Defensins: Transcriptional regulation and function beyond antimicrobial activity

Defensins: Transcriptional regulation and function beyond antimicrobial activity

Journal Pre-proof Defensins: Transcriptional regulation and function beyond antimicrobial activity Gabriela Contreras, Iman Shirdel, Markus Santhosh B...

4MB Sizes 0 Downloads 22 Views

Journal Pre-proof Defensins: Transcriptional regulation and function beyond antimicrobial activity Gabriela Contreras, Iman Shirdel, Markus Santhosh Braun, Michael Wink PII:

S0145-305X(19)30401-X

DOI:

https://doi.org/10.1016/j.dci.2019.103556

Reference:

DCI 103556

To appear in:

Developmental and Comparative Immunology

Received Date: 26 August 2019 Revised Date:

13 November 2019

Accepted Date: 15 November 2019

Please cite this article as: Contreras, G., Shirdel, I., Braun, M.S., Wink, M., Defensins: Transcriptional regulation and function beyond antimicrobial activity, Developmental and Comparative Immunology (2019), doi: https://doi.org/10.1016/j.dci.2019.103556. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier Ltd.

1

Defensins: Transcriptional regulation and function beyond antimicrobial activity

2

Gabriela Contreras1, Iman Shirdel2, Markus Santhosh Braun1, Michael Wink1

3

1

4

Heidelberg, Germany

5

2

6

Corresponding author:

7

Michael Wink, e-mail address: [email protected]

8

Postal address: Institute of Pharmacy and Molecular Biotechnology, Heidelberg

9

University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany

Institute of Pharmacy and Molecular Biotechnology, Heidelberg University,

Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.

10

Gabriela Contreras, e-mail address: [email protected]

11

Postal address: Institute of Pharmacy and Molecular Biotechnology, Heidelberg

12

University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany

13 14

Abstract

15

Defensins are one the largest group of antimicrobial peptides and are part of the innate

16

defence. Defensins are produced by animals, plants and fungi. In animals and plants,

17

defensins can be constitutively or differentially expressed both locally or systemically

18

which confer defence before and a stronger response after infection.

19

Immune signalling pathways regulate the gene expression of defensins. These pathways

20

include cellular receptors, which recognise pathogen-associated molecular patterns and

21

are found both in plants and animals. After recognition, signalling pathways and,

22

subsequently, transcriptional factors are activated.

23

There is an increasing number of novel functions in defensins, such as

24

immunomodulators and immune cell attractors. Identification of defensin triggers could

25

help us to elucidate other new functions. The present article reviews the different

26

elicitors of defensins with a main focus on human, fish and marine invertebrate

27

defensins.

28

Keywords: Host defence peptides, defence response, immunity, defensins, innate

29

immune response, gene expression.

30

Abbreviations:

31

AMPs: antimicrobial peptides, CSαβ: cysteine-stabilised αβ, HBD: human β-defensins,

32

HD: human defensin, HNPs: human neutrophil peptides, NF-κB: nuclear factor-κB,

33

PAMPs: Pathogen-associated molecular pattern, ROS: reactive oxygen species, PRR:

34

pattern recognition receptors, TLRs: Toll-like receptors. 1

35

1. Introduction

36

Organisms have developed different defence strategies to eliminate pathogens and for

37

protection of damaged tissues. The first line of defence, so-called innate immunity,

38

include mechanical barriers, such as the presence of an epithelium, mucus secretion in

39

animals, and bark, waxy cuticular layers and trichomes in plants. Additionally, a

40

chemical barrier composed of secondary metabolites, reactive oxygen species (ROS),

41

nitric oxide, large antimicrobial proteins (e.g., lysozyme and lactoferrin) and

42

antimicrobial peptides (AMPs) has evolved.

43

AMPs are antimicrobial compounds, naturally synthesised by both eukaryotes and

44

prokaryotes. In animals, they are mostly produced by epithelial cells of skin, airways

45

and gastrointestinal tract (Zasloff, 2002). In prokaryotes and lower eukaryotes, the role

46

of AMPs is less clear. AMPs might help these organisms to compete for nutrients with

47

other microorganisms (Ageitos et al., 2017). AMPs are composed of 12 to 50 amino

48

acids, and they are commonly cationic and amphipathic. Cationic AMPs interact with

49

the negatively-charged bacterial membrane, promoting leakage or its disruption, and

50

consequently, bacterial death (Reddy et al., 2004).

51

Defensins are one of the best-described groups of AMPs which are found in animals,

52

plants and fungi (Figure 1). They are short peptides (18-45 amino acids) and mainly

53

positively charged. Defensins form three to six disulphide bridges and have an

54

amphipathic structure. The main secondary structure of defensins is a β-hairpin motif;

55

however, also they can contain an α-helix.. Defensins have a broad spectrum of

56

antimicrobial activity against various pathogens, including both gram-negative and

57

gram-positive bacteria, fungi, protozoa and enveloped viruses (Aley et al., 1994; Daher

58

et al., 1986; Selsted et al., 1985a). So far, 335 defensins have been described (Wang et

59

al., 2015a).

60

In vertebrates, defensins are divided into three classes: α-, β- and θ-defensins (Figure

61

2A, B and C). These defensins differ in the pairing of disulphide bridges (Ganz, 2003).

62

α- and β-defensins are composed of at least a triple-stranded β-sheet. α- Defensins are

63

produced by mammals and form three disulphide bridges linked between Cys1-Cys6,

64

Cys2-Cys4 and Cys3-Cys5 (Zhao et al., 2016). In humans, they are produced by

65

neutrophils (human neutrophil peptides, HNPs) and Paneth cells which are located at

66

the base of small intestinal crypts of Lieberkuhn (human defensin [HD] -5 and -6)

67

(Ganz et al., 1985; Jones and Bevins, 1992, 1993). 2

68

β-Defensins are found in a wide range of vertebrates (Harwig et al., 1994; Meng et al.,

69

2013a; Zou et al., 2007). Human β-defensins (HBD) are produced in the airway

70

epithelial tract, keratinocytes and monocytes (Bensch et al., 1995; Duits et al., 2002). β-

71

Defensins form disulphide bridges between Cys1-Cys5, Cys2-Cys4 and Cys3-Cys6, and

72

several of them form an α-helix at the N-terminus (Sawai et al., 2001; Tu et al., 2015).

73

Regarding θ-defensins, they are cyclic and derived from two truncated α-defensins.

74

They have been identified in some non-human primates, and the disulphide bridges are

75

formed between Cys1-Cys6, Cys2-Cys5 and Cys3-Cys4 (Figure 2C) (Tran et al., 2002).

76

Defensins, produced by higher plants, fungi and invertebrates, are so-called defensin-

77

like peptides (Figure 2D). Many defensin-like peptides are usually composed of an α-

78

helix linked to two antiparallel β-sheets by disulphide bridges. This motif is called

79

cysteine-stabilised αβ (CSαβ) (Zhao et al., 2016). CSαβ defensins have been classified

80

into three groups based on their sequence, structure and functional similarity. These

81

groups are antibacterial ancient invertebrate-type defensins (AITDs) which include

82

defensins from chelicerates and fungi, antibacterial classical insect type defensin

83

(CIRSs) and antifungal plant/insect type defensin (PITDs) (Zhu, 2008).

84

In animals and plants, defensins are constitutively or differentially expressed both

85

locally and systemically (Harder et al., 1997; Zhao et al., 1996). Various stress factors

86

activate defence response pathways which induce the gene expression of defensins and

87

other AMPs. Stress factors can be both biotic (e.g., microbial infection) and, in plants,

88

abiotic (e.g., dryness, high salinity).

89

In addition, there is an increasing number of novel functions in defensins beyond the

90

antimicrobial activity. Identification of defensin regulators could help us to elucidate

91

other alternative functions. The present article reviews the different elicitors of

92

defensins with a main focus on human, fish and marine invertebrate defensins.

93

Furthermore, this review presents a general overview of signalling pathways that trigger

94

the expression of defensins in vertebrates, invertebrates, fungi and plants.

95 96

2. Transcriptional regulation of defensins

97

2.1. Animals

98

In animals, microbial infection triggers a defence response which involves the

99

production of defensins and other AMPs, conferring protection against infection. This

100

response is part of the innate immunity. When pathogens contact epithelia or enter the

101

circulatory system, they are recognised by receptors located in epithelial barrier cells, 3

102

macrophages, dendritic cells and mast cells. Recognition of microbial products can

103

regulate the nuclear factor-κB (NF-κB) signalling pathway. This pathway is conserved

104

in animals and has been found in simple organisms such as cnidarians, sea anemones

105

and sponges (Gilmore and Wolenski, 2012). Signalling pathways of vertebrate and

106

invertebrate defensins share some similarities, that we will discuss later.

107

2.1.1. Vertebrates

108

In vertebrates, the expression of defensins has mostly been studied in mammals (Figure

109

3A). First, pathogen-associated molecular patterns (PAMPs) are recognised via pattern

110

recognition receptors (PRR), such as Toll-like receptors (TLRs), Nucleotide

111

oligomerisation domain (NOD)-like receptors (NLR), C-type lectin receptor (CLR) and

112

Cytosolic DNA sensor (CDS) (Akira and Takeda, 2004; Fritz et al., 2006; Takaoka et

113

al., 2007; Wintergerst et al., 1989). PAMPs are characteristic conserved molecules

114

within a class of microorganisms, such as lipopolysaccharide (LPS), bacterial DNA

115

(unmethylated CpG DNA), β-glucans, flagellin and peptidoglycans. TLRs are

116

homologous to Toll receptor from Drosophila (Medzhitov et al., 1997). Ten members

117

of TLRs have been described in mammals (reviewed in Medzhitov, 2001). NLRs, such

118

as NOD1 and NOD2, are intracellular receptors that recognise bacterial peptidoglycan.

119

TLR and NLR recognise PAMPs through an extracellular leucine-rich repeat (LRR)

120

domain located at the carboxyl-terminus (reviewed in Becker and O’Neill, 2007). TLRs,

121

additionally, possess an intracellular protein-protein interaction domain, TIR (Toll-

122

interleukin 1 receptor).

123

TLRs transduce the signal through adaptors, such as myeloid differentiation factor 88

124

(MyD88), TIR domain-containing adaptor protein (TIRAP), Toll-receptor associated

125

molecule (TRAM) and Toll-receptor-associated activator of interferon (TRIF)

126

(reviewed in Akira and Takeda, 2004). These adaptors propagate the signal which leads

127

to the activation of NF-κB proteins and involves the participation of IRAK, TRAF,

128

NEMO and IKK. NF-κB is a family of dimeric transcriptional factors which regulates

129

the expression of genes related to the immune response, inflammation process,

130

development and control of apoptosis (Gilmore and Wolenski, 2012). In unstimulated

131

cells, NF-κB dimer is sequestered in the cytoplasm by the inhibitor of NF-κB (IκB).

132

When NF-κB is activated, IκB is ubiquitinated and subsequently degraded, and NF-κB

133

is nuclear translocated. IκB contain 5-7 ankyrin repeat domains that mask the nuclear

4

134

localisation signal of NF-κB proteins (Li et al., 2006). NF-κB signalling pathway has

135

been revised in Gilmore and Wolenski (2012), Lawrence (2009) and Moynagh (2005).

136

In addition to PAMPs, also cytokines induce the expression of defensins (Pioli et al.,

137

2006). In mammals, cytokines, such as interleukins (e.g., IL-1β, IL-1α,) and tumour

138

necrosis factors (e.g., TNFα) are produced by macrophages, dendritic cells and mast

139

cells (Turner et al., 2014). In adaptive immunity, helper lymphocytes are the primary

140

source of cytokines. Cytokines bind to receptors, such as IL-1R and IL-17R. This

141

interaction triggers a response that includes the activation of the NF-κB pathway. An

142

overview of factors that upregulate human defensin gene expression are listed in Table

143

1.

144

Like human and mammalian counterparts, fish β-defensins can be produced in response

145

to various stimuli including bacteria, viruses, bacterial components, viral mimics and

146

even algae. A complete list of tissue distribution and the response to various inducers in

147

the gene expression of fish β-defensins is presented in Table 2. The presence of multiple

148

potential transcription factor binding sites in the upstream promoter region of β-defensin

149

genes in fish might confirm that defensin genes are induced by a variety of stimuli

150

(Katzenback, 2015). For example, pituitary-specific POU domain transcription factor 1a

151

(POU1F1a) might regulate the expression of a β-defensin gene from orange-spotted

152

grouper (Epinephelus coioides) (Jin et al., 2010b); and the promoter region of medaka

153

β-defensin (Oryzias latipes) contains binding sites of Sp-1 and NF-κB transcription

154

factors (Zhao et al., 2009). Overall, limited studies on transcription factors related to

155

fish β-defensins have been carried out. However, these studies reveal the similarity and

156

conservation of transcription factors in fish and mammals, since the above-mentioned

157

transcription factors are also present in mammals.

158

2.1.1.1. Other elicitors of mammal defensin gene expression

159

Other molecules, distinct to PAMPs and cytokines, have been shown to enhance the

160

gene expression of human defensins. These include plant secondary metabolites.

161

Theaflavin derivatives induce the secretion of HBD-1, 2 and 4 (Bedran et al., 2015).

162

Andrographolide, oridonin and isoliquiritigenin (secondary metabolites of plants used in

163

Chinese traditional medicine) induce the HBD-3 gene expression in human colonic

164

epithelial cells without activation of the NF-κB pathway and through the activation of

165

the EGF receptor and MAPK signalling. This finding suggests that small molecules can

166

induce defensins expression avoiding inflammatory response (Sechet et al., 2018).

167

Moreover, vitamin D (1,25-dihydroxyvitamin D3) upregulates HNP1-3 and HBD-2 5

168

(Subramanian et al., 2017; Wang et al., 2004). On the other hand, ultraviolet A, B and C

169

rays upregulate HBDs gene expression (Cruz Díaz et al., 2015; Seo et al., 2001).

170

Furthermore, ascorbic acid (vitamin C) up-regulates HBD-1 (Cruz Díaz et al., 2015).

171

Other elicitors of HBDs are reviewed in de Prado Montes de Oca (2013).

