Delayed neutron precursors

Delayed neutron precursors

ATOMIC DATA AND NUCLEAR DATA TABLES DELAYED 12, 179-194 (1973) NEUTRON PRECURSORS L. TOMLINSON Atomic Energy Research Establishment Harwell, OX...

924KB Sizes 0 Downloads 80 Views

ATOMIC

DATA AND NUCLEAR

DATA TABLES

DELAYED

12, 179-194 (1973)

NEUTRON

PRECURSORS

L. TOMLINSON Atomic Energy Research Establishment Harwell, OX1 1 ORA, England

Experimental data on delayed neutron precursors are compiled and evaluated. Where available, the following data are listed for each nuclide: half-life, neutron emission probability, total energy available for beta decay, neutron binding energy of the daughter nucleus, major peaks in the neutron spectrum, methods of identification and production. The literature survey ended in December 1972.

CONTENTS

INTRODUCTION TABLE.

Properties of Delayed Neutron

REFERENCES

Precursors

FOR TABLE

Copyright 0 by Academic Press, Inc. All rights of reproduction in any form reserved.

179

Atomic Data and Nuclear Data Tables, Vol. 12. No. 2. 1973

L. TOMLINSON

INTRODUCTION The process of delayed neutron emission takes place in neutron rich nuclei which are sufficiently far removed from the region of beta stability for the binding energy (B,) of the last neutron in the daughter nucleus to be less than the total beta-decay energy (Qp) of the precursor. The process is shown schematically in the figure. Because the lifetimes of the excited states in the emitter nucleus are extremely short, the neutron activity decays with the beta-decay half-life of the precursor. Theoretical aspects of the delayed neutron process are discussed in a recent paper by Pappas and Sverdrup.i Although delayed neutron emission was discovered in 1939, progress in this field has been noticably slow until recent years. In 1963, there were 16 known delayed neutron precursors. This had grown to 34 by the time the first comprehensive compilation of delayed neutron precursors was produced by de1 Marmo12 in 1969. The present compilation contains 91 nuclides and covers the literature up to the end of 1972. This paper is an extension and updating of my earlier compilation and evaluation of delayed neutrons from fission3 and is also a companion paper to the recent compilation of beta-delayed proton and alpha emission by Hardy.4

1. Has the nuclide been observed experimentally? 2. Is Qa > B,?

A positive answer was required to each question for inclusion in the TABLE. A more restrictive definition of delayed neutron precursors-which allows inclusion in the TABLE of those nuclides whose neutron emission has been observed experimentally-could have been used. However, many known nuclides which are certain to be delayed neutron precursors, would have been excluded because their neutron emission has not been verified experimentally. The present TABLE includes these nuclides and thus presents a challenge to the experimentalists to study their properties. On the other hand, the TABLE may contain some nuclides which, on later study, will be found not to emit delayed neutrons. These are expected to be few. They will be nuclides which have been included because of errors in the values of Qp and B,, or because spin and parity restrictions do not allow neutron emission.

Values of Qp and B,

Where possible, values of Qp and B, were taken from the 197 1 Mass Table of Wapstra and Gove.5 In all other cases, values calculated from the mass relationship of Garvey et al. 6 have been used. The prescription of Garvey et al. has been used in preference to other mass formulas for the following reasons:

\

--------

Z,N

.

Z+l,N-I

PRECURSOR

1. In the medium mass region (A = 80 to 150), of eight mass formulas tested by Talbert et aL7 only two were able to predict accurately the known region of delayed neutron emission. These were the mass formulas of Seeger and Perishes and of Garvey et a1.6 2. In the light mass region (A < 40) comparison between known and predicted values of Qp and B, showed that best agreement was obtained with the Garvey formulation. The Seeger-Perish0 formula is inaccurate in this region. Moreover no calculated values are available below A = 44. The latter formula is thus inapplicable over the whole range of delayed neutron precursors. 3. A comparison was made between measuredg-l1 and predicted Qp values for thirteen nuclides in the medium mass region (A = 84 to 142) located in, or near, the delayed neutron region. The average differences between measured and predicted Qp values from three mass formulas are given below-again indicating a reason for preferring the Garvey formulation.

EMITTER

Z*I,N-2 FINAL

NUCLEUS

Schematic representation of delayed neutron emission: Qp is the total beta-decay energy of the precursor; B, is the neutron binding energy of the emitter (or daughter)

Definition

of Delayed Neutron Precursors

One difficulty in producing a compilation on delayed neutron precursors is knowing which nuclides to include. The policy adopted here has been to ask two questions about each potential delayed neutron precursor:

Atomic Data ond Nuclear

Data Tables, Vol. 12, No. 2, 1973

180

DELAYED

Mass Formula

Average Difference between Measured and Predicted Qp (MeV)

Myers-Swiatecki’* Seeger-Perishes Garvey et a1.6

0.71 0.60 0.47

NEUTRON

PRECURSORS

Acknowledgments

I wish to thank R. G. P. Towndrow for help with the literature search and W. L. Talbert, G. Herrmann, and colleagues for the provision of data prior to publication.

References Adopted Values and Errors

for Introduction

1. A. C. Pappas and T. Sverdrup, Nucl. Phys. A188, 48 (1972)

The aim has been to quote all errors as one standard deviation (la). Where authors do not quote the meaning of their errors, these have been assumed to be one standard deviation. The adopted values listed for half-life and neutron emission probability (P, in neutrons per 100 disintegrations) are normally weighted mean values. The weighted mean value for the half-life is given by:

2. P. de1 Marmol,

Nucl. Data Tables A6, 141 (1969)

3. L. Tomlinson, “Delayed Neutrons from Fission: A Compilation and Evaluation of Experimental Data,” United Kingdom Atomic Energy Authority, Report No. AERE-R6993 (1972) 4. J. C. Hardy, Nucl. Data Tables 11, 327 (1973) 5. A. H. Wapstra and N. B. Gove, Nucl. Data Tables A9, 265, 303 (1971) 6. G. T. Garvey and I. Kelson, Phys. Rev. Letters 16, 197 (1966); G. T. Garvey et al., Rev. Mod. Phys. 41, 51 (1969)

The standard deviation of the mean is taken as the larger of the two expressions:

0

4%

coi-2

= [

i

7. W. L. Talbert, A. B. Tucker, and G. M. Day, Phys. Rev. 177, 1805 (1969); W. L. Talbert, Phys. Rev. Cl, 1135 (1970) 8. P. A. Seeger and R. C. Perisho, “Model-Based Mass Law and Table of Binding Energies,” Los Alamos Scientific Laboratory Report No. LA-3751 (1967)

I

where n equals the number of measured values. In the few cases where the experimental values were widely different and well outside the error limits, an unweighted mean value is given. Mean values and errors for P, were calculated in a similar manner. Where no experimental P, values are available, approximate values can be estimated for nuclei in the medium mass region by means of the semiempirical formula of Amiel and Feldstein13 pn = wp

