Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at different temperatures

Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at different temperatures

MOLLIQ-04282; No of Pages 15 Journal of Molecular Liquids xxx (2014) xxx–xxx Contents lists available at ScienceDirect Journal of Molecular Liquids ...

900KB Sizes 26 Downloads 151 Views

MOLLIQ-04282; No of Pages 15 Journal of Molecular Liquids xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Journal of Molecular Liquids journal homepage: www.elsevier.com/locate/molliq

4Q1

D. Vijayalakshmi a, C. Narasimha Rao a, M. Gowrisankar b, K. Sivakumar c, P. Venkateswarlu a,⁎ a

8

a r t i c l e

9 10 11 12 13

Article history: Received 6 January 2014 Received in revised form 7 May 2014 Accepted 21 May 2014 Available online xxxx

14 15 16 17 18 19 20

Keywords: Excess volume Speed of sound Viscosity Charge-transfer complex Ethyl benzoate Chlorotoluenes

R O

a b s t r a c t

P

i n f o

Density (ρ) data for binary mixtures of ethyl benzoate (EB) with toluene (T), o-chlorotoluene (o-CT), mchlorotoluene (m-CT) and p-chlorotoluene (p-CT) were measured as a function of mole fraction at temperatures 298.15, 303.15, 308.15 and 313.15 K. Further, speeds of sound (u) and viscosity (η) data for the same binary mixtures were also measured as a function of mole fraction at temperatures 303.15 and 313.15 K. From the experimental data, excess volume (VE), isentropic compressibility (κs), excess isentropic compressibility (κEs ), deviation in viscosity (Δη), deviation in intermolecular free length (ΔLf), deviation in acoustic impedance (ΔZ) and Gibb's free energy of activation of viscous flow (G⁎E) have been computed. The variations in these properties with composition for all the binary mixtures suggest that the dipole–dipole interactions, electron donor–acceptor interactions, n–π interactions and charge-transfer complex formation between ethyl benzoate with toluene and isomeric chlorotoluenes were observed. Excess volume (VE) and excess isentropic compressibilities (κEs ) were found to be negative over the entire mole fraction range of ethyl benzoate indicating the presence of dipole–dipole interactions between the unlike molecules in the mixtures. The negative deviation in viscosity (Δη) values was attributed to mutual loss of specific interactions between unlike molecules. The excess/deviation parameters were compared with various theoretical models. The results were discussed in terms of molecular interactions present in these mixtures. © 2014 Published by Elsevier B.V.

E

T

E

c

Department of Chemistry, Sri Venkateswara University, Tirupati 517502, India Department of Chemistry, J.K.C. College, Guntur 522006, India Department of Chemistry, S.V. Arts (U.G. & P.G) College, Tirupati 517502, India

C

b

O

5 6 7

D

2

F

3

Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at different temperatures

1

R

39 37 36 38

1. Introduction

41 42

Densities (ρ), viscosities (η) and speeds of sound (u) of solution are very important properties especially for the chemical design and for the optimization of chemical processes. The study of these properties plays an important role in many industrially interesting systems such as organic synthesis, ion extraction systems, gas adsorption solvents and mass transfer phenomena. Furthermore, the study of excess thermodynamic and transport properties for binary mixtures will provide a lot of important information concerning the deeper understanding of the molecular liquid structure and intermolecular interactions. The present investigation is a continuation of our earlier research [1–6] on thermodynamic properties of binary liquid mixtures. The liquids were chosen in the present study on the basis of their industrial importance. Ethyl benzoate is used as an essential ingredient in perfumery, artificial essences, cosmetics, paint and plastic industries. Chlorotoluenes are used as intermediates in the pesticide, pharmaceutical and dye industries.

47 48 49 50 51 52 53 54 55 56

N C O

45 46

U

43 44

R

40

⁎ Corresponding author at: Tirupati 517502, Andhra Pradesh, India. Tel.: + 91 9290080843. E-mail address: [email protected] (P. Venkateswarlu).

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Several researchers investigated density (ρ), viscosity (η) and speed of sound (u) data of binary mixtures of ethyl benzoate with N,Ndimethylaniline [7], ethylacetate with isomeric chlorotoluenes [8], alkyl esters with 4-chlorotoluenes [9] and methyl benzoate with ethers [10]. However, no attempt has been made to measure excess/deviation properties of binary mixtures of ethyl benzoate with toluene and isomeric chlorotoluenes. Introduction of a chloro group into toluene molecule may influence both the sign and magnitude of excess/deviation properties. We report here new data of excess volume (VE), isentropic compressibility (κs), excess isentropic compressibility (κEs ), deviation in viscosity (Δη), deviation in intermolecular free length (ΔLf), deviation in acoustic impedance (ΔZ) and excess Gibbs free energy of activation of viscous flow (G⁎E) for the above said binary systems. The variations of these properties with composition for all the binary mixtures were studied in terms of molecular interactions between component molecules.

57 58

2. Experimental

72

The mass fraction purity of all the liquids procured from Merck and S.D. Fine Chemicals Ltd., India were as follows: ethyl benzoate (0.997), toluene (0.997), o-chlorotoluene (0.995), m-chlorotoluene (0.995) and p-chlorotoluene (0.996). Prior to experimental measurements, all the

73

http://dx.doi.org/10.1016/j.molliq.2014.05.015 0167-7322/© 2014 Published by Elsevier B.V.

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

59 60 61 62 63 64 65 66 67 68 69 70 71

74 75 76

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

R

η ¼ ðat−b=t Þρ

ð2Þ 128

T is temperature and κs.i, Voi, αoi and Cp.i are isentropic compressibil- Q4 ity, molar volume, coefficient of isobaric thermal expansion and molar 129 heat capacity respectively for pure component i. 130 1=2

L f ¼ K=uðρÞ

Z ¼ uρ

132

ð4Þ

ð5Þ 136

Z ¼ Z−½x1 Z 1 þ x2 Z 2 

E

G

ð1Þ

ð6Þ

140

ð7Þ

where V1, V2 and V are the molar volumes of the component 1, and component 2, and molar volume of the mixture, respectively. R and T are gas constant and absolute temperature respectively. The experimental viscosity data of binary mixtures were compared with the following theoretical models: Grunberg and Nissan [16] relation: lnη ¼ x1 lnη1 þ x2 lnη2 þ x1 x2 d12

t1:1 t1:2

Table 1 Density (ρ), viscosity (η), thermal expansion coefficient (α) and molar heat capacity (Cp) of pure components at 303.15 K.