172 173

2.1.2. Invertebrates

174

To respond to pathogen infection and modulate innate immunity response, invertebrates

175

possess two independent signal cascades that activate NF-κB transcription factors. For

176

invertebrates, the most studied model system of the immune response is Drosophila

177

melanogaster. Two innate signalling pathways, against bacteria and fungi, act largely in

178

D. melanogaster, Toll signalling and Immune deficiency (IMD) pathway (Hedengren-

179

Olcott et al., 2004) (Figure 3B). Toll signalling mainly responds to Gram-positive

180

bacteria and fungi. First, Toll receptor is activated by Spaetzle, and his interaction

181

triggers a cascade that activates Dorsal and Dorsal-like immune factor (DIF) (Ip et al.,

182

1993; Lemaitre et al., 1996). The inactivated form of Dorsal/DIF is retained in the

183

cytoplasm by Cactus (an IkB homolog). Cactus phosphorylation triggers the

184

degradation and nuclear translocation of DIF (Geisler et al., 1992).

185

IMD pathway is mainly directed against Gram-negative bacteria. Peptidoglycan

186

activates the membrane receptor Peptidoglycan Recognition Protein-LC (PGRP-LC).

187

This interaction enables IMD, which interacts to TAK and this one to IKK, stimulating

188

Relish (Lemaitre et al., 1995). Relish, DIF and Dorsal are transcriptional factors,

189

members of the NF-κB protein family (Dushay et al., 1996; Han and Ip, 1999;

190

Rutschmann et al., 2000). Immune response pathways in Drosophila has been revised in

191

Engström (1999) and Khush et al. (2001).

192

In addition to Toll signalling and IMD pathway, other signalling pathways regulate the

193

innate immunity in Drosophila, such as the JAK-STAT pathway. This signalling

194

pathway involves transmembrane receptors, Janus kinases (JAKs), and signal

195

transducers and activators of transcription (STATs) (reviewed in Arbouzova and

196

Zeidler, 2006). JAK-STAT and Toll pathway also regulate developmental processes in

197

Drosophila (Arbouzova and Zeidler, 2006; Govind, 2008).

198

2.1.2.1. Other elicitors of invertebrate defensin gene expression

199

In addition to PAMPs, other factors regulate defensin production, such as 20-

200

hydroxyecdysone, a steroid hormone-related to development, ecdysis, reproduction, 6

201

apoptosis and immune response (Beckstead et al., 2005; Han et al., 2017). In

202

Drosophila, starvation and ionising radiation up-regulate the gene expression of

203

drosomycin, a defensin with antifungal activity (Moskalev et al., 2015). An overview of

204

factors that regulates invertebrate defensin gene expression are listed in Table 3.

205

2.2. Plants

206

To detect the presence of pathogens and trigger a defence response, plants possess PRR.

207

Some of these receptors are nucleotide-binding site plus leucine-rich repeats (NBS-

208

LRR), cell surface receptor-like transmembrane proteins (RLP) and receptor-like

209

kinases (RLK) (Zipfel, 2008). Many of these receptors contain LRR, as mammalian

210

TLRs. Moreover, the domain at the N-terminus of some NBS-LRR possesses homology

211

to TIR, the cytoplasmic signalling domain of Toll receptor of Drosophila and IL-1R of

212

mammals (Deslandes et al., 2002; Whitham et al., 1994). Nonetheless, no adaptors

213

analogous to MyD88 have been identified in plants.

214

Recognition of MAMPs (microbe-associated molecular pattern) activates the mitogen-

215

activated protein kinase (MAPK) cascade, and this, in turn, induces the expression of

216

defensins and other AMPs (Meng et al., 2013b) (Figure 3C). This response is named

217

MAMP-triggered immunity (MTI).

218

Microorganisms can suppress MTI by sending effector proteins (i.e., avirulence factors,

219

Avr) to interfere with the defence response. In these circumstances, plants develop

220

resistance proteins (R proteins) to detect the presence of Avr and trigger a stronger

221

response. Defence response mediated by R proteins is called effector-triggered

222

immunity (ETI). ETI involves the activation of MAPK signalling pathway.

223

MAPK signallings are conserved pathways found in eukaryotes. MAPK signalling

224

pathways comprise MEKK, MKK4/MKK5 and MPK3/MPK6. MAPK signalling

225

activates WRKY transcriptional factors which are related to the innate immune response

226

(Asai et al., 2002). These transcriptional factors have not been found in animals

227

(Ausubel, 2005). Involving of MAPK signalling pathway in the plant defence response

228

is revised in Taj et al. (2010).

229

Similarities in immune response in animals and plants, such as the presence of receptors

230

containing TIR and LRR domain, suggest a convergent evolution and not a common

231

origin (Ausubel, 2005).

232

In the defence response of plants, other cellular messengers participate, such as nitric

233

oxide, ROS and plant hormones. Hormones play a crucial role in biotic stress. Under

234

MTI and ETI, plants produce salicylic acid, ethylene and jasmonic acid. These 7

235

hormones activate signalling cascades whose response includes the expression of

236

defensins as well as other AMPs and plant secondary metabolites. For example, in A.

237

thaliana, the defence response against fungal infection include the jasmonic acid and

238

ethylene signalling pathways. These pathways activate the transcriptional factors,

239

ORA59 and ERF1, which regulate the expression of PDF1.2 (Pré et al., 2008). Further

240

information regarding the participation of plant hormones in defence response is revised

241

in Shigenaga and Argueso (2016).

242

For defence, plants produce a mixture of secondary metabolites, such as alkaloids,

243

phenolics, terpenes, that attack multiple molecular targets. They are mostly

244

constitutively expressed but can be further enhanced by stress. Further information on

245

plant secondary metabolites is reviewed in Wink (2008, 2015).

246

Apart from biotic stresses (wounding, infection and herbivore attack), abiotic stresses

247

(cold, high salinity and dehydration) also regulate expression of plant defensins,

248

(Penninckx et al., 1996; Weerawanich et al., 2018). Some defensins and their inducers

249

are listed in Table 4.

250

2.3. Fungi

251

It has been proposed that in fungi, AMPs confer an ecological advantage over nutrient

252

competitors (Meyer et al., 2005). In agreement with that, gene expression of some

253

fungal defensins is altered by environmental stress conditions (Garrigues et al., 2016;

254

Meyer and Stahl, 2002; Paege et al., 2016).

255

For CSαβ defensins, regulation of their gene expression has been partly studied in few

256

members, anisin1 and aclasin, which are produced by Aspergillus nidulans and

257

Aspergillus clavatus, respectively (Contreras et al., 2019; Eigentler et al., 2012). Anisin

258

has been related to conidiation (asexual development), and it is involved in oxidative

259

stress signalling (Eigentler et al., 2012). Aclasin showed increased expression under

260

oxidative conditions and the presence of Bacillus megaterium (Contreras et al., 2019).

261

Yeast also possess MAPK cascades, which are involved in the mating pheromone

262

response, cell integrity, high osmolarity growth and filamentation (revised in Gustin et

263

al. 1998). However, it has not been involved in the immune response. Also, it is not

264

known whether any PRR receptor recognises bacteria and fungi through PAMPs as in

265

plant and animals.

266 267

3. Tissue localisation, characterization and functions

268

3.1. Animals 8

269

3.1.1. Vertebrates

270

Vertebrate defensins have been found in mammals, birds, reptiles, fishes and

271

amphibians. They are predominately found in epithelial cells located in skin

272

(keratinocytes), respiratory, reproductive and gastrointestinal tract (Paneth cells)

273

(Diamond et al., 1991; Jones and Bevins, 1992). Moreover, defensins are produced by

274

phagocytic cells, such as neutrophils, macrophages and monocytes (Figure 4A) (Ganz et

275

al., 1985; Selsted et al., 1985b). The tissue localisation of defensins varies among

276

species. β-defensins are the primary group among vertebrate defensins, and they form

277

the largest group of defensin families (Qi et al., 2016). α- and θ-defensin families have

278

been found only in mammals. These groups of defensins evolved from an ancestral β-

279

defensin gene, as results of duplication (Semple et al., 2003).

280

Mammal defensins have been described from primates, mice, rabbits, horses, dogs and

281

pigs (Aono et al., 2006; Couto et al., 1992; Nagaoka et al., 1991; Sang et al., 2005).

282

They

283

(Krisanaprakornkit et al., 1998; O’Neil et al., 1999). Apart from epithelial cells,

284

mammals defensins are also found in cells related to defence against microbial

285

infection, such as macrophages, neutrophils and Paneth cells (Ganz, 2003).

286

Defensins have other functions alternative to antimicrobial activity. In vertebrates, some

287

defensins induce the degranulation of mast cells (Befus et al., 1999; Niyonsaba et al.,

288

2001). Moreover, it has been reported that HBD-2, HBD-3 and HBD-4 induce the

289

expression of cytokines in human keratinocytes, macrophages and monocytes

290

(Funderburg et al., 2011; Jin et al., 2010a; Niyonsaba et al., 2007). HBD-3 suppresses

291

induction of TNF-α and IL-6 in the presence of lipopolysaccharide when it is at a basal

292

level (Semple et al., 2010). Defensins also participate in the adaptive immune response.

293

Some defensins induce chemoattraction in macrophages, immature dendritic cells and

294

memory T cells (Chertov et al., 1996; Yang et al., 1999). Other functions of vertebrate

295

defensins are revised in Yang et al. (2002).

296

Just like in mammals, a large number of defensins have been identified in birds (e.g. in

297

chicken, zebra finches, turkeys, ostriches, penguins, and ducks) (reviewed in van Dijk et

298

al., 2008). Avian defensins are β-defensins (AvBD) containing triple-stranded β-sheets

299

and thereby resemble their mammalian counterparts. They are of myeloid or epithelial

300

origin and are expressed in various tissues, such as reproductive tract, respiratory tract,

301

digestive tract, bone marrow, heterophils (equivalents to mammalian neutrophils) and

302

skin (reviewed in van Dijk et al., 2008; Zhang and Sunkara, 2014). 9

are

found

in

keratinocytes,

gingival

and

intestinal

epithelial

cells

303

Also, some β-defensin-related peptides have been found exclusively in birds and

304

reptiles (Chattopadhyay et al., 2006; Zhang et al., 2019). Due to their enhanced

305

expression in the oviduct and abundance in egg white, these peptides are referred to as

306

ovodefensins (Gong et al., 2010). Ovodefensins could function as β-defensins and

307

probably play a role in immune response, as they have been found to inhibit the

308

bacterial growth of Escherichia coli (Yu et al., 2018). Phylogenetic studies of

309

ovodefensins of different species suggest that they share a common ancestor and that

310

numerous independent gene duplications occurred after species divergence (Zhang et

311

al., 2019). Ovodefensins contain a distinct spacing pattern in their six-cysteine motif

312

allowing their classification into different subfamilies (Gong et al., 2010; Whenham et

313

al., 2015).

314

Among defensin families, so far only β-defensin has been identified in fish species.

315

Unlike mammals, fish do not have highly developed adaptive immune system and are

316

more dependent on innate immunity. As components of the innate immune system,

317

AMPs play important roles in fish (Chen et al., 2013). In mammals, β-defensin is often

318

expressed in tissues contacting with surrounding environments such as the respiratory

319

tract and gastrointestinal tract which are the first defence lines against pathogens.

320

However, in fish, β-defensin is produced in various tissues, such as in skin, gill,

321

intestine, liver and head kidney (analogous to the mammalian adrenal gland) (Zhu et al.,

322

2017). The presence of a negatively-charged glutamic acid residue, usually at the

323

beginning of β-strand 2, is a specific characteristic of fish β-defensins (Zou et al., 2007).

324

β-defensin peptides in different fish species have typical properties of vertebrates β-

325

defensin. These characteristics include net positive charge, small size, and three

326

disulfide bonds in the mature peptide (Zou et al., 2007). In some fishes, such as olive

327

flounder, mature β-defensin peptide has anionic nature (Nam et al., 2010). Fish β-

328

defensins are structurally and functionally similar to mammalian β-defensins (Masso-

329

Silva and Diamond, 2014), specifically, they are most closely related to HBD-4. Fish

330

defensins exhibit antibacterial activity, antiviral activity, stimulation of chemotaxis and

331

phagocytic activity in leucocytes, as well as immune modulation (Cuesta et al., 2011;

332

Falco et al., 2008; Ruangsri et al., 2013).

333

3.1.2. Invertebrates

334

Invertebrates are exclusively dependent on innate immunity and they do not have

335

acquired immunity. Antimicrobial peptides, particularly defensins, are one of the

336

essential elements in the innate immune system of invertebrates (Yang et al., 2016). 10

337

Invertebrate defensins have been isolated from insects, molluscs, crustaceans and

338

arachnids (Pisuttharachai et al., 2009; Yao et al., 2019; Zhang et al., 2015). They are

339

characterised by the presence of a CSαβ motif, and they contain three or four disulfide

340

bridges.

341

Many insect defensins are produced in the fat body (equivalent to the mammalian liver)

342

after bacterial infection and secreted into the haemolymph. Some defensins of

343

hematophagous insects are produced in the midgut epithelium and are secreted into the

344

gut lumen (Hamilton et al., 2002; Nakajima et al., 2001). Also, insect defensins are

345

expressed in epithelial tissues exposed to the external environment, such as respiratory

346

and reproductive tracts to fight against infections at local level (Ferrandon et al., 1998).

347

Most of the invertebrate defensins are more active against gram-positive than gram-

348

negative bacteria. However, there are few cases, such as drosomycin from Drosophila

349

melanogaster,

350

Pseudacanthothermes spiniger and gallerimycin from Galleria mellonella which exhibit

351

antifungal activity (Fehlbaum et al., 1994; Lamberty et al., 1999; Lamberty et al., 2001;

352

Schuhmann et al., 2003). Besides, drosomycin exhibit antiparasitic activity (Tian et al.,

353

2008).

354

Big defensins are a distinct group from defensins and found only in marine invertebrates

355

(Wang et al., 2014; Wang et al., 2018). A big defensin was identified initially in

356

horseshoe crab (Tachypleus tridentatus), and later in amphioxus, mussel, oyster and

357

scallop (Gerdol et al., 2012; González et al., 2017; Rosa et al., 2011; Saito et al., 1995;

358

Teng et al., 2012; Zhao et al., 2007). Big defensins have limited distribution and have

359

not been found in crustaceans and insects (Gerdol et al., 2012). The size of big

360

defensins is approximate twice the size of defensins (González et al., 2017). They have

361

a cysteine pairing pattern as vertebrate β-defensins (Rosa et al., 2011). Moreover, the N-

362

terminus comprises a parallel β-sheet and two α-helixes, and the C-terminus contains a

363

β-sheet as human β-defensin (Rosa et al., 2011). Due to these similarities, it has been

364

hypothesized that vertebrate β-defensins originated probably from an ancestral

365

invertebrate big defensin (Shafee et al., 2016; Tassanakajon et al., 2015; Zhu and Gao,

366

2013). N-terminus and C-terminus of big defensin have different antimicrobial

367

properties and inhibit gram-positive and gram-negative bacteria, respectively (Saito et

368

al., 1995).

