ATOMIC
DATA AND NUCLEAR
DATA TABLES
DELAYED
12, 179-194 (1973)
NEUTRON
PRECURSORS
L. TOMLINSON Atomic Energy Research Establishment Harwell, OX1 1 ORA, England
Experimental data on delayed neutron precursors are compiled and evaluated. Where available, the following data are listed for each nuclide: half-life, neutron emission probability, total energy available for beta decay, neutron binding energy of the daughter nucleus, major peaks in the neutron spectrum, methods of identification and production. The literature survey ended in December 1972.
CONTENTS
INTRODUCTION TABLE.
Properties of Delayed Neutron
REFERENCES
Precursors
FOR TABLE
Copyright 0 by Academic Press, Inc. All rights of reproduction in any form reserved.
179
Atomic Data and Nuclear Data Tables, Vol. 12. No. 2. 1973
L. TOMLINSON
INTRODUCTION The process of delayed neutron emission takes place in neutron rich nuclei which are sufficiently far removed from the region of beta stability for the binding energy (B,) of the last neutron in the daughter nucleus to be less than the total beta-decay energy (Qp) of the precursor. The process is shown schematically in the figure. Because the lifetimes of the excited states in the emitter nucleus are extremely short, the neutron activity decays with the beta-decay half-life of the precursor. Theoretical aspects of the delayed neutron process are discussed in a recent paper by Pappas and Sverdrup.i Although delayed neutron emission was discovered in 1939, progress in this field has been noticably slow until recent years. In 1963, there were 16 known delayed neutron precursors. This had grown to 34 by the time the first comprehensive compilation of delayed neutron precursors was produced by de1 Marmo12 in 1969. The present compilation contains 91 nuclides and covers the literature up to the end of 1972. This paper is an extension and updating of my earlier compilation and evaluation of delayed neutrons from fission3 and is also a companion paper to the recent compilation of beta-delayed proton and alpha emission by Hardy.4
1. Has the nuclide been observed experimentally? 2. Is Qa > B,?
A positive answer was required to each question for inclusion in the TABLE. A more restrictive definition of delayed neutron precursors-which allows inclusion in the TABLE of those nuclides whose neutron emission has been observed experimentally-could have been used. However, many known nuclides which are certain to be delayed neutron precursors, would have been excluded because their neutron emission has not been verified experimentally. The present TABLE includes these nuclides and thus presents a challenge to the experimentalists to study their properties. On the other hand, the TABLE may contain some nuclides which, on later study, will be found not to emit delayed neutrons. These are expected to be few. They will be nuclides which have been included because of errors in the values of Qp and B,, or because spin and parity restrictions do not allow neutron emission.
Values of Qp and B,
Where possible, values of Qp and B, were taken from the 197 1 Mass Table of Wapstra and Gove.5 In all other cases, values calculated from the mass relationship of Garvey et al. 6 have been used. The prescription of Garvey et al. has been used in preference to other mass formulas for the following reasons:
\
--------
Z,N
.
Z+l,N-I
PRECURSOR
1. In the medium mass region (A = 80 to 150), of eight mass formulas tested by Talbert et aL7 only two were able to predict accurately the known region of delayed neutron emission. These were the mass formulas of Seeger and Perishes and of Garvey et a1.6 2. In the light mass region (A < 40) comparison between known and predicted values of Qp and B, showed that best agreement was obtained with the Garvey formulation. The Seeger-Perish0 formula is inaccurate in this region. Moreover no calculated values are available below A = 44. The latter formula is thus inapplicable over the whole range of delayed neutron precursors. 3. A comparison was made between measuredg-l1 and predicted Qp values for thirteen nuclides in the medium mass region (A = 84 to 142) located in, or near, the delayed neutron region. The average differences between measured and predicted Qp values from three mass formulas are given below-again indicating a reason for preferring the Garvey formulation.
EMITTER
Z*I,N-2 FINAL
NUCLEUS
Schematic representation of delayed neutron emission: Qp is the total beta-decay energy of the precursor; B, is the neutron binding energy of the emitter (or daughter)
Definition
of Delayed Neutron Precursors
One difficulty in producing a compilation on delayed neutron precursors is knowing which nuclides to include. The policy adopted here has been to ask two questions about each potential delayed neutron precursor:
Atomic Data ond Nuclear
Data Tables, Vol. 12, No. 2, 1973
180
DELAYED
Mass Formula
Average Difference between Measured and Predicted Qp (MeV)
Myers-Swiatecki’* Seeger-Perishes Garvey et a1.6
0.71 0.60 0.47
NEUTRON
PRECURSORS
Acknowledgments
I wish to thank R. G. P. Towndrow for help with the literature search and W. L. Talbert, G. Herrmann, and colleagues for the provision of data prior to publication.
References Adopted Values and Errors
for Introduction
1. A. C. Pappas and T. Sverdrup, Nucl. Phys. A188, 48 (1972)
The aim has been to quote all errors as one standard deviation (la). Where authors do not quote the meaning of their errors, these have been assumed to be one standard deviation. The adopted values listed for half-life and neutron emission probability (P, in neutrons per 100 disintegrations) are normally weighted mean values. The weighted mean value for the half-life is given by:
2. P. de1 Marmol,
Nucl. Data Tables A6, 141 (1969)
3. L. Tomlinson, “Delayed Neutrons from Fission: A Compilation and Evaluation of Experimental Data,” United Kingdom Atomic Energy Authority, Report No. AERE-R6993 (1972) 4. J. C. Hardy, Nucl. Data Tables 11, 327 (1973) 5. A. H. Wapstra and N. B. Gove, Nucl. Data Tables A9, 265, 303 (1971) 6. G. T. Garvey and I. Kelson, Phys. Rev. Letters 16, 197 (1966); G. T. Garvey et al., Rev. Mod. Phys. 41, 51 (1969)
The standard deviation of the mean is taken as the larger of the two expressions:
0
4%
coi-2
= [
i
7. W. L. Talbert, A. B. Tucker, and G. M. Day, Phys. Rev. 177, 1805 (1969); W. L. Talbert, Phys. Rev. Cl, 1135 (1970) 8. P. A. Seeger and R. C. Perisho, “Model-Based Mass Law and Table of Binding Energies,” Los Alamos Scientific Laboratory Report No. LA-3751 (1967)
I
where n equals the number of measured values. In the few cases where the experimental values were widely different and well outside the error limits, an unweighted mean value is given. Mean values and errors for P, were calculated in a similar manner. Where no experimental P, values are available, approximate values can be estimated for nuclei in the medium mass region by means of the semiempirical formula of Amiel and Feldstein13 pn = wp
9. T. Alvager et al., Phys. Rev. 167, 1105 (1968) 10. J. Eidens, E. Roeckl, and P. Armbruster, 11. A. Kerek et al., Nucl. Phys. Al95,
13. S. Amiel (1970)
- B,jrn
and H. Feldstein,
Phys. Letters 3lB, 59
14. S. Amiel, “Physics and Chemistry of Fission,” p. 569, 2nd Symposium, I.A.E.A., Vienna (1969) 15. H. D. Schtissler, H. Ahrens, H. Folger, H. Franz, W. Grimm, G. Herrmann, J. V. Kratz. and K. L. Kratz, “Physics and Chemistry of Fission,” p. 591, 2nd Symposium, I.A.E.A., Vienna (1969); H. D. Schtissler and G. Herrmann, Radiochim. Acta, to be published (1973)
Produced in Fission
The contributions of precursors to the various produced in fission are not but can be found in recent
177 (1972)
12. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966); “Nuclear Masses and Deformations,” U. of California Report, No. UCRL-I 1980 (1965)
where C and m are constants. This expression gives reasonable values for P,, when (Qp - B,) > 2 MeV.
