Deep Drawing of Shells Having Slopes in the Base

Deep Drawing of Shells Having Slopes in the Base

Deep Drawing of Shells Having Slopes in the Base Toshihiko Kuwabara, Takashi Jimma and lsao Matsuoka - Submitted by H. Kudo (1) Received on January 16...

690KB Sizes 0 Downloads 9 Views

Deep Drawing of Shells Having Slopes in the Base Toshihiko Kuwabara, Takashi Jimma and lsao Matsuoka - Submitted by H. Kudo (1) Received on January 16,1989 ABSTRACT

A deep d r a w i n g process of s h e l l s having t w o couples o f s l o p e s i n t h e base

i s i n v e s t i g a t e d as a model f o r t h r e e dimensional sheet forming processes. The deformation b e h a v i o r o f r e c t a n g u l a r b l a n k s i s e x p e r i m e n t a l l y examined i n Furthermore, a simple, plane-strain deformation f i e l d (no d e t a i l by using f i v e punches having d i f f e r e n t shaped bases. change i n thickness) i n the flange and the combination o f simple shear and elongation i n the i n c l i n e d side w a l l s are assumed t o approximate t h e mode o f d e f o r m a t i o n o f t h e blanks. Based on t h i s model, t h e s t r a i n d i s t r i b u t i o n s o f t h e f i n i s h e d s h e l l s are predicted by the use o f an energy method, and the degree o f w r i n k l i n g i s evaluated by the amount o f t h e o v e r l a p p i n g m a t e r i a l a l o n g t h e r i d g e s o f t h e punches. The v a l i d i t y o f t h i s s i m u l a t i o n method i s d i s c u s s e d by comparing the experimental and calculated results. Key words: Three-dimensional sheet formina. Darts w i t h i n c l i n e d side walls, wrinkling, s t r a i n d i s t r i b u t i o n , beading, energy method, numerical simulation.

1. I n t r o d u c t i o n Deep drawing processes are complex, three-dimensional forming processes. i n which a blank i s stretched over the punch head and, a t t h e same time, drawn on t h e d i e surface. A t present, t h e FEM c a l c u l a t i o n seems t o be t h e most f f c t i v e a n a l y t l c a l t o o l f o r simulating such forming processesfi-2j. Oue t o a vast amount o f computation time, however, the FEM analysis i s s t i l l i n s u f f i c i e n t i n p r e d i c t i n g w r i n k l i n g and f r a c t u r i n g behavior o f sheet metal, p a r t i c u l a r l y when the p a r t has a deep, complex shaped bottom. On the other hand, several attempts t o simulate actual forming processes of autobcdy panels have been made by s i m p l i f y i n g the 3-D p r o c ss s i n t o two-dimensional, p l a n e - s t r a i n d e f o r m a t i o n ~ t o b l e m s ~ ) *Those ~ ~ . attempts have been successful i n p r e d i c t i n g f r a c t u r e s i t e s o f blanks: however, t h e y a r e o n l y a p p l i c a b l e t o t h e case where t h e shape o f t h e v e r t i c a l c r o s s - s e c t l o n o f t h e p a r t does n o t v a r y i n one d i r e c t i o n , so n o t a p p r o p r i a t e t o analyze general 3-0 problems. This study deals w i t h the deep drawing o f s h e l l s having slopes i n t h e i r basea, as a model of general 3-0 sheet f o r m i n g processes. F i r s t l y , t h e b e h a v i o r o f blanks d u r l n g t h e deep d r a w i n g processes i s e x p e r i m e n t a l l y examined by u s i n g f i v e d i f f e r e n t shaped punches. Then, i n order t o simulate the modes o f d e f o r m a t i o n of these p a r t s , a s i m p l e a n a l y t i c a l model based on t h e e n e r g y m e t h o d i s proposed. The s t r a i n d i s t r i b u t i o n s calculated by t h i s model are compared w i t h experimental results, and the v a l i d i t y o f the model proposed i s discussed.