369

3.2. Plants

heliomycin

from

Heliothis

11

virescens,

termicin

from

370

Most plant defensins are formed by a CSαβ motif, as invertebrate defensins (Figure 1).

371

However, most of the plant defensins are stabilised by four disulphide bridges. Base on

372

the precursor, plant defensins are classified in classes I and II. Class I does not have C-

373

terminal prodomain, while class II possesses a C-terminal prodomain that is cleaved to

374

release the mature defensin.

375

Several plant defensins have been isolated from seeds, and it has been proposed that

376

defensins could protect seed from soil microbes (Broekaert et al., 1995). Furthermore,

377

they have been identified in other tissues, such as leaves, flowers and roots. Defensins

378

can be produced in a organ-specific way, as is the case of NbDef1.1 in Nicotiana

379

benthamiana which is produced in leaves, stems, roots, seed and flowers; while

380

NbDef2.2 is only produced in flowers (Bahramnejad et al., 2009).

381

Plant defensins are potent antifungal agents. Typically, they interact with sphingolipids

382

in the fungal plasma membrane, and also they induce ROS formation and apoptosis

383

(Aerts et al., 2007; Thevissen et al., 2003; van der Weerden et al., 2008). Additionally,

384

some plant defensins exhibit insecticidal activity (Chen et al., 2002), and they

385

participate in fertilisation, flowering and zinc tolerance (Mirouze et al., 2006; Okuda et

386

al., 2009; Wilson et al., 2005).

387

The involvement of defensins and other AMPs in the stress response not related to

388

pathogens is not clear. Defensins might be involved in stress adaptation in addition to

389

the antimicrobial activity (Campos et al., 2018).

390

3.3. Fungi

391

Fungal defensins are classified according to their antimicrobial activity: antifungal or

392

antibacterial. Antifungal defensins contain β-sheets, and they interfere with cell wall

393

synthesis via binding to chitin (a primary component of the fungal cell wall) and

394

inhibition of chitin synthase III and V (Hagen et al., 2007). On the other hand,

395

antibacterial fungal defensins contain a CSαβ motif.

396

It has been demonstrated that some CSαβ defensins, α- defensins as well, inhibit the

397

synthesis of the bacterial cell wall via binding to lipid II, which is a peptidoglycan

398

precursor (de Leeuw et al., 2010; Schmitt et al., 2010; Schneider et al., 2010).

399 400

Conclusions

401

Both plants and animals have an innate defence mechanism that recognises and

402

responds to pathogens, and their defence response signalling pathways show some

403

similarities, such as the common presence of receptors containing leucine-rich. Once the 12

404

defence mechanism is activated, a response, which includes the expression of defensins

405

and other AMPs, is triggered. An organism produces several types of defensins. In

406

human, for example, to date, 26 defensins have been described. These defensins are not

407

regulated in the same manner and different signalling pathways regulate the gene

408

expression. Some defensins are constitutively expressed, as HBD-1 which is expressed

409

in keratinocytes. Other defensins are differentially regulated, as in the case of HD-5,

410

which is induced by bacterial in Paneth cells.

411

During infection, an orchestrated response activates the expression of various AMPs.

412

Besides defensins, animals produce other classes of AMPs, such as cathelicidins. Some

413

of them are regulated by the NF-κB, and the promoters show high similarities in their

414

transcription factor binding sites in comparison to defensins.

415

Beyond the direct attack against pathogens, novel functions have been reported for

416

defensins, such as immunomodulators and immune cell attractors. Likely many

417

functions of defensins remain uncertain. Understanding the transcriptional regulation

418

and their inducers could help us to elucidate new roles of defensins.

419

The emergence of multidrug-resistant (MDR) bacteria has become a global public

420

health concern. Antibiotic resistance is spreading faster than the introduction of new

421

antimicrobial compounds into the market. Therefore, the development of new effective

422

novel antibiotics is urgently needed, and AMPs are promising candidates (Lewies et al.,

423

2019). AMPs are potential agents against multi-drug resistant bacteria, but high

424

haemolytic activity and low salt -resistance are ones of the drawbacks for the clinical

425

applications of AMPs. Nevertheless, some defensins archive low hemolytic effect, even

426

up to 1024 µg/mL (Oeemig et al., 2012; Zhu et al., 2012). On the other hand, some

427

defensins, such as HBD-3 and plant defensins, exhibit a high salt-resistance (Harder et

428

al., 2001; Kerenga et al., 2019; Yang et al., 2018). Therefore, defensins are promising

429

therapeutic agents.

430

References

431 432 433 434 435 436 437 438 439 440

Abedin, A., Mohammed, I., Hopkinson, A., Dua, H.S., 2008. A novel antimicrobial peptide on the ocular surface shows decreased expression in inflammation and infection. Invest. Ophthalmol. Vis. Sci. 49, 28-33. https://doi.org/10.1167/iovs.07-0645. Aerts, A.M., Francois, I.E., Meert, E.M., Li, Q.T., Cammue, B.P., Thevissen, K., 2007. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13, 243-247. https://doi.org/10.1159/000104753. Ageitos, J.M., Sánchez-Pérez, A., Calo-Mata, P., Villa, T.G., 2017. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 133, 117-138. https://doi.org/10.1016/j.bcp.2016.09.018. 13

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

Akira, S., Takeda, K., 2004. Toll-like receptor signalling. Nat Rev Immunol 4, 499-511. https://doi.org/10.1038/nri1391. Alekseeva, L., Huet, D., Féménia, F., Mouyna, I., Abdelouahab, M., Cagna, A., Guerrier, D., Tichanné-Seltzer, V., Baeza-Squiban, A., Chermette, R., 2009. Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol. 9, 33. https://doi.org/10.1186/14712180-9-33. Aley, S.B., Zimmerman, M., Hetsko, M., Selsted, M.E., Gillin, F.D., 1994. Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect. Immun. 62, 53975403. Andoh, M., Ueno, T., Kawasaki, K., 2018. Tissue-dependent induction of antimicrobial peptide genes after body wall injury in house fly (Musca domestica) larvae. Drug Discov. Ther. 12, 355-362. https://doi.org/10.5582/ddt.2018.01063. Aono, S., Li, C., Zhang, G., Kemppainen, R.J., Gard, J., Lu, W., Hu, X., Schwartz, D.D., Morrison, E.E., Dykstra, C., 2006. Molecular and functional characterization of bovine β-defensin-1. Vet. Immunol. Immunopathol. 113, 181-190. https://doi.org/10.1016/j.vetimm.2006.05.002. Arbouzova, N.I. and Zeidler, M.P., 2006. JAK/STAT signalling in Drosophila: insights into conserved regulatory and cellular functions. Development 133, 2605-2616. https://doi.org/10.1242/dev.02411. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.-L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., Sheen, J., 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. https://doi.org/10.1038/415977a. Ausubel, F.M., 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 973-979. https://doi.org/10.1038/ni1253. Bahramnejad, B., Erickson, L., Chuthamat, A., Goodwin, P., 2009. Differential expression of eight defensin genes of N. benthamiana following biotic stress, wounding, ethylene, and benzothiadiazole treatments. Plant Cell. Rep. 28, 703-717. https://doi.org/10.1007/s00299-009-0672-8. Becker, C.E., O’Neill, L.A., 2007. Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin. Immunopathol. 29, 239-248. https://doi.org/10.1007/s00281-007-0081-4. Beckstead, R.B., Lam, G., Thummel, C.S., 2005. The genomic response to 20hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol. 6, R99. https://doi.org/10.1186/gb-2005-6-12-r99. Bedran, T.B.L., Morin, M.-P., Spolidorio, D.P., Grenier, D., 2015. Black tea extract and its theaflavin derivatives inhibit the growth of periodontopathogens and modulate interleukin-8 and β-defensin secretion in oral epithelial cells. PLoS One 10, e0143158. https://doi.org/10.1371/journal.pone.0143158. Befus, A.D., Mowat, C., Gilchrist, M., Hu, J., Solomon, S., Bateman, A., 1999. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J. Immunol. 163, 947-953. Bensch, K.W., Raida, M., Mägert, H.-J., Schulz-Knappe, P., Forssmann, W.-G., 1995. hBD‐1: a novel β‐defensin from human plasma. FEBS Lett. 368, 331-335. https://doi.org/10.1016/0014-5793(95)00687-5. Broekaert, W.F., Terras, F., Cammue, B., Osborn, R.W., 1995. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108, 1353-1358. https://doi.org/10.1104/pp.108.4.1353.

14

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

Campos, M.L., de Souza, C.M., de Oliveira, K.B.S., Dias, S.C., Franco, O.L., 2018. The role of antimicrobial peptides in plant immunity. J. Exp. Bot. 69, 4997-5011. https://doi.org/10.1093/jxb/ery294. Campoverde, C., Milne, D.J., Estévez, A., Duncan, N., Secombes, C.J., Andree, K.B., 2017. Ontogeny and modulation after PAMPs stimulation of β-defensin, hepcidin, and piscidin antimicrobial peptides in meagre (Argyrosomus regius). Fish Shellfish Immunol. 69, 200-210. https://doi.org/10.1016/j.fsi.2017.08.026. Casadei, E., Bird, S., Vecino, J.L.G., Wadsworth, S., Secombes, C.J., 2013. The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 34, 529-537. https://doi.org/10.1016/j.fsi.2012.11.027. Casadei, E., Wang, T., Zou, J., González Vecino, J.L., Wadsworth, S., Secombes, C.J., 2009. Characterization of three novel beta-defensin antimicrobial peptides in rainbow trout (Oncorhynchus mykiss). Mol. Immunol. 46, 3358-3366. https://doi.org/10.1016/j.molimm.2009.07.018. Cerezuela, R., Guardiola, F.A., Meseguer, J., Esteban, M.A., 2012. Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: effects on the immune system. Fish Physiol. Biochem. 38, 1729-1739. https://doi.org/10.1007/s10695-0129670-9. Chattopadhyay, S., Sinha, N.K., Banerjee, S., Roy, D., Chattopadhyay, D., Roy, S., 2006. Small cationic protein from a marine turtle has β‐defensin‐like fold and antibacterial and antiviral activity. Proteins 64, 524-531. https://doi.org/10.1002/prot.20963. Chen, K.-C., Lin, C.-Y., Kuan, C.-C., Sung, H.-Y., Chen, C.-S., 2002. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. J. Agric. Food Chem. 50, 7258-7263. https://doi.org/10.1021/jf020527q. Chen, Y., Gong, Q., Song, M., Lai, J., Sun, J., Liu, Y., 2019. Identification and characterization of three novel antimicrobial peptides from Acipenser dabryanus. Fish Shellfish Immunol. 88, 207-216. https://doi.org/10.1016/j.fsi.2019.02.050. Chen, Y., Zhao, H., Zhang, X., Luo, H., Xue, X., Li, Z., Yao, B., 2013. Identification, expression and bioactivity of Paramisgurnus dabryanus β-defensin that might be involved in immune defense against bacterial infection. Fish Shellfish Immunol. 35, 399-406. https://doi.org/10.1016/j.fsi.2013.04.049. Chertov, O., Michiel, D.F., Xu, L., Wang, J.M., Tani, K., Murphy, W.J., Longo, D.L., Taub, D.D., Oppenheim, J.J., 1996. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8stimulated neutrophils. J. Biol. Chem. 271, 2935-2940. https://doi.org/10.1074/jbc.271.6.2935. Contreras, G., Wang, N., Schäfer, H., Wink, M., 2019. Oxidative stress and the presence of bacteria increase gene expression of the antimicrobial peptide aclasin, a fungal CSαβ defensin in Aspergillus clavatus. PeerJ 7, e6290. https://doi.org/10.7717/peerj.6290. Couto, M., Harwig, S., Cullor, J.S., Hughes, J., Lehrer, R.I., 1992. Identification of eNAP-1, an antimicrobial peptide from equine neutrophils. Infect. Immun. 60, 30653071. Cruz Díaz, L.A., Flores Miramontes, M.G., Chávez Hurtado, P., Allen, K., Gonzalez Ávila, M., Prado Montes de Oca, E., 2015. Ascorbic acid, ultraviolet C rays, and glucose but not hyperthermia are elicitors of human β-defensin 1 mRNA in normal keratinocytes. Biomed. Res. Int. 2015, 714580. https://doi.org/10.1155/2015/714580. 15