“Groups”
Nucl. Phys.
A141, 289 (1970)
individual delayed neutron delayed neutron “groups” given in the present paper references.14-i6
16. L. Tomlinson, 181
Nucl. Technol. 13, 42 (1972)
Atomuc
Drrto
and
Nuclear
Data
Tables,
Vol
12.
No.
2,
1973
L. TOMLINSON
TABLE. Properties of Delayed Neutron Precursors Explanation
Precursor
Precursors, as defined in the INTRODUCTION, listed in order of increasing Z and A
T?4
Half-life, in seconds. Each measured value is followed by the error (la) and reference Adopted value which is listed last. The adopted value is normally the weighted mean of the measured values (see INTRODUCTION for exceptions)
A
are
pn
Neutron emission probability in neutrons per 100 disintegrations (explanation as for T$).
QP
Total beta-decay energy. Values taken from the Wapstra and Gove 197 1 Mass Table5 are followed by the error Estimated values from the same Mass Table Values in parentheses are taken from the mass tables of Garvey et al.” Recent experimental Q, values for g7Y, 134Sb, and 142Cs are also given
E ( >
Bn
Neutron binding energy in daughter nucleus (explanation as for Qp)
Major Neutron Peaks
Energies, in MeV, (neutrons per When relative normalized to
Identification excit.
Means of nuclide identification Deduced from energy considerations in the production of the nuclide Nuclide produced in several ways Z and A determined by means of semiconductor particle identifier. Sometimes combined with magnetic analysis to improve resolution Chemical separation, identifies Z Some study of decay properties such as energy levels or formation of daughter nuclei. A known daughter nucleus is often used to identify A Mass separation, identifies A. Sometimes preceded by a chemical or physical step such as surface ionization or diffusion which identifies Z
cross bomb. particle iden.
them. decay
mass sep.
Production
Atomic Data and Nuclear
of Table
Data Tables, Vol. 12, No. 2, 1973
are followed by absolute intensities 100 disintegrations) in parentheses. intensities are listed (major peak loo), this is indicated in the TABLE
All known methods of production
182
are listed
DELAYED
NEUTRON
PRECURSORS
TABLE. Properties of Delayed Neutron Precursors % (set)
*He
‘Li
Pn per
(n
100
lisintegrations)
0.122io.oo2 (6sPOl)
0.004 (SIGa) 0.170 0.005 (Srno) 0.001 0.176 (65Do) 0.177 0.003 ( 70Ch) L 0.175+0.001
1z+1
(65pol)
Bn WV)
% (MeV)
0.70+-o.
1:
Major
Identification
Neutron Peaks MeV (Intensity)
Chem,
2.0327 .to.ooo7
excit. mss
+2.8
5*2-0.4
0.168
derived !xp.data: iGCh,
3.62tO.01
I .6651
2o.oco4
from 70Ch,
.7010.10 .lmo.lo(2.2+0.21 7CCh, 66Ch,
69Ma.
(3
+2.7
4*31
69Chl
excit, decay
Production
GeV p on C, 0 (65Pol) 252Cf fission 16SWl-1, 67CoI); 26Mg @,%e) 2% (6’Xe) 235~1, 239pu fission (68Kr)
cross bti, (63Pol) sep. (7CTa)
cross ( 51Ga)
bti
p on various
(63U)
particle
iden.
(66Thl
larlier value n- 75215 from i3Al - prob. in error)
QB h,P) (59A1, 6341) Xi (t,p) (61Hi,
6341,
252Cf
fission
a on Al
“Li
LoO85ti.001
23.1
E
(69Kl)
particle (66 Pol,
0.503
2o.oxi
mass ‘2Be
13B
LO1 14~O.oax (6SF’o2)
1.0186
0.m
(62Ma)
1.016 0.001 (68’3) mm cbam7
(71Wi) A 0.01743
+7 -3.5 (65Po2)
7
(1.5 (6%) <0.3 (65Po2) 0.52 0.26 (6=h) 0.25 0.04 (69Jo) A 0.2620.04
targets
(51Ga, 52H0, 65D0, 67Ca, 68Th) d on Be, B, C (51Ga) “B (Y,~P) 52Sh, 58Ta, 63Ne) I Q (Y,3P) .53Re, 58Ta)
11.6
E
13.437 +0dXM
3.3693 +-0.0013
4.9464 ~0.ooo2
2.450.06 (0.094~0.020) 3.55~0.10 (0.16kO.03) (69Jo)
6ai) (67Col) Si (71Ti)
and
iden.
GeV p onU,
68Th)
(66P01,
Au,
68Th,
Ir 69Kl)
(69Kl)
sep.
cross bomb (65Po2) particle iden. (66P01, 68Th)
p on various light targets (6SPo2) GeV p on U, Au
ground detm.
(86Po1,
state ( 7 1Ho)
CeV
wss
7Li
excit,
decay 69Jo) particle iden. mg. analysis
(7lHo)
“B (t,p) (62Ma, 68Ch, 69Jo, 71Wi) 1%~ ions on 232Th (69Ar) GeV p on Au (68Th)
(62&x,
(68Th,
68Th)
c7Li,2p)
&
69Ar)
ti.OOO32 I48
21.2
E
8.1770 +0.0004
particle iden. & msg. analysis (66Po1, 68Th, 69Ar)
GeV p on U, Au (66P01, 68Thi ‘80 ions on 3%h (69Ar)
15B
19.5
E
I.2181 +0.0008
particle
GeV p on U, Au (66Po1, 68Th)
2.49oc zo.oo22
excit. (61Hi) particle iden. & nag. analysis (68Th, 69Ar, 7a4r)
‘%
0.74zo.03 (6I~i)
‘.01~0.02
(66Po1,
iden. 68Th)
14C (t,p) (61Hi) p on various targets (65D0, 68Th)
67Ca,
68D0,
a on Al, Si (7ITi) 180, 22Ne ions on 232Th (69Ar, 7@w) 17C
9.7
‘%
(13.6)
A Adopted value
E
particle (68P0,
5.884 +0.015
GeV p on U (68Po) 1% on 23%h (69Ar)
particle iden. & ring. analysis (69Ar)
(1.2)
E Estimated value from Wapstra-Gove5
iden. 69Ar)
( ) Value from Garvey et aL6
‘% ions ( 69Ar)
Intensity
on 232Th
n’s per 100 disintegrations
Erratum for gLi, see page 190
183
Atomic
Dota
and
Nudeor
Doto
Toblsr,
Vol.