2. Deformation analysis o f a blank based on energy method T h i s s t u d y d e a l s w i t h a t y p e of s h e l l s h a v i n g t w o c o u p l e s o f side w a l l s whose i n c l i n a t i o n angles are 8 1 on the longer side o f punch and 8 2 on the shorter side, as shown i n Fig.1. 2.1 Basic assumptions and procedures o f c a l c u l a t i o n Following assumptions are made: 1) the material i s i s o t r o p i c , r i g i d - p l a s t i c , and work-hardening. the equivalent stress-strain curve o f which being expressed by 0

eq'

Q

Ceqn

(1 )

2) Die c o r n e r r a d i u s and t h e p r o f i l e r a d i u s o f t h e d i e opening and the radius o f a l l ridges o f the punch are taken t o be zero. A r e c t a n g u l a r b l a n k i s supposed t o be used. The b l a n k i s d i v i d e d i n t o t e n r e g i o n s o f d e f o r m a t i o n , as shown i n Fig.1: due t o symmetry, only one quarter o f the flange and the corresponding p o r t i o n o f the d i e opening, dldpd3. need t o be considered. The xa x i s i s t a k e n t o be p a r a l l e l t o t h e s h o r t e r s i d e o f t h e d i e opening, d2d3. The number o f the parameters used t o express the deformation o f t h e b l a n k i s f o u r : t h e magnitude o f i n i t i a l d i s p l a c e m e n t o f

region 4, lal: the magnitude o f i n t t i a l displacement o f region 10. Ibl; and t h e magnitude o f d i s p l a c e m e n t o f r e g i o n 6,lcl. and i t s d i r e c t i o n + . With the values o f these f o u r parameters given, the ten regions i n Fig.1 i s supposed t o deform, according t o the mode o f deformation given i n section 2.2. t o make a s h e l l o f h e i g h t h. From t h i s deformation mode, the t o t a l energy dissipated during the deep drawing process, W t . i s determined as Wt=

wfl+

wsw

+ wf+

(2)

wb

where W f l i s the energy dissipated due t o p l a s t i c deformatlon i n the flange (region (4+5+6+8+10)), Wsw i s the one i n the i n c l i n e d side w a l l s (region (2+3+7+9)), Wf i s the work done by f r i c t i o n a l forces a t the blank-die and blank-blankholder interfaces, and Wb i s t h e energy d i s s i p a t e d due t o bending and unbending o f t h e m a t e r i a l passing over the edge o f the d i e opening. Consequently, the set o f the above four parameters t h a t minimize W t determines the mode o f deformation o f the blank. 2.2

Deformation analysis o f a blank

2.2.1 D e f o r m t i o n o f m a t e r i a l on punch head I n Fig.2, i t i s assumed t h a t t h e m a t e r i a l i n r e g i o n 1 i s subject t o uniform b i a x i a l s t r e t c h i n g on the punch head and t h a t t h e m a t e r i a l l i n e IJM reaches t h e edge o f t h e punch head, 1"'J"'M'. a t t h e end o f t h e deep d r a w i n g process. The n o m i n a l s t r a i n s o f the m a t e r i a l i n the d l r e c t i o n s Ox and Oy are given by epx=( 1"'J"'-IJ)/IJ

(3.1

epy-( J"'M'-JM)/JM

(3.2)

1

I n t h e p r e s e n t work. i n o r d e r t o s i m p l i f y t h e a n a l y s i s , t h e v a l u e s o f epx and e a r e g i v e n so t h a t t h e y m a t c h t h e experimentally m e a s u r J ones.

22.2

Deformation o f f l a n g e Deformation of the flange (region 4+5+6+8+10) i s assumed t o be .lade up of two successive deformation steps. I n the f i r s t step, i s assumed t h a t regions 4 and 10 move r i g i d l y , w h i l e regions 5

lp

Y

Y

X Fig.1 (a) D i v i s i o n o f a blank i n t o r e g i o n s o f deformation. (b) 0 , used f o r d e f o r m a t i o n The f o u r parameters, a. b. c. analysis o f the blank.