9. T. Alvager et al., Phys. Rev. 167, 1105 (1968) 10. J. Eidens, E. Roeckl, and P. Armbruster, 11. A. Kerek et al., Nucl. Phys. Al95,

13. S. Amiel (1970)

- B,jrn

and H. Feldstein,

Phys. Letters 3lB, 59

14. S. Amiel, “Physics and Chemistry of Fission,” p. 569, 2nd Symposium, I.A.E.A., Vienna (1969) 15. H. D. Schtissler, H. Ahrens, H. Folger, H. Franz, W. Grimm, G. Herrmann, J. V. Kratz. and K. L. Kratz, “Physics and Chemistry of Fission,” p. 591, 2nd Symposium, I.A.E.A., Vienna (1969); H. D. Schtissler and G. Herrmann, Radiochim. Acta, to be published (1973)

Produced in Fission

The contributions of precursors to the various produced in fission are not but can be found in recent

177 (1972)

12. W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966); “Nuclear Masses and Deformations,” U. of California Report, No. UCRL-I 1980 (1965)

where C and m are constants. This expression gives reasonable values for P,, when (Qp - B,) > 2 MeV.

“Groups”

Nucl. Phys.

A141, 289 (1970)

individual delayed neutron delayed neutron “groups” given in the present paper references.14-i6

16. L. Tomlinson, 181

Nucl. Technol. 13, 42 (1972)

Atomuc

Drrto

and

Nuclear

Data

Tables,

Vol

12.

No.

2,

1973

L. TOMLINSON

TABLE. Properties of Delayed Neutron Precursors Explanation

Precursor

Precursors, as defined in the INTRODUCTION, listed in order of increasing Z and A

T?4

Half-life, in seconds. Each measured value is followed by the error (la) and reference Adopted value which is listed last. The adopted value is normally the weighted mean of the measured values (see INTRODUCTION for exceptions)

A

are

pn

Neutron emission probability in neutrons per 100 disintegrations (explanation as for T$).

QP

Total beta-decay energy. Values taken from the Wapstra and Gove 197 1 Mass Table5 are followed by the error Estimated values from the same Mass Table Values in parentheses are taken from the mass tables of Garvey et al.” Recent experimental Q, values for g7Y, 134Sb, and 142Cs are also given

E ( >

Bn

Neutron binding energy in daughter nucleus (explanation as for Qp)

Major Neutron Peaks

Energies, in MeV, (neutrons per When relative normalized to

Identification excit.

Means of nuclide identification Deduced from energy considerations in the production of the nuclide Nuclide produced in several ways Z and A determined by means of semiconductor particle identifier. Sometimes combined with magnetic analysis to improve resolution Chemical separation, identifies Z Some study of decay properties such as energy levels or formation of daughter nuclei. A known daughter nucleus is often used to identify A Mass separation, identifies A. Sometimes preceded by a chemical or physical step such as surface ionization or diffusion which identifies Z

cross bomb. particle iden.

them. decay

mass sep.

Production

Atomic Data and Nuclear

of Table

Data Tables, Vol. 12, No. 2, 1973

are followed by absolute intensities 100 disintegrations) in parentheses. intensities are listed (major peak loo), this is indicated in the TABLE

All known methods of production

182

are listed

DELAYED

NEUTRON

PRECURSORS

TABLE. Properties of Delayed Neutron Precursors % (set)

*He

‘Li

Pn per

(n

100

lisintegrations)

0.122io.oo2 (6sPOl)

0.004 (SIGa) 0.170 0.005 (Srno) 0.001 0.176 (65Do) 0.177 0.003 ( 70Ch) L 0.175+0.001

1z+1

(65pol)

Bn WV)

% (MeV)

0.70+-o.

1:

Major

Identification

Neutron Peaks MeV (Intensity)

Chem,

2.0327 .to.ooo7

excit. mss

+2.8

5*2-0.4

0.168

derived !xp.data: iGCh,

3.62tO.01

I .6651

2o.oco4

from 70Ch,

.7010.10 .lmo.lo(2.2+0.21 7CCh, 66Ch,

69Ma.

(3

+2.7

4*31

69Chl

excit, decay

Production

GeV p on C, 0 (65Pol) 252Cf fission 16SWl-1, 67CoI); 26Mg @,%e) 2% (6’Xe) 235~1, 239pu fission (68Kr)

cross bti, (63Pol) sep. (7CTa)

cross ( 51Ga)

bti

p on various

(63U)

particle

iden.

(66Thl

larlier value n- 75215 from i3Al - prob. in error)

QB h,P) (59A1, 6341) Xi (t,p) (61Hi,

6341,

252Cf

fission

a on Al

“Li

LoO85ti.001

23.1

E

(69Kl)

particle (66 Pol,

0.503

2o.oxi

mass ‘2Be

13B

LO1 14~O.oax (6SF’o2)

1.0186

0.m

(62Ma)

1.016 0.001 (68’3) mm cbam7

(71Wi) A 0.01743

+7 -3.5 (65Po2)

7

(1.5 (6%) <0.3 (65Po2) 0.52 0.26 (6=h) 0.25 0.04 (69Jo) A 0.2620.04

targets

(51Ga, 52H0, 65D0, 67Ca, 68Th) d on Be, B, C (51Ga) “B (Y,~P) 52Sh, 58Ta, 63Ne) I Q (Y,3P) .53Re, 58Ta)

11.6

E

13.437 +0dXM

3.3693 +-0.0013

4.9464 ~0.ooo2

2.450.06 (0.094~0.020) 3.55~0.10 (0.16kO.03) (69Jo)

6ai) (67Col) Si (71Ti)

and

iden.

GeV p onU,

68Th)

(66P01,

Au,

68Th,

Ir 69Kl)

(69Kl)

sep.

cross bomb (65Po2) particle iden. (66P01, 68Th)

p on various light targets (6SPo2) GeV p on U, Au

ground detm.

(86Po1,

state ( 7 1Ho)

CeV

wss

7Li

excit,

decay 69Jo) particle iden. mg. analysis

(7lHo)

“B (t,p) (62Ma, 68Ch, 69Jo, 71Wi) 1%~ ions on 232Th (69Ar) GeV p on Au (68Th)

(62&x,

(68Th,

68Th)

c7Li,2p)

&

69Ar)

ti.OOO32 I48

21.2

E

8.1770 +0.0004

particle iden. & msg. analysis (66Po1, 68Th, 69Ar)

GeV p on U, Au (66P01, 68Thi ‘80 ions on 3%h (69Ar)

15B

19.5

E

I.2181 +0.0008

particle

GeV p on U, Au (66Po1, 68Th)

2.49oc zo.oo22

excit. (61Hi) particle iden. & nag. analysis (68Th, 69Ar, 7a4r)

‘%

0.74zo.03 (6I~i)

‘.01~0.02

(66Po1,

iden. 68Th)

14C (t,p) (61Hi) p on various targets (65D0, 68Th)

67Ca,

68D0,

a on Al, Si (7ITi) 180, 22Ne ions on 232Th (69Ar, 7@w) 17C

9.7

‘%

(13.6)

A Adopted value

E

particle (68P0,

5.884 +0.015

GeV p on U (68Po) 1% on 23%h (69Ar)

particle iden. & ring. analysis (69Ar)

(1.2)

E Estimated value from Wapstra-Gove5

iden. 69Ar)

( ) Value from Garvey et aL6

‘% ions ( 69Ar)

Intensity

on 232Th

n’s per 100 disintegrations

Erratum for gLi, see page 190

183

Atomic

Dota

and

Nudeor

Doto

Toblsr,

Vol.