12,
No.
2,
1973
L. TOMLINSON
TABLE. Properties of Delayed Neutron Precursors PI-ew-sol
T% (set)
"N
4.14 0.04 (4m-d 4.20 0.08 (61Hi) 4.16 0.01
Pn
83 (MN
(n per 100 )isintegmtionsl 9521
(64Si)
8.678 20.015
Major
Bn MeV)
4.1424 IO.0609
LO38kO.02
(3OklO:
1.1 (C20) I. 2OkO.05 I .68+0.04 1.8010.04
(65Do)
4.17
Identification
Neutron Peaks MeV (Intensity)
:6lPe,
0.02
Production
:hem, cross bomb :48Kn, 49A1, 48Ch)
(43+5) (522) (722)
d on various (4fXn, Wh, p on various (65Do
elements 55Ch) elements 68Th)
68Do
n on 170, l&l (49Ch 644m) t on !5N, ‘b (56Sh) y on various elements (50Sh 5lSt, 55Re) a on I%, Al, Si
63X,
i’Am2)
(‘me) 4.169 0.008 (‘al) , 4.165kO.006
(5lSu,
71Ti)
heavy ions on various elements (6lF1, 62V0, 65Ha, 66Po2, ‘C&r) '94
0.63ZO.03 (‘-Xh)
14.057 20.030
Sep. isotope trradiation, decay 6‘lCh) m-title iden. & mg. analysis :68Th, 69Ar, 7QAr)
l@O (n,p) (64Ch) ‘80 (t,3He) (69St) CeV p on Au (68Th) 180, *tie ions on 232Th (69Ar, 7CW)
3.9566 +o.OO*:
article iden. & msg. analysis ‘68Th, 69Ar, 7QQr)
GeV p on Au (68Th) 180, *%Ie ions on 23%h (69Ar, 7Q4r)
(7.8)
>article iden. & nag. analysis (69Ar)
‘*O ions (69Ar)
8.102 +0.007
m-title iden. & tag. analysis :68Th, 69Ar, 7&Q, 72Ar)
ZeV p on Au (68Th) 180, **Ne ions on 232Th (69Ar, ‘CM-, 72&r) ‘80, **Ne ions on *3*Th (69Ar, 724r)
19N
13.0
*ON
(21.3)
*'O
10.7
220
(9.1)
5.198 ?0.031
article iden. mg. analysis ‘69Ar, 72&r)
10.853 +0.030
10.3656 +-O.OOl(
Sep. isotope Irradiation, decay ‘65Val rass.‘sep. (7OTa) article iden. & rag. analysis (7Q4r)
*%e (n,p) (6Skd
23F
(11.0)
5.1966 ?;O.CKUf
m-title iden. & rag. analysis (7CW)
**Ne ions (7Q4r1
on 23%h
24F
(15.9)
0.870
m’ticle iden. & w. analysis (7CW)
*&We ions (7Q4r)
on 232Th
+0.010 6.230 to. 300
article iden. & tag. analysis (7QQr)
*Se ions (7Q4r)
on 232Th
?O.OOl
mss sep. 69K1, 72Kl)
GeV p on U (69K1, 72Kl)
8.5O‘U kO.0024
rass Sep. 69K1, 72Kl)
GeV p on U (69K1, 72Kl)
*2F
4.tio.4 (6sVa)
‘%a
E
(6.7)
=Nk! 2’Na
E
0.046f kO.CKOf
8.0?0.7
0.295+0.010 (72w
6.443
&
on 232Th
*me (t,%Ie) &69St) *he ions on 3%h (7CW
100357~0.001 (‘au)
(11.6)
l.0486+0.002 (‘Xl)
(10.4)
(5.6)
tass sep. :69Kl, 72Kl)
GeV p on U (69K1, 72Kl)
0.055%0.003 (72u)
( 15.4)
(8.2)
ass Sep. :69Kl, ‘Xl)
GeV p on U (69K1, 72Kl)
31Na
L0177+0.001 (‘Xl)
(14.1)
(2.8)
mss Sep. :69Kl, 72Kl)
3eV p on U (69K1, 72Kl)
3%a
LOl45~0.003 (72u)
lELss sep.
(72Kl)
GeV p on U (72Kl)
%a
0.02O~0.015
bass Sep.
(72Kl)
GeV p on U (72Kl)
2gNa 30 Na
(23.6)
(0.5)
(7x1)
A Adopted
Atomic
value
Data and Nucleor
E Estimated
value
Data Tables, Vol. 12, No. 2, 1973
from
Wapstra-Gove”
(
) Value
184
from
Garvey
et al.”
Intensity
n’s per 100 disintegrations
DELAYED
TABLE. PreUrsa
pn
T4 (set)
NEUTRON
Properties
of Delayed Neutron
Precursors
Major Neutron Peaks MeV (Intensity:
QP 0-w)
(n per 100 isintegrations:
PRECURSORS
Identification
Production
32A1
(11.2)
9.215 +-0.007
particle iden. & rag. analysis (71Ar)
0 Ar ions 71Ar)
on 232Th
33Al
(9.9)
(5.0)
particle iden. & nag. analysis (71Ar)
l”Ar ions 71Ar)
on 232Th
35Si
(9.8)
(8.2)
particle iden. & nag. analysis (71Ar)
OAr ions 71Ar)
on 232Th
Si
(8.1)
(4.1)
particle iden. rag. analysis
& (71Ar)
OAr ions 71Ar)
on 232Th
37P
(8.1)
4.313 +o.o3c
particle iden. & nag. analysis (71Ar)
OAr ions 71Ar)
on 23*Th
(9.5)
9.43c +-0.04C
particle iden. & rrag. analysis (71Ar)
loAr ions 7 1Ar)
on 232Th
2.86zo.04 ( 7OOr)
(6.1)
(5.7)
rmss Sep.