Annals of the CIRP Vol. 38/1/1989

X Fig. 2

Deformation analysis o f flange.

287

and 8 a r e s u b j e c t t o f i n i t e s i m p l e shear d e f o r m a t i o n as indicated by the dash-dotted l i n e s i n Fig.2. The shear s t r a i n s a t regions 5 and 8 are given by Y xy, 5-1 a1 /BC

(4.1)

Y xy. 81 ' b l /HL

(4.2)

I n the next deformation step, i t i s assumed t h a t region 6 moves from the y-axis by a distance IcI. w i t h p o i n t r i g i d l y a t angle G r e a c h i n g t h e d i e c o r n e r d2 and GC and GH becoming t a n g e n t i a l v e l o c i t y discontinuities, and i s assumed t h a t regions (4+5) and (8+10) are subject t o uniform compression i n the d i r e c t i o n Oy and Ox, respectively, w i t h no change i n thickness. Consequently, the f l a n g e deforms i n t o t h e shape as shown by t h l c k s o l i d l l n e s I n Fig.2. Thus, t h e e q u i v a l e n t p l a s t i c s t r a i n a t r e g i o n i (i-4.5.8,lO) i s calculated as

+

the f o l l o w i n g equation:

I (l+exp( u~/2))to/(4rd)~aotol(s)ds

wb'

(10)

where e i s taken as 8 1 f o r t h e s e c t i o n d i d 2 and as 8 2 f o r t h e section dpd3. to i s the i n i t i a l thickness o f the blank, r d i s the radius o f the d i e p r o f i l e , l(s) i s the magnitude o f displacement o f the material passing over the d i e edge a t p o s i t i o n s. The path o f i n t e g r a t i o n i s taken along d i e opening dldpd3. 2.2.3 Deformation o f i n c l i n e d s i d e walls The mode o f d e f o r m a t i o n o f i n c l i n e d s i d e w a l l , I"'J"'Gx'dpE', i s i l l u s t r a t e d s c h e m a t i c a l l y i n Fig.3. The d e f o r m a t i o n i s assumed t o be made up o f t h r e e successive d e f o r m a t i o n steps. F i r s t l y , accompanied w i t h t h e r i g i d d i s p l a c e m e n t o f r e g i o n 4. region 2 moves r i g i d l y i n t h e d i r e c t i o n Or), w h i l e r e g i o n 3 i s s u b j e c t t o f i n i t e s i m p l e shear deformation. Thus r e g i o n (2+3) becomes I'J'GE'. Here, the shear s t r a i n a t region 3 i s given by

n

Y xy.3'1

al/F'G

(11)

I n t h e n e x t d e f o r m a t i o n step. I'J'GE' deforms i n t o 1"J"Gx'E". accompanied w i t h t h e compressive d i s p l a c e m e n t o f the flange, u1, and w i t h the t e n s i l e displacement o f the materlal on t h e punch head, u2. F i n a l l y , 1"J"Gx'E" i s assumed t o be stretched i n the d i r e c t i o n O n , w i t h zero s t r a i n i n the d i r e c t i o n O f , t o become 1"'J"'Gx'E". I n the present analysis, the d e f o r m a t i o n mode o f r e g i o n ( 2 t 3 ) a f t e r I'J'GE' i s assumed t o be expressed by the f o l l o w i n g equations: (12.1) The energy dissipated a t GC and GH. due t o tangentlal v e l o c i t y d i s c o n t i n u i t y there, can be estimated as

Wvl-(

~o/m*GC(Gx'dp/2)

(7.1)

Wv2-( a0/fl)WGy'dp/2)