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

Cuesta, A., Meseguer, J., Esteban, M.A., 2011. Molecular and functional characterization of the gilthead seabream beta-defensin demonstrate its chemotactic and antimicrobial activity. Mol. Immunol. 48, 1432-1438. https://doi.org/10.1016/j.molimm.2011.03.022. Daher, K.A., Selsted, M.E., Lehrer, R.I., 1986. Direct inactivation of viruses by human granulocyte defensins. J. Virol. 60, 1068-1074. de Leeuw, E., Li, C., Zeng, P., Li, C., Buin, M.D.-d., Lu, W.-Y., Breukink, E., Lu, W., 2010. Functional interaction of human neutrophil peptide‐1 with the cell wall precursor lipid II. FEBS Lett. 584, 1543-1548. https://doi.org/10.1016/j.febslet.2010.03.004. De Zoysa, M., Whang, I., Lee, Y., Lee, S., Lee, J.-S., Lee, J., 2010. Defensin from disk abalone Haliotis discus discus: molecular cloning, sequence characterization and immune response against bacterial infection. Fish Shellfish Immunol. 28, 261-266. https://doi.org/10.1016/j.fsi.2009.11.005. Deslandes, L., Olivier, J., Theulières, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., Marco, Y., 2002. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc. Natl. Acad. Sci. USA 99, 2404-2409. https://doi.org/10.1073/pnas.032485099. Dimarcq, J.L., Hoffmann, D., Meister, M., Bulet, P., Lanot, R., Reichhart, J.M., Hoffmann, J.A., 1994. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin: a study in insect immunity. Eur. J. Biochem. 221, 201-209. https://doi.org/10.1111/j.1432-1033.1994.tb18730.x. Diamond, G., Zasloff, M., Eck, H., Brasseur, M., Maloy, W.L., Bevins, C.L., 1991. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc. Natl. Acad. Sci. USA 88, 3952–3956. https://doi.org/10.1073/pnas.88.9.3952. Djureinovic, D., Fagerberg, L., Hallström, B., Danielsson, A., Lindskog, C., Uhlén, M., Pontén, F., 2014. The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Mol. Hum. Reprod. 20, 476-488. https://doi.org/10.1093/molehr/gau018. Do, H.M., Lee, S.C., Jung, H.W., Sohn, K.H., Hwang, B.K., 2004. Differential expression and in situ localization of a pepper defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Plant Sci. 166, 1297-1305. https://doi.org/10.1016/j.plantsci.2004.01.008. Dong, J.-J., Wu, F., Ye, X., Sun, C.-F., Tian, Y.-Y., Lu, M.-X., Zhang, R., Chen, Z.-H., 2015. β-Defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti-bacterial activity of synthetic peptides. Gene 566, 23-31. https://doi.org/10.1016/j.gene.2015.04.025. Duits, L.A., Ravensbergen, B., Rademaker, M., Hiemstra, P.S., Nibbering, P.H., 2002. Expression of β‐defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106, 517-525. https://doi.org/10.1046/j.13652567.2002.01430.x. Dushay, M.S., Asling, B., Hultmark, D., 1996. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl. Acad. Sci. USA 93, 10343-10347. https://doi.org/10.1073/pnas.93.19.10343. Eigentler, A., Pócsi, I., Marx, F., 2012. The anisin1 gene encodes a defensin-like protein and supports the fitness of Aspergillus nidulans. Arch. Microbiol. 194, 427-437. https://doi.org/10.1007/s00203-011-0773-y. Engström, Y., 1999. Induction and regulation of antimicrobial peptides in Drosophila. Dev. Comp. Immunol. 23, 345-358. https://doi.org/10.1016/s0145-305x(99)00016-6. 16

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

Epple, P., Apel, K., Bohlmann, H., 1997. ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Lett. 400, 168-172. https://doi.org/10.1016/s0014-5793(96)01378-6. Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C.A., Skogs, M., Takanen, J.O., Berling, H., Tegel, H., Mulder, J., Nilsson, P., Schwenk, J.M., Lindskog, C., Danielsson, F., Mardinoglu, A., Sivertsson, A., von Feilitzen, K., Forsberg, M., Zwahlen, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F., Uhlén, M. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteomics 13, 397-406. https://doi.org/10.1074/mcp.M113.035600. Fahlgren, A., Hammarstrom, S., Danielsson, A., Hammarstrom, M.L., 2004. βDefensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Clin. Exp. Immunol. 137, 379-385. https://doi.org/10.1111/j.13652249.2004.02543.x. Falco, A., Chico, V., Marroquí, L., Perez, L., Coll, J.M., Estepa, A., 2008. Expression and antiviral activity of a beta-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Mol. Immunol. 45, 757-765. https://doi.org/10.1016/j.molimm.2007.06.358. Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W.F., Hetru, C., Hoffmann, J.A., 1994. Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 269, 33159-33163. Ferrandon, D., Jung, A.C., Criqui, M., Lemaitre, B., Uttenweiler‐Joseph, S., Michaut, L., Reichhart, J., Hoffmann, J.A., 1998. A drosomycin–GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217-1227. https://doi.org/10.1093/emboj/17.5.1217. Foureau, D.M., Mielcarz, D.W., Menard, L.C., Schulthess, J., Werts, C., Vasseur, V., Ryffel, B., Kasper, L.H., Buzoni-Gatel, D., 2010. TLR9-dependent induction of intestinal α-defensins by Toxoplasma gondii. J. Immunol. 184, 7022-7029. https://doi.org/10.4049/jimmunol.0901642. Fritz, J.H., Ferrero, R.L., Philpott, D.J., Girardin, S.E., 2006. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250-1257. https://doi.org/10.1038/ni1412. Funderburg, N.T., Jadlowsky, J.K., Lederman, M.M., Feng, Z., Weinberg, A., Sieg, S.F., 2011. The Toll‐like receptor 1/2 agonists Pam3CSK4 and human β‐defensin‐3 differentially induce interleukin‐10 and nuclear factor‐κB signalling patterns in human monocytes. Immunology 134, 151-160. https://doi.org/10.1111/j.13652567.2011.03475.x. Ganz, T., 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710-720. https://doi.org/10.1038/nri1180. Ganz, T., Selsted, M.E., Szklarek, D., Harwig, S., Daher, K., Bainton, D.F., Lehrer, R.I., 1985. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest. 76, 1427-1435. https://doi.org/10.1172/JCI112120. García, J.R., Krause, A., Schulz, S., Rodríguez-Jiménez, F.J., Klüver, E., Adermann, K., Forssmann, U., Frimpong-Boateng, A., Bals, R., Forssmann, W.G., 2001. Human βdefensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J. 15, 1819-1821. https://doi.org/10.1096/fj.00-0865fje. 17

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684

Garrigues, S., Gandía, M., Marcos, J.F., 2016. Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Appl. Microbiol. Biotechnol. 100, 2243-2256. https://doi.org/10.1007/s00253-015-7110-3. Geisler, R., Bergmann, A., Hiromi, Y., Nüsslein-Volhard, C., 1992. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates. Cell 71, 613-621. https://doi.org/10.1016/0092-8674(92)90595-4. Gerdol, M., De Moro, G., Manfrin, C., Venier, P., Pallavicini, A., 2012. Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis. Dev. Comp. Immunol. 36, 390-399. https://doi.org/10.1016/j.dci.2011.08.003. Gilmore, T.D., Wolenski, F., 2012. NF‐κB: where did it come from and why? Immunol. Rev. 246, 14-35. https://doi.org/10.1111/j.1600-065X.2012.01096.x. Gong, D., Wilson, P.W., Bain, M.M., McDade, K., Kalina, J., Hervé-Grepinet, V., Nys, Y., Dunn, I.C., 2010. Gallin; an antimicrobial peptide member of a new avian defensin family, the ovodefensins, has been subject to recent gene duplication. BMC Immunol. 11, 12. https://doi.org/10.1186/1471-2172-11-12. Gonzalez, M., Gueguen, Y., Desserre, G., De Lorgeril, J., Romestand, B., Bachère, E., 2007. Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas. Dev. Comp. Immunol. 31, 332-339. https://doi.org/10.1016/j.dci.2006.07.006. González, R., Brokordt, K., Cárcamo, C.B., de la Peña, T.C., Oyanedel, D., Mercado, L., Schmitt, P., 2017. Molecular characterization and protein localization of the antimicrobial peptide big defensin from the scallop Argopecten purpuratus after Vibrio splendidus challenge. Fish Shellfish Immunol. 68, 173-179. https://doi.org/10.1016/j.fsi.2017.07.010. Gueguen, Y., Herpin, A., Aumelas, A., Garnier, J., Fievet, J., Escoubas, J.-M., Bulet, P., Gonzalez, M., Lelong, C., Favrel, P., Bachère, E. 2006. Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J. Biol. Chem. 281, 313-323. https://doi.org/10.1074/jbc.M510850200. Govind, S., 2008. Innate immunity in Drosophila: Pathogens and pathways. Insect Sci. 15, 29-43. https://doi.org/10.1111/j.1744-7917.2008.00185.x. Guo, M., Wei, J., Huang, X., Huang, Y., Qin, Q., 2012. Antiviral effects of betadefensin derived from orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 32, 828-838. https://doi.org/10.1016/j.fsi.2012.02.005. Gustin, M.C., Albertyn, J., Alexander, M., Davenport, K., 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264-1300. Hagen, S., Marx, F., Ram, A.F., Meyer, V., 2007. The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl. Environ. Microbiol. 73, 2128-2134. https://doi.org/10.1128/AEM.02497-06. Hamilton, J., Munks, R., Lehane, S., Lehane, M., 2002. Association of midgut defensin with a novel serine protease in the blood‐sucking fly Stomoxys calcitrans. Insect Mol. Biol. 11, 197-205. https://doi.org/10.1046/j.1365-2583.2002.00325.x. Han, P., Han, J., Fan, J., Zhang, M., Ma, E., Li, S., Fan, R., Zhang, J., 2017. 20Hydroxyecdysone activates PGRP-SA mediated immune response in Locusta migratoria. Dev. Comp. Immunol. 72, 128-139. https://doi.org/10.1016/j.dci.2017.02.021.

18

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

Han, Z.S., Ip, Y.T., 1999. Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J. Biol. Chem. 274, 21355-21361. https://doi.org/10.1074/jbc.274.30.21355. Harder, J., Bartels, J., Christophers, E., Schröder, J.-M., 1997. A peptide antibiotic from human skin. Nature 387, 861. https://doi.org/10.1038/43088. Harder, J., Bartels, J., Christophers, E., Schröder, J.-M., 2001. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 276, 5707-5713. https://doi.org/10.1074/jbc.M008557200. Harder, J., Meyer-Hoffert, U., Teran, L.M., Schwichtenberg, L., Bartels, J., Maune, S., Schroder, J.-M., 2000. Mucoid Pseudomonas aeruginosa, TNF-α, and IL-1 β, but not IL-6, induce human β-defensin-2 in respiratory epithelia. Am. J. Respir. Cell Mol. Biol. 22, 714-721. https://doi.org/10.1128/iai.72.3.1479-1486.2004. Harwig, S.S., Swiderek, K.M., Kokryakov, V.N., Tan, L., Lee, T.D., Panyutich, E.A., Aleshina, G.M., Shamova, O.V., Lehrer, R.I., 1994. Gallinacins: cysteine‐rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342, 281-285. https://doi.org/10.1016/0014-5793(94)80517-2. Hedengren-Olcott, M., Olcott, M.C., Mooney, D.T., Ekengren, S., Geller, B.L., Taylor, B.J., 2004. Differential activation of the NF-κB-like factors Relish and Dif in Drosophila melanogaster by fungi and Gram-positive bacteria. J. Biol. Chem. 279, 21121-21127. https://doi.org/10.1074/jbc.M313856200. Humphrey, W., Dalke, A., Schulten, K., 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5. Ip, Y.T., Reach, M., Engstrom, Y., Kadalayil, L., Cai, H., González-Crespo, S., Tatei, K., Levine, M., 1993. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753-763. https://doi.org/10.1016/0092-8674(93)90495-c. Jin, G., Kawsar, H.I., Hirsch, S.A., Zeng, C., Jia, X., Feng, Z., Ghosh, S.K., Zheng, Q.Y., Zhou, A., McIntyre, T.M., 2010a. An antimicrobial peptide regulates tumorassociated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One 5, e10993. https://doi.org/10.1371/journal.pone.0010993. Jin, J.-Y., Zhou, L., Wang, Y., Li, Z., Zhao, J.-G., Zhang, Q.-Y., Gui, J.-F., 2010b. Antibacterial and antiviral roles of a fish β-defensin expressed both in pituitary and testis. PLoS One 5, e12883. https://doi.org/10.1371/journal.pone.0012883. Jones, D.E., Bevins, C.L., 1992. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23216-23225. Jones, D.E., Bevins, C.L., 1993. Defensin‐6 mRNA in human Paneth cells: implications for antimicrobia peptides in host defense of the human bowel. FEBS Lett. 315, 187-192. https://doi.org/10.1016/0014-5793(93)81160-2. Kao, C.Y., Chen, Y., Thai, P., Wachi, S., Huang, F., Kim, C., Harper, R.W., Wu, R., 2004. IL-17 markedly up-regulates β-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol. 173, 3482-3491. https://doi.org/10.4049/jimmunol.173.5.3482. Kao, C.Y., Chen, Y., Zhao, Y.H., Wu, R., 2003. ORFeome-based search of airway epithelial cell-specific novel human β-defensin genes. Am. J. Respir. Cell Mol. Biol. 29, 71-80. https://doi.org/10.1165/rcmb.2002-0205OC. Katzenback, B.A., 2015. Antimicrobial peptides as mediators of innate immunity in teleosts. Biology 4, 607-639. https://doi.org/10.3390/biology4040607. Kerenga, B.K., McKenna, J.A., Harvey, P.J., Quimbar, P., Garcia, D., Lay, F.T., Phan, T.K., Veneer, P.K., Vasa, S., Parisi, K., Shafee, T.M.A., van der Weerden, N.L., Hulett, M.D., Craik, D.J., Anderson, M.A., Bleackley, M.R., 2019. Salt-tolerant antifungal and 19

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

antibacterial activities of the corn defensin ZmD32. Front. Microbiol. 10, 795. https://doi.org/10.3389/fmicb.2019.00795. Khush, R.S., Leulier, F., Lemaitre, B., 2001. Drosophila immunity: two paths to NFκB. Trends Immunol. 22, 260-264. https://doi.org/10.1016/S1471-4906(01)01887-7. Koike, M., Okamoto, T., Tsuda, S., Imai, R., 2002. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem. Biophys. Res. Commun. 298, 46-53. https://doi.org/10.1016/s0006-291x(02)02391-4. Krisanaprakornkit, S., Kimball, J.R., Weinberg, A., Darveau, R.P., Bainbridge, B.W., Dale, B.A., 2000. Inducible expression of human β-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect. Immun. 68, 2907-2915. https://doi.org/10.1128/iai.68.5.2907-2915.2000. Krisanaprakornkit, S., Weinberg, A., Perez, C.N., Dale, B.A., 1998. Expression of the peptide antibiotic human β-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect. Immun. 66, 4222-4228. Lamberty, M., Ades, S., Uttenweiler-Joseph, S., Brookhart, G., Bushey, D., Hoffmann, J.A., Bulet, P., 1999. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274, 9320-9326. https://doi.org/10.1074/jbc.274.14.9320. Lamberty, M., Zachary, D., Lanot, R., Bordereau, C., Robert, A., Hoffmann, J.A., Bulet, P., 2001. Insect immunity constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J. Biol. Chem. 276, 4085-4092. https://doi.org/10.1074/jbc.M002998200. Lawrence, T., 2009. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651. https://doi.org/10.1101/cshperspect.a001651. Lemaitre, B., Kromer-Metzger, E., Michaut, L., Nicolas, E., Meister, M., Georgel, P., Reichhart, J.-M., Hoffmann, J.A., 1995. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. USA 92, 9465-9469. https://doi.org/10.1073/pnas.92.21.9465. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., Hoffmann, J.A., 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983. https://doi.org/10.1016/s00928674(00)80172-5. Lewies, A., Du Plessis, L.H., Wentzel, J.F., 2019. Antimicrobial peptides: the Achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins 11, 370-381. https://doi.org/10.1007/s12602-018-9465-0. Li, H., Guo, H., Shan, S., Qi, C., An, L., Yang, G., 2014. Characterization and expression pattern of a novel β-defensin in common carp (Cyprinus carpio L.): Implications for its role in mucosal immunity. Biosci. Biotechnol. Biochem. 78, 430437. https://doi.org/10.1080/09168451.2014.885830. Li, J., Mahajan, A., Tsai, M.-D., 2006. Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45, 15168-15178. https://doi.org/10.1021/bi062188q. Liang, T., Wang, D.D., Zhang, G.R., Wei, K.J., Wang, W.M., Zou, G.W., 2013. Molecular cloning and expression analysis of two beta-defensin genes in the blunt snout bream (Megalobrama amblycephala). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 166, 91-98. https://doi.org/10.1016/j.cbpb.2013.07.006. Liu, A.Y., Destoumieux, D., Wong, A.V., Park, C.H., Valore, E.V., Liu, L., Ganz, T., 2002. Human β-defensin-2 production in keratinocytes is regulated by interleukin-1, 20