(7ODr)
B0GZ3
1.7%0.2 (7OOr)
(9.4)
(8.5)
mss
(7COr)
*3Ge
1.9zo.4 (72De)
(8.5)
(8.1)
them,
decay
(72De)
B4Ge
l.ZO.3 (72De)
(7.5)
(4.2)
them,
decay
(7Pe)
B4AS
5.8 0.5 (68~el) 5.4 0.4 (79(r) A 5.620.3
B5AS
2.15 0.15 (67De) 2.028 0.012 (68To2) 2.05 0.05 (791r) A 2.03+0.01
36
4*C1 7gGa
16AS
(10.0)
0.13?0.06 (7str)
11 3 (67De) 22 5 (68To) 23 3 (79(r)
“As
0.6 0.3 (7CW Q.3 (73Kr) A 0.4SO.2
“Se
5.8 0.5 (68T03) 5.9 0.2 (7CDe) 5.85 0.15 (‘a(r) 5.41 0.10 (71To) L 5.6WO.13
CO.8 (68T03) ,23 0.07 (7ODe) ,25 0.06 (7CKr) ,16 0.03 (71To)
‘a&
1.3 0.3 (7COe) 1.4 0.3 (‘a(r) 1.53 0.06 (71To) L 1.52zo.06
G1.0 (7ODe) ,15 0.09 (7CKr) ,7.5 0.08 (71To)
A Adopted
value
them, decay (68De1, 73Kr)
0.097 (10) 0.172 (38) 0.497 (100) 4.545 (44) 0.635 (52) 0.895 (60) ~1.005 (36) “1.155 (36) ‘“1.350 (18) (relative int. 71Fr)
(9.1)
(4.1)
(11.4)
(6.2)
:hem, decay
( 10.4)
(4.1)
:hem, decay KUr, 730)
A 2Ob%
3.8 +1.7 -1.0 (79(r)
0.9t0.2 (79Er)
8.56C +o.o8c
Sep.
(7.3)
6.3
(6.3)
(4.9)
fission
them, 67De, 79(r)
E
decay (66T01, 68T01, 68To2,
:hem, decay COe, 7CUr,
(79(r)
(68T03, 71To)
A 0.18LO.03 c:hem, decay 7‘ICI-, 71To)
(‘me,
A 0.5ZO.3 E Estimated
value
from
Wapstra-Gove5
(
) Value
185
from
Garvey
et a1.6
Intensity
Atomic Data
n’s per 100 disintegrations
and Nuclear
Data bbler,
Vol. 12, No. 2, 1973
L. TOMLINSON
TABLE. PreCUB0
Pll
T4 (set)
(n
5.til.5
56.1
3.1 2.1 2.3
0.7
(498~) 0.35
(‘3’3W 55.8
QP
100
0.6 0.3 0.4
of Delayed Neutron
Neutron MeV
(7lTo)
(8.6)
(65Ar) (71De) (73Sh)
6.5
(65Ar) (a) (b) (73Sh)
(9.0)
(‘35Ad
(‘3.0)
E
Pi-ecursors
MajOt-
‘n (MeV)
(MeV)
‘isintegrations
0.4l?rO.C4 (7lTo)
55.4
per
Properties
Peaks
Identification
Production
(Intensitv)
(6.2)
:hem,
5.511 +0.008
0.045, 0.110, 0.180, (7lCh.
7.080 +0.100
0.340,
decay
fission
(71T0)
0.070, 0.130, 0.250 72Ru)
:hem, decay 47Sn, 49Su, 63%) ass Sep. (7OOr)
0.400,
hem, decay (57Pe) ass sep. (7001-j
0.25
(66Si) 55.6 0.15 (7lDe) 56.0 0.3 (7OOr) A 55.67k0.1 15.5 0.3 (4xu) 15.5 0.4 (57Pe) 16.3 0.8 (59Pe) 15.9 0.1 (66Si) 16.6 0.4 ( 7OOr1 A 15.8BLO.l 4.4
A 5.0 5.6 4.6 4.3
2.m.2 1.6 1.2 0.6 0.5
4.5 0.4 (66Si) 4.6 0.3 ( 7OOr) 4.55 0.10 ( 7OOr) A 4.55+-0.09
i.3 3.0 7.2
i.6 1.2 1.8
(a) (b) (73Sh)
4.930 to. 110
hem, 47Su,
decay
6.400 to. la,
hem, 59Pe,
decay 7Me)
4.7
hem, 69Sh,
decay 7CHe)
59Pe, 66Si) ass Sep. (7OOr)
A 8.620.9
1.6 0.6 (59Pl?) 1.63 0.14 (7CHe) A 1.6tiO.14
16 6.5 11 3
0.64 0.08 (7CHe) 0.62 0.12 (7CHe) 0.67 0.07 (7CHe) A 0.65?rO.O5
7 +y
(a)
(10.3)
(73Sh)
A 123 Cc)
(9.2)
(12.0)
0.25 0.10 (7CHe) 1.92 0.07 (65Pa) 1.86 0.01 (69Ta) 1.840 0.W
(72Ru)
A 4.620.4
0.5
(59Pe)
0.530
0.040?0.007 (6Wa)
E
:hem,
(6.2)
(5.3)
5.1
E
(8.2)
6.1
E
:hem, mss
decay
(7CHe)
decay (65Pa) Sep. (69+a)
(‘39C3) 4 1.847+0.@ 1.17 0.04 (65Pa) 1.19 0.05
1.9 !.66
0.6 0.51
(68An (69Ta
‘?Cr-03Rb Kixture: 1.236, 1.352, 1.448, : 73Ta)
(6tMd 1.30 0.01 (69Ta) 1.289 0.01
equilib
-hem, decay (6lSt1, 65Pa, 68Am) mss Sep. (69Ta)
0.138, 0.314, 0.410, 0.674
(69’3) A 3.2k0.6
A 1.287+0.0
(4 Calculated 11 b) ,, (c) A Adopted
Atomic Data and Nuchr
value
E Estimated
value
Data Tables, Vol. 12, No. 2, 1973
from
Wapstra-Gove5
from relative I, 0 I1 delayed (
yields I, neutron
) Value
186
from
of 59Pe ”
66Si
yield Garvey
of 69Sh et a1.6
Intensity
n’s per
100 disintegrations
DELAYED
TABLE.
Properties
PII
Tkt (SW)
PIFcurs0
(n per isintegrations
PRECURSORS
of Delayed Neutron
(6.6)
0.012+0.004 (69Ta)
7.9
E
Precursors
Major
Bn (MeV)
100
0.20 0.01 (7%) 0.23 0.02 (7Xa) A O.Zl+O.Ol 4.43 0.05 (67Aml) 4.48 0.02 (69Ta) 4.50 0.03
NEUTRON
Neutron Peaks MeV (Intensity)
Production
Identification
(4.3)
mss Sep. (7ZAm, 72Ca)
7.310 t-o.070
mass sep. (67Am1, 69Ta,
fission
7OOr)
(f-3)
4.56 0.02 (7OOr) A 4..50?0.02 5.89 0.04 (67Aml) 5.60 0.05
(68Am)
6.18 0.06 (69Ta) 5.86 0.13 (6Xa) 5.8 0.1 (72Am) A 5.66+-0.10 2.67 0.04 (67Aml) 2.8 0.1 (72Am) 2.79 0.09 (723) A 2.7150.04 0.3650.02 (67Aml)
.6 .43 39 .l
0.4 0.18 0.29 0.6
(6&&m (69Am (69Ta (73Sh
6.9
E
5.110 +0.100
%r-'%b dxture: 1.236, 1.352, b448, 73Ta)
equilib 0.138, 0.314, 0.410, 0.674,
them, decay (61St1, 6SAm, mass sep. (67Am1, 69Ta)
A 1.620.23 1 .lO 1.0
l.lO(69Am 2.0 (73Sh
(9.5)
6.860 kO.240
mss Sep. (67Am1, 72Am,
‘lOZO.93
(67&a
0.23 0.02 (67Aml) 0.207 0.003 (71Tr) i 0.209+o.c0
2.721.5
(69Am)
0.135 0.010 (69Ad 0.176 0.005 (71Tr) i 0.168+0.011
>20
(7.9)
(10.8)
(69Am)
(9.0)
4.86
E
mss
sep.