(7.2)

where a. i s t h e i n i t i a l y i e l d s t r e s s o f m a t e r i a l . Since the m a t e r i a l dldpGx'E'' i s equal i n volume t o t h a t d i s p l a c e d by region 6. Gx'dp-lclcos+.GC/dld S i m i l a r l y , Gy'd -lcl sin+.GH /dpd-j. Although the present mode? o f deformation alfows material t o o v e r l a p i n r e g i o n J"'Gy'd2Gx'. t h i s can n o t occur i n r e a l i t y , but a l o c a l in-plane compression o r out-of-plane d e f l e c t i o n o f material, such as wrinkling. i s deemed t o occur. Thus the amount o f w r i n k l i n g can be e v a l u a t e d by t h e sum o f Gx'd2 and Gy'dp. I n t h e p r e s e n t a n a l y s i s , t h e energy r e q u i r e d f o r t h o s e t y p e s o f deformation i s not considered. Thus, the t o t a l energy dissipated due t o the p l a s t i c deformation of t h e flange i s given by

where u and v a r e t h e displacements i n t h e d i r e c t i o n s O E and 0 II, respectively. As a result, the equivalent s t r a i n s a t regions. 2 and 3 are calculated by

.

Si

:i

aeq, i d o eq. i+ WVI+

Wv2

_F

Q n+l n+lsi( Ceq,i) + Wv1+ Wv2 (i45.8.10)

(8)

(13.1)

where

), En-ln(l+ 2L ),

c -ln(l+

an

E

YEn

-

au

ct--ce

- en

av

(thickness strain) (14)

+

S i m i l a r procedures o f c a l c u l a t i o n can be applied t o regions 7 and 9. Thus, the energy dissipated due t o the p l a s t i c deformation o f the side w a l l t s given by

1

where S i i s the area o f region i. The work done by f r i c t i o n a l forces a t the blank-die and blankblankholder interfaces, Wf. i s calculated by

Wf-

2uE P i I l(x.y)dxdy, i Si

(i-4.5,8,10)

(9)

where v i s t h e c o e f f i c i e n t o f f r i c t i o n , p i i s t h e b l a n k h o l d i n g f o r c e p e r u n i t area a c t i n g on r e g l o n i. and l(x.y) i s t h e magnitude o f displacement o f m a t e r i a l a t i n i t i a l c o o r d i n a t e (x.y), during the deep drawing process. The energy dissipated due t o bending and unbending o f material passing over the edge o f d i e opening, dldpd3. i s approximated by

3. Experimental setup and procedures Figure 4 shows the dimensions o f the f i v e punches used. The d i e used had a hollow c a v i t y w j t h a rectangular cross-section g i v i n g a clearance o f 0.6mm f o r a nominal blank thickness o f 0.5mm. The p r o f i l e r a d i u s a t t h e edge o f t h e d i e opening was taken as 5mm. The sheet m a t e r i a l used i n t h l s work was t i t a n l u n - k i l l e d lowcarbon steel. I t s mechanical properties are shown i n Table 1. It was c u t i n t o rectangular blanks o f several sizes.

/ \

Shorter side Fig.3

288

Oefornation analysis o f i n c l i n e d side wall.

Fig.4

P m A 15' 90' B 30' 90* c 4 F 90' D 4 5 60' E 45 45'

Longer side

Geometry o f punches.

Table 1 Mechanical properties o f material Orientation] ~ 0 . 2 1a t

fro'

rollins d i r e c t ion

0

90 45

]