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832

bacteria, and the state of differentiation. J. Invest. Dermatol. 118, 275-281. https://doi.org/10.1046/j.0022-202x.2001.01651.x. Liu, L., Li, G., Sun, P., Lei, C., Huang, Q., 2015. Experimental verification and molecular basis of active immunization against fungal pathogens in termites. Sci. Rep. 5, 15106. https://doi.org/10.1038/srep15106. Lowenberger, C., Smartt, C., Bulet, P., Ferdig, M., Severson, D., Hoffmann, J., Christensen, B., 1999a. Insect immunity: molecular cloning, expression, and characterization of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect Mol. Biol. 8, 107-118. https://doi.org/10.1046/j.13652583.1999.810107.x. Lowenberger, C.A., Kamal, S., Chiles, J., Paskewitz, S., Bulet, P., Hoffmann, J.A., Christensen, B.M., 1999b. Mosquito-Plasmodium interactions in response to immune activation of the vector. Exp. Parasitol. 91, 59-69. https://doi.org/10.1006/expr.1999.4350. Lv, M., Mohamed, A.A., Zhang, L., Zhang, P., Zhang, L., 2016. A family of CSαβ defensins and defensin-like peptides from the migratory locust, Locusta migratoria, and their expression dynamics during mycosis and nosemosis. PLoS One 11, e0161585. https://doi.org/10.1371/journal.pone.0161585. Marx, F., 2004. Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Appl. Microbiol. Biot. 65, 133-142. https://doi.org/10.1007/s00253-004-1600-z. Medzhitov, R., 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1, 135-145. https://doi.org/10.1038/35100529. Medzhitov, R., Preston-Hurlburt, P., Janeway Jr, C.A., 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394397. https://doi.org/10.1038/41131. Meng, P., Yang, S., Shen, C., Jiang, K., Rong, M., Lai, R., 2013a. The first salamander defensin antimicrobial peptide. PLoS One 8, e83044. https://doi.org/10.1371/journal.pone.0083044. Meng, X., Xu, J., He, Y., Yang, K.Y., Mordorski, B., Liu, Y., Zhang, S., 2013b. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25, 1126-1142. https://doi.org/10.1105/tpc.112.109074. Meyer, V., Spielvogel, A., Funk, L., Tilburn, J., Arst, H.N., Stahl, U., 2005. Alkaline pH-induced up-regulation of the afp gene encoding the antifungal protein (AFP) of Aspergillus giganteus is not mediated by the transcription factor PacC: possible involvement of calcineurin. Mol. Genet. Genomics 274, 295-306. https://doi.org/10.1007/s00438-005-0002-y. Meyer, V., Stahl, U., 2002. New insights in the regulation of the afp gene encoding the antifungal protein of Aspergillus giganteus. Curr. Genet. 42, 36-42. https://doi.org/10.1007/s00294-002-0324-9. Meyer, V., Stahl, U., 2003. The influence of co‐cultivation on expression of the antifungal protein in Aspergillus giganteus. J. Basic Microbiol. 43, 68-74. https://doi.org/10.1002/jobm.200390007. Meyer, V., Wedde, M., Stahl, U., 2002. Transcriptional regulation of the antifungal protein in Aspergillus giganteus. Mol. Genet. Genomics 266, 747-757. https://doi.org/10.1007/s00438-001-0609-6. Mirouze, M., Sels, J., Richard, O., Czernic, P., Loubet, S., Jacquier, A., François, I.E., Cammue, B.P., Lebrun, M., Berthomieu, P., Marquès, L., 2006. A putative novel role for plant defensins: a defensin from the zinc hyper‐accumulating plant, Arabidopsis 21

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881

halleri, confers zinc tolerance. Plant J. 47, 329-342. https://doi.org/10.1111/j.1365313X.2006.02788.x. Mitta, G., Vandenbulcke, F., Hubert, F., Roch, P., 1999. Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J. Cell Sci. 112, 4233-4242. Moskalev, A., Zhikrivetskaya, S., Krasnov, G., Shaposhnikov, M., Proshkina, E., Borisoglebsky, D., Danilov, A., Peregudova, D., Sharapova, I., Dobrovolskaya, E., 2015. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock. BMC Genomics 16, S8. https://doi.org/10.1186/1471-2164-16-S13-S8. Masso-Silva, J.A., Diamond, G., 2014. Antimicrobial peptides from fish. Pharmaceuticals 7, 265-310. https://doi.org/10.3390/ph7030265. Moynagh, P.N., 2005. The NF-κB pathway. J Cell Sci 118, 4589-4592. https://doi.org/10.1242/jcs.02579. Mura, M.E., Ruiu, L., 2017. Brevibacillus laterosporus pathogenesis and local immune response regulation in the house fly midgut. J. Invertebr. Pathol. 145, 55-61. https://doi.org/10.1016/j.jip.2017.03.009. Nagaoka, I., Someya, A., Iwabuchi, K., Yamashita, T., 1991. Characterization of cDNA clones encoding guinea pig neutrophil cationic peptides. FEBS Lett. 280, 287-291. https://doi.org/10.1016/0014-5793(91)80314-s. Nakajima, Y., Van Der Goes van Naters‐Yasui, A., Taylor, D., Yamakawa, M., 2002. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Mol. Biol. 11, 611-618. https://doi.org/10.1046/j.13652583.2002.00372.x. Nakajima, Y., van Naters, A.v.d.G., Taylor, D., Yamakawa, M., 2001. Two isoforms of a member of the arthropod defensin family from the soft tick, Ornithodoros moubata (Acari: Argasidae). Insect Biochem. Mol. Biol. 31, 747-751. https://doi.org/10.1016/S0965-1748(01)00066-2. Nam, B.-H., Moon, J.-Y., Kim, Y.-O., Kong, H.J., Kim, W.-J., Lee, S.-J., Kim, K.-K., 2010. Multiple β-defensin isoforms identified in early developmental stages of the teleost Paralichthys olivaceus. Fish Shellfish Immunol. 28, 267-274. https://doi.org/10.1016/j.fsi.2009.11.004. Niyonsaba, F., Someya, A., Hirata, M., Ogawa, H., Nagaoka, I., 2001. Evaluation of the effects of peptide antibiotics human β‐defensins‐1/‐2 and LL‐37 on histamine release and prostaglandin D2 production from mast cells. Eur J. Immunol. 31, 1066-1075. https://doi.org/10.1002/1521-4141(200104)31:4<1066::AID-IMMU1066>3.0.CO;2%23. Niyonsaba, F., Ushio, H., Nakano, N., Ng, W., Sayama, K., Hashimoto, K., Nagaoka, I., Okumura, K., Ogawa, H., 2007. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 127, 594-604. https://doi.org/10.1038/sj.jid.5700599. Oeemig, J.S., Lynggaard, C., Knudsen, D.H., Hansen, F.T., Nørgaard, K.D., Schneider, T., Vad, B.S., Sandvang, D.H., Nielsen, L.A., Neve, S., 2012. Eurocin, a new fungal defensin structure, lipid binding, and its mode of action. J. Biol. Chem. 287, 4236142372. https://doi.org/10.1074/jbc.M112.382028. O’Neil, D.A., Porter, E.M., Elewaut, D., Anderson, G.M., Eckmann, L., Ganz, T., Kagnoff, M.F., 1999. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol. 163, 6718-6724. 22

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R.D., Hamamura, Y., Mizukami, A., Susaki, D., 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357-361. https://doi.org/10.1038/nature07882. Paege, N., Jung, S., Schäpe, P., Müller-Hagen, D., Ouedraogo, J.-P., Heiderich, C., Jedamzick, J., Nitsche, B.M., van den Hondel, C.A., Ram, A.F., Meyer, V., 2016. A transcriptome meta-analysis proposes novel biological roles for the antifungal protein AnAFP in Aspergillus niger. PloS One 11, e0165755. https://doi.org/10.1371/journal.pone.0165755. Penninckx, I., Eggermont, K., Terras, F., Thomma, B., De Samblanx, G.W., Buchala, A., Métraux, J.-P., Manners, J.M., Broekaert, W.F., 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 2309-2323. https://doi.org/10.1105/tpc.8.12.2309. Pioli, P.A., Weaver, L.K., Schaefer, T.M., Wright, J.A., Wira, C.R., Guyre, P.M., 2006. Lipopolysaccharide-induced IL-1β production by human uterine macrophages upregulates uterine epithelial cell expression of human β-defensin 2. J. Immunol. 176, 6647-6655. https://doi.org/10.4049/jimmunol.176.11.6647. Pisuttharachai, D., Yasuike, M., Aono, H., Yano, Y., Murakami, K., Kondo, H., Aoki, T., Hirono, I., 2009. Characterization of two isoforms of Japanese spiny lobster Panulirus japonicus defensin cDNA. Dev. Comp. Immunol. 33, 434-438. https://doi.org/10.1016/j.dci.2008.11.007. Prado Montes de Oca, E, 2013. Antimicrobial peptide elicitors: new hope for the postantibiotic era. Innate Immun. 19, 227-241. https://doi.org/10.1177/1753425912460708. Pré, M., Atallah, M., Champion, A., De Vos, M., Pieterse, C.M., Memelink, J., 2008. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 147, 1347-1357. https://doi.org/10.1104/pp.108.117523. Premratanachai, P., Joly, S., Johnson, G., McCray Jr, P., Jia, H., Guthmiller, J.M., 2004. Expression and regulation of novel human β‐defensins in gingival keratinocytes. Oral Microbiol. Immunol. 19, 111-117. https://doi.org/10.1111/j.0902-0055.2002.00127.x. Qi, Z., Xu, W., Meng, F., Zhang, Q., Chen, C., Shao, R., 2016. Cloning and expression of β-defensin from soiny mullet (Liza haematocheila), with insights of its antibacterial mechanism. PloS One 11, e0157544. https://doi.org/10.1371/journal.pone.0157544. Ramirez, J.L., Muturi, E.J., Barletta, A.B., Rooney, A.P., 2018. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Dev. Comp. Immunol. 95, 1-9. https://doi.org/10.1016/j.dci.2018.12.010. Reddy, K.V., Yedery, R.D., Aranha, C., 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24, 536-547. https://doi.org/10.1016/j.ijantimicag.2004.09.005. Ren, Q., Li, M., Zhang, C.Y., Chen, K.P., 2011. Six defensins from the triangle-shell pearl mussel Hyriopsis cumingii. Fish Shellfish Immunol. 31, 1232-1238. https://doi.org/10.1016/j.fsi.2011.07.020. Rodríguez-Jiménez, F.-J., Krause, A., Schulz, S., Forssmann, W.-G., Conejo-Garcia, J.R., Schreeb, R., Motzkus, D., 2003. Distribution of new human β-defensin genes clustered on chromosome 20 in functionally different segments of epididymis. Genomics 81, 175-183. https://doi.org/10.1016/s0888-7543(02)00034-4. Rosa, R.D., Santini, A., Fievet, J., Bulet, P., Destoumieux-Garzón, D., Bachère, E., 2011. Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas. PLoS One 6, e25594. https://doi.org/10.1371/journal.pone.0025594. 23