12,

No.

2,

1973

L. TOMLINSON

TABLE. Properties of Delayed Neutron Precursors PI-ew-sol

T% (set)

"N

4.14 0.04 (4m-d 4.20 0.08 (61Hi) 4.16 0.01

Pn

83 (MN

(n per 100 )isintegmtionsl 9521

(64Si)

8.678 20.015

Major

Bn MeV)

4.1424 IO.0609

LO38kO.02

(3OklO:

1.1 (C20) I. 2OkO.05 I .68+0.04 1.8010.04

(65Do)

4.17

Identification

Neutron Peaks MeV (Intensity)

:6lPe,

0.02

Production

:hem, cross bomb :48Kn, 49A1, 48Ch)

(43+5) (522) (722)

d on various (4fXn, Wh, p on various (65Do

elements 55Ch) elements 68Th)

68Do

n on 170, l&l (49Ch 644m) t on !5N, ‘b (56Sh) y on various elements (50Sh 5lSt, 55Re) a on I%, Al, Si

63X,

i’Am2)

(‘me) 4.169 0.008 (‘al) , 4.165kO.006

(5lSu,

71Ti)

heavy ions on various elements (6lF1, 62V0, 65Ha, 66Po2, ‘C&r) '94

0.63ZO.03 (‘-Xh)

14.057 20.030

Sep. isotope trradiation, decay 6‘lCh) m-title iden. & mg. analysis :68Th, 69Ar, 7QAr)

l@O (n,p) (64Ch) ‘80 (t,3He) (69St) CeV p on Au (68Th) 180, *tie ions on 232Th (69Ar, 7CW)

3.9566 +o.OO*:

article iden. & msg. analysis ‘68Th, 69Ar, 7QQr)

GeV p on Au (68Th) 180, *%Ie ions on 23%h (69Ar, 7Q4r)

(7.8)

>article iden. & nag. analysis (69Ar)

‘*O ions (69Ar)

8.102 +0.007

m-title iden. & tag. analysis :68Th, 69Ar, 7&Q, 72Ar)

ZeV p on Au (68Th) 180, **Ne ions on 232Th (69Ar, ‘CM-, 72&r) ‘80, **Ne ions on *3*Th (69Ar, 724r)

19N

13.0

*ON

(21.3)

*'O

10.7

220

(9.1)

5.198 ?0.031

article iden. mg. analysis ‘69Ar, 72&r)

10.853 +0.030

10.3656 +-O.OOl(

Sep. isotope Irradiation, decay ‘65Val rass.‘sep. (7OTa) article iden. & rag. analysis (7Q4r)

*%e (n,p) (6Skd

23F

(11.0)

5.1966 ?;O.CKUf

m-title iden. & rag. analysis (7CW)

**Ne ions (7Q4r1

on 23%h

24F

(15.9)

0.870

m’ticle iden. & w. analysis (7CW)

*&We ions (7Q4r)

on 232Th

+0.010 6.230 to. 300

article iden. & tag. analysis (7QQr)

*Se ions (7Q4r)

on 232Th

?O.OOl

mss sep. 69K1, 72Kl)

GeV p on U (69K1, 72Kl)

8.5O‘U kO.0024

rass Sep. 69K1, 72Kl)

GeV p on U (69K1, 72Kl)

*2F

4.tio.4 (6sVa)

‘%a

E

(6.7)

=Nk! 2’Na

E

0.046f kO.CKOf

8.0?0.7

0.295+0.010 (72w

6.443

&

on 232Th

*me (t,%Ie) &69St) *he ions on 3%h (7CW

100357~0.001 (‘au)

(11.6)

l.0486+0.002 (‘Xl)

(10.4)

(5.6)

tass sep. :69Kl, 72Kl)

GeV p on U (69K1, 72Kl)

0.055%0.003 (72u)

( 15.4)

(8.2)

ass Sep. :69Kl, ‘Xl)

GeV p on U (69K1, 72Kl)

31Na

L0177+0.001 (‘Xl)

(14.1)

(2.8)

mss Sep. :69Kl, 72Kl)

3eV p on U (69K1, 72Kl)

3%a

LOl45~0.003 (72u)

lELss sep.

(72Kl)

GeV p on U (72Kl)

%a

0.02O~0.015

bass Sep.

(72Kl)

GeV p on U (72Kl)

2gNa 30 Na

(23.6)

(0.5)

(7x1)

A Adopted

Atomic

value

Data and Nucleor

E Estimated

value

Data Tables, Vol. 12, No. 2, 1973

from

Wapstra-Gove”

(

) Value

184

from

Garvey

et al.”

Intensity

n’s per 100 disintegrations

DELAYED

TABLE. PreUrsa

pn

T4 (set)

NEUTRON

Properties

of Delayed Neutron

Precursors

Major Neutron Peaks MeV (Intensity:

QP 0-w)

(n per 100 isintegrations:

PRECURSORS

Identification

Production

32A1

(11.2)

9.215 +-0.007

particle iden. & rag. analysis (71Ar)

0 Ar ions 71Ar)

on 232Th

33Al

(9.9)

(5.0)

particle iden. & nag. analysis (71Ar)

l”Ar ions 71Ar)

on 232Th

35Si

(9.8)

(8.2)

particle iden. & nag. analysis (71Ar)

OAr ions 71Ar)

on 232Th

Si

(8.1)

(4.1)

particle iden. rag. analysis

& (71Ar)

OAr ions 71Ar)

on 232Th

37P

(8.1)

4.313 +o.o3c

particle iden. & nag. analysis (71Ar)

OAr ions 71Ar)

on 23*Th

(9.5)

9.43c +-0.04C

particle iden. & rrag. analysis (71Ar)

loAr ions 7 1Ar)

on 232Th

2.86zo.04 ( 7OOr)

(6.1)

(5.7)

rmss Sep.