I

~ 1 . n

[ W P ~ I [ M P ~ I [XI 163 173 168

321 319 312

44.2 47.7 47.7

Ir

-

Ir

value

value

value

0.26

1.43 2.21 1.76

1.94

0.26 0.26

I n the deep drawing t e s t s using the punches except punch C. the portions o f the blank i n contact w i t h the d i e and the blankholdcr were lubricated w i t h machine o i l . When using punch C, i n order t o prevent f r a c t u r e from occurring a t the punch p r o f i l e , a sheet o f v i n y l c h l o r i d e f i l m o f 0.05mm t h i c k (160mmx50mm) was inserted between the blank and the f l a t p o r t i o n o f the punch head: i n t h i s case, both sides o f the f i l m and the blank were l u b r i c a t e d w i t h machine o i l . Throughout the tests, blanks were set so t h a t t h e i r r o l l i n g d i r e c t i o n s c o i n c i d e w i t h t h e shorter side d i r e c t i o n o f t h e punch. The punch speed was about lmm/sec. The b l a n k h o l d i n g force was maintained constant during one drawing operation. The b l a n k h o l d i n g f o r c e p e r u n i t area a t r e g i o n i. p . (see Eq.(9)), was determined from the measurement w i t h PRESCALE] (FUJI PHOTO FILM CO.). From the measured d i s t r i b u t i o n o f pi, the t o t a l b l a n k h o l d i n g f o r c e F i n c a l c u l a t i o n was assumed t o d i s t r i b u t e ~ + ~ ~ ~ throughout t h e f l a n g e t o s a t i s f y ( p ~ and p6=O. where p4-p5, p8'p1@ and i s the area o f region i.

fi

~

)

~

(

~

~

~

~

+

~

~

~

~

4. Results and dlscussions 4.1 Results o f deep drawing t e s t s F o r t h e d r a w i n g w i t h punches A and B. t h e s h e l l s w e r e successfully drawn without f r a c t u r e o r wrinkling. Figure 5 shows series o f forming processes o f s h e l l s drawn w i t h punches E. D. and C. For punch E (Fig.5(a)). i t i s seen t h a t t h e b l a n k g r a d u a l l y conforms t h e punch, and t h e area o f c o n t a c t proceeds towards the lower p a r t o f the side walls. A t hdOmm the blank has completely conformed t o the punch. t h e b l a n k does n o t c o m p l e t e l y conform For punch 0 (Fig.5(b)). t o t h e punch even a t h-60mm, and w r i n k l e s remain a t t h e s i d e w a l l s and a t the l o w e r p o r t i o n o f t h e r i d g e s o f t h e punch. W i t h increasing the blankholding force up t o 71kN. breakage occurred a t the punch p r o f i l e . For punch C (Fig.5(c)). the degree o f w r i n k l i n g i s greater than when punch D i s used Moreover, the blankholding force t h a t does n o t cause f r a c t u r e a t the punch p r o f i l e lowers t o 43kN. I n order t o r e s t r a i n t h e w r i n k l i n g a t t h e s i d e w a l l s seen i n Fig.5(c). f o u r p i e c e s o f tape, l O m m wldth. 20mm long, O.lmm t h i c k , were sticked a t the edges o f the blank, i n f r o n t of the shorter sides o f t h e punch, as shown i n Fig.5(d). The d i s t a n c e between t h e tapes across t h e c e n t e r l i n e was 60mm. The tape l a y o u t o f Fig.5(d) was found t o make t h e amount o f w r i n k l i n g l e a s t : w i t h the distance between the tapes greater than 60mm. the amount o f w r i n k l i n g increases, and w i t h less than 60mm. f r a c t u r e occurred r i g h t beneath the punch p r o f i l e as shown i n Fig.5(e). These e x p e r l m e n t a l r e s u l t s suggest t h a t t h e c o n t r o l o f b l a n k h o l d i n g force alone i s not enough t o suppress w r i n k l i n g behavior o f sheet metal, but the layout o f beads i s a c r u c i a l factor. Another s i g n i f i c a n t e f f e c t o f u s i n g tapes i s t h a t t h e upper l i m i t o f b l a n k h o l d i n g f o r c e t h a t does n o t cause f r a c t u r e i s i n c r e a s e d and r e s u l t s i n t h e f u r t h e r r e s t r a i n i n g o f w r i n k l e s . The use o f tapes s t r e t c h e s t h e b l a n k and b r i n g s more m a t e r i a l i n t o c o n t a c t w i t h t h e punch than when they a r e n o t used. T h t s prevents the draw-in stress from concentrating on the m a t e r i a l a t the punch p r o f i l e and be e f f e c t i v e i n r e s t r a l n i n g fracture. 4.2