(67Aml)
(6.6)
mass
sep.
(67Aml)
(3.9)
mss
sep.
(69Am)
0.136+0.008 (71Tr)
(12.1)
(6.4)
mss
sep.
(71Tr)
0.076+0.005 (71Tr)
(10.1)
(3.1)
mass
Sep.
(71Tr)
(7.1)
(6.8)
mass Sep. (7OEi, 71Tr)
(5.4)
(4.7)
mass
6.1 E 5.7ti.2 (fOEi)
5.578 ?0.016
0.420.3 (7OEi) (71Tr) A +0.2
o.a5+0.05 (71Tr) 1.11 0.03 (7OEi) 1.11 0.14 (71Tr) 1.1 0.3 (d) A 1.11+0.03
A Adopted
72Ca)
A ll.l+l.O
go.2
(d)
68He);
1.620.3 talc. from d.n yield of 73Sh and fiss. yiell 3f 69Wa)
neutron 73Sh finds a delayed This activit is assigned to assigned to & CT% = 0.8?0,7
value
E Estimated
value
activity with 97Y on half-life set) on the
from
Wapstra-Gove5
sep.
(71Tr)
mdss sep. (7OEi, 71Tr) them (73Sh)
T% = 1.120.3 grounds same grounds.
(
in
set and a delayed the above Table.
) Value
187
from
Garvey
neutron yield of It could equally
et al.”
Intensity
Atomic
Data
9%n/104 fiSSiOnSa well have been
n’s per 100 disintegrations
and
Nuclear
Doto
Tables,
Vol.
12,
No.
2.
1973
L. TOMLINSON
TABLE.
Properties
of Delayed Neutron
Precursors -
gk
hl (n per 100 isintegrations:
T% (f-2)
Pre:UI’SOI
CO.3
(7lTr)
,n.
il
ObSeNed
j-100
Neutron
MeV
Identification
Peaks
Production
(Intensity)
6.412 LO.025
(8.2)
mass
?gion ; yield Cl0 n/104fiss
Major
(2)
IIELSS sep.
(7lTr)
i
(6.5)
5.2
E
mss
Sep.
(7OEi)
(6.4)
5.57
E
mss
sep.
(70Or)
3.7kO.5 (7cw
(8.9)
7.97 E
mass sep.
(7OOr)
‘29111
0.820.3 ( 7OOr)
(7.3)
(5.3)
nass sep.
(7OOr)
’ 501”
0.520.2 (7OOr)
(9.7)
(7.4)
mss
sep.
(70Or)
13’111
0.320.1 (7OOr)
(8.4)
(5.0)
nmss sep.
(700r)
133sn
1.720.3 ( 7OOr)
(7.2)
(7.1)
mass Sep. (7OUr)
(8.7)
7.7
E
them, decay (67T0, 68De2) mass sep. (iraCe)
3.3
E
them, (648e,
decay 68To2)
them,
decay
(69Sh)
them,
decay
(69Sh)
them,
decay
(47Sn,
49Su)
ggY
0.820.7
6
(7OEi) ’ 2’111
‘%b
3.64+-O&4 (7OOr) 2.020.4 (7OOr)
11.3
0.3
0.08+0.02 (68To2)
(67To)
8.4fO.Z (7Xe)
11.1 0.8 (68De2) 10.3 0.5 (7Xe) A ll.tiO.3
‘35Sb
g
,
+0.9
822
(68To2)
(7.5)
20.920.5 (69Sh)
-0.5
(69Sh)
(4.5)
3.72 to. 10
3.520.5 (69Sh)
m.5
(69Sh)
(6.5)
5.46
&82?*5 1.696 0.021 (68T02) A 1.7OZO.02
’ 37Te 1371
24.4
0.4
(59Pe) 24.6 0.2 (7Dw 24.5 0.2 ( 7OOr) 24.7 0.1 (71De) i 24.62+0.08 I 3EI
5.9 0.4 (49SU) 6.3 0.7
3.0 4.7 5.6 5.2
(65Ar)
0.5 1.0 1.2 0.7
5.4
E
(69Sh) (71De) (73Sh)
E
3.862 +0.0x
0.270, 0.488, 0.685, 0.863, 1.140
0.380, 0.570, 0.756, 0.965, (72Sh);
mass Sep.
(70Or)
eight of these peaks confirmed (73Ta) A 5.421.3 2.0 3.0
0.5 0.8
(6Mr) (73Sh)
(7.8)
5.9 E
them, decay (49Su, 59Pe) nmss Sep. (7OOr)
(59Pe) 6.57 0.12 (7OOr) 6.8 0.3 (7OOr) A 6.55tO.l’ 13g1
2.7 0.1 (Mu) 2.0 0.5 ( 59Pe) 2.46 0.15
A 2.520.5 143
(73Sh)
E Estimated
value
(6.7)
4.0
them, decay (49Su, 59Pe) mass sep. (7OOr)
E
(700x-j
i 2.61?0.11
A Adopted
value
Atomic Data and Nuclear Data TobIer, Vol. 12, No. 2, 1973
from
Wapstra-Gove5
(
) Value
188
from
Garvey
et aL6
Intensity
n’s per 100 disintegrations
DELAYED
TABLE. Tti (set)
Pre-
0.84 0.14 (70He) 0.87 0.13 ( 70He) 0.86 0.04 (70He) A 0.86~O.W 1411
pn per lisintsgrations (n
32+13
NEUTRON
PRECURSORS
Properties of Delayed Neutron Precursors Major Neutron
100
MeV
(8.9
(73Sh)
0.45 0.10 (7CHe) 0.55 0.25 (7Qle) 0.43 0.08 (7CHe)
5.3
Identification
Peaks
E
(3.5)
(7.4)
Production
(Intensity) fission
:hem, (69Sh,
decay 7OHe,
73Sh)
them, (69Sh,
decay 70He,
73Sh)
R
A 0.4450.06 14’XB
1.70
0.05
(5.9)
5.4
E
them, mss
decay (65Pa) Sep. (69Ta)
(4.3)
4.3
E
them, mass
decay (65Pa) sep. (69Ta)
(6.7)
(5.6)
them, miss
decay (65Pa) sep. (72Am)
4.80 to. 10
them, mss
decay (62Fr) Sep. (69Ta)
5.870 co. 140
them, decay ~as.9 sep. (69Am, 69Ta)
(634 1.73
0.01
(69Ta) 1.720
0.013
(f-3) 1.8
0.2
(68-41) 1.6 0.1 (67Co2) 1 .81 0.10 (7m) 1 .726+0.00 142Xe
1 .15
0.04
0.51+0.09
(=@a)
(69Ta)
1.18 0.04 (67Co2) 1.32 0.03
(69Ta) 1.24 0.02 (69’3) A 1.2420.03 ‘43x,
0.96+-0.02 (65k-d 0.30?0.03 (72Am)
14’CS
24 2 24.9
(62Fr)
0.073+-0.011
5.1
E
(69Ta)
0.2
(69Ta) 24.7 0.4 (6Wa) 25.6 0.6 (700r1 L 24.9220.17 142CS
2.3
0.2
0.21+0.06
(6Z!W 2.5
6.7 E 7.6?0.8
(69Ta)
(‘3841)
0.3
(69h)
(62Fr)
1.94 0.01 (69m) 1.68 0.02 (69Ca) A 1.89+0.06 ‘43CS
2.0
0.4
1.13iO.25
(62Fr)
(5.7)
(69h)
4.3
E
them, nass
decay (62Fr) Sep. (67Aml)
1.60 0.14 (67Aml) 1.69 0.13 (69W 1.7 0.1 (72Am) A 1.68?0.07
A Adopted
value
E Estimated
value
from
Wapstra-Gove5
(
) Value
189
from
Garvey
et a1.6
Intensity
n’s per 100 disintegrations
L. TOMLINSON
TABLE.