C

O

123

The experimental values of density (ρ), viscosity (η) and sound speed (u) data were used to calculate excess volume (VE), isentropic compressibility (κs) and excess isentropic compressibility (κEs ) and

t1:10

a

152

where Wvis/RT is an interaction term. Hind et al. [18] proposed the following equation: 2

N

Ethyl benzoate Toluene o-Chlorotoluene m-Chlorotoluene p-Chlorotoluene

145 146

ð9Þ

2

η ¼ x1 η1 þ x2 η2 þ 2x1 x2 H 12

U

t1:5 t1:6 t1:7 t1:8 t1:9

143 144

ð8Þ

lnηV ¼ x1 ln V 1 η1 þ x2 ln V 2 η2 þ x1 x2 W vis =RT

121 122

t1:4

142

where d12 is a proportionality constant. It may be regarded as an ap- 148 proximate measure of the strength of molecular interactions between the components. 149 Katti and Chaudhri [17] equation: 150

3. Results and discussion

Density ρ/g cm−3

137 139

   ¼ RT lnηV− x1 lnη1 V 1 þ x2 lnη2 V 2

120

Compound

133

135

L f ¼ L f −½x1 L f1 þ x2 L f2 

119

t1:3

ð3Þ

where K is the Jacobson's constant.

where a and b are the characteristic constants of the viscometer, ρ is the density and t represents the flow time. The uncertainty of viscosity thus estimated was found to be ± 0.005 m Pa s.

118

i¼1

F

92 93

i¼1

O

90 91

i¼1

R O

88 89

i¼1

P

86 87

( ! !2 ) 2 2 2 h   i X X X 2 ϕi κ s:i þ TV i α i =C p:i − T xi V i ϕi α i = xi C p:i

D

84 85

2 X

T

83

id

κs ¼

C

81 82

deviation in viscosity (Δη) as described in the literature [2]. The param- 124 ⁎E were computed from experimen- 125 eters such as κid s , Lf, Z, ΔLf, ΔZ and G tal data using the following expressions [4–6]. 126 Q3

E

79 80

liquids were used after double distillations and partially degassed with a vacuum pump under an inert atmosphere. The purity of these solvents was ascertained by comparing the measured density and viscosity of the pure components with available literature values [8,11–15] as shown in Table 1. The purities of the samples were further confirmed by GLC single sharp peaks. Before use, the chemicals were stored over 0.4 nm molecular sieves for approximately 72 h to remove water and then degassed. The binary mixtures were prepared in glass bottles with air-tight stoppers and adequate precautions were taken to minimize losses through evaporation. The weighing of solutions was made using Afcoset ER-120A electronic balance with a precision of ±0.1 mg. The uncertainty in solution composition expressed in mole fraction was found to be less than 1 × 10−4. After mixing the sample, the bubble-free homogeneous sample was transferred into the Utube of the densimeter using a syringe. The density measurements were performed with a Rudolph Research Analytical digital densimeter (DDH-2911 Model) equipped with a built-in solid-state thermostat and a resident program with an accuracy of temperature of ±0.03 K. The uncertainty in the density measurements was found to be less than ± 4 × 10−5 gm cm− 3. Proper calibration at each temperature was achieved with doubly distilled, deionized water and with air as standards. A multi-frequency ultrasonic interferometer (M-82 Model, Mittal Enterprise, New Delhi, India) operated at 2 MHz was used to measure the ultrasonic velocities of binary liquid mixtures controlled by a digital constant temperature water bath. The uncertainty in the measurement of sound speed is ±0.2%. The viscosities of pure liquids and their mixtures were determined at atmospheric pressure and at temperature 303.15 and 313.15 K by using an Ubbelohde viscometer, which was calibrated with benzene and doubly distilled water. The Ubbelohde viscometer bulb has a capacity of 15 ml and the capillary tube has a length of about 90 mm with 0.5 mm internal diameter. The viscometer was thoroughly cleaned, perfectly dried and was filled with the sample liquid by fitting the viscometer to about 30° vertically and its limbs were closed with Teflon caps to avoid evaporation. The viscometer was kept in a transparent walled bath with a thermal stability of ± 0.01 K for about 20 min to obtain thermal equilibrium. An electronic digital stopwatch with an uncertainty ± 0.01 s was used for flow time measurements. The viscosity values of pure liquids and mixtures are calculated using the relation:

R

77 78

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

E

2

ð10Þ

where H12 is Hind interaction parameter and is attributed to unlike pair 154 interaction.

Viscosity η/m Pa s

Experimental

Literature

Experimental

Literature

1.03707 0.85755 1.07254 1.06523 1.05965

1.03740[11] 0.85760 [8] 1.07260[12] 1.06522[12] 1.06054[12]

1.811 0.526 0.885 0.751 0.782

1.748[11] 0.550[14]a 0.885[13] 0.746[13] 0.784[13]

α (kK−1)

Cp (J mol−1 K−1)

0.8485 1.0868 0.9156 0.9200 0.9248

245.00[15] 158.26[15] 179.59[13] 173.07[13] 172.74[13]

Viscosity data of toluene at 298.15 K.

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Ρ (ρ)/(g cm−3)

X1

VE/(cm3 mol−1)

t2:5

Redlich–Kister

Hwang

0.86221 0.87398 0.89101 0.90192 0.91248 0.92752 0.93754 0.95195 0.96550 0.97865 0.99121 1.00693 1.01773 1.02831 1.04147

0 −0.0205 −0.0525 −0.0796 −0.1050 −0.1453 −0.1717 −0.2044 −0.2308 −0.2467 −0.2494 −0.2288 −0.1923 −0.1237 0

0 −0.0196 −0.0545 −0.0803 −0.1064 −0.1451 −0.1707 −0.2047 −0.2309 −0.2471 −0.2499 −0.2276 −0.1891 −0.1256 0

0 −0.0165 −0.0517 −0.0789 −0.1071 −0.1477 −0.1737 −0.2069 −0.2311 −0.2452 −0.2469 −0.2257 −0.1897 −0.1289 0

0.85755 0.8693 0.88632 0.89722 0.90778 0.92275 0.93277 0.94720 0.96075 0.97393 0.98653 1.00234 1.01318 1.02386 1.03707

0 −0.0177 −0.0497 −0.0731 −0.0975 −0.1275 −0.1519 −0.1848 −0.2092 −0.2251 −0.2308 −0.2167 −0.1820 −0.1229 0

0 −0.0183 −0.0494 −0.0718 −0.095 −0.1294 −0.1525 −0.1840 −0.2094 −0.2266 −0.2322 −0.2156 −0.1818 −0.1229 0

0 −0.0151 −0.0466 −0.0707 −0.0958 −0.1321 −0.1556 −0.1862 −0.2096 −0.2248 −0.2292 −0.2138 −0.1826 −0.1262 0

0 −0.0164 −0.0460 −0.0657 −0.0858 −0.1138 −0.1340 −0.1622 −0.1844 −0.2020 −0.2090 −0.1970 −0.1665 −0.1125 0