(7ODr)

B0GZ3

1.7%0.2 (7OOr)

(9.4)

(8.5)

mss

(7COr)

*3Ge

1.9zo.4 (72De)

(8.5)

(8.1)

them,

decay

(72De)

B4Ge

l.ZO.3 (72De)

(7.5)

(4.2)

them,

decay

(7Pe)

B4AS

5.8 0.5 (68~el) 5.4 0.4 (79(r) A 5.620.3

B5AS

2.15 0.15 (67De) 2.028 0.012 (68To2) 2.05 0.05 (791r) A 2.03+0.01

36

4*C1 7gGa

16AS

(10.0)

0.13?0.06 (7str)

11 3 (67De) 22 5 (68To) 23 3 (79(r)

“As

0.6 0.3 (7CW Q.3 (73Kr) A 0.4SO.2

“Se

5.8 0.5 (68T03) 5.9 0.2 (7CDe) 5.85 0.15 (‘a(r) 5.41 0.10 (71To) L 5.6WO.13

CO.8 (68T03) ,23 0.07 (7ODe) ,25 0.06 (7CKr) ,16 0.03 (71To)

‘a&

1.3 0.3 (7COe) 1.4 0.3 (‘a(r) 1.53 0.06 (71To) L 1.52zo.06

G1.0 (7ODe) ,15 0.09 (7CKr) ,7.5 0.08 (71To)

A Adopted

value

them, decay (68De1, 73Kr)

0.097 (10) 0.172 (38) 0.497 (100) 4.545 (44) 0.635 (52) 0.895 (60) ~1.005 (36) “1.155 (36) ‘“1.350 (18) (relative int. 71Fr)

(9.1)

(4.1)

(11.4)

(6.2)

:hem, decay

( 10.4)

(4.1)

:hem, decay KUr, 730)

A 2Ob%

3.8 +1.7 -1.0 (79(r)

0.9t0.2 (79Er)

8.56C +o.o8c

Sep.

(7.3)

6.3

(6.3)

(4.9)

fission

them, 67De, 79(r)

E

decay (66T01, 68T01, 68To2,

:hem, decay COe, 7CUr,

(79(r)

(68T03, 71To)

A 0.18LO.03 c:hem, decay 7‘ICI-, 71To)

(‘me,

A 0.5ZO.3 E Estimated

value

from

Wapstra-Gove5

(

) Value

185

from

Garvey

et a1.6

Intensity

Atomic Data

n’s per 100 disintegrations

and Nuclear

Data bbler,

Vol. 12, No. 2, 1973

L. TOMLINSON

TABLE. PreCUB0

Pll

T4 (set)

(n

5.til.5

56.1

3.1 2.1 2.3

0.7

(498~) 0.35

(‘3’3W 55.8

QP

100

0.6 0.3 0.4

of Delayed Neutron

Neutron MeV

(7lTo)

(8.6)

(65Ar) (71De) (73Sh)

6.5

(65Ar) (a) (b) (73Sh)

(9.0)

(‘35Ad

(‘3.0)

E

Pi-ecursors

MajOt-

‘n (MeV)

(MeV)

‘isintegrations

0.4l?rO.C4 (7lTo)

55.4

per

Properties

Peaks

Identification

Production

(Intensitv)

(6.2)

:hem,

5.511 +0.008

0.045, 0.110, 0.180, (7lCh.

7.080 +0.100

0.340,

decay

fission

(71T0)

0.070, 0.130, 0.250 72Ru)

:hem, decay 47Sn, 49Su, 63%) ass Sep. (7OOr)

0.400,

hem, decay (57Pe) ass sep. (7001-j

0.25

(66Si) 55.6 0.15 (7lDe) 56.0 0.3 (7OOr) A 55.67k0.1 15.5 0.3 (4xu) 15.5 0.4 (57Pe) 16.3 0.8 (59Pe) 15.9 0.1 (66Si) 16.6 0.4 ( 7OOr1 A 15.8BLO.l 4.4

A 5.0 5.6 4.6 4.3

2.m.2 1.6 1.2 0.6 0.5

4.5 0.4 (66Si) 4.6 0.3 ( 7OOr) 4.55 0.10 ( 7OOr) A 4.55+-0.09

i.3 3.0 7.2

i.6 1.2 1.8

(a) (b) (73Sh)

4.930 to. 110

hem, 47Su,

decay

6.400 to. la,

hem, 59Pe,

decay 7Me)

4.7

hem, 69Sh,

decay 7CHe)

59Pe, 66Si) ass Sep. (7OOr)

A 8.620.9

1.6 0.6 (59Pl?) 1.63 0.14 (7CHe) A 1.6tiO.14

16 6.5 11 3

0.64 0.08 (7CHe) 0.62 0.12 (7CHe) 0.67 0.07 (7CHe) A 0.65?rO.O5

7 +y

(a)

(10.3)

(73Sh)

A 123 Cc)

(9.2)

(12.0)

0.25 0.10 (7CHe) 1.92 0.07 (65Pa) 1.86 0.01 (69Ta) 1.840 0.W

(72Ru)

A 4.620.4

0.5

(59Pe)

0.530

0.040?0.007 (6Wa)

E

:hem,

(6.2)

(5.3)

5.1

E

(8.2)

6.1

E

:hem, mss

decay

(7CHe)

decay (65Pa) Sep. (69+a)

(‘39C3) 4 1.847+0.@ 1.17 0.04 (65Pa) 1.19 0.05

1.9 !.66

0.6 0.51

(68An (69Ta

‘?Cr-03Rb Kixture: 1.236, 1.352, 1.448, : 73Ta)

(6tMd 1.30 0.01 (69Ta) 1.289 0.01

equilib

-hem, decay (6lSt1, 65Pa, 68Am) mss Sep. (69Ta)

0.138, 0.314, 0.410, 0.674

(69’3) A 3.2k0.6

A 1.287+0.0

(4 Calculated 11 b) ,, (c) A Adopted

Atomic Data and Nuchr

value

E Estimated

value

Data Tables, Vol. 12, No. 2, 1973

from

Wapstra-Gove5

from relative I, 0 I1 delayed (

yields I, neutron

) Value

186

from

of 59Pe ”

66Si

yield Garvey

of 69Sh et a1.6

Intensity

n’s per

100 disintegrations

DELAYED

TABLE.

Properties

PII

Tkt (SW)

PIFcurs0

(n per isintegrations

PRECURSORS

of Delayed Neutron

(6.6)

0.012+0.004 (69Ta)

7.9

E

Precursors

Major

Bn (MeV)

100

0.20 0.01 (7%) 0.23 0.02 (7Xa) A O.Zl+O.Ol 4.43 0.05 (67Aml) 4.48 0.02 (69Ta) 4.50 0.03

NEUTRON

Neutron Peaks MeV (Intensity)

Production

Identification

(4.3)

mss Sep. (7ZAm, 72Ca)

7.310 t-o.070

mass sep. (67Am1, 69Ta,

fission

7OOr)

(f-3)

4.56 0.02 (7OOr) A 4..50?0.02 5.89 0.04 (67Aml) 5.60 0.05

(68Am)

6.18 0.06 (69Ta) 5.86 0.13 (6Xa) 5.8 0.1 (72Am) A 5.66+-0.10 2.67 0.04 (67Aml) 2.8 0.1 (72Am) 2.79 0.09 (723) A 2.7150.04 0.3650.02 (67Aml)

.6 .43 39 .l

0.4 0.18 0.29 0.6

(6&&m (69Am (69Ta (73Sh

6.9

E

5.110 +0.100

%r-'%b dxture: 1.236, 1.352, b448, 73Ta)

equilib 0.138, 0.314, 0.410, 0.674,

them, decay (61St1, 6SAm, mass sep. (67Am1, 69Ta)

A 1.620.23 1 .lO 1.0

l.lO(69Am 2.0 (73Sh

(9.5)

6.860 kO.240

mss Sep. (67Am1, 72Am,

‘lOZO.93

(67&a

0.23 0.02 (67Aml) 0.207 0.003 (71Tr) i 0.209+o.c0

2.721.5

(69Am)

0.135 0.010 (69Ad 0.176 0.005 (71Tr) i 0.168+0.011

>20

(7.9)

(10.8)

(69Am)

(9.0)

4.86

E

mss

sep.

