): d 9.57 and 9.52 (dd, 1H6 and 1H6? (bpy I), 3JH6H5 /3JH6?H5 /5.7, 4 JH6H4 /4JH6?H4? /1.0 Hz), 8.88 and 8.80 (dd, 1H6 3 and 1H6? (bpy II), JH6H5 /3JH6?H5? /5.9, 4 4 JH6H4 / JH6?H4? /0.8 Hz), 8.39 /8.28 (m, 2H3 and 2H3? (bpy I and II)), 7.95 (apparent tt, 1H4 and 1H4? 3 (bpy I), JH4H5 /3JH4?H5? /3JH4H3 /3JH4?H3? /7.4, 4 4 JH4H6 / JH4?H6? /1.0 Hz), 7.88 /7.80 (m, 1H4 and 1H4? (bpy II)), 7.32 (ddd, 1H5 and 1H5? (bpy I), 3JH5H4 /3JH5?H4 /7.4, 3JH5H6 /3JH5?H6 /5.7, 4 JH5H3 /4JH5?H3? /1.0 Hz), 7.13 (ddd, 1H5 and 1H5? (bpy II), 3JH5H4 /3JH5?H4 /6.9, 3JH5H6 /3JH5?H6 /5.9, 4 JH5H3 /4JH5?H3? /1.1 Hz), 5.13 (apparent sext, 1H, (carbene I), /O /CHa(CH3)/, 3JHaCH3 /6.2, 3JHaHb / 6.4, 3JHaHb? /6.4. Hz), 4.84 (ddq, 1H, (carbene II), /O /CHa(CH3) /, 3JHaCH3 /6.4, 3JHaHb /5.9, 3JHaHb? / 8.4. Hz), 3.84 (ABXY, 1H, (carbene I) /C /CHgHg? /, 2 JHgHg? /20.1, 3JHgHb? /8.7, 3JHgHb /5.6 Hz), 3.38 /3.12 (m, 2H, (carbene II), /C /CHgHg? / and (carbene I), / C /CHgHg? /), 2.75 (ABXY, 1H, (carbene II), /C / CHgHg? /, 2JHgHg? /20.2, 3JHg?Hb /9.8, 3JHg?Hb? /9.5 Hz), 2.23 /2.11 (m, 2H, (carbene I and II), /CHbHb? /), 1.60 (m, 1H, (carbene I), /CHbHb? /), 1.51 (m, 1H, (carbene II), /CHbHb? /), 1.43 (d, 3H, (carbene I), /CH(CH3)/, 3JCH3Ha /6.2 Hz), 1.11 (d, 3H, (carbene II), /CH(CH3)/, 3JCH3Ha /6.4 Hz) ppm. 13C{1H} NMR (CD2Cl2): d 313.46 (s, Ru /C ), 313.38 (s, Ru / C ), 155.49, 155.14, 153.92 and 153.78 (s, C2 and C2? (bpy I and II)), 152.79, 152.71, 149.48 and 149.29 (s, C6 and C6? (bpy I and II)), 139.42, 139.36, 138.83 and 138.77 (s, C4 and C4? (bpy I and II)), 127.94, 127.86, 127.67 and 127.59 (s, C5 and C5? (bpy I and II)), 124.67, 124.30, 124.22 and 123.70 (s, C3 and C3? (bpy I and II)), 93.54 and 93.29 (s, /O /C H(CH3) /, carbene I and II), 55.29 and 55.20 (s, /C /C H2 /, carbene I and II), 30.64 and 29.89 (s, /C H2 /CH(CH3) /, carbene I and II), 21.80 and 21.58 (s, /O /CH(C H3)/, carbene I and II) ppm. 31 P{1H} NMR (CD2Cl2): d /130.00 (sept, P F6, 1JPF / 711.3 Hz) ppm.    4.3.6. /[(PPh3 )2 ClRuC(CH2 )3 O]2 (PF6 )2 (10) From 383 mg of 9 (0.4 mmol), 134 mg of NaPF6 (0.8 mmol) and 49 ml of 3-butyn-1-ol (0.81 mmol) was isolated 315 mg of light-brown precipitate of 10 (90%). Anal . Calc. for C40H36ClF6OP3Ru: C, 54.83; H, 4.14; Cl, 4.05; P, 10.61. Found: C, 54.85; H, 4.15; Cl, 4.07; P, 10.56%. IR (KBr and Nujol mulls): n(P /F) 840 (vs); d (F/P /F) 558 (m); n(Ru /Cl) 313 (m), 260 (m) cm 1. 1 H NMR (CD2Cl2): d 7.65 /7.00 (m, 30H, Ph), 3.65 (t, 2H, /CH2 /CH2 /O /, 3JHH /8.0 Hz), 2.56, 2.43 (2H, / C /CH2 /CH2 /, AB, 2JHAHB /38.34, 3JHAH /7.1, 3 JHBH /8.0 Hz), 1.26 (m, 2H, /CH2 /CH2 /CH2 /) ppm. 13C{1H} NMR (CDCl3): d 305.58 (pseudo-t, Ru /C , 2JPC /14.1 Hz), 135.31 /126.32 (Ph), 81.56 (s, /CH2 /C H2 /O /), 56.11 (s, /CH2 /C H2 /CH2 /),