Strain d l s t r i b u t i o n s Figure 6 compares the s t r a i n d i s t r i b u t i o n s between experiment and c a l c u l a t i o n . a t t h e c e n t e r l i n e s o f f i n i s h e d s h e l l s . The calculated r e s u l t s o f strains, obtained f o r y 4 . 2 by the method o f c a l c u l a t i o n described i n section 2. are shown by three kinds o f t h i n l i n e s i n Fig.6 ( A n a l y s i s I). The c a l c u l a t i o n tends t o underestimate the s t r a i n s i n the d i r e c t i o n o f the center lines, e l , p a r t i c u l a r l y a t t h e s h o r t e r s i d e s o f punch C and D. T h i s d i s c r e p a n c y i s c o n s i d e r e d t o be caused by t h e assumption t h a t r e g i o n s 2 and 3 i s s u b j e c t t o t h e same amount o f s t r e t c h i n g i n t h e d i r e c t i o n On i n Fig.3 t o f o r m t h e s i d e w a l l 1"'J"'Gx'E": i n r e a l i t y , judging from the w r i n k l i n g shown i n Fig.5. region 3 i s not so stretched as region 2 is. Thus another c a l c u l a t l o n was done by v i r t u a l l y taking the values ofc,, i n Eq.(13.2) as zero a t r e g i o n s 3 and 7. The c a l c u l a t e d r e s u l t s o b t a i n e d f o r y-0.1 a r e shown b y t h r e e k i n d s o f t h i c k l i n e s i n Fig.6(b) and ( c ) (Analysis II ). E x p e r i m e n t a l r e s u l t s a r e between t h e t h i c k l i n e s (Analysis I ) and the t h i n l i n e s (AnalysisII ).

4.3 Evaluation o f the amount o f u r l n k l l n g As has been mentioned i n section 2.2. the amount o f w r i n k l i n g can be evaluated by the amount o f the overlapping m a t e r i a l along Table 2 shows t h e a r i d g e o f the punch, Gx'dp+Gy'dz (Fig.2). calculated r e s u l t s o f them, the conditions o f c a l c u l a t i o n being the same as i n Fig.6. It i s clear, w i t h a look a t the photographs i n Fig.5. t h a t the amount o f w r i n k l i n g becomes greater w i t h the increase o f the values o f Gx'd2t Gy'd2: punch C>punch DIpunch E. This suggests t h a t the simulation method proposed i n t h i s study i s also useful i n p r e d i c t i n g the degree o f wrinkling.

5. conclusions 1) k e p drawing t e s t s were conducted by using f i v e punches having two couples o f side w a l l s whose i n c l i n a t i o n angles are 81 on the

l o n g e r s i d e o f punch and 8 2 on t h e s h o r t e r side. The o r d e r o f d i f f i c u l t y i n deep drawing was punch C(81-45'. 02=90'). D(49, 60'), E(45", 45"). B(30". go"), and A(15". 90"). Punch C caused t h e most conspicuous w r i n k l i n g and t h i n n i n g o f m a t e r i a l . An a p p r o p r i a t e l a y o u t o f tapes s t i c k e d t o t h e b l a n k was found t o r e s t r a i n t h e w r i n k l e s s u b s t a n t i a l l y and t o i n c r e a s e t h e upper l i m i t o f blankholding force t h a t does not cause fracture. 2) A s i m p l e method o f a n a l y s i s based on an energy method was proposed t o simulate the deformation behavior o f sheet metal i n t h e above deep d r a w i n g t e s t s . The b l a n k i s d i v i d e d i n t o t e n r e g i o n s whose b a s i c mode o f d e f o r m a t i o n i s g i v e n by f o u r parameters, and the set o f these f o u r parameters which minimizes Table 2 Calculated values o f Gx'd2 and Gy'd2

Punch

D 1.77

*Analysis I and II correspond t o the calculated r e s u l t s indicated by the t h i n l i n e s and the t h i c k l i n e s i n Fig.6, respec:tively.