0 −0.017 −0.0448 −0.0646 −0.0848 −0.1148 −0.1351 −0.1630 −0.1860 −0.2023 −0.2085 −0.1954 −0.166 −0.1131 0

0 −0.014 −0.0422 −0.0635 −0.0855 −0.1173 −0.1379 −0.1651 −0.1863 −0.2006 −0.2057 −0.1937 −0.1667 −0.1161 0

0.84836 0.86005 0.87699 0.88780 0.89827 0.91317 0.92311 0.93744 0.95094 0.96413 0.97674 0.99258 1.00348 1.01424 1.02762

0 −0.0151 −0.0423 −0.0583 −0.0741 −0.1002 −0.1161 −0.1396 −0.1596 −0.1789 −0.1873 −0.1773 −0.1511 −0.1021 0

0 −0.0157 −0.0403 −0.0573 −0.0746 −0.1002 −0.1177 −0.1421 −0.1627 −0.178 −0.1848 −0.1752 −0.1502 −0.1033 0

0 −0.013 −0.0379 −0.0563 −0.0752 −0.1025 −0.1203 −0.144 −0.1629 −0.1764 −0.1822 −0.1736 −0.1508 −0.1061 0

1.07745 1.07650 1.07453 1.07266 1.06988 1.06813

0 −0.0219 −0.0539 −0.0901 −0.1381 −0.1743

0 −0.0202 −0.0581 −0.0936 −0.1431 −0.1733

0 −0.0179 −0.0546 −0.0911 −0.1434 −0.1752

R O

P D E T

C

0.85289 0.86467 0.88175 0.89267 0.90325 0.91827 0.92831 0.94278 0.95640 0.96967 0.98237 0.99831 1.00927 1.02007 1.03347

E R R

N C O

Ethyl benzoate (1) + toluene (2), T = 298.15 K 0 0.0488 0.1223 0.1712 0.2201 0.2923 0.3425 0.4176 0.4918 0.5675 0.6436 0.7452 0.8194 0.8969 1 T = 303.15 K 0 0.0488 0.1223 0.1712 0.2201 0.2923 0.3425 0.4176 0.4918 0.5675 0.6436 0.7452 0.8194 0.8969 1 T = 308.15 K 0 0.0488 0.1223 0.1712 0.2201 0.2923 0.3425 0.4176 0.4918 0.5675 0.6436 0.7452 0.8194 0.8969 1 T = 313.15 K 0 0.0488 0.1223 0.1712 0.2201 0.2923 0.3425 0.4176 0.4918 0.5675 0.6436 0.7452 0.8194 0.8969 1

U

t2:6 t2:7 t2:8 t2:9 t2:10 t2:11 t2:12 t2:13 t2:14 t2:15 t2:16 t2:17 t2:18 t2:19 t2:20 t2:21 t2:22 t2:23 t2:24 t2:25 t2:26 t2:27 t2:28 t2:29 t2:30 t2:31 t2:32 t2:33 t2:34 t2:35 t2:36 t2:37 t2:38 t2:39 t2:40 t2:41 t2:42 t2:43 t2:44 t2:45 t2:46 t2:47 t2:48 t2:49 t2:50 t2:51 t2:52 t2:53 t2:54 t2:55 t2:56 t2:57 t2:58 t2:59 t2:60 t2:61 t2:62 t2:63 t2:64 t2:65 t2:66 t2:67 t2:68 t2:69 t2:70 t2:71 t2:72 t2:73 t2:74 t2:75 t2:76 t2:77

Experimental

Ethyl benzoate (1) + o-chlorotoluene (2), T = 298.15 K 0 0.0262 0.0785 0.1304 0.2081 0.2594

F

t2:4

Table 2 Mole fraction (X1) of ethyl benzoate, density (ρ), experimental and theoretical excess volumes (VE) values of ethyl benzoate (1) with toluene, o-chlorotoluene, m-chlorotoluene and pchlorotoluene (2) at 298.15, 303.15, 308.15 and 313.1 K.

O

t2:1 t2:2 t2:3

3

(continued on next page)

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

4

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Table 2 (continued) Ρ (ρ)/(g cm−3)

X1

VE/(cm3 mol−1) Hwang

1.06554 1.06382 1.06126 1.05872 1.05612 1.05265 1.04903 1.04542 1.04147

−0.2145 −0.2404 −0.2746 −0.2926 −0.2987 −0.2806 −0.2305 −0.1483 0

−0.2134 −0.2375 −0.2674 −0.2878 −0.2966 −0.2848 −0.2369 −0.1460 0

−0.2164 −0.2402 −0.2685 −0.2867 −0.294 −0.2822 −0.2372 −0.1493 0

1.07254 1.07153 1.06965 1.06782 1.06508 1.06331 1.06068 1.05895 1.05637 1.05382 1.05124 1.04778 1.04424 1.04074 1.03707

0 −0.0137 −0.0526 −0.0898 −0.1375 −0.1676 −0.1996 −0.2206 −0.2472 −0.2597 −0.2614 −0.2384 −0.1905 −0.1181 0

0 −0.0164 −0.0498 −0.0831 −0.1316 −0.1616 −0.2008 −0.2232 −0.2491 −0.2634 −0.265 −0.2446 −0.1942 −0.1139 0

0 −0.0149 −0.0474 −0.0813 −0.1318 −0.163 −0.2029 −0.2251 −0.2498 −0.2627 −0.2631 −0.2428 −0.1944 −0.1162 0

1.06766 1.06672 1.06488 1.06313 1.06050 1.05875 1.05616 1.05446 1.05192 1.04943 1.04690 1.04354 1.04013 1.03682 1.03347

0 −0.0173 −0.0512 −0.0895 −0.1369 −0.1609 −0.1846 −0.2008 −0.2199 −0.2268 −0.2241 −0.1963 −0.1506 −0.0878 0

0 −0.0180 −0.0529 −0.0858 −0.1306 −0.1566 −0.1882 −0.2049 −0.2218 −0.2279 −0.223 −0.1986 −0.1522 −0.0863 0

0 −0.0173 −0.0518 −0.0850 −0.1307 −0.1572 −0.1891 −0.2057 −0.2221 −0.2276 −0.2222 −0.1978 −0.1523 −0.0873 0

1.06277 1.06178 1.05988 1.05802 1.05526 1.05344 1.05080 1.04902 1.04635 1.04372 1.04106 1.03759 1.03412 1.03082 1.02762

0 −0.0152 −0.0499 −0.0827 −0.1253 −0.1477 −0.1744 −0.1879 −0.1999 −0.1979 −0.1856 −0.1542 −0.1107 −0.0575 0