(67Aml)

(6.6)

mass

sep.

(67Aml)

(3.9)

mss

sep.

(69Am)

0.136+0.008 (71Tr)

(12.1)

(6.4)

mss

sep.

(71Tr)

0.076+0.005 (71Tr)

(10.1)

(3.1)

mass

Sep.

(71Tr)

(7.1)

(6.8)

mass Sep. (7OEi, 71Tr)

(5.4)

(4.7)

mass

6.1 E 5.7ti.2 (fOEi)

5.578 ?0.016

0.420.3 (7OEi) (71Tr) A +0.2

o.a5+0.05 (71Tr) 1.11 0.03 (7OEi) 1.11 0.14 (71Tr) 1.1 0.3 (d) A 1.11+0.03

A Adopted

72Ca)

A ll.l+l.O

go.2

(d)

68He);

1.620.3 talc. from d.n yield of 73Sh and fiss. yiell 3f 69Wa)

neutron 73Sh finds a delayed This activit is assigned to assigned to & CT% = 0.8?0,7

value

E Estimated

value

activity with 97Y on half-life set) on the

from

Wapstra-Gove5

sep.

(71Tr)

mdss sep. (7OEi, 71Tr) them (73Sh)

T% = 1.120.3 grounds same grounds.

(

in

set and a delayed the above Table.

) Value

187

from

Garvey

neutron yield of It could equally

et al.”

Intensity

Atomic

Data

9%n/104 fiSSiOnSa well have been

n’s per 100 disintegrations

and

Nuclear

Doto

Tables,

Vol.

12,

No.

2.

1973

L. TOMLINSON

TABLE.

Properties

of Delayed Neutron

Precursors -

gk

hl (n per 100 isintegrations:

T% (f-2)

Pre:UI’SOI

CO.3

(7lTr)

,n.

il

ObSeNed

j-100

Neutron

MeV

Identification

Peaks

Production

(Intensity)

6.412 LO.025

(8.2)

mass

?gion ; yield Cl0 n/104fiss

Major

(2)

IIELSS sep.

(7lTr)

i

(6.5)

5.2

E

mss

Sep.

(7OEi)

(6.4)

5.57

E

mss

sep.

(70Or)

3.7kO.5 (7cw

(8.9)

7.97 E

mass sep.

(7OOr)

‘29111

0.820.3 ( 7OOr)

(7.3)

(5.3)

nass sep.

(7OOr)

’ 501”

0.520.2 (7OOr)

(9.7)

(7.4)

mss

sep.

(70Or)

13’111

0.320.1 (7OOr)

(8.4)

(5.0)

nmss sep.

(700r)

133sn

1.720.3 ( 7OOr)

(7.2)

(7.1)

mass Sep. (7OUr)

(8.7)

7.7

E

them, decay (67T0, 68De2) mass sep. (iraCe)

3.3

E

them, (648e,

decay 68To2)

them,

decay

(69Sh)

them,

decay

(69Sh)

them,

decay

(47Sn,

49Su)

ggY

0.820.7

6

(7OEi) ’ 2’111

‘%b

3.64+-O&4 (7OOr) 2.020.4 (7OOr)

11.3

0.3

0.08+0.02 (68To2)

(67To)

8.4fO.Z (7Xe)

11.1 0.8 (68De2) 10.3 0.5 (7Xe) A ll.tiO.3

‘35Sb

g

,

+0.9

822

(68To2)

(7.5)

20.920.5 (69Sh)

-0.5

(69Sh)

(4.5)

3.72 to. 10

3.520.5 (69Sh)

m.5

(69Sh)

(6.5)

5.46

&82?*5 1.696 0.021 (68T02) A 1.7OZO.02

’ 37Te 1371

24.4

0.4

(59Pe) 24.6 0.2 (7Dw 24.5 0.2 ( 7OOr) 24.7 0.1 (71De) i 24.62+0.08 I 3EI

5.9 0.4 (49SU) 6.3 0.7

3.0 4.7 5.6 5.2

(65Ar)

0.5 1.0 1.2 0.7

5.4

E

(69Sh) (71De) (73Sh)

E

3.862 +0.0x

0.270, 0.488, 0.685, 0.863, 1.140

0.380, 0.570, 0.756, 0.965, (72Sh);

mass Sep.

(70Or)

eight of these peaks confirmed (73Ta) A 5.421.3 2.0 3.0

0.5 0.8

(6Mr) (73Sh)

(7.8)

5.9 E

them, decay (49Su, 59Pe) nmss Sep. (7OOr)

(59Pe) 6.57 0.12 (7OOr) 6.8 0.3 (7OOr) A 6.55tO.l’ 13g1

2.7 0.1 (Mu) 2.0 0.5 ( 59Pe) 2.46 0.15

A 2.520.5 143

(73Sh)

E Estimated

value

(6.7)

4.0

them, decay (49Su, 59Pe) mass sep. (7OOr)

E

(700x-j

i 2.61?0.11

A Adopted

value

Atomic Data and Nuclear Data TobIer, Vol. 12, No. 2, 1973

from

Wapstra-Gove5

(

) Value

188

from

Garvey

et aL6

Intensity

n’s per 100 disintegrations

DELAYED

TABLE. Tti (set)

Pre-

0.84 0.14 (70He) 0.87 0.13 ( 70He) 0.86 0.04 (70He) A 0.86~O.W 1411

pn per lisintsgrations (n

32+13

NEUTRON

PRECURSORS

Properties of Delayed Neutron Precursors Major Neutron

100

MeV

(8.9

(73Sh)

0.45 0.10 (7CHe) 0.55 0.25 (7Qle) 0.43 0.08 (7CHe)

5.3

Identification

Peaks

E

(3.5)

(7.4)

Production

(Intensity) fission

:hem, (69Sh,

decay 7OHe,

73Sh)

them, (69Sh,

decay 70He,

73Sh)

R

A 0.4450.06 14’XB

1.70

0.05

(5.9)

5.4

E

them, mss

decay (65Pa) Sep. (69Ta)

(4.3)