289

~

~

)

30

20 n

N u

10

p c

e 5

-10

-20

-30 0

100

50

'

50

100

0

50

100

-50 0

I

1

I

I

30 20

20 CI

E

..-

5

10

L

s

x2 0

r

t

-10

f -10

-20

- 20

-30 0 30

-30 --

100

50

I 1

-30 0

Punch proflle

Shock line

I

50

Die Drofile

I

I

100

x coordinates i n undefoned blank [mm] Fig.6 S t r a i n d i s t r i b u t i o n s a t t h e c e n t e r l i n e s o f blanks. e l : nominal s t r a i n i n t h e d i r e c t i o n o f t h e c e n t e r l i n e o f t h e nominal t r a n s v e r s e s t r a i n : et: nominal t h i c k n e s s s t r a i n . r a w i'n g c o n d i t i o n s a r e t h e same as Fig.5 (a),(b), (c). respectively. I n the calculation, the c o e f f i c i e n t o f f r i c t i o n p i s t a k e n as 0.2 f o r t h i n l i n e s and 0.1 f o r t h i c k l i n e s . 0=407 * c026[Mpa] i s assumed.

s:

the t o t a l energy required t o deform the blank i n t o a given shape determines the f i n a l mode o f deformation o f the blank. The s t r a i n d i s t r i b u t i o n s p r e d i c t e d by t h i s method were i n f a i r agreement w i t h measured ones. This method i s also useful i n evaluating the amount o f w r i n k l i n g t o occur a t i n c l i n e d side w a l l s o f the parts. 3) These r e s u l t s v a l i d a t e the use o f an energy method t o p r e d i c t deformatlon behavior o f sheet metal i n general three-dimensional sheet forming processes. Ackmwledgrant T h i s work was supported by t h e Japan M i n i s t r y o f Education, Science and Culture under Grant-in-aid f o r encouragement o f young

290

o

c

r

f

10

c

Y)

y coordlnates I n u n d e f o r d blank [ m a ]

s c i e n t i s t ( 6 3 7 5 0 7 1 4 ) and p a r t l y by AMADA Foundation f o r M e t a l Work Technology. References 1) Tang,S.C.. llankamban,RL. and Ling,P.. 1988. A F i n i t e Element M o d e l i n g o f t h e Stretch-Draw Forming Process, Advances and Trends i n A u t o m o t i v e Sheet S t e e l Stamping, 101-107. The E n g i n e e r i n g S o c i e t y f o r Advancing M o b i l i t y Land Sea A i r and Space, Warrendale. 2) Nakamachi.E. and Wagoner.RK. ibid. 109-120. 3) Takahashi.4. Okamoto. I.. Hiramatsu.T. and Yamada.N.. 1985. E v a l u a t i o n M e t h o d s o f P r e s s F o r m i n g S e v e r i t y i n CAD A p p l i c a t i o n s , Computer M o d e l i n g o f Sheet M e t a l Forming P r o c e s s , Eds. Wang.N.-M. and Tang.S.C., 37-50, The Pennsylvania. M e t a l l u r g i c a l Society o f AIME. 4) Furu bayashi, T.. Uj ihara, S. and Sa kamoto,T.. 1988. S i mu 1a t ion of Forming S e v e r i t y on Autobody Panels U s i n g A CAD System A n a l y s i s of Drawbead and I t s Control-, IDDRG 1 5 t h B i e n n i a l Congress, 243-250. ASM.