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

Ruangsri, J., Kitani, Y., Kiron, V., Lokesh, J., Brinchmann, M.F., Karlsen, B.O., Fernandes, J.M., 2013. A novel beta-defensin antimicrobial peptide in Atlantic cod with stimulatory effect on phagocytic activity. PLoS One 8, e62302. https://doi.org/10.1371/journal.pone.0062302. Rutschmann, S., Jung, A.C., Hetru, C., Reichhart, J.M., Hoffmann, J.A., Ferrandon, D., 2000. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569-580. https://doi.org/10.1016/s1074-7613(00)80208-3. Saito, T., Kawabata, S.-i., Shigenaga, T., Takayenoki, Y., Cho, J., Nakajima, H., Hirata, M., Iwanaga, S., 1995. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J. Biochem. 117, 1131-1137. https://doi.org/10.1093/oxfordjournals.jbchem.a124818. Sang, Y., Ortega, M.T., Blecha, F., Prakash, O., Melgarejo, T., 2005. Molecular cloning and characterization of three β-defensins from canine testes. Infect. Immun. 73, 26112620. https://doi.org/10.1128/IAI.73.5.2611-2620.2005. Santamaria, M.H., Perez Caballero, E., Corral, R.S., 2016. Unmethylated CpG motifs in Toxoplasma gondii DNA induce TLR9-and IFN-β-dependent expression of α-defensin5 in intestinal epithelial cells. Parasitology 143, 60-68. https://doi.org/10.1017/S0031182015001456. Sawai, M.V., Jia, H.P., Liu, L., Aseyev, V., Wiencek, J.M., McCray, P.B., Ganz, T., Kearney, W.R., Tack, B.F., 2001. The NMR structure of human β-defensin-2 reveals a novel α-helical segment. Biochemistry 40, 3810-3816. https://doi.org/ 10.1021/bi002519d. Schmitt, P., Wilmes, M., Pugnière, M., Aumelas, A., Bachère, E., Sahl, H.G., Schneider, T., Destoumieux-Garzón, D., 2010. Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J. Biol. Chem. 285, 29208-29216. https://doi.org/10.1074/jbc.M110.143388. Schneider, T., Kruse, T., Wimmer, R., Wiedemann, I., Sass, V., Pag, U., Jansen, A., Nielsen, A.K., Mygind, P.H., Raventós, D.S., Neve, S., Ravn, B., Bonvin, A.M., De Maria, L., Andersen, A.S., Gammelgaard, L.K., Sahl, H.G., Kristensen, H.H. 2010. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328, 1168-1172. https://doi.org/10.1126/science.1185723. Schuhmann, B., Seitz, V., Vilcinskas, A., Podsiadlowski, L., 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53, 125133. https://doi.org/10.1002/arch.10091. Sechet, E., Telford, E., Bonamy, C., Sansonetti, P.J., Sperandio, B., 2018. Natural molecules induce and synergize to boost expression of the human antimicrobial peptide β-defensin-3. Proc. Natl. Acad. Sci. USA 115, E9869-E9878. https://doi.org/10.1073/pnas.1805298115. Selsted, M.E., Szklarek, D., Ganz, T., Lehrer, R., 1985a. Activity of rabbit leukocyte peptides against Candida albicans. Infect. Immun. 49, 202-206. Selsted, M.E., Harwig, S.S., Ganz, T., Schilling, J.W., Lehrer, R.I., 1985b. Primary structures of three human neutrophil defensins. J. Clin. Invest. 76, 1436-1939. https://doi.org/10.1172/JCI112121. Semple, C.A., Rolfe, M., Dorin, J.R., 2003. Duplication and selection in the evolution of primate β-defensin genes. Genome Biol. 4, R31. https://doi.org/10.1186/gb-2003-45-r31. Semple, F., Webb, S., Li, H.N., Patel, H.B., Perretti, M., Jackson, I.J., Gray, M., Davidson, D.J., Dorin, J.R., 2010. Human β‐defensin 3 has immunosuppressive activity 24

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

in vitro and in vivo. Eur. J. Immunol. 40, 1073-1078. https://doi.org/10.1002/eji.200940041. Seo, S.J., Ahn, S.W., Hong, C.K., Ro, B.I., 2001. Expressions of β-defensins in human keratinocyte cell lines. J. Dermatol. Sci. 27, 183-191. https://doi.org/10.1016/S09231811(01)00135-9. Seto, Y., Tamura, K., 2013. Extensive differences in antifungal immune response in two Drosophila species revealed by comparative transcriptome analysis. Int. J. Genomics 2013, 542139. https://doi.org/10.1155/2013/542139. Shafee, T.M., Lay, F.T., Hulett, M.D., Anderson, M.A., 2016. The defensins consist of two independent, convergent protein superfamilies. Mol. Biol. Evol. 33, 2345-2356. https://doi.org/10.1093/molbev/msw106. Shigenaga, A.M., Argueso, C.T., 2016. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin. Cell. Dev. Biol. 56, 174-189. https://doi.org/10.1016/j.semcdb.2016.06.005. Siddique, S., Wieczorek, K., Szakasits, D., Kreil, D.P., Bohlmann, H., 2011. The promoter of a plant defensin gene directs specific expression in nematode-induced syncytia in Arabidopsis roots. Plant Physiol. Biochem. 49, 1100-1107. https://doi.org/10.1016/j.plaphy.2011.07.005. Subramanian, K., Bergman, P., Henriques-Normark, B., 2017. Vitamin D promotes pneumococcal killing and modulates inflammatory responses in primary human neutrophils. J. Innate Immun. 9, 375-386. https://doi.org/10.1159/000455969. Taj, G., Agarwal, P., Grant, M., Kumar, A., 2010. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav. 5, 1370-1378. https://doi.org/10.4161/psb.5.11.13020. Takaoka, A., Wang, Z., Choi, M.K., Yanai, H., Negishi, H., Ban, T., Lu, Y., Miyagishi, M., Kodama, T., Honda, K., 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505. https://doi.org/10.1038/nature06013. Tassanakajon, A., Somboonwiwat, K., Amparyup, P., 2015. Sequence diversity and evolution of antimicrobial peptides in invertebrates. Dev. Comp. Immunol. 48, 324-341. https://doi.org/10.1016/j.dci.2014.05.020. Teng, L., Gao, B., Zhang, S., 2012. The first chordate big defensin: identification, expression and bioactivity. Fish. Shellfish. Immunol. 32, 572-577. https://doi.org/10.1016/j.fsi.2012.01.007. Tesfaye, M., Silverstein, K.A., Nallu, S., Wang, L., Botanga, C.J., Gomez, S.K., Costa, L.M., Harrison, M.J., Samac, D.A., Glazebrook, J., Katagiri, F., Gutierrez-Marcos, J.F., Vandenbosch, K.A., 2013. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes. PLoS One 8, e58992. https://doi.org/10.1371/journal.pone.0058992. Thevissen, K., François, I.E., Takemoto, J.Y., Ferket, K.K., Meert, E.M., Cammue, B.P., 2003. DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol. Lett. 226, 169-173. https://doi.org/10.1016/S0378-1097(03)00590-1. Thomma, B.P., Broekaert, W.F., Biochemistry, 1998. Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thaliana. Plant Physiol. Biochem. 36, 533-537. https://doi.org/10.1016/S0981-9428(98)80179-4. Tian, C., Gao, B., Rodriguez, M.del C., Lanz-Mendoza, H., Ma, B., Zhu, S., 2008. Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol. Immunol. 45, 3909-3916. https://doi.org/10.1016/j.molimm.2008.06.025. 25

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

Tran, D., Tran, P.A., Tang, Y.Q., Yuan, J., Cole, T., Selsted, M.E., 2002. Homodimeric theta-defensins from Rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J. Biol. Chem. 277, 3079-3084. https://doi.org/10.1074/jbc.M109117200. Tu, J., Li, D., Li, Q., Zhang, L., Zhu, Q., Gaur, U., Fan, X., Xu, H., Yao, Y., Zhao, X., Yang, M., 2015. Molecular evolutionary analysis of β-defensin peptides in vertebrates. Evol. Bioinform. Online. 11, 105-114. https://doi.org/10.4137/EBO.S25580. Turner, M.D., Nedjai, B., Hurst, T., Pennington, D.J., 2014. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563-2582. https://doi.org/10.1016/j.bbamcr.2014.05.014. Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J.M., Lemaitre, B., Hoffmann, J.A., Imler, J.L., 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737-748. https://doi.org/10.1016/s1074-7613(00)00072-8. van den Heuvel, K., Hulzink, J., Barendse, G., Wullems, G., 2001. The expression of tgas118, encoding a defensin in Lycopersicon esculentum, is regulated by gibberellin. J. Exp. Bot. 52, 1427-1436. https://doi.org/10.1093/jexbot/52.360.1427. van der Marel, M., Adamek, M., Gonzalez, S.F., Frost, P., Rombout, J.H., Wiegertjes, G.F., Savelkoul, H.F., Steinhagen, D., 2012. Molecular cloning and expression of two β-defensin and two mucin genes in common carp (Cyprinus carpio L.) and their upregulation after β-glucan feeding. Fish Shellfish Immunol. 32, 494-501. https://doi.org/10.1016/j.fsi.2011.12.008. van der Weerden, N.L., Lay, F.T., Anderson, M.A., 2008. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem. 283, 14445-14452. https://doi.org/10.1074/jbc.M709867200. van Dijk, A., Veldhuizen, E.J., Haagsman, H.P., 2008. Avian defensins. Vet. Immunol. Immunopathol. 124, 1-18. https://doi.org/10.1016/j.vetimm.2007.12.006. Wang, G., Li, J., Zou, P., Xie, H., Huang, B., Nie, P., Chang, M., 2012. Expression pattern, promoter activity and bactericidal property of β-defensin from the mandarin fish Siniperca chuatsi. Fish Shellfish Immunol. 33, 522-531. https://doi.org/10.1016/j.fsi.2012.06.003. Wang, G., Li, X., Wang, Z., 2015a. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087-D1093. https://doi.org/10.1093/nar/gkv1278. Wang, G., Xia, X., Li, X., Dong, S., Li, J., 2014. Molecular characterization and expression patterns of the big defensin gene in freshwater mussel (Hyriopsis cumingii). Genet. Mol. Res. 13, 704-715. https://doi.org/10.4238/2014.January.29.1. Wang, L., Song, X., Song, L., 2018. The oyster immunity. Dev. Comp. Immunol. 80, 99-118. https://doi.org/10.1016/j.dci.2017.05.025. Wang, J.X., Zhao, X.F., Liang, Y.L., Li, L., Zhang, W., Ren, Q., Wang, L.C., Wang, L.Y., 2006. Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica). Cell Mol. Life Sci. 63, 3072-3082. https://doi.org/10.1007/s00018-006-6284-3. Wang, K.Z., Feng, L., Jiang, W.D., Wu, P., Liu, Y., Jiang, J., Kuang, S.Y., Tang, L., Zhang, Y.A., Zhou, X.Q., 2019. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 86, 814-831. https://doi.org/10.1016/j.fsi.2018.12.014. Wang, Q., Zhang, L., Yang, D., Yu, Q., Li, F., Cong, M., Ji, C., Wu, H., Zhao, J., 2015b. Molecular diversity and evolution of defensins in the manila clam Ruditapes 26

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

philippinarum. Fish Shellfish Immunol. 47, 302-312. https://doi.org/10.1016/j.fsi.2015.09.008. Wang, T.T., Nestel, F.P., Bourdeau, V., Nagai, Y., Wang, Q., Liao, J., Tavera-Mendoza, L., Lin, R., Hanrahan, J.W., Mader, S., White, J.H., 2004. Cutting edge: 1,25dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173, 2909-2912. https://doi.org/10.4049/jimmunol.173.5.2909. Weerawanich, K., Webster, G., Ma, J.K., Phoolcharoen, W., Sirikantaramas, S., 2018. Gene expression analysis, subcellular localization, and in planta antimicrobial activity of rice (Oryza sativa L.) defensin 7 and 8. Plant Physiol. Biochem. 124, 160-166. https://doi.org/10.1016/j.plaphy.2018.01.011. Whenham, N., Lu, T.C., Maidin, M.B., Wilson, P.W., Bain, M.M., Stevenson, M.L., Stevens, M.P., Bedford, M.R., Dunn, I.C., 2015. Ovodefensins, an oviduct-specific antimicrobial gene family, have evolved in birds and reptiles to protect the egg by both sequence and intra-six-cysteine sequence motif spacing. Biol. Reprod. 92, 154, 1-13. https://doi.org/10.1095/biolreprod.114.126839. Whitham, S., Dinesh-Kumar, S., Choi, D., Hehl, R., Corr, C., Baker, B., 1994. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101-1115. https://doi.org/10.1016/00928674(94)90283-6. Wilson, I.W., Kennedy, G.C., Peacock, J.W., Dennis, E.S., 2005. Microarray analysis reveals vegetative molecular phenotypes of Arabidopsis flowering-time mutants. Plant Cell Physiol. 46, 1190-1201. https://doi.org/10.1093/pcp/pci128. Wink, M., 2008. Evolutionary advantage and molecular modes of action of multicomponent mixtures used in phytomedicine. Curr. Drug Metab. 9, 996-1009. https://doi.org/10.2174/138920008786927794 Wink, M., 2015. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2, 251-286. https://doi.org/10.3390/medicines2030251. Wintergerst, E., Manz-Keinke, H., Plattner, H., Schlepper-Schäfer, J., 1989. The interaction of a lung surfactant protein (SP-A) with macrophages is mannose dependent. Eur. J. Cell Biol. 50, 291-298. https://doi.org/10.1016/0014-4827(91)90081-5. Xu, W., Faisal, M., 2010. Defensin of the zebra mussel (Dreissena polymorpha): molecular structure, in vitro expression, antimicrobial activity, and potential functions. Mol. Immunol. 47, 2138-2147. https://doi.org/10.1016/j.molimm.2010.01.025. Yamaguchi, Y., Nagase, T., Makita, R., Fukuhara, S., Tomita, T., Tominaga, T., Kurihara, H., Ouchi, Y., 2002. Identification of multiple novel epididymis-specific βdefensin isoforms in humans and mice. J. Immunol. 169, 2516-2523. https://doi.org/10.4049/jimmunol.169.5.2516. Yang, D., Biragyn, A., Kwak, L.W., Oppenheim, J.J., 2002. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23, 291-296. https://doi.org/10.1016/S1471-4906(02)02246-9 Yang, D., Chertov, O., Bykovskaia, S., Chen, Q., Buffo, M., Shogan, J., Anderson, M., Schröder, J., Wang, J., Howard, O., Oppenheim, J.J., 1999. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525-528. https://doi.org/10.1126/science.286.5439.525 Yang, J., Luo, J., Zheng, H., Lu, Y., Zhang, H., 2016. Cloning of a big defensin gene and its response to Vibrio parahaemolyticus challenge in the noble scallop Chlamys nobilis (Bivalve: Pectinidae). Fish Shellfish Immunol. 56, 445-449. https://doi.org/10.1016/j.fsi.2016.07.030.