21.77(s, /CH2 /C H2 /CH2 /). 31P{1H} NMR (CDCl3): d 45.43 (d, 1P, P Ph3, 2JPP /28.2 Hz), 42.77 (d, 1P, P Ph3, 2 JPP /28.2 Hz), /144.22 (sept, P F6, 1JPF /713.6 Hz) ppm.

4.4. Crystal structuredetermination of cis [RuCl2(dppm)2] ×/2CH3OH (1a), /    trans-[(dppm)2 ClRuC(CH2 )3 O]PF6 (2),    [(dppm)2 ClRuC(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2 (3)    and cis-[(dppene)(bpy)ClRuC(CH2 )2 CH(CH)3 O]PF6 × CH2 Cl2 (5) The crystal data and details of data collection for complexes 1, 2, 3 and 5 are given in Tables 1, 5, 8 and 11, respectively. The data were corrected for Lp effect. No absorption correction was applied. The fluorine atoms (for 2, 3 and 5) refined with isotropic thermal parameter and all non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included from geometry of molecules. During refinement they were treated as rigid groups with fixed inter atomic distances.

5. Supplementary material Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 168008, 168007, 193049, 193048 for compounds cis -[RuCl2(dppm)2]×/2CH3   OH (1a), trans-[(dppm)2 ClRuC(CH2 )3 O]PF6 (2),    trans - [(dppm)2 ClRuC(CH2 )2 CH(CH)3 O]PF6 ×CH2 Cl2    (3) and [(dppene)(bpy)ClRuC(CH2 )2 CH(CH)3 O]PF6 × CH2 Cl2 (5), respectively. Copies of this information may be obtained free of charge on request from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: /44-1223-336-033; e-mail: deposit@ ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements The authors thank the State Committee for Scientific Research for financial support of this work (grant no. 3 T09A 059 17).

References [1] M.A.J. Tenorio, M.J. Tenorino, M.C. Puerta, P. Valerga, Organometallics 19 (2000) 1333.