0 −0.0162 −0.0487 −0.0799 −0.1227 −0.1470 −0.1752 −0.1887 −0.1998 −0.1993 −0.1877 −0.1568 −0.1105 −0.0565 0

0 −0.0163 −0.0488 −0.0800 −0.1226 −0.1469 −0.1751 −0.1886 −0.1997 −0.1993 −0.1877 −0.1569 −0.1105 −0.0564 0

Ethyl benzoate (1) + m-chlorotoluene (2), T = 298.15 K 0 0.0789 0.1831 0.2348 0.3353 0.4121 0.4871 0.5629 0.6364 0.7110 0.7831 0.8563 0.9045 0.9524 1 T = 303.15 K

1.07013 1.06826 1.06575 1.06449 1.06192 1.05989 1.05779 1.05563 1.05344 1.05112 1.04880 1.04641 1.04476 1.04310 1.04147

0 −0.0949 −0.2049 −0.2523 −0.3236 −0.3610 −0.3757 −0.3786 −0.3610 −0.3236 −0.2674 −0.1973 −0.1364 −0.0682 0

0 −0.0942 −0.2051 −0.2522 −0.3252 −0.3619 −0.3801 −0.3796 −0.3604 −0.3219 −0.2665 −0.1927 −0.1348 −0.0704 0

0 −0.0932 −0.2049 −0.2526 −0.326 −0.3625 −0.3802 −0.3791 −0.3596 −0.3211 −0.2664 −0.1933 −0.1358 −0.0713 0

N

C

O

P

D E T

C

E R

R

Ethyl benzoate (1) + o-chlorotoluene (2), T = 298.15 K 0.3343 0.3851 0.4613 0.5356 0.6108 0.7090 0.8085 0.9045 1 T = 303.15 K 0 0.0262 0.0785 0.1304 0.2081 0.2594 0.3343 0.3851 0.4613 0.5356 0.6108 0.7090 0.8085 0.9045 1 T = 308.15 K 0 0.0262 0.0785 0.1304 0.2081 0.2594 0.3343 0.3851 0.4613 0.5356 0.6108 0.709 0.8085 0.9045 1 T = 313.15 0 0.0262 0.0785 0.1304 0.2081 0.2594 0.3343 0.3851 0.4613 0.5356 0.6108 0.7090 0.8085 0.9045 1

F

Redlich–Kister

U

t2:80 t2:81 t2:82 t2:83 t2:84 t2:85 t2:86 t2:87 t2:88 t2:89 t2:90 t2:91 t2:92 t2:93 t2:94 t2:95 t2:96 t2:97 t2:98 t2:99 t2:100 t2:101 t2:102 t2:103 t2:104 t2:105 t2:106 t2:107 t2:108 t2:109 t2:110 t2:111 t2:112 t2:113 t2:114 t2:115 t2:116 t2:117 t2:118 t2:119 t2:120 t2:121 t2:122 t2:123 t2:124 t2:125 t2:126 t2:127 t2:128 t2:129 t2:130 t2:131 t2:132 t2:133 t2:134 t2:135 t2:136 t2:137 t2:138 t2:139 t2:140 t2:141 t2:142 t2:143 t2:144 t2:145 t2:146 t2:147 t2:148 t2:149 t2:150 t2:151 t2:152 t2:153 t2:154 t2:155

Experimental

O

t2:79

R O

t2:78

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

5

Table 2 (continued) Ρ (ρ)/(g cm−3)

VE/(cm3 mol−1)

t2:157

N C O

Ethyl benzoate (1) + p-chlorotoluene (2), T = 298.15 K 0 0.0536 0.1068 0.1858 0.2507 0.3392 0.4157 0.4913 0.5901 0.6657 0.7620 0.8333 0.9070 0.9524 1 T = 303.15 K 0 0.0536 0.1068 0.1858 0.2507 0.3392 0.4157 0.4913

Redlich–Kister

Hwang

1.06523 1.06323 1.06067 1.05939 1.05687 1.05484 1.05278 1.05059 1.04842 1.04611 1.04387 1.04155 1.04004 1.03854 1.03707

0 −0.0754 −0.1728 −0.2150 −0.2847 −0.3172 −0.3322 −0.3250 −0.3048 −0.2627 −0.2113 −0.1452 −0.0991 −0.0498 0

0 −0.0755 −0.1728 −0.2159 −0.2833 −0.3163 −0.3307 −0.3264 −0.304 −0.2643 −0.2115 −0.1463 −0.0988 −0.0495 0

0 −0.0752 −0.1727 −0.216 −0.2836 −0.3165 −0.3307 −0.3262 −0.3038 −0.2641 −0.2114 −0.1465 −0.0991 −0.0498 0

1.06033 1.05832 1.05578 1.05455 1.05211 1.05017 1.04821 1.04613 1.04406 1.04190 1.03977 1.03762 1.03619 1.03482 1.03347

0 −0.0605 −0.1421 −0.1813 −0.2431 −0.2733 −0.2874 −0.2814 −0.2614 −0.2258 −0.1775 −0.1223 −0.0794 −0.0404 0

0 −0.0603 −0.1434 −0.1815 −0.2422 −0.2725 −0.2858 −0.2820 −0.2617 −0.2258 −0.1786 −0.1215 −0.0809 −0.0398 0

0 −0.0602 −0.1433 −0.1816 −0.2425 −0.2727 −0.2858 −0.2818 −0.2615 −0.2256 −0.1786 −0.1217 −0.0812 −0.0401 0

0 −0.0457 −0.1114 −0.1475 −0.2015 −0.2294 −0.2425 −0.2378 −0.2181 −0.1889 −0.1436 −0.0994 −0.0596 −0.031 0

0 −0.0451 −0.114 −0.1471 −0.2012 −0.2286 −0.2409 −0.2375 −0.2194 −0.1873 −0.1457 −0.0967 −0.0629 −0.0301 0

0 −0.0448 −0.1139 −0.1472 −0.2015 −0.2288 −0.2409 −0.2374 −0.2191 −0.187 −0.1457 −0.0969 −0.0632 −0.0303 0

1.06455 1.06446 1.06410 1.06314 1.06208 1.06030 1.05851 1.05659 1.05384 1.05173 1.04887 1.04671 1.04443 1.04301 1.04147

0 −0.1576 −0.2827 −0.4178 −0.4943 −0.5536 −0.5685 −0.5582 −0.5088 −0.4519 −0.3522 −0.2638 −0.1577 −0.0845 0

0 −0.1569 −0.2825 −0.4203 −0.4961 −0.5538 −0.5685 −0.5566 −0.5071 −0.4502 −0.3527 −0.2643 -0.1580 −0.0844 0

0 −0.161 −0.2865 −0.4212 −0.4939 −0.5504 −0.5657 −0.5563 −0.5101 −0.4541 −0.3544 −0.2627 −0.1538 −0.0806 0