Properties
PI??-
of Delayed Neutron
Precursors
%I NW
CUrSOl
‘%S
1.06 0.10 (67Aml) 1.05 0.14 (S9Ad A 1.06+0.08
‘45CS
Production
(8.1)
5.9
0.563ko.027 (71Tr)
(6.1)
(3.8)
mss
‘%S
0.189+0.011 (71Tr)
(8.5)
(6.5)
mass
210T1
30 15 (57Ko) 78.0 1.8 (61St2) 78.0 1.8 (64we) A 78.ti1.3
A Adopted
value
l.lOkO.25 (69Am)
-0.02
(57Ko) +0.007 o.007 -0.0035 (6 lSt.2)
A 0.007
5.496 to.013
E
fission
sep.
(7OF0,
0
71Tr) Sep.
(71Tr)
them, decay and formation (310~)
5.182 +0.006
E Estimated
value
from
Wapstra-Gove5
(
) Value
for gLi. The data under P, and Major Neutron
from
Garvey
et al.6
Intensity
Dota
and Nuclerrr
Data
Tables,
Vol.
12, No.
2,
Peaks should read as follows: Major Neutron Peaks MeV (Intensity)
(n ptr; 100 Disintegrations)
Atomic
ffi recoil from 21‘%b + 214Bi; deposited from (6me)
Rn
‘-“o:g5
Added in Proof
Erratum
,I
75 5 15 (63Al) 40 2 10 (est. from 63Ne)
0.3 (29.8 k 3.5) 0.66 (2.2 + 0.4)
35.0 f 3.8 (70Ch)
1.1510.1(3.0~;~;)
A 35.0 & 3.8
(66Ch, 69Ma, 70Ch)
1973
190
n’s per 100 disintegrations
DELAYED
NEUTRON
REFERENCES
PRECURSORS
FOR TABLE
0. Hahn, S.C. Lind, S. Meyer, E. Rutherford,
31 cu
M. Curie, A. Debierne, A.S. Eve, H. Geiger, Rev. Mod. Phys. 3, 427.
47 Sn
A.H. Snell,
47 su
N. Sugarman, J. Chem. Phys. 15, 544.
48 Ch
W.W. Chupp, and E.M. McMillan,
48 Kn
N. Knable,
49 Al
L.W. Alvarez,
Phys. Rev. 75, 1127.
49 Ch
R.A. Charpie,
K.H. Sun, and B. Jennings,
49 su
N. Sugarman, J. Chem. Phys. 17, 11.
50 Sh
R. Sher, J. Halpern,
51 Ga
W.L. Gardner,
51 St
W.E. Stephens, J. Halpern,
51 su
K.H. Sun, B. Jennings,
W.E. Shoupp, and A.J. Allen,
52 Ho
R.B. Holt,
and R.W. Wanick, Phys. Rev. 87, 378.
52 Sh
R.K. Sheline,
53 Re
D. Reagan, Phys. Rev. 92, 651.
55 Ch
W.W. Chupp, Report No. UXL-2955.
55 Re
D. Reagan, Phys. Rev* 100, 113.
56 Sh
R. Sher and J.J.
57 Ko
A.V. Kogan and L.I.
57 Pe
G.J. Perlow and A.F. Stehney, Phys. Rev. 107, 776.
58 Ta
G.W. Tautfest,
Phys. Rev. 110, 708.
59 Al
D.E. Alberger,
A. Elwyn, A. Gallm~,
59 Pe
G.J. Perlw
61 Fl
G.N. Flerov, V.V. Volkov, JETP, 14, 973 (1962).
61 Hi
S. Hinds, R. Middleton,
61 Pe
G.J. Perlow,
61 St.1
A.F. Stehney,
61 St2
G. Stetter,
62 Fr
K. Fritze,
62 Ma
A. Marques, A. J.P.L.
62 Vo
V.V. Volkov,
63 Al
D.E. Alburger,
63 Gi
J. Gilat,
63 Ne
B.M.K. Nefkens, Phys. Rev. Letters
63 St
E.P. Steinberg
64 Am
S. Amiel,
64 Be
C.E. Bemis, G.E. Gordon, and C.D. Coryell,
64 Ch
L.F. Chase, H.A. Grench, R.E. McDonald, and F.J. Vaughn, Phys. Rev. Letters
J.S.
Levinger,
E.P. Meiners,
M.B. Sampson, and R.G. Wilkinson,
E. Schweidler
-
Phys. Rev. 72, 545.
Phys. Rev. 74, 1217. B.J. Moyer, and R.L. Thornton,
E.O. Lawrence, C.E. Leith,
and W.E. Stephens,
Phys. Rw.
74, 1217.
Phys. Rev. 76, 1255.
Phys. Rev. 79, 241.
N. Knable and B.J. Moyer, Phys. Rev. 83, 1054.
R.N. Thorn,
and R. Sher. Phys. Rev. 82, 511. Phys. Rev. 82, 267.
Phys. Rev. 87, 557.
Floyd, Phys. Rev. 102, 242. Rusincw, Z. Eksp. Teor. Fiz.
32, 432; Soviet PhysD JETP 5, 365.