27

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

Yang, M., Zhang, C., Zhang, M.Z., Zhang, S., 2018. Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. BMC Microbiol. 18, 54. https://doi.org/10.1186/s12866-018-1190-z. Yao, T., Lu, J., Ye, L., Wang, J., 2019. Molecular characterization and immune analysis of a defensin from small abalone, Haliotis diversicolor. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 235, 1-7. https://doi.org/10.1016/j.cbpb.2019.05.004. Yu, L.T., Xiao, Y.P., Li, J.J., Ran, J.S., Yin, L.Q., Liu, Y.P., Zhang, L., 2018. Molecular characterization of a novel ovodefensin gene in chickens. Gene 678, 233-240. https://doi.org/10.1016/j.gene.2018.08.029. Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389395. https://doi.org/10.1038/415389a. Zhang, G., Sunkara, L.T., 2014. Avian antimicrobial host defense peptides: from biology to therapeutic applications. Pharmaceuticals 7, 220-247. https://doi.org/10.3390/ph7030220. Zhang, L., Chen, D., Yu, L., Wei, Y., Li, J., Zhou, C., 2019. Genome-wide analysis of the ovodefensin gene family: monophyletic origin, independent gene duplication and presence of different selection patterns. Infect. Genet. Evol. 68, 265-272. https://doi.org/10.1016/j.meegid.2019.01.001. Zhang, L., Yang, D., Wang, Q., Yuan, Z., Wu, H., Pei, D., Cong, M., Li, F., Ji, C., Zhao, J., 2015. A defensin from clam Venerupis philippinarum: Molecular characterization, localization, antibacterial activity, and mechanism of action. Dev. Comp. Immunol. 51, 29-38. https://doi.org/10.1016/j.dci.2015.02.009. Zhang, R., Zhu, Y., Pang, X., Xiao, X., Zhang, R., Cheng, G., 2017. Regulation of antimicrobial peptides in Aedes aegypti Aag2 cells. Front. Cell Infect. Microbiol. 7, 22. https://doi.org/10.3389/fcimb.2017.00022. Zhao, B.C., Lin, H.C., Yang, D., Ye, X., Li, Z.G., 2016. Disulfide bridges in defensins. Curr. Top. Med. Chem. 16, 206-219. https://doi.org/10.2174/1568026615666150701115911. Zhao, C., Wang, I., Lehrer, R.I., 1996. Widespread expression of beta‐defensin hBD‐1 in human secretory glands and epithelial cells. FEBS Lett. 396, 319-322. https://doi.org/10.1016/0014-5793(96)01123-4. Zhao, J.G., Zhou, L., Jin, J.Y., Zhao, Z., Lan, J., Zhang, Y.B., Zhang, Q.Y., Gui, J.F., 2009. Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-κB and Sp1 of a medaka β-defensin. Dev. Comp. Immunol. 33, 624-637. https://doi.org/10.1016/j.dci.2008.11.006. Zhao, J., Song, L., Li, C., Ni, D., Wu, L., Zhu, L., Wang, H., Xu, W., 2007. Molecular cloning, expression of a big defensin gene from bay scallop Argopecten irradians and the antimicrobial activity of its recombinant protein. Mol. Immunol. 44, 360-368. https://doi.org/10.1016/j.molimm.2006.02.025. Zhou, S., Ren, X., Yang, J., Jin, Q., 2018. Evaluating the value of defensins for diagnosing secondary bacterial infections in influenza-infected patients. Front. Microbiol 9, 2762. https://doi.org/10.3389/fmicb.2018.02762. Zhou, Y., Lei, Y., Cao, Z., Chen, X., Sun, Y., Xu, Y., Guo, W., Wang, S., Liu, C., 2019. A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. Dev. Comp. Immunol. 92, 105-115. https://doi.org/10.1016/j.dci.2018.11.011. Zhu, S., Gao, B., 2013. Evolutionary origin of β-defensins. Dev. Comp. Immunol. 39, 79-84. https://doi.org/10.1016/j.dci.2012.02.011. Zhu, J., Wang, H., Wang, J., Wang, X., Peng, S., Geng, Y., Wang, K., Ouyang, P., Li, Z., Huang, X., Chen, D., 2017. Identification and characterization of a β-defensin gene 28

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

involved in the immune defense response of channel catfish, Ictalurus punctatus. Mol. Immunol. 85, 256-264. https://doi.org/10.1016/j.molimm.2017.03.009. Zhu, S., 2008. Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol. Immunol. 45, 828-838. https://doi.org/10.1016/j.molimm.2007.06.354. Zhu, S., Gao, B., Harvey, P.J., Craik, D.J., 2012. Dermatophytic defensin with antiinfective potential. Proc. Natl. Acad. Sci. USA 109, 8495-8500. https://doi.org/10.1073/pnas.1201263109. Zipfel, C., 2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20, 10-16. https://doi.org/10.1016/j.coi.2007.11.003. Zou, J., Mercier, C., Koussounadis, A., Secombes, C., 2007. Discovery of multiple betadefensin like homologues in teleost fish. Mol. Immunol. 44, 638-647. https://doi.org/10.1016/j.molimm.2006.01.012.

29

1190

Figure captions

1191

Figure 1. Diversity of defensins. Phylogenetic tree of CSαβ defensins (green), α-

1192

defensins (red), β-defensins (black), β-defensin- from fish (orange) and big defensins

1193

(blue). The phylogenetic tree was constructed with the full-length amino acid sequences

1194

using the neighbour-joining method in MEGAX. Numbers on the branches indicate the

1195

bootstrap percentage values (1,000 replicates). The name of the defensin, origin and

1196

NCBI accession number of each sequence are indicated.

1197 1198

Figure 2. Representative structures of defensins based on their secondary structure.

1199

Defensins are classified into: (A) α- (HD-5 from human; protein data bank: 2LXZ), (B)

1200

β- (HBD4 from human; protein data bank: 5KI9), (C) θ- (RTD-1 from Rhesus macaque;

1201

protein data bank: 2LYF), and (D) cysteine-stabilised αβ (CSαβ) (AhPDF1 from

1202

Arabidopsis halleri; protein data bank: 2M8B). Disulphide bridges are displayed as

1203

orange lines. α- helices are represented in pink coiled ribbons, β- in yellow arrows, coils

1204

in white and 3-10 helix in blue. Structures were visualised using Visual Molecular

1205

Dynamics (VMD) (Humphrey et al., 1996).

1206 1207

Figure 3. Simplified schematic overview of the defence signalling pathway that triggers

1208

the expression of defensin in mammals, insects (Drosophila) and plants (Arabidopsis).

1209

A) In mammals, pathogen-associated molecular patterns (PAMPs) are recognised by

1210

pattern recognition receptors (PRR). This interaction activates MyD88 which triggers a

1211

signalling cascade (dashed lines) which results in the nuclear translocation of NF-κB

1212

transcriptional factors. These transcriptional factors regulate the defence response that

1213

includes the expression of defensins and other AMPs. Cytokines also can trigger and

1214

activate NF-κB. B) In insects, the innate immune system involves two main signalling

1215

pathways: Imd and Toll, whose transcriptional factors are Relish and DIF/Dorsal,

1216

respectively. C) In plants, bacterial and fungal infection activate two main responses,

1217

effector-triggered immunity (ETI) and MAMP-triggered immunity (MTI), both activate

1218

the MAPK cascade which activates the expression of defensins. Defensin gene

1219

expression also is triggered by plant hormones, such as jasmonic acid (JA), ethylene

1220

(ET) and salicylic acid (SA).

1221 1222

Figure 4. Localisation of the gene expression of defensins in mammals, insects and

1223

plants. Defensins can be constitutively or differentially expressed in vertebrates, 30

1224

invertebrates and plants. An example of each group is represented in mouse (mammal,

1225

A), Drosophila (insect, B) and Arabidopsis (C).

31

Table 1. Transcriptional expression of human defensin genes.

Defensin name (gene)

mRNA distribution Constitutive expression

Reference Inducible expression Stimulator Localisation

α-defensins HD-5 ( DEFA5)

Toxoplasma gondii, IFN-β, Unmethylated CpG

HD-6 ( DEFA6)

β-defensins HBD-1 (DEFB1)

HBD-2 (DEFB2)

Paneth cell Paneth cell

Keratinocytes, airway epithelia, epithelia from the urogenital tract, monocytes, macrophages. Macrophages, monocytes, airway epithelia

LPS, IFN-γ

Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Candida albicans, TNF-α, IL-1β, 1L-17.

Monocytes, macrophages, dendritic cells. Keratinocytes, airway epithelia, intestinal tract, monocytes, macrophages. Keratinocytes, airway epithelia

(Duits et al., 2002; Zhao et al., 1996)

(García et al., 2001; Premratanachai et al., 2004; Yamaguchi et al., 2002) (Yamaguchi et al., 2002; Zhou et al., 2018) (Kao et al., 2003; Yamaguchi et al., 2002) (Premratanachai et al., 2004)

HBD-3 (DEFB3)

Keratinocytes

Pseudomonas aeruginosa, IFN-γ

HBD-4 (DEFB4)

Epididymis, gingival keratinocytes

Streptococcus pneumoniae, GramPseudomonas aeruginosa

Airway epithelia

HBD-5 (DEFB5)

Epididymis

H7N9 virus

Blood

HBD-6 (DEFB6)

Testis, lung, epididymis

HBD-7 ( Beta-defensin 107)

Gingival keratinocytes

32

(Foureau et al., 2010; Santamaria et al., 2016)

(Harder et al., 1997; Harder et al., 2000; Kao et al., 2004; Krisanaprakornkit et al., 2000; Liu et al., 2002) (Fahlgren et al., 2004; Harder et al., 2001)

HBD-8 (DEFB108)

Testis

Candida sp.

HBD-9 (DEFB109)

Aspergillus fumigatus

HBD-11 (DEFB111)

Heart, brain, placenta, lung, liver, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, leukocyte, ocular surface, gingival keratinocytes Gingival keratinocytes

HBD-12 (DEFB112)

Gingival keratinocytes

HBD-14 (DEFB114)

Gingival keratinocytes Bronchial epithelial

(Kao et al., 2003; Premratanachai et al., 2004) (Abedin et al., 2008; Alekseeva et al., 2009; Kao et al., 2003; Premratanachai et al., 2004) (Premratanachai et al., 2004) (Premratanachai et al., 2004)

Candida sp.

Gingival keratinocytes

(Premratanachai et al., 2004)

HBD-18 (DEFB118)

Pancreas, testis

(Kao et al., 2003)

HBD-19 ( DEFB119)

Testis

(Djureinovic et al., 2014)

HBD-21 (DEFB121)

Testis

(Fagerberg et al., 2014)

HBD-23 (DEFB123)

Testis

(Fagerberg et al., 2014)

HBD-25 (DEFB125)

Testis, skeletal muscle, kidney

HBD-26 ( DEFB126)

Prostate, testis, skeletal muscle, pancreas

HBD-27 (DEFB127)

Testis, kidney, pancreas, skeletal muscle

HBD-28 (DEFB128)

Testis and epididymis

HBD-29 (DEFB129)

Testis, skeletal muscle

(Fagerberg et al., 2014; Rodríguez-Jiménez et al., 2003) (Fagerberg et al., 2014; Rodríguez-Jiménez et al., 2003) (Fagerberg et al., 2014; Rodríguez-Jiménez et al., 2003; Zhou et al., 2018) (Rodríguez-Jiménez et al., 2003) (Kao et al., 2003; RodríguezJiménez et al., 2003)

33

Acinetobacter baumannii

Blood

HBD-31 (DEFB131)

34

Prostate, testis, small intestine

(Kao et al., 2003)

Table 2. Transcriptional expression of fish defensin genes.

mRNA distribution Inducible expression Species Rainbow trout (Oncorhynchus mykiss)

Rainbow trout (Oncorhynchus mykiss)

Defensin gene omDB-1

Muscle, head kidney

omDB-1

Skin, spleen, gut, gill, head kidney, liver

omDB-2

omDB-3

omDB-4 Common carp (Cyprinus carpio) Gilthead seabream (Sparus aurata)

BD1 BD2 saBD β-defensin

35

Stimulator

Constitutive expression

Skin, spleen, gonad, gut, gill, head kidney, liver Skin, spleen, gonad, gut, gill, head kidney, liver, brain

Response

Reference (Falco et al., 2008)

Yersinia ruckeri

Skin (-), gill (-), gut (-)

polyI:C

Head kidney primary cell culture (↑)

Y. ruckeri

Skin (-), gill (-), gut (-)

polyI:C

Head kidney primary cell culture (-)

Y. ruckeri

Skin (-), gill (↑), gut (-)

polyI:C Y. ruckeri

Skin, spleen, gonad, gut, gill, head kidney, liver

polyI:C

Skin Liver Skin, peritoneal leucocytes, head kidney, liver, gonad, gut, gill, spleen, brain, thymus

β -Glucan β -Glucan Unmethylated CpG oligodeoxynucleotides, bacterial DNA

Head kidney, intestine

Nannochloropsis gaditana

Head kidney primary cell culture (↑) Skin (-), gill (-), gut (-) Head kidney primary cell culture (-) Skin (↑) Skin (↑), gill (↑) Head-kidney leucocytes in vitro (↑) Head kidney (↑)

(Casadei et al., 2009)

(van der Marel et al., 2012) (Cuesta et al., 2011) (Cerezuela et al., 2012)

Olive flounder (Paralichthys olivaceus)

fBDI

Larvae

Edwardsiella tarda

Head kidney (↑)

Medaka (Oryzias latipes)

β-defensin

Eyes, liver, kidney, blood, spleen, gill, intestine.