1.05965 1.05947 1.05903 1.05807 1.05697 1.05521 1.05343 1.05154

0 −0.1449 −0.2583 −0.3893 −0.4564 −0.5113 −0.5223 −0.5105

0 −0.1447 −0.2604 −0.3872 −0.4567 −0.5091 −0.5218 −0.5099

0 −0.1486 −0.2642 −0.3879 −0.4546 −0.5055 −0.5191 −0.5096

R O

P D E T

C

1.05564 1.05338 1.05057 1.04924 1.04661 1.04456 1.04251 1.04036 1.03822 1.03604 1.03387 1.03173 1.03028 1.02894 1.02762

E R

R

Ethyl benzoate (1) + m-chlorotoluene (2), T = 298.15 K 0 0.0789 0.1831 0.2348 0.3353 0.4121 0.4871 0.5629 0.6364 0.7110 0.7831 0.8563 0.9045 0.9524 1 T = 308.15 K 0 0.0789 0.1831 0.2348 0.3353 0.4121 0.4871 0.5629 0.6364 0.7110 0.7831 0.8563 0.9045 0.9524 1 T = 313.15 K 0 0.0789 0.1831 0.2348 0.3353 0.4121 0.4871 0.5629 0.6364 0.7110 0.7831 0.8563 0.9045 0.9524 1

U

t2:158 t2:159 t2:160 t2:161 t2:162 t2:163 t2:164 t2:165 t2:166 t2:167 t2:168 t2:169 t2:170 t2:171 t2:172 t2:173 t2:174 t2:175 t2:176 t2:177 t2:178 t2:179 t2:180 t2:181 t2:182 t2:183 t2:184 t2:185 t2:186 t2:187 t2:188 t2:189 t2:190 t2:191 t2:192 t2:193 t2:194 t2:195 t2:196 t2:197 t2:198 t2:199 t2:200 t2:201 t2:202 t2:203 t2:204 t2:205 t2:206 t2:207 t2:208 t2:209 t2:210 t2:211 t2:212 t2:213 t2:214 t2:215 t2:216 t2:217 t2:218 t2:219 t2:220 t2:221 t2:222 t2:223 t2:224 t2:225 t2:226 t2:227 t2:228 t2:229 t2:230 t2:231

Experimental

F

X1

O

t2:156

(continued on next page)

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

6

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Table 2 (continued) Ρ (ρ)/(g cm−3)

VE/(cm3 mol−1)

t2:233

1.04889 1.04684 1.04408 1.04210 1.03986 1.03853 1.03707

−0.4662 −0.4114 −0.3176 −0.2333 −0.1412 −0.0777 0

−0.4631 −0.4123 −0.3199 −0.2389 −0.1423 −0.0759 0

−0.4659 −0.4136 −0.3215 −0.2374 −0.1382 −0.0722 0

1.05450 1.05422 1.05379 1.05285 1.05183 1.05021 1.04858 1.04684 1.04437 1.04248 1.03992 1.03801 1.03620 1.03477 1.03347

0 −0.1231 −0.2271 −0.3439 −0.4076 −0.4616 −0.4748 −0.4651 −0.4227 −0.3734 −0.2863 −0.2104 −0.1226 −0.0649 0

0 −0.1242 −0.2261 −0.3415 −0.4073 −0.4599 −0.4752 −0.4666 −0.4238 −0.3734 −0.2873 −0.2110 −0.1229 −0.0644 0

0 −0.1276 −0.2294 −0.3420 −0.4055 −0.4567 −0.4729 −0.4663 −0.4263 −0.3765 −0.2886 −0.2097 −0.1193 −0.0612 0

1.04958 1.04904 1.04847 1.04732 1.0462 1.04449 1.04281 1.04102 1.03848 1.03658 1.03401 1.03210 1.03008 1.02886 1.02762

0 −0.1012 −0.1959 −0.2986 −0.3587 −0.4119 -0.4273 −0.4201 −0.3791 −0.3354 −0.2550 −0.1876 −0.1040 −0.0520 0

0 −0.1037 −0.1917 −0.2956 −0.3578 −0.4107 −0.4287 −0.4233 −0.3846 −0.3368 −0.2546 −0.1831 −0.1034 −0.0529 0

0 −0.1066 −0.1945 −0.2961 −0.3563 −0.408 −0.4267 −0.4231 −0.3867 −0.3394 −0.2557 −0.1819 −0.1003 −0.0501 0

F

Hwang

P

D E T

C

Ethyl benzoate (1) + p-chlorotoluene (2), T = 298.15 K 0.5921 0.6657 0.7620 0.8333 0.9070 0.9524 1 T = 308.15 K 0 0.0536 0.1068 0.1858 0.2507 0.3392 0.4157 0.4913 0.5921 0.6657 0.7620 0.8333 0.9070 0.9524 1 T = 313.15 K 0 0.0536 0.1068 0.1858 0.2507 0.3392 0.4157 0.4913 0.5920 0.6657 0.7620 0.8333 0.9071 0.9524 1

Redlich–Kister

155

where T12 is interaction parameter. The experimental VE data were correlated with Redlich–Kister [20] and Hwang [21] equations and κEs , ΔLf, ΔZ and G⁎E were correlated with Redlich–Kister equation. Redlich–Kister equation is:

O

159 160

ð11Þ

C

158

R

Tamura and Kurata [19] equation: η ¼ x1 f 1 η1 þ x2 f 2 η2 þ 2ðx1 x2 f 1 f 2 Þ1=2 T 12

157

R

E

t2:234 t2:235 t2:236 t2:237 t2:238 t2:239 t2:240 t2:241 t2:242 t2:243 t2:244 t2:245 t2:246 t2:247 t2:248 t2:249 t2:250 t2:251 t2:252 t2:253 t2:254 t2:255 t2:256 t2:257 t2:258 t2:259 t2:260 t2:261 t2:262 t2:263 t2:264 t2:265 t2:266 t2:267 t2:268 t2:269 t2:270 t2:271 t2:272 t2:273

Experimental

O

X1

R O

t2:232

162

U

N

h i E 2 Y ¼ x1 x2 a0 þ a1 ðx1 −x2 Þ þ a2 ðx1 −x2 Þ :

ð12Þ

Hwang equation is: E

h

3

3

i

Y ¼ x1 x2 b0 þ b1 x1 þ b2 x2 :

ð13Þ

164 165 166 167 168 169 170 171 172 Q5

The calculation of “b” coefficients in Hwang equation was already described earlier [22,23]. The experimental and theoretical VE, κsE and sound speed data were presented in Table 2, whereas ΔLf, ΔZ and G⁎E, η, Δη and the values of interaction parameters were calculated from various theoretical models and were given in Table 3. The binary constants (a0, a1, a2) of Redlich– Kister equation and (b0, b1, b2) coefficients for Hwang equation were presented in Table 4 along with their standard deviation values. (See Table 5.)