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60 [2] L. Bruce, B.C. Hall, B.W. Skelton, E.R.T. Tiekiuk, A.H. White, N.N. Zaitseva, Aust. J. Chem. 53 (2000) 99. [3] H. Kawano, Y. Masaki, T. Moitsunaga, K. Hiraki, M. Onishi, T. Tsubomura, J. Organomet. Chem. 601 (2000) 69. [4] W.H. Leung, K.K. Lau, Q.F. Zhang, W.T. Wong, B.Z. Tang, Organometallics 19 (2000) 2084. [5] C.W. Hang, Y.C. Lin, G.H. Lee, Y. Wang, Organometallics 19 (2000) 3211. [6] T. Binwen, Y.K. Cheung, J.Z. Yao, W.T. Wong, Z.Y. Zhou, G.C. Jia, Organometallics 19 (2000) 3803. [7] G. Albertin, S. Antoniutti, E. Bordignon, D. Bresolin, J. Organomet. Chem. 609 (2000) 10. [8] M. Saoud, A. Romerosa, A. Peruzzini, Organometallics 19 (2000) 4005. [9] N. Dolker, G. Frenking, J. Organomet. Chem. 617 (2001) 225. [10] V. Cadierno, M.P. Gamsa, J. Gimeno, B.M. Martinovaca, J. Organomet. Chem. 617 (2001) 261. [11] S. Pavlik, C. Gemel, C. Slugovc, K. Mereiter, R. Schmid, K. Kirchner, J. Organomet. Chem. 617 (2001) 301. [12] W. Baratta, A. Delzotto, E. Herdtweck, S. Yuano, P. Rigo, J. Organomet. Chem. 617 (2001) 511. [13] L. Bonmo, C. Stern, E. Solari, R. Scopelliti, C. Floriani, Angew. Chem., Int. Ed. Engl. 40 (2001) 1449. [14] D. Touchard, P. Haquette, N. Pirio, L. Toupet, P.H. Dixneuf, Organometallics 12 (1993) 3132. [15] D. Touchard, P. Haquette, S. Guesmi, L.L. Pichon, A. Daridor, L. Toupet, P.H. Dixneuf, Organometallics 16 (1997) 3140. [16] A. Fu¨rstner, M. Liebl, C.W. Lechmann, M. Picquet, R. Kunz, C. Bruneau, D. Touchard, P.H. Dixneuf, Chem. Eur. J. 6 (2000) 1847. [17] P. Gonzalez-Herrero, B. Weberndorfer, K. Ilg, J. Wolf, H. Werner, Angew. Chem., Int. Ed. Engl. 39 (2000) 3266. [18] L. Jafarpour, S.P. Nolan, Adv. Organomet. Chem. 46 (2001) 181. ¨ zdemir, L. Toupet, D. Semeril, C. [19] B. Cetinkaya, S. Demir, I. .O Bruneau, P.H. Dixneuf, New J. Chem. 25 (2001) 519. [20] N. Pirio, D. Touchard, P.H. Dixneuf, J. Organomet. Chem. 462 (1993) C18. [21] L. Jafarpour, S.P. Nolan, J. Organomet. Chem. 617 (2001) 17. [22] K.G. Caulton, J. Organomet. Chem. 617 (2001) 56. [23] M.A.O. Volland, B.F. Straub, I. Gruber, F. Rominger, P. Hofmann, J. Organomet. Chem. 617 (2001) 288. [24] S. Randl, S. Gessler, H. Wakamatsu, S. Blechert, Synlett (2001) 430. [25] M. Gandelman, B. Rybtchinski, N. Ashkenazi, R.M. Gauvin, D. Milstein, J. Am. Chem. Soc. 123 (2001) 5372. [26] Y. Li, J.S. Huang, Z.Y. Zhou, C.M. Che, J. Am. Chem. Soc. 123 (2001) 4843. [27] S. Jung, K. Ilg, J. Wolf, H. Werner, Organometallics 20 (2001) 2121. [28] C.M. Che, J.S. Huang, F.W. Lee, Y. Li, T.S. Lai, H.L. Kwong, P.F. Teng, W.S. Lee, W.C. Lo, S.M. Peng, Z.Y. Zhou, J. Am. Chem. Soc. 123 (2001) 4119. [29] P. Nieczypor, P.W.N.M. Van Leuwen, J.C. Mol, M. Lutz, A.L. Spek, J. Organomet. Chem. 625 (2001) 58. [30] K.J. Ivin, J.C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, New York, 1997, p. 204. [31] A. Fu¨rstner, Angew. Chem., Int. Ed. Engl. 39 (2000) 3012. [32] M.I. Bruce, Chem. Rev. 98 (1998) 2797. [33] S.J. Miller, H.E. Blackwell, R.H. Grubbs, J. Am. Chem. Soc. 118 (1996) 9606. [34] C. Pietraszuk, B. Marciniec, H. Fischer, Organometallics 19 (2000) 913. [35] J.M. Dougherty, D.A. Probst, R.E. Robinson, J.D. Moore, T.A. Klein, K.A. Snelgrove, P.R. Hanson, Tetrahedron 56 (2000) 9781.