4.3

E

them, mass

decay (65Pa) sep. (69Ta)

(6.7)

(5.6)

them, miss

decay (65Pa) sep. (72Am)

4.80 to. 10

them, mss

decay (62Fr) Sep. (69Ta)

5.870 co. 140

them, decay ~as.9 sep. (69Am, 69Ta)

(634 1.73

0.01

(69Ta) 1.720

0.013

(f-3) 1.8

0.2

(68-41) 1.6 0.1 (67Co2) 1 .81 0.10 (7m) 1 .726+0.00 142Xe

1 .15

0.04

0.51+0.09

(=@a)

(69Ta)

1.18 0.04 (67Co2) 1.32 0.03

(69Ta) 1.24 0.02 (69’3) A 1.2420.03 ‘43x,

0.96+-0.02 (65k-d 0.30?0.03 (72Am)

14’CS

24 2 24.9

(62Fr)

0.073+-0.011

5.1

E

(69Ta)

0.2

(69Ta) 24.7 0.4 (6Wa) 25.6 0.6 (700r1 L 24.9220.17 142CS

2.3

0.2

0.21+0.06

(6Z!W 2.5

6.7 E 7.6?0.8

(69Ta)

(‘3841)

0.3

(69h)

(62Fr)

1.94 0.01 (69m) 1.68 0.02 (69Ca) A 1.89+0.06 ‘43CS

2.0

0.4

1.13iO.25

(62Fr)

(5.7)

(69h)

4.3

E

them, nass

decay (62Fr) Sep. (67Aml)

1.60 0.14 (67Aml) 1.69 0.13 (69W 1.7 0.1 (72Am) A 1.68?0.07

A Adopted

value

E Estimated

value

from

Wapstra-Gove5

(

) Value

189

from

Garvey

et a1.6

Intensity

n’s per 100 disintegrations

L. TOMLINSON

TABLE.

Properties

PI??-

of Delayed Neutron

Precursors

%I NW

CUrSOl

‘%S

1.06 0.10 (67Aml) 1.05 0.14 (S9Ad A 1.06+0.08

‘45CS

Production

(8.1)

5.9

0.563ko.027 (71Tr)

(6.1)

(3.8)

mss

‘%S

0.189+0.011 (71Tr)

(8.5)

(6.5)

mass

210T1

30 15 (57Ko) 78.0 1.8 (61St2) 78.0 1.8 (64we) A 78.ti1.3

A Adopted

value

l.lOkO.25 (69Am)

-0.02

(57Ko) +0.007 o.007 -0.0035 (6 lSt.2)

A 0.007

5.496 to.013

E

fission

sep.

(7OF0,

0

71Tr) Sep.

(71Tr)

them, decay and formation (310~)

5.182 +0.006

E Estimated

value

from

Wapstra-Gove5

(

) Value

for gLi. The data under P, and Major Neutron

from

Garvey

et al.6

Intensity

Dota

and Nuclerrr

Data

Tables,

Vol.

12, No.

2,

Peaks should read as follows: Major Neutron Peaks MeV (Intensity)

(n ptr; 100 Disintegrations)

Atomic

ffi recoil from 21‘%b + 214Bi; deposited from (6me)

Rn

‘-“o:g5

Added in Proof

Erratum

,I

75 5 15 (63Al) 40 2 10 (est. from 63Ne)

0.3 (29.8 k 3.5) 0.66 (2.2 + 0.4)

35.0 f 3.8 (70Ch)

1.1510.1(3.0~;~;)

A 35.0 & 3.8

(66Ch, 69Ma, 70Ch)

1973

190

n’s per 100 disintegrations

DELAYED

NEUTRON

REFERENCES

PRECURSORS

FOR TABLE

0. Hahn, S.C. Lind, S. Meyer, E. Rutherford,

31 cu

M. Curie, A. Debierne, A.S. Eve, H. Geiger, Rev. Mod. Phys. 3, 427.

47 Sn

A.H. Snell,

47 su

N. Sugarman, J. Chem. Phys. 15, 544.

48 Ch

W.W. Chupp, and E.M. McMillan,

48 Kn

N. Knable,

49 Al

L.W. Alvarez,

Phys. Rev. 75, 1127.

49 Ch

R.A. Charpie,

K.H. Sun, and B. Jennings,

49 su

N. Sugarman, J. Chem. Phys. 17, 11.

50 Sh

R. Sher, J. Halpern,

51 Ga

W.L. Gardner,

51 St

W.E. Stephens, J. Halpern,

51 su

K.H. Sun, B. Jennings,

W.E. Shoupp, and A.J. Allen,

52 Ho

R.B. Holt,

and R.W. Wanick, Phys. Rev. 87, 378.

52 Sh

R.K. Sheline,

53 Re

D. Reagan, Phys. Rev. 92, 651.

55 Ch

W.W. Chupp, Report No. UXL-2955.

55 Re

D. Reagan, Phys. Rev* 100, 113.

56 Sh

R. Sher and J.J.

57 Ko

A.V. Kogan and L.I.

57 Pe

G.J. Perlow and A.F. Stehney, Phys. Rev. 107, 776.

58 Ta

G.W. Tautfest,

Phys. Rev. 110, 708.

59 Al

D.E. Alberger,

A. Elwyn, A. Gallm~,

59 Pe

G.J. Perlw

61 Fl

G.N. Flerov, V.V. Volkov, JETP, 14, 973 (1962).

61 Hi

S. Hinds, R. Middleton,

61 Pe

G.J. Perlow,

61 St.1

A.F. Stehney,

61 St2

G. Stetter,

62 Fr

K. Fritze,

62 Ma

A. Marques, A. J.P.L.

62 Vo

V.V. Volkov,

63 Al

D.E. Alburger,

63 Gi

J. Gilat,

63 Ne

B.M.K. Nefkens, Phys. Rev. Letters

63 St

E.P. Steinberg

64 Am

S. Amiel,

64 Be

C.E. Bemis, G.E. Gordon, and C.D. Coryell,

64 Ch

L.F. Chase, H.A. Grench, R.E. McDonald, and F.J. Vaughn, Phys. Rev. Letters

J.S.

Levinger,

E.P. Meiners,

M.B. Sampson, and R.G. Wilkinson,

E. Schweidler

-

Phys. Rev. 72, 545.

Phys. Rev. 74, 1217. B.J. Moyer, and R.L. Thornton,

E.O. Lawrence, C.E. Leith,

and W.E. Stephens,

Phys. Rw.

74, 1217.

Phys. Rev. 76, 1255.

Phys. Rev. 79, 241.

N. Knable and B.J. Moyer, Phys. Rev. 83, 1054.

R.N. Thorn,

and R. Sher. Phys. Rev. 82, 511. Phys. Rev. 82, 267.

Phys. Rev. 87, 557.

Floyd, Phys. Rev. 102, 242. Rusincw, Z. Eksp. Teor. Fiz.

32, 432; Soviet PhysD JETP 5, 365.