Further, the VE, κsE, Δη, ΔLf, ΔZ and G⁎E data of all the binary mixtures of ethyl benzoate with toluene and isomeric chlorotoluenes at 303.15 and 313.15 K were graphically represented in Figs. 1 to 12. An examination of curves in Figs. 1 and 2 suggests that the excess molar volume (VE) data for all binary systems are negative over the entire composition range. The excess volumes (VE) for the above systems were the resultant contributions from several opposing effects namely, chemical, physical and structural. The chemical or specific interactions result in volume contractions, leading to negative excess volume and these include charge-transfer complexes, dipole–dipole interactions, and electron donor–acceptor interactions between component molecules. The physical interactions or nonspecific interactions are weak and contribute to positive excess volume (VE). Further, the structural contributions mostly lead to negative excess volumes and arise from the effects such as interstitial accommodation and geometrical fitting of one component into another due to the differences in molar volume and free volume between components. A perusal of curves in Figs. 1 and 2 indicates that the factors which are responsible for negative excess volume were dominant in the binary mixtures of ethyl benzoate with toluene and isomeric chlorotoluenes. The algebraic values of VE for the binary mixtures of ethyl benzoate with toluene and isomeric chlorotoluene are in the following order. toluenebo‐chlorotoluenebm‐chlorotoluenebp‐chlorotoluene

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 199

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

N C O

Ethyl benzoate (1) + m-chlorotoluene (2), T = 303.15 K 0 0.0789 0.1831 0.2348 0.3353

FLT

0.85755 0.8693 0.88632 0.89722 0.90778 0.92275 0.93277 0.94720 0.96075 0.97393 0.98653 1.00234 1.01318 1.02386 1.03707

1278.4 1280.6 1284.3 1287.0 1289.9 1294.5 1297.8 1302.8 1308.0 1313.5 1319.0 1326.6 1332.3 1338.5 1347.0

713.5 701.5 684.0 672.8 662.1 646.7 636.5 622.0 608.3 595.2 582.6 566.9 556.0 545.2 531.4

1280.6 1284.3 1287.0 1289.9 1294.5 1297.8 1302.8 1308.0 1313.5 1319.0 1326.6 1332.3 1338.5

0.84836 0.86005 0.87699 0.88780 0.89827 0.91317 0.92311 0.93744 0.95094 0.96413 0.97674 0.99258 1.00348 1.01424 1.02762

1226 1229.4 1235.0 1238.9 1243.1 1249.5 1254.1 1261.1 1268.3 1275.7 1283.4 1293.9 1301.8 1310.3 1322

784.2 769.3 747.6 733.8 720.5 701.5 688.8 670.7 653.7 637.3 621.6 601.7 588.0 574.3 556.8

E

T

952.59 986.50 1008.7 1030.8 1062.8 1084.7 1117.0 1148.4 1179.8 1210.8 1251.1 1279.9 1309.2

R O

CFT

κEs /(TPa−1) Experimental

Redlich–Kister

0 −1.98 −4.46 −5.76 −6.77 −7.93 −8.42 −8.73 −8.62 −8.08 −7.17 −5.53 −4.07 −2.37 0

−1.98 −4.44 −5.75 −6.81 −7.93 −8.41 −8.73 −8.61 −8.07 −7.18 −5.53 −4.06 −2.38

– 1229.4 1235.0 1238.9 1243.1 1249.5 1254.1 1261.1 1268.3 1275.7 1283.4 1293.9 1301.8 1310.3 –

– 931.99 965.19 986.96 1008.5 1039.9 1061.4 1093.3 1124.2 1155.3 1186.0 1226.1 1254.7 1284.0 –

0 −1.41 −3.14 −4.07 −4.79 −5.62 −5.98 −6.21 −6.12 −5.71 −5.05 −3.87 −2.83 −1.64 0

– −1.40 −3.15 −4.08 −4.83 −5.62 −5.97 −6.19 −6.09 −5.70 −5.06 −3.87 −2.83 −1.64 –

565.7 564.0 560.4 556.5 550.7 546.9 541.7 538.4 534.1 530.7 528.3 526.6 526.7 528.4 531.4

– 1286.4 1291.7 1297.2 1305.7 1311.3 1319.3 1324.4 1331.3 1337.1 1341.9 1346.3 1348.4 1348.5 –

– 1285.6 1289.0 1292.4 1297.4 1300.8 1305.6 1309.0 1314.0 1318.8 1323.6 1329.7 1335.8 1341.6 –

0 −0.79 −2.54 −4.50 −7.56 −9.53 −12.1 −13.6 −15.3 −16.1 −16.0 −14.3 −11.0 −6.15 0

– −0.78 −2.56 −4.52 −7.58 −9.54 −12.1 −13.6 −15.2 −16.0 −15.9 −14.3 −11.0 −6.15 –

1.06277 1.06178 1.05988 1.05802 1.05526 1.05344 1.05080 1.04902 1.04635 1.04372 1.04106 1.03759 1.03412 1.03082 1.02762

1248.0 1250.6 1256.1 1261.7 1268.6 1274.7 1282.4 1287.4 1294.1 1300.5 1306.4 1312.6 1318.4 1321.5 1322.0

604.1 602.1 598.1 594.1 588.2 584.4 579.0 575.5 570.6 566.4 562.6 558.7 556.3 555.6 556.8

– 1250.7 1256.0 1261.3 1269.3 1274.5 1282.0 1287.0 1294.1 1300.7 1306.7 1313.4 1318.4 1321.4 –

– 1249.9 1253.9 1257.8 1263.7 1267.6 1273.2 1277.0 1282.7 1288.2 1293.7 1300.9 1308.1 1315.1 –

0 −0.59 −1.76 −2.97 −4.80 −5.98 −7.59 −8.55 −9.77 −10.5 −10.8 −10.3 −8.43 −5.09 0

– −0.58 −1.77 −2.99 −4.82 −5.99 −7.58 −8.55 −9.74 −10.5 −10.8 −10.3 −8.43 −5.10 –

1.06523 1.06323 1.06067 1.05939 1.05687

1280.3 1288.4 1298.8 1303.8 1313.2

572.7 566.6 558.9 555.3 548.7

– 1288.4 1298.8 1303.8 1313.2

– 1285.3 1292.9 1296.7 1303.9

0 −2.93 −6.36 −7.83 −10.2

– −2.94 −6.34 −7.82 −10.2

C

1283.8 1286.4 1291.7 1297.2 1305.7 1311.3 1319.3 1324.4 1331.3 1337.1 1341.9 1346.3 1348.4 1348.5 1347.0