LPS

Eyes (↑)

β-defensin

Pituitary, testis

EcDefensin

Liver, skin, gill, muscle, spleen, kidney, brain, intestine, heart, stomach, head kidney

LPS, Singapore grouper iridovirus, polyI:C

Spleen (↑), liver (↑)

(Guo et al., 2012)

maΒD-1

Skin, blood, liver, kidney, gill, hindgut

Aeromonas sobria

Liver (↑), skin (↑), gill (-)

(Liang et al., 2013)

A. sobria

Liver (↑), skin (↑), gill (↑), foregut (↑)

(Liang et al., 2013)

Orange-spotted grouper (Epinephelus coioides)

Blunt snout bream (Megalobrama amblycephala) Blunt snout bream (Megalobrama amblycephala)

36

maΒD-2

Liver, kidney, brain, foregut Heart, brain, intestine, liver, gill, head kidney, trunk kidney, spleen, muscle Eye, muscle, brain, skin and hindgut, heart and ovary, spleen, kidney, gill, liver

Mandarin fish (Siniperca chuatsi)

ScBD

Chinese loach (Paramisgurnus dabryanus)

pdBD

Soiny mullet (Liza haematocheila)

Lhβdefensin

Spleen, kidney, gut, liver

Streptococcus dysgalactiae

Channel catfish (Ictalurus punctatus)

Edwardsiella ictaluri

ccBD

Skin, stomach, spleen, kidney, head kidney, liver, foregut, hindgut, gill

Nile tilapia (Oreochromis niloticus)

Onβdefensin

Atlantic cod (Gadus morhua)

defb

Skin, spleen, kidney, muscle, liver, heart, intestine, stomach, gill Swim bladder, peritoneum

(Nam et al., 2010)

(Zhao et al., 2009) (Jin et al., 2010b)

(Wang et al., 2012) Aeromonas hydrophila

Eyes (↑), gill (↑), skin (↑), spleen (↑)

(Chen et al., 2013)

Spleen (↑), gut (↑), kidney (↑), liver (↑) Head kidney (↑), gill (↑), skin (↑), spleen (-) Spleen leucocytes (↑), Head kidney leucocytes (↑)

(Zhu et al., 2017) (Zhu et al., 2017)

Streptococcus agalactiae

Skin (↑), muscle (↑), kidney (↑), gill (↑)

(Dong et al., 2015)

Vibrio anguillarum

Head kidney (↑)

(Ruangsri et al.,

LPS

(Qi et al., 2016)

wall, skin, head, gill and kidneys

2013) Temperature increase Commensal bacterium Pseudomonas sp. LPS

Meagre (Argyrosomus regius)

defb

Kidney, spleen, gut, gill

poly (I:C) β-glucan

Spleen, gills, brain, skin, hindgut, liver, muscle, foregut, buccal epithelium, blood, head kidney, gonad Gill, gonad, gut, kidney, muscle, skin, liver, spleen. (zfDB2 expressed only in gut)

Gills (↓), skin (↑)

(Campoverde et al., 2017)

Hind-gut (↑), Spleen (↑), gills (↑), skin (↑), foregut (↑), head kidney (↑)

(Li et al., 2014)

β-defensin 3

Zebrafish (Danio rerio)

zfDB1, zfDB3

Rainbow trout (Oncorhynchus mykiss)

omDB-1-4

Skin, gill, gut, liver

Peptidoglycan

Dabry's sturgeon (Acipenser dabryanus)

AdBD

Skin, liver, gonad, muscle, brain, eye, head kidney, heart, hind gut, spleen, gill

E. tarda

Grass carp (Ctenopharyngodon idella)

β-defensin1

Intestine

Gossypol

Intestine (↓)

Golden pompano (Trachinotus ovatus)

Head kidney, spleen, brain, muscle, skin, heart, gill, liver, stomach, intestine

Vibrio harveyi

Head kidney (↑), spleen (↑)

TroBD

Viral nervous necrosis virus

Head kidney (↑), spleen (↑)

PolyI:C: polyribocytidylic acid, a synthetic dsRNA. LPS: lipopolysaccharide.

V. anguillarum

(Ruangsri et al., 2014)

Kidney (↑), spleen (↓), gut (↓), gill (↓) Kidney (-), spleen (↓), gut (-), gill (-) Kidney (↑), spleen (-), gut (-), gill (-)

Common carp (Cyprinus carpio)

Not effect (-), up-expressed (↑), down-expressed (↓).

37

Gills (↓), skin (↓)

(Zou et al., 2007) Skin (↑), gill (↑), gut (↓), liver (↓) Hind gut (↑), Skin (↑), gill (-), liver (-), head kidney (↑), spleen (↑)

(Casadei et al., 2013) (Chen et al., 2019) (Wang et al., 2019) (Zhou et al., 2019)

Table 3. Transcriptional expression of invertebrate defensin genes. Species

Oyster (Crassostrea gigas)

Defensin gene

Cg-Def

Cg-defh2

Soft tick (Ornithodoros moubata)

Cg-BigDef1, Cg-BigDef2, Cg-BigDef3 Defensins A and B Defensins C and D

Disk abalone (Haliotis discus discus) Mediterranean mussel (Mytilus galloprovincialis)

defensin

Migratory locust (Locusta migratoria)

LmDEF1

MGD-1 MgBD1 MgBD3 MgBD6

LmDEF3 LmDEF5 Mosquito (Aedes aegypti)

38

DefA, DefB, DefC

Constitutive expression Mantle, posterior abductor muscle, labial palps, hemocytes Hemocytes Hemocytes, gonad, digestive gland, gills Midgut Midgut, fat body and reproductive tract Mantle, hepatopancreas Hemocytes Digestive gland Digestive gland Digestive gland, mantle, posterior abductor muscle

Fat body, salivary glands Callow pupae

mRNA distribution Inducible expression Stimulator Response Micrococcus luteus, Vibrio splendidus, Mantle (-) Vibrio anguillarum

Reference

(Gueguen et al., 2006)

M. luteus, V. splendidus, V. anguillarum

Hemocytes (↓), Mantle (↑), gills (↑)

(Gonzalez et al., 2007)

V. splendidus, Vibrio tasmaniensis

Hemocytes (↑)

(Rosa et al., 2011)

Escherichia coli, Staphylococcus aureus, blood feeding Blood feeding

Midgut (↑)

(Nakajima et al., 2001) (Nakajima et al., 2002)

Vibrio alginolyticus, Vibrio parahemolyticus, Lysteria monocytogenes

Hemocytes (↑), gills (↑) digestive tract (↑)

(De Zoysa et al., 2010)

V. alginolyticus

Hemocytes (↓)

(Mitta et al., 1999) (Gerdol et al., 2012)

Metarhizium anisopliae Nosema locustae Metarhizium anisopliae, N. locustae N. locustae

Fat body (↑), salivary glands (↑) Salivary glands (↑) Fat body (↑), salivary glands (↑) Salivary glands (↑)

(Lv et al., 2016) (Lv et al., 2016) (Lv et al., 2016) (Lv et al., 2016)

E. coli, M. luteus

Fat body (↑)

(Lowenberger et al., 1999a; Ramirez et al., 2018)

Midgut (↑)

DefA, DefB

DefC

Drosophila sp.

Drosomycin

Defensin

Termite (Pseudacanthotermes spiniger) House fly (Musca domestica)

Termicin

Md-defensin (CSαβ)

Midgut

Salivary glands, spermathecae and seminal receptacle

Larval antennomaxillary organ, labellar glands, spermathecae and seminal receptacle Hemocytes and salivary glands Epidermis of the body wall, hemocytes, larvae.

E. coli, Serratia marcescens, Staphylococcus aureus, Enterococcus faecium, Leucobacter spp., Candida albicans). Beauveria bassiana, Isaria javanica

Aag2 cells (↑)

(Zhang et al., 2017)

Midgut (↑), fat body (↑)

Plasmodium gallinaceum

Midgut (-)

Beauveria bassiana, I. javanica

Midgut (↑), fat body (↑)

P. gallinaceum

Midgut (-)

M. luteus, E. coli, Erwinia carotovora carotovora

Fat body (↑), Tracheal system (↑)

Saccharomyces cerevisiae

Larval salivary gland (↑), fat body (↑) Fat body (↑)

(Ramirez et al., 2018) (Lowenberger et al., 1999b) (Lowenberger et al., 1999b; Ramirez et al., 2018) (Lowenberger et al., 1999b) (Fehlbaum et al., 1994; Ferrandon et al., 1998) (Seto and Tamura, 2013) (Dimarcq et al., 1994; Tzou et al., 2000) (Seto and Tamura, 2013) (Lamberty et al., 2001; Liu et al., 2015) (Wang et al., 2006)

M. luteus, E. coli

S. cerevisiae Metarhizium anisopliae

E. coli Bacillus thuringiensis Injury

Triangle-shell pearl mussel (Hyriopsis cumingii)

39

HcDef1 HcDef2

Hepatopancreas, gills Hepatopancreas, gills

Larval salivary gland (↑), fat body (↑) Adults (↑)

Fat body (↑), epidermis of the body wall (↑) Midgut (↑) Fat body (↑), hemocytes (↑), larvae (↑), pupae (↑) Gills (↓)

V. anguillarum Gills (↓)

(Mura and Ruiu, 2017) (Andoh et al., 2018) (Ren et al., 2011)

HcDef3 HcDef4 HcDef5 HcDef6 Manila clam (Ruditapes philippinarum) Zebra mussel (Dreissena polymorpha)

Rpdef1, Rpdef2, Rpdef3, Rpdef4 Dpd

Clam (Venerupis philippinarum)

VpDef

Scallop (Argopecten irradians)

AiBD

Scallop (Argopecten purpuratus)

ApBD1

Noble scallop (Chlamys nobilis)

CnBD

Triangle-shell pearl mussel (Hyriopsis cumingii) Horseshoe crab (Tachypleus tridentatus)

HcBD

Big defensin

Japanese spiny lobster (Panulirus japonicus)

PjD1, PjD2

Small abalone (Haliotis

HdDef-2

40

Hepatopancreas, gills Hepatopancreas, gills Gills Gills Hemocytes, mantle, gills, foot, digestive gland Foot, ctenidium, mantle, hemocytes, muscle Hemocytes, mantle, gills, hepatopancreas

V. anguillarum

V. anguillarum

Hemocytes (↑)

(Zhang et al., 2015)

Haemocytes, gills

V. anguillarum

Haemolymph (↑)

(Zhao et al., 2007)

Vibrio splendidus

Hemocytes (-), mantle (-), gills (↑)

(González et al., 2017)

Vibrio parahaemolyticus

Hemocytes (↑)

(Yang et al., 2016)

Aeromonas hydrophila

Mantle (↑), liver (↑), intestine (↑), gill (↑), foot (↑)

(Wang et al., 2014)

Mantle, muscle, gills, digestive gland, gonad Gonad, mantle, gill, hemocytes, intestine, adductor, muscle Mantle, blood, liver, kidney, intestine, stomach

Gills (↓) Gills (↑) Gills (↓) Gills (↑) Hemocytes (↑)

(Xu and Faisal, 2010)

Hemocytes Heart, nerves, intestine, hemocytes, gills, hepatopancreas Mantle, gill, hepatopancreas,

(Wang et al., 2015b)

Saito et al., 1995

Pisuttharachai et al., 2009 Vibrio harveyi

Hepatopancreas (↑)

Yao et al., 2019

diversicolor) foot Not effect (-), up-expressed (↑), down-expressed (↓).

41

Table 4. Some plant defensins and their transcriptional expression. Species

Defensin gene

mRNA distribution Inducible expression

Constitutive expression

Stimulator Rice (Oryza sativa)

Arabidopsis thaliana

OsDEF7

Germinating seed

OsDEF8

Flower

PDF1.1 PDF1.2

Seed, siliques Rosettes

PDF2.1

PDF2.2 PDF2.3

Tabaco (Nicotiana benthamiana)

NbDef1.1

NbDef2.2 Wheat (Triticum aestivum L.)

42

Tad1

References Response

Xanthomonas oryzaepv.oryzae Imbibition, anoxia Xanthomonas oryzaepv.oryzae Cold, dehydration Alternaria brassicicola Ethylene, methyl jasmonate, oxidative stress, silver nitrate, A. brassicicola, Fusarium oxysporum f. sp. Matthiolae

Leaves (↑) Embryo (↑) Leaves (↑) Seedling (↑), leaves (↑) Leaves (↑) Leaves (↑)

Silique

Heterodera schachtii

Roots (↑)

Root, flower, silique, leaves Siliques, flowers, stems, leaves

Wounding A. brassicicola

Leaves (↑) Leaves (↓)

Leaves, stems, roots, flowers, developing seeds Flower

Pseudomonas syringae wounding, ethylene Cold, high salinity

pv.

Tabaci,

Leaves (↑) Shoot (↑)

(Weerawanich et al., 2018)

(Tesfaye et al., 2013) (Epple et al., 1997; Penninckx et al., 1996; Tesfaye et al., 2013) (Siddique et al., 2011; Thomma et al., 1998) (Thomma et al., 1998) (Epple et al., 1997)

(Bahramnejad et al., 2009) (Koike et al., 2002)

Pepper (Capsicum annuum)

CADEF1

Stem, root green fruit

and

Tomato Tgas118 Anthers, petals and (Lycopersicon pistil esculentum) Not effect (-), up-expressed (↑), down-expressed (↓).

43

X. campestris pv. Vesicatoria, salicylic acid, methyl jasmonate, abscisic acid, hydrogen peroxide, wounding, high salinity, drought, benzothiadiazole, D, L-β-amino-n-butyric acid

Leaves (↑)

(Do et al., 2004)

Gibberellin, wounding, dehydration

Leaves (↑)

(van den Heuvel et al., 2001)

Table 5. Fungal defensins characterised regarding their gene expression.

44

Species Aspergillus nidulans

Fungal defensin CSαβ defensin Anisin

Stimulator

Aspergillus clavatus

Aclasin

Aspergillus giganteus

Defensin-like antifungal AFP

Aspergillus niger

AnAFP

Carbon starvation (↑), alkaline pH (↑) acid pH (↓), heat shock (↑), osmotic stress (↑), ethanol (↑), fungal presence (↑) Carbon starvation (↑)

Penicillium chrysogenum Penicillium digitatum

PAF

Carbon starvation (↑)

AFPB

Rich medium (↓)

Heat shock (↑) Oxidative stress (↑), Gram+ bacteria (Bacillus megaterium)(↑)

References (Eigentler et al., 2012) (Contreras et al., 2019)

(Meyer and Stahl, 2003; Meyer et al., 2002) (Paege et al., 2016) (Marx, 2004) (Garrigues et al., 2016)

A

B

C

C

C

D

N CC

CC

CC CC CC

N

C

CC

N

CC CC CC

CC CC CC

N CC

C

Mammals

A Injury Infection

Bacterial and fungal infection

Cytokines

PAMPs

C

Insects

B

Infection Avr

PAMPs

Spaetzle Toll

TLR

FLS2 MAPK pathway Tube/dMyD88

IKK

Injury Infection Abiotic stress

Bacterial and fungal infection

Bacterial infection

PGRP-LC IL-1R

Plants

MTI

MEKK

R

ETI

Imd

MyD88

DmIKK MKK4/MKK5

IκB

Rel-49

NF- κB Gene expression of defensins and other AMPs

Relish

IMD pathway

Cactus

DIF/Dorsal MPK3/MPK6

Toll pathway Gene expression of defensins and other AMPs

WRKY

Gene expression of defensins and other AMPs

A

Mammals

Insects

B

Epithelial cells in respiratory, reproductive and digestive tract.

Epithelial cells in skin, respiratory, reproductive, and gastrointestinal tract.

C

Plants Seeds and flowers

Leaves Roots Fat body Neutrophils, macrophages, monocytes

Hemocytes

Highlights Defensins are one the largest group of antimicrobial peptides. They have a broad spectrum of antimicrobial activity. In animals and plants, defensins can be constitutively or differentially expressed. Conserved signalling pathways regulate the transcription of defensin genes.