J.V. Kane, S. Ofer, and R.E. Pixley,
Phys. Rev. Letters
2, 110.
and A.F. Stehney, Phys. Rev. 113, 1269. L. Pomorskii, A.E. Litherland,
and Ya* Tys, Zh. Eksper. Teor. and D.J. Pullen,
Fiz. 41, 1365; Soviet Phys.,
Phys. Rev. Letters
6, 113.
W.J. Ramler, A.F. Stehney, and J.L. Yntenm, Phys. Rev. 122, 899. and G.J. Perlow,
Bull.
Am. Phys. Sot. II,
6, 62.
Report No. TID-14880. Can. J. Chem., 40, 1344. Policarpo,
L. Pomorskii, Phys. Rw.
G.D. O'Kelley,
Ya. Tys, and G.N. Flerov,
Nucl. Phys. 36, 45. Zh. Eksper. Teor. Fiz. 42, 636.
132, 328. and E. Eichler,
and L.L. Schwartz,
and J. Gilat,
and W.R. Phillips,
Bull.
Am. Phys. Sot. 8, 320; also Report No. ORNL-3488.
10, 243. Phys. Rev. 130, 1472.
Nucl. Sci. Eng. 18, 105. J. Inorg.
191
Nucl. Chem. 26, 213.
Atomic
13, 665.
Data
and
Nuclear
Data
Table..
Vol.
12,
No.
2,
1973
L. TOMLINSON
REFERENCES 64Mi
R. Middleton
64 Si
M.G. Siibert,
and J.C. Hopkins,
64 We
P. Weinzierl,
E. Ujlaki,
65
and D.J. Pullen,
Nucl.
FOR TABLE
Phys. 51, 50.
Phys. Rev. 134, B16.
and G. Preinreich,
Phys.
Rev.
P.M. Aron, 0.1. Kostochkin, K.A. Petrzhak, and V.I. trans Swiet J. Atom. Energy 16, 447.
Ar
134,
B257.
Shpakw,
Atomnaya Energiya
16
(1964)
368;
Eng.
65
Atomic
D&a
Do
I. Dostrwsky,
R. Davis, A.M. Pcskanzer,
and P.L. Reeder, Phys. Rev. 139, B1513.
65 Ha
V.P. Hart,
E.
65
Pa
P. Patzelt
and G. Herrmann, Proc. Symp. "Physics 8 Chemistry of Fission"
65
Pol
A.M. Poskanzer,
R.A. Esterlund,
65 Po2
A.M. Poskanzer,
P.L. Reeder, and I. Dostrovsky,
65 SC
R. Schsneberg,
65 Va
F.J. Vaughn, R.A. Chalmers, L.F. Chase, and S.R. Salisbury,
65 Wh
S.L. Whetstone and T.D. Thoma8, Phys. Rev..Letters
66 Ce
J. Cerny, S.W. Cosper, G.W. Butler, Phys. Rev. Letters 16, 469.
66
P.R. Christensen,
Ch
Norbeck,
R.R. Carlson,
and
Phys. Rev. 137, B17.
and R. McPherson, Phys. Rev. Letters
H. Hansen, H. Weigmann, and A. Flaazzersfeld,
S.W. Cosper,.
E&
L. Pomorski, J. Tys, and V.V. Volkw,
66 Si
M.D. Siibert,
and R.H. TomIinson,
66 To
L. Tomiinson,
J. Inorg.
66 Wi
E.T. Williams,
67
I. Aamrel, R. Bernas, R. Foucher, J. Jastrzebski, Letters 248, 402.
and
Bl8.
D.A. Landis,
and C.D. Coryell,
Nucl. Appl.
67
Ca
A.
67
Co1
S.W. Cosper, J. Cerny, and R.C. Gatti,
17, 1271.
23, 369. 5, 223.
2, 256. A. Johnson, J. Teillac,
A. Notea, and S. Shalev, Transo Am. Nucl. Sot.
H. Gauvin, M. Lefort,
Co&es, J.E. Cline,
Phys. Rev. 154,
67 De
P. deIMam1,
67 To
L. TomIinson and M.H. Hurdus, Phys. Letters,
68 Al
T, Aleer,
68 Am
S. Amiel, Jb. GGlat, A. Notea, and E. Yellin, p.115, I.A.E.A., Vienna.
68
Ch
R. Chiba, N. Nakaamra, K. Ebisawa, M. Ikeda, N. Kawai, and T. Murata,
68
Del
P. delManno1,
J. Inorg.
68 De2
A.A. Delucchi,
A,E. Greendale,
68 Do
I. Dostrwsky,
H. Gauvin, and M. Lefort,
68 He
G. Herrmann "Delayed Fission
68 Kr
T. Krogulski, No. INR-1010
68 PO
A.M. Paskanzer, 27B, 414.
68 Th
T.D. Thomas, G.M. Raisbeck,
Vol.
12,
and C.W. Reich, Nucl.
and M. Nkve de M&ergnies,
J. Inorg.
Nuclo
1973
Chem.
29,
273.
258, 545.
R.F. Petry, G. Sidenius,
and T.D. Thomas, Phys. Rev. 167, 1105.
"Delayed Fission
Neutrons"
(Panel Proceedings) Phys. Letters,
28B, 173.
Nucl. Chem. 30, 2873.
G.W. Butler,
2.
181.
Ins. Meth. 48, 125.
and P.O. Strom, Phys. Rev. 173,
Neutrons"
E.K.
1159.
Phys. Rev. 169, 836. (Panel Proceedings)
J. Cluvaszezewska, M. Dakowski, E. Piasecki, (Poland),
No.
10,
1193.
&L.
R.A. Nawnn,
and H. Gauvin, Phys,
and L. Sauvage, Arkiv Fysik 36, 463.
67 Co2
Tqbler,
and C. Dktraz,
Nucl. Chem 28, 287.
S. Amiel, J. Cuttler,
Data
15, 555.
15, 298.
Phys. Letters
Radiochim. Act&
67 Am2
Nuclear
15, 1030.
Phys. Rev. Letters
Hyde, Phys. Rev. Letters,
66 PO2
and
I.A.E.A.
and C.L. Cocke, Nucl. Phys. 89, 656.
A.M. Poskanzer,
Cabrespine,
2 p.243,
Z. Physik 188, 38.
R;H. Pehl, F.S. Goulding,
66 PO1
Am1
Phys. Rev. 138,
Vol.
Hyde,
P. Boerstling,
p.147, I.A.E.A., M. Sowinski,
J. Cerny, D.A. Landis,
Vienna.
and J. Tys.
and F.S. Goulding,
Report Phys. Letters
G.T. Garvey, and R.P. Lynch, Phys. Letters,
192
278, 504.
Vie1 ma.
DELAYED
NEUTRON
PRECURSORS
REFERENCES
FOR TABLk
68 To1
L. Tomlinson
and M.H. Hurdus, J. Inorg.
Nucl. Chem. 30, 1125.