1.07254 1.07153 1.06965 1.06782 1.06508 1.06331 1.06068 1.05895 1.05637 1.05382 1.05124 1.04778 1.04424 1.04074 1.03707

R

R

Ethyl benzoate (1) + o-chlorotoluene (2), T = 303.15 K 0 0.0262 0.0785 0.1304 0.2081 0.2594 0.3343 0.3851 0.4613 0.5356 0.6108 0.7090 0.8085 0.9045 1 T = 313.15 0 0.0262 0.0785 0.1304 0.2081 0.2594 0.3343 0.3851 0.4613 0.5356 0.6108 0.7090 0.8085 0.9045 1

Experimental

E

Ethyl benzoate (1) + toluene (2), T = 303.15 K 0 0.0488 0.1223 0.1712 0.2201 0.2923 0.3425 0.4176 0.4918 0.5675 0.6436 0.7452 0.8194 0.8969 1 T = 313.15 K 0 0.0488 0.1223 0.1712 0.2201 0.2923 0.3425 0.4176 0.4918 0.5675 0.6436 0.7452 0.8194 0.8969 1

U

t3:6 t3:7 t3:8 t3:9 t3:10 t3:11 t3:12 t3:13 t3:14 t3:15 t3:16 t3:17 t3:18 t3:19 t3:20 t3:21 t3:22 t3:23 t3:24 t3:25 t3:26 t3:27 t3:28 t3:29 t3:30 t3:31 t3:32 t3:33 t3:34 t3:35 t3:36 t3:37 t3:38 t3:39 t3:40 t3:41 t3:42 t3:43 t3:44 t3:45 t3:46 t3:47 t3:48 t3:49 t3:50 t3:51 t3:52 t3:53 t3:54 t3:55 t3:56 t3:57 t3:58 t3:59 t3:60 t3:61 t3:62 t3:63 t3:64 t3:65 t3:66 t3:67 t3:68 t3:69 t3:70 t3:71 t3:72 t3:73 t3:74 t3:75 t3:76 t3:77

κs/(TPa−1)

F

t3:5

u/(ms−1)

O

Ρ (ρ)/(g cm−3)

X1

P

t3:4

Table 3 Mole fraction of ethyl benzoate (X1), density (ρ), experimental and theoretical sound speed (u), isentropic compressibility (κs), and experimental and theoretical excess isentropic compressibility (κEs ) values of ethyl benzoate (1) with toluene, o-chlorotoluene, m-chlorotoluene and p-chlorotoluene (2) at 303.15 and 313.1 K.

D

t3:1 t3:2 t3:3

7

(continued on next page)

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

8

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Table 3 (continued)

200 201 202 203 204 205 206 207 208

1.05484 1.05278 1.05059 1.04842 1.04611 1.04387 1.04155 1.04004 1.03854 1.03707

1320.0 1326.3 1332.1 1337.0 1341.3 1344.5 1346.7 1347.4 1347.6 1347.0

544.1 540.0 536.4 533.6 531.3 530.0 529.4 529.6 530.3 531.4

1320.0 1326.3 1332.1 1337.0 1341.3 1344.5 1346.7 1347.4 1347.6 –

1.05564 1.05338 1.05057 1.04924 1.04661 1.04456 1.04251 1.04036 1.03822 1.03604 1.03387 1.03173 1.03028 1.02894 1.02762

1244.4 1253.1 1264.1 1269.3 1279.0 1286.1 1292.5 1298.5 1303.9 1308.8 1313.0 1316.7 1318.8 1320.5 1322.0

611.7 604.6 595.7 591.5 584.0 578.8 574.2 570.1 566.6 563.5 561.1 559.1 558.1 557.3 556.8

1.05965 1.05947 1.05903 1.05807 1.05697 1.05521 1.05343 1.05154 1.04889 1.04684 1.04408 1.04210 1.03986 1.03853 1.03707

1271.2 1277.3 1283.0 1290.9 1297.1 1305.2 1311.9 1318.2 1326.2 1331.7 1338.1 1342.0 1345.0 1346.3 1347

O

C

N

T

C

E

1.04958 1.04904 1.04847 1.04732 1.0462 1.04449 1.04281 1.04102 1.03848 1.03658 1.03401 1.03210 1.03008 1.02886 1.02762

1234.9 1241.1 1246.9 1255.2 1261.7 1270.2 1277.4 1284.4 1293.5 1299.9 1307.7 1312.9 1317.6 1320.0 1322.0

The above order suggests that the dipole moments of the pure solvents are influencing the VE data of the binary liquid mixtures. The dipole moments are ethyl benzoate (1.8 D), p-chlorotoluene (2.21 D), o-chlorotoluene (1.56 D), m-chlorotoluene (1.82 D) and toluene (0.45D). The more negative VE data of p-chlorotoluene when compared with other chlorotoluenes are due to its high dipole moment that leads to stronger dipole–dipole interactions. Further, introduction of chloro group in toluene molecule is influencing the magnitude of VE to a considerable extent. This type of behavior was reported earlier [8,9].

κEs /(TPa−1) Experimental

Redlich–Kister

1309.3 1314.4 1319.5 1324.3 1329.0 1333.6 1338.1 1341.1 1344.0 –

−11.6 −12.5 −12.9 −12.7 −11.9 −10.3 −7.84 −5.69 −3.10 0

−11.6 −12.5 −12.9 −12.8 −11.9 −10.3 −7.85 −5.70 −3.09 –

– 1253.1 1264.1 1269.3 1279.0 1286.1 1292.5 1298.5 1303.9 1308.8 1313.0 1316.7 1318.8 1320.5 –

– 1250.1 1258.5 1262.8 1271.0 1277.2 1283.1 1289.0 1294.7 1300.3 1305.7 1311.2 1314.8 1318.4 –

0 −2.20 −4.66 −5.74 −7.37 −8.22 −8.65 −8.68 −8.29 −7.50 −6.27 −4.60 −3.26 −1.73 0

– −2.19 −4.69 −5.74 −7.37 −8.20 −8.63 −8.67 −8.30 −7.49 −6.28 −4.61 −3.26 −1.73 –

584.0 578.6 573.7 567.1 562.3 556.3 551.6 547.3 542.0 538.6 534.9 532.9 531.6 531.3 531.4

– 1277.3 1283.1 1290.9 1297.1 1305.2 1311.9 1318.2 1326.2 1331.7 1338.1 1342.0 1345.0 1346.3 –

– 1276.1 1281.1 1288.2 1293.6 1300.7 1306.6 1312.1 1319.4 1324.5 1331.1 1335.9 1340.9 1343.9 –

0 −2.63 −4.74 −7.06 −8.43 −9.70 −10.3 −10.6 −10.5 −10.0 −8.66 −7.02 −4.56 −2.58 0