J.V. Kane, S. Ofer, and R.E. Pixley,

Phys. Rev. Letters

2, 110.

and A.F. Stehney, Phys. Rev. 113, 1269. L. Pomorskii, A.E. Litherland,

and Ya* Tys, Zh. Eksper. Teor. and D.J. Pullen,

Fiz. 41, 1365; Soviet Phys.,

Phys. Rev. Letters

6, 113.

W.J. Ramler, A.F. Stehney, and J.L. Yntenm, Phys. Rev. 122, 899. and G.J. Perlow,

Bull.

Am. Phys. Sot. II,

6, 62.

Report No. TID-14880. Can. J. Chem., 40, 1344. Policarpo,

L. Pomorskii, Phys. Rw.

G.D. O'Kelley,

Ya. Tys, and G.N. Flerov,

Nucl. Phys. 36, 45. Zh. Eksper. Teor. Fiz. 42, 636.

132, 328. and E. Eichler,

and L.L. Schwartz,

and J. Gilat,

and W.R. Phillips,

Bull.

Am. Phys. Sot. 8, 320; also Report No. ORNL-3488.

10, 243. Phys. Rev. 130, 1472.

Nucl. Sci. Eng. 18, 105. J. Inorg.

191

Nucl. Chem. 26, 213.

Atomic

13, 665.

Data

and

Nuclear

Data

Table..

Vol.

12,

No.

2,

1973

L. TOMLINSON

REFERENCES 64Mi

R. Middleton

64 Si

M.G. Siibert,

and J.C. Hopkins,

64 We

P. Weinzierl,

E. Ujlaki,

65

and D.J. Pullen,

Nucl.

FOR TABLE

Phys. 51, 50.

Phys. Rev. 134, B16.

and G. Preinreich,

Phys.

Rev.

P.M. Aron, 0.1. Kostochkin, K.A. Petrzhak, and V.I. trans Swiet J. Atom. Energy 16, 447.

Ar

134,

B257.

Shpakw,

Atomnaya Energiya

16

(1964)

368;

Eng.

65

Atomic

D&a

Do

I. Dostrwsky,

R. Davis, A.M. Pcskanzer,

and P.L. Reeder, Phys. Rev. 139, B1513.

65 Ha

V.P. Hart,

E.

65

Pa

P. Patzelt

and G. Herrmann, Proc. Symp. "Physics 8 Chemistry of Fission"

65

Pol

A.M. Poskanzer,

R.A. Esterlund,

65 Po2

A.M. Poskanzer,

P.L. Reeder, and I. Dostrovsky,

65 SC

R. Schsneberg,

65 Va

F.J. Vaughn, R.A. Chalmers, L.F. Chase, and S.R. Salisbury,

65 Wh

S.L. Whetstone and T.D. Thoma8, Phys. Rev..Letters

66 Ce

J. Cerny, S.W. Cosper, G.W. Butler, Phys. Rev. Letters 16, 469.

66

P.R. Christensen,

Ch

Norbeck,

R.R. Carlson,

and

Phys. Rev. 137, B17.

and R. McPherson, Phys. Rev. Letters

H. Hansen, H. Weigmann, and A. Flaazzersfeld,

S.W. Cosper,.

E&

L. Pomorski, J. Tys, and V.V. Volkw,

66 Si

M.D. Siibert,

and R.H. TomIinson,

66 To

L. Tomiinson,

J. Inorg.

66 Wi

E.T. Williams,

67

I. Aamrel, R. Bernas, R. Foucher, J. Jastrzebski, Letters 248, 402.

and

Bl8.

D.A. Landis,

and C.D. Coryell,

Nucl. Appl.

67

Ca

A.

67

Co1

S.W. Cosper, J. Cerny, and R.C. Gatti,

17, 1271.

23, 369. 5, 223.

2, 256. A. Johnson, J. Teillac,

A. Notea, and S. Shalev, Transo Am. Nucl. Sot.

H. Gauvin, M. Lefort,

Co&es, J.E. Cline,

Phys. Rev. 154,

67 De

P. deIMam1,

67 To

L. TomIinson and M.H. Hurdus, Phys. Letters,

68 Al

T, Aleer,

68 Am

S. Amiel, Jb. GGlat, A. Notea, and E. Yellin, p.115, I.A.E.A., Vienna.

68

Ch

R. Chiba, N. Nakaamra, K. Ebisawa, M. Ikeda, N. Kawai, and T. Murata,

68

Del

P. delManno1,

J. Inorg.

68 De2

A.A. Delucchi,

A,E. Greendale,

68 Do

I. Dostrwsky,

H. Gauvin, and M. Lefort,

68 He

G. Herrmann "Delayed Fission

68 Kr

T. Krogulski, No. INR-1010

68 PO

A.M. Paskanzer, 27B, 414.

68 Th

T.D. Thomas, G.M. Raisbeck,

Vol.

12,

and C.W. Reich, Nucl.

and M. Nkve de M&ergnies,

J. Inorg.

Nuclo

1973

Chem.

29,

273.

258, 545.

R.F. Petry, G. Sidenius,

and T.D. Thomas, Phys. Rev. 167, 1105.

"Delayed Fission

Neutrons"

(Panel Proceedings) Phys. Letters,

28B, 173.

Nucl. Chem. 30, 2873.

G.W. Butler,

2.

181.

Ins. Meth. 48, 125.

and P.O. Strom, Phys. Rev. 173,

Neutrons"

E.K.

1159.

Phys. Rev. 169, 836. (Panel Proceedings)

J. Cluvaszezewska, M. Dakowski, E. Piasecki, (Poland),

No.

10,

1193.

&L.

R.A. Nawnn,

and H. Gauvin, Phys,

and L. Sauvage, Arkiv Fysik 36, 463.

67 Co2

Tqbler,

and C. Dktraz,

Nucl. Chem 28, 287.

S. Amiel, J. Cuttler,

Data

15, 555.

15, 298.

Phys. Letters

Radiochim. Act&

67 Am2

Nuclear

15, 1030.

Phys. Rev. Letters

Hyde, Phys. Rev. Letters,

66 PO2

and

I.A.E.A.

and C.L. Cocke, Nucl. Phys. 89, 656.

A.M. Poskanzer,

Cabrespine,

2 p.243,

Z. Physik 188, 38.

R;H. Pehl, F.S. Goulding,

66 PO1

Am1

Phys. Rev. 138,

Vol.

Hyde,

P. Boerstling,

p.147, I.A.E.A., M. Sowinski,

J. Cerny, D.A. Landis,

Vienna.

and J. Tys.

and F.S. Goulding,

Report Phys. Letters

G.T. Garvey, and R.P. Lynch, Phys. Letters,

192

278, 504.

Vie1 ma.

DELAYED

NEUTRON

PRECURSORS

REFERENCES

FOR TABLk

68 To1

L. Tomlinson

and M.H. Hurdus, J. Inorg.

Nucl. Chem. 30, 1125.