59

[36] D.M. Lynn, B. Mohr, R.H. Grubbs, L.M. Henling, M.W. Day, J. Am. Chem. Soc. 122 (2000) 6601. [37] D.M. Lynn, R.H. Grubbs, J. Am. Chem. Soc. 123 (2001) 3187. [38] S.T. Nguyen, L.K. Johson, R.H. Grubbs, J. Am. Chem. Soc. 114 (1992) 3974. [39] P. Schwab, M.B. France, J.W. Ziller, R.H. Grubbs, Angew. Chem., Int. Ed. Engl. 34 (1995) 2039. [40] M.S. Sanford, L.M. Henling, M.W. Day, R.H. Grubbs, Angew. Chem., Int. Ed. Engl. 39 (2000) 3451. [41] T. Weskamp, F.J. Kohl, W.A. Herrmann, J. Organomet. Chem. 582 (1999) 362. [42] T. Weskamp, F.J. Kohl, W. Hieringer, D. Gleich, W.A. Herrmann, Angew. Chem., Int. Ed. Engl. 38 (1999) 2416. [43] S. Gessler, S. Randl, S. Blechert, Tetrahedron Lett. 41 (2000) 9973. [44] S.M. Hansen, F. Rominger, M. Metz, P. Hofmann, Chem. Eur. J. 5 (1999) 557. [45] S.M. Hansen, M.A.O. Volland, F. Rominger, F. Eisentra¨ger, P. Hofmann, Angew. Chem., Int. Ed. Engl. 38 (1999) 1273. [46] W. Stu¨er, J. Wolf, H. Werner, P. Schwab, M. Schulz, Angew. Chem., Int. Ed. Engl. 37 (1998) 3421. [47] P. Gonzalez-Herrero, B. Weberndo¨rfer, K. Ilg, J. Wolf, H. Werner, Angew. Chem. 112 (2000) 3392. [48] A. Fu¨rstner, M. Picquet, C. Bruneau, P.H. Dixneuf, Chem. Commun. (1998) 1315. [49] M.I. Bruce, A. Swincer, J. Organomet. Chem. 171 (1979) C5. [50] B.E. Boland-Lussier, R.P. Hughes, Organometallics 1 (1982) 635. [51] C. Bianchni, A. Marchi, L. Marvelli, M. Peruzzini, A. Romrosa, R. Rossi, Organometallics 15 (1996) 3804. [52] E. Ru¨ba, C. Gemel, C. Slugovc, K. Mereiter, R. Schmid, K. Kirchner, Organometallics 18 (1999) 2275. [53] M.P. Gamasa, J. Gimeno, E. Lagstra, M. Lanfranchi, A. Tiripicchio, J. Organomet. Chem. 430 (1992) C39. [54] C. Bianchini, D. Masi, A. Romerosa, F. Zanobini, M. Peruzzini, Organometallics 18 (1999) 2376. [55] D.R. Senn, A. Wong, A.T. Patton, M. Marsi, C.E. Strouse, J.A. Gladysz, J. Am. Chem. Soc. 110 (1988) 6096. [56] C. Bianchini, A. Meli, M. Peruzzini, F. Zanobini, P. Zanello, Organometallics 9 (1990) 241. [57] P.C. Ting, Y.C. Lin, G.H. Lee, M.C. Cheng, Y. Wang, J. Am. Chem. Soc. 118 (1996) 6433. [58] J. Chatt, R.G. Hayter, J. Chem. Soc. (1961) 896. [59] B. Chaudret, G. Commenges, R. Poliblanc, J. Chem Soc., Dalton Trans (1984) 1635. [60] A.R. Chakravatry, F.A. Cotton, W. Schwotzer, Inorg. Chim. Acta 84 (1984) 179. [61] G.M. Scheldrick, SHELXS-97, Program for Solution of Crystal Structures, University of Go¨ttingen, Go¨ttingen, Germany, 1997. [62] G.M. Scheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Go¨ttingen, Go¨ttingen, Germany, 1967. [63] A.A. Batista, C. Pereira, K. Wohnrath, S.L. Queiroz, R.H. de A. Santos, M.T. do P. Gambardella, Polyhedron 18 (1999) 2079. [64] M.I. Bruce, A.G. Swincer, B.J. Thomson, R.C. Wallis, Aust. J. Chem. 33 (1980) 2605. [65] W.H. Leung, E.Y.Y. Chan, I.D. Williams, W.T. Wong, Organometallics 16 (1997) 3234. [66] H.D. Hansen, J.H. Nelson, Organometallics 19 (2000) 4740. [67] L.P. Barthel-Rosa, K. Maitra, J. Fischer, J.H. Nelson, Organometallics 16 (1997) 1714. [68] H. Le Bozec, K. Ouzzine, P.H. Dixneuf, Organometallics 10 (1991) 2768. [69] A. Keller, B. Jasionka, R. Matusiak, to be published. [70] K. Hiraki, A. Kuroiwa, H. Hirai, J. Polym. Sci., Part A-1 9 (1971) 2323. [71] H. Balcar, M. Pacovska´, J. Mol. Catal. 115 (1997) 101.

60

A. Keller et al. / Inorganica Chimica Acta 344 (2003) 49 /60

[72] T.J. Katz, S.J. Lee, N. Acton, Tetrahedron Lett. 47 (1976) 4247. [73] C. Larroche, J.P. Laval, A. Lattes, M. Leconte, F. Quignard, J.M. Basset, J. Org. Chem. 47 (1982) 2019. [74] T. Steinha¨usler, W.J. Koros, J. Polym. Sci.: Part B: Polym. Phys. 24 (1997). [75] C. Adlhart, M.A.O. Volland, P. Hofmann, P. Chen, Helv. Chim. Acta 83 (2000) 3306.

[76] J. Meinwald, N.J. Hudak, Organic Synthesis, vol. 37, Wiley, New York, 1952, p. 65. [77] M.B. Egorova, A.V. Drobachenko, A.M. Popov, Koord. Khim (Russian) 13 (1987) 541. [78] C.F. Liu, N.C. Liu, J.C. Bailar, Jr., Inorg. Chem. 3 (1968) 1197. [79] T.A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 28 (1966) 945.