68 To2
L. Tomlinson
and M.H. Hurdus, J. Inorg.
Nucl. Chem. 30, 1649.
68 To3
L. Tomlinson
and M.H. Hurdus, J. Inorg.
Nucl. Chem. 30, 1995.
69 Am
I. Amarel, H. Gauvin and A. Johnson, J. Inorg.
69 Ar
A.C. Artukh,
69 Ca
G.C. Carlson,
69 Jo
K.W. Jones, W.R. Harris,
69 Kl
R. Klapish, C. Thibault-Phillippe, Letters, 23, 652.
69 Ma
B.E.F. Macefield,
69 Ro
E. Roeckl, J. Eidens,
69 Sh
H.D. Schiissler, H. Ahrens, H. Folger, H. Franz, W. Grimn, G. Herrmann, J.V. Kratz, Proc. 2nd symp. "Physics and Chemistry of Fission", p.591, I.A.E.A. Vienna.
69 St
R.H. Stokes, and P.G. Young, Phys. Rev. 178, 1789.
69 Ta
W.L. Talbert, A.B. Tucker, and G.M. Day, Phys. Rev. 177, 1805 and W.L. Talbert, Cl, 1135 (1970) (addendum).
Phys. Rev.
69 Wa
A.C. Wahl, A.E. Norris, R.A. Rouse, and J.C. Williams, of Fission", p.813, I.A.E.A., Vienna.
and Chemistry
70 Ar
A.G. Artukh, V.V. Ardeichikov, Letters 31B, 129.
70 Ch
Y.S. Chen, T.A. Tombrello,
70 De
P. de1 Maram and D.C. Perricos,
70 Ei
J. Eidens,
70 Fo
L. Forman, S.J. Balestrini,
70 He
G. Herrmann, N. Kaffrell, CERN 70-30 p.985.
70 Kr
J.V. Kratz,
70 Me
H.O. Menlove, R.H. Augustson,
70 Or
The OSIRIS Collaboration,
70 Ta
N.I. Tarantin, A.P. Kabachenko, I.V. Kuznetsov, Y.A. Dyachihin, German Report No. BMSW-FBK-70-28, page 59.
71 Ar
A.G. Artukh, V.V. Avdeichikov, Nuclo Phys. A176, 284.
71 Ch
N.G. Chrysochoides,
71 De
P. delMarmo1,
71 Fr
H. Franz, J.V. Kratz,
71 Ho
H.H. Hmard,
71 Ti
M. Tirard,
71 To
L. Tomlinson,
71 Tr
B.L. Tracy, J. Chaumont, R. Klapisch, C. Thibault, Phys. Letters 348, 277.
71 Wi
D.H. Wilkinson, D.E. Alburger, D.R. Goosman, K.W. Jones, E.K. Warburton, R.L. Williams, Nucl. Phys. A166, 661.
72 Al
D.E. Alburger,
Nucl. Chem. 31, 577.
G.F. Gridnev, V.L. Mikheev, and V.V. Volkov, Nucl. W.C. Schick,
W.L. Talbert,
and F.K. Wohn, Nucl. Phys. A125, 267.
M.T. McEllistrem,
and P.
and D.E. Alburger,
C. Detraz,
B. Wakefield
Phys. A137, 348.
J. Chaumont, R. Bernas, and E. Beck, Phys. Rev.
and D.H. Wilkinson,
Nucl.
2. Physik,
AI’IIdNSter,
G.F. Gridnev,
Phys. Rev. 186, 978.
Phys. A131, 250.
220, 101.
Proc. 2nd symp. "Physics
V.L. Mikheev, V.V. Volkov,
and K.L. Kratz,
and J. Wilczynski,
Phys.
R.W. Kavanagh, Nucl Phys. A146, 136.
E. Roeckl, and P.
J. Inorg.
Nucl. Chem. 32, 705. Nucl.
AITbNSter,
K. Wolfsberg, N. Trautmann,
Phys. A141, 289.
and T.R. Jeter,
Report No. CERN 70-30 p.589.
R. Denig, W. Herzog, D. Hiibscher,
and G. Herrmann, J. Inorg.
and K.L. Kratz,
Report No.
Nucl. Chem. 32, 3713.
and C.N. Henry, Nucl. Sci. Eng. 40, 136.
Report No. CERN 70-30 p.1093.
G.F. Cridnev,
J.N. Anoussis,
P. Fettweis,
N.S. Ivanov, and Om Zai Khun,
V.L. Mikheev, V.V. Volkov,
C.A. Mitsonias,
and D.C. Perricos,
and D.C. Perricos,
Radiochim.
Acta.
and J. Wilczynski, J. Nucl.
16, 4.
and G. Herrmann, Angew. Chem. 83, 902, and private
R.H. Stokes, and B.H. Erkkila,
Phys. Rev. Letters,
Energy 25, 551.
coamunication.
27, 1086.
French Report No. FBNC-TH-48. and M.H. Hurdus, J. Inorg.
and D.H. Wilkinson,
Nucl. Chem. 33, 3609.
J.M. Nitschke,
A.M. Poskanzer,
E. Roeckl, and G.T. Garvey, and
Phys. Rev. C6, 2019.
193
Atomic
Data
and
Nuclear
Data
Tables,
Vol.
12.
No.
2,
1973
L. TOMLINSON
REFERENCES FOR TABLE 72 Ar
A&. Artukh, G.F. Gridnev, V.L. Mikheev, V.V. Volkov, No. JINR-E7-6303.
72 Am
S. Amiel, H. Feldstein,
72 Ca
H.K. Carter,
72 De
P. de1 Marmol, and P. Fettweis,
72 Ke
A. Kerek, G.B. Holm, S. Borg, and L.E. de Geer, Nucl. Phys. A195, 177.
72 Kl
R. Klapisch, C. Thibault, Letters 29, 1254.
72 Ru
G. Rudstam, S. Shalev et al, unpublished Al88, 48.
72 Sh
S. Shalev,
73 Kr
J.V. Kratz,
73 Sh
H.D. Sch%sler,
73 Ta
W.L. Talbert,
Atomic Data and Nuclear
M. Oron, and E. Yellin,
F.K. Wohn, W.L. Talbert,
Bull.
Am, Phys. Sot. II,
17, (No. 41, 514.
Nucl. Phys. A194, 140.
A.M. Poskanzer,
R. Prieels, results
C. Rigaud, and E. Roeckl, Phys. Rev.
given in AX.
Pappas, and T. SvedNp, Nucl.
Phys.
28, 687.
H. Franz, and G. Herrmann, J. Inorg. and G. Herrmann, Radiochim. Acta,
Data Tables, Vol. 12, No. 2, 1973
Russian Report
Phys. Rev. C5, 270.
and J.R. McConnell,
and G. Rudstam, Phys. Rev. Letters
private
and J. Wilczynski,
conzunication.
194
Nucl. Chem. 35, 1407 and private to be published.
coamunication.