68 To2

L. Tomlinson

and M.H. Hurdus, J. Inorg.

Nucl. Chem. 30, 1649.

68 To3

L. Tomlinson

and M.H. Hurdus, J. Inorg.

Nucl. Chem. 30, 1995.

69 Am

I. Amarel, H. Gauvin and A. Johnson, J. Inorg.

69 Ar

A.C. Artukh,

69 Ca

G.C. Carlson,

69 Jo

K.W. Jones, W.R. Harris,

69 Kl

R. Klapish, C. Thibault-Phillippe, Letters, 23, 652.

69 Ma

B.E.F. Macefield,

69 Ro

E. Roeckl, J. Eidens,

69 Sh

H.D. Schiissler, H. Ahrens, H. Folger, H. Franz, W. Grimn, G. Herrmann, J.V. Kratz, Proc. 2nd symp. "Physics and Chemistry of Fission", p.591, I.A.E.A. Vienna.

69 St

R.H. Stokes, and P.G. Young, Phys. Rev. 178, 1789.

69 Ta

W.L. Talbert, A.B. Tucker, and G.M. Day, Phys. Rev. 177, 1805 and W.L. Talbert, Cl, 1135 (1970) (addendum).

Phys. Rev.

69 Wa

A.C. Wahl, A.E. Norris, R.A. Rouse, and J.C. Williams, of Fission", p.813, I.A.E.A., Vienna.

and Chemistry

70 Ar

A.G. Artukh, V.V. Ardeichikov, Letters 31B, 129.

70 Ch

Y.S. Chen, T.A. Tombrello,

70 De

P. de1 Maram and D.C. Perricos,

70 Ei

J. Eidens,

70 Fo

L. Forman, S.J. Balestrini,

70 He

G. Herrmann, N. Kaffrell, CERN 70-30 p.985.

70 Kr

J.V. Kratz,

70 Me

H.O. Menlove, R.H. Augustson,

70 Or

The OSIRIS Collaboration,

70 Ta

N.I. Tarantin, A.P. Kabachenko, I.V. Kuznetsov, Y.A. Dyachihin, German Report No. BMSW-FBK-70-28, page 59.

71 Ar

A.G. Artukh, V.V. Avdeichikov, Nuclo Phys. A176, 284.

71 Ch

N.G. Chrysochoides,

71 De

P. delMarmo1,

71 Fr

H. Franz, J.V. Kratz,

71 Ho

H.H. Hmard,

71 Ti

M. Tirard,

71 To

L. Tomlinson,

71 Tr

B.L. Tracy, J. Chaumont, R. Klapisch, C. Thibault, Phys. Letters 348, 277.

71 Wi

D.H. Wilkinson, D.E. Alburger, D.R. Goosman, K.W. Jones, E.K. Warburton, R.L. Williams, Nucl. Phys. A166, 661.

72 Al

D.E. Alburger,

Nucl. Chem. 31, 577.

G.F. Gridnev, V.L. Mikheev, and V.V. Volkov, Nucl. W.C. Schick,

W.L. Talbert,

and F.K. Wohn, Nucl. Phys. A125, 267.

M.T. McEllistrem,

and P.

and D.E. Alburger,

C. Detraz,

B. Wakefield

Phys. A137, 348.

J. Chaumont, R. Bernas, and E. Beck, Phys. Rev.

and D.H. Wilkinson,

Nucl.

2. Physik,

AI’IIdNSter,

G.F. Gridnev,

Phys. Rev. 186, 978.

Phys. A131, 250.

220, 101.

Proc. 2nd symp. "Physics

V.L. Mikheev, V.V. Volkov,

and K.L. Kratz,

and J. Wilczynski,

Phys.

R.W. Kavanagh, Nucl Phys. A146, 136.

E. Roeckl, and P.

J. Inorg.

Nucl. Chem. 32, 705. Nucl.

AITbNSter,

K. Wolfsberg, N. Trautmann,

Phys. A141, 289.

and T.R. Jeter,

Report No. CERN 70-30 p.589.

R. Denig, W. Herzog, D. Hiibscher,

and G. Herrmann, J. Inorg.

and K.L. Kratz,

Report No.

Nucl. Chem. 32, 3713.

and C.N. Henry, Nucl. Sci. Eng. 40, 136.

Report No. CERN 70-30 p.1093.

G.F. Cridnev,

J.N. Anoussis,

P. Fettweis,

N.S. Ivanov, and Om Zai Khun,

V.L. Mikheev, V.V. Volkov,

C.A. Mitsonias,

and D.C. Perricos,

and D.C. Perricos,

Radiochim.

Acta.

and J. Wilczynski, J. Nucl.

16, 4.

and G. Herrmann, Angew. Chem. 83, 902, and private

R.H. Stokes, and B.H. Erkkila,

Phys. Rev. Letters,

Energy 25, 551.

coamunication.

27, 1086.

French Report No. FBNC-TH-48. and M.H. Hurdus, J. Inorg.

and D.H. Wilkinson,

Nucl. Chem. 33, 3609.

J.M. Nitschke,

A.M. Poskanzer,

E. Roeckl, and G.T. Garvey, and

Phys. Rev. C6, 2019.

193

Atomic

Data

and

Nuclear

Data

Tables,

Vol.

12.

No.

2,

1973

L. TOMLINSON

REFERENCES FOR TABLE 72 Ar

A&. Artukh, G.F. Gridnev, V.L. Mikheev, V.V. Volkov, No. JINR-E7-6303.

72 Am

S. Amiel, H. Feldstein,

72 Ca

H.K. Carter,

72 De

P. de1 Marmol, and P. Fettweis,

72 Ke

A. Kerek, G.B. Holm, S. Borg, and L.E. de Geer, Nucl. Phys. A195, 177.

72 Kl

R. Klapisch, C. Thibault, Letters 29, 1254.

72 Ru

G. Rudstam, S. Shalev et al, unpublished Al88, 48.

72 Sh

S. Shalev,

73 Kr

J.V. Kratz,

73 Sh

H.D. Sch%sler,

73 Ta

W.L. Talbert,

Atomic Data and Nuclear

M. Oron, and E. Yellin,

F.K. Wohn, W.L. Talbert,

Bull.

Am, Phys. Sot. II,

17, (No. 41, 514.

Nucl. Phys. A194, 140.

A.M. Poskanzer,

R. Prieels, results

C. Rigaud, and E. Roeckl, Phys. Rev.

given in AX.

Pappas, and T. SvedNp, Nucl.

Phys.

28, 687.

H. Franz, and G. Herrmann, J. Inorg. and G. Herrmann, Radiochim. Acta,

Data Tables, Vol. 12, No. 2, 1973

Russian Report

Phys. Rev. C5, 270.

and J.R. McConnell,

and G. Rudstam, Phys. Rev. Letters

private

and J. Wilczynski,

conzunication.

194

Nucl. Chem. 35, 1407 and private to be published.

coamunication.