– −2.63 −4.73 −7.07 -8.44 −9.69 −10.3 −10.6 −10.5 −10.0 −8.67 −7.03 −4.57 −2.57 –

624.8 618.8 613.4 606 600.5 593.4 587.6 582.3 575.5 571.0 565.6 562.1 559.2 557.8 556.8

– 1241.1 1246.9 1255.2 1261.7 1270.2 1277.4 1284.4 1293.5 1299.9 1307.7 1312.9 1317.6 1320.0 –

– 1240.4 1245.9 1253.5 1259.6 1267.7 1274.4 1280.9 1289.2 1295.3 1303.1 1308.8 1314.6 1318.2 –

0 −1.95 −3.44 −5.06 −5.95 −6.75 −7.15 −7.32 −7.26 −6.94 −6.09 −5.01 −3.29 −1.88 0

– −1.94 −3.45 −5.06 −5.97 −6.75 −7.14 −7.31 −7.24 −6.94 −6.10 −5.01 −3.30 −1.87 –

P

R O

FLT

D

CFT

R

Ethyl benzoate (1) + p-chlorotoluene (2), T = 303.15 K 0 0.0536 0.1068 0.1858 0.2507 0.3392 0.4157 0.4913 0.5921 0.6657 0.7620 0.8333 0.9070 0.9524 1 T = 313.15 K 0 0.0536 0.1068 0.1858 0.2507 0.3392 0.4157 0.4913 0.5920 0.6657 0.7620 0.8333 0.9071 0.9524 1

Experimental

R

Ethyl benzoate (1) + m-chlorotoluene (2), T = 303.15 K 0.4121 0.4871 0.5629 0.6364 0.7110 0.7831 0.8563 0.9045 0.9524 1 T = 313.15 K 0 0.0789 0.1831 0.2348 0.3353 0.4121 0.4871 0.5629 0.6364 0.7110 0.7831 0.8563 0.9045 0.9524 1

U

t3:80 t3:81 t3:82 t3:83 t3:84 t3:85 t3:86 t3:87 t3:88 t3:89 t3:90 t3:91 t3:92 t3:93 t3:94 t3:95 t3:96 t3:97 t3:98 t3:99 t3:100 t3:101 t3:102 t3:103 t3:104 t3:105 t3:106 t3:107 t3:108 t3:109 t3:110 t3:111 t3:112 t3:113 t3:114 t3:115 t3:116 t3:117 t3:118 t3:119 t3:120 t3:121 t3:122 t3:123 t3:124 t3:125 t3:126 t3:127 t3:128 t3:129 t3:130 t3:131 t3:132 t3:133 t3:134 t3:135 t3:136 t3:137 t3:138 t3:139

κs/(TPa−1)

F

t3:79

u/(ms−1)

O

Ρ (ρ)/(g cm−3)

X1

E

t3:78

An examination of plots in Figs. 3 and 4 reveals that κEs data is negative over the entire composition range for the binary mixtures of ethyl benzoate with toluene and isomeric chlorotoluenes. This may be attributed to the relative strength of the following effects which influence the free spaces between component molecules [12]:

209

a) Loss of dipolar association and difference in size and shape of component molecules, which leads to decrease in sound speed and increase in isentropic compressibility; b) Dipole–dipole interactions or electron donor–acceptor interaction and

214

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

210 211 212 213

215 216 217

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Table 4 Mole fraction of ethyl benzoate (X1), density (ρ), experimental and theoretical deviation in intermolecular free length (ΔLf), experimental and theoretical deviation in acoustic impedance (ΔZ) and experimental and theoretical excess Gibbs free energy of activation of viscous flow (G⁎E), viscosity (η), deviation in viscosity (Δη), Grunberg–Nissan interaction parameter (d12), Katti–Chaudhri interaction parameter (Wvis/RT), Hind et al. interaction parameter (H12) and Tamura–Kurata interaction parameter (T12) values of ethyl benzoate (1) with toluene, ochlorotoluene, m-chlorotoluene and p-chlorotoluene (2) at 303.15 and 313.15 K.

Redlich– Kister

Experimental

Redlich– Kister

0 2.25 5.27 7.02 8.49 10.3 11.3 12.2 12.6 12.3 11.4 9.39 7.23 4.44 0

– 2.25 5.26 7.01 8.52 10.3 11.3 12.2 12.6 12.3 11.4 9.37 7.22 4.45 –

0 0.0379 0.0748 0.0896 0.0972 0.1037 0.1038 0.0973 0.0861 0.0723 0.0584 0.0380 0.0239 0.0106 0

– 0.0366 0.0749 0.0909 0.1007 0.1060 0.1046 0.0968 0.0848 0.0701 0.0548 0.0356 0.0233 0.0123 –

0 1.74 4.03 5.33 6.42 7.79 8.48 9.16 9.39 9.19 8.52 6.97 5.36 3.28 0

– 1.73 4.02 5.33 6.47 7.80 8.49 9.16 9.38 9.16 8.50 6.95 5.35 3.30 –

0 0.0313 0.0617 0.0738 0.0794 0.0842 0.0838 0.0774 0.0670 0.0546 0.0428 0.0258 0.0148 0.0051 0

– 0.0303 0.0617 0.0747 0.0825 0.0861 0.0843 0.0770 0.0661 0.0532 0.0399 0.0238 0.0142 0.0065 –

0.465 0.504 0.562 0.601 0.637 0.694 0.734 0.795 0.858 0.926 1.001 1.109 1.198 1.312 1.461

R

R

Ethyl benzoate (1) + o-chlorotoluene (2), T = 303.15 K 0 1.07254 0 – 0 0.0262 1.07153 −0.26 −0.26 0.93 0.0785 1.06965 −0.84 −0.84 3.12 0.1304 1.06782 −1.48 −1.48 5.62 0.2081 1.06508 −2.48 −2.48 9.59 0.2594 1.06331 −3.12 −3.12 12.2 0.3343 1.06068 −3.97 −3.97 15.7 0.3851 1.05895 −4.45 −4.44 17.8 0.4613 1.05637 −4.98 −4.98 20.2 0.5356 1.05382 −5.24 −5.24 21.5 0.6108 1.05124 −5.21 −5.2 21.5 0.709 1.04778 −4.68 −4.68 19.5 0.8085 1.04424 −3.58 −3.58 15.0 0.9045 1.04074 −2.01 −2.01 8.47 1 1.03707 0 – 0 T = 313.15 K 0 1.06277 0 – 0 0.0262 1.06178 −0.26 −0.25 0.65 0.0785 1.05988 −0.75 −0.76 2.50 0.1304 1.05802 −1.24 −1.25 4.34 0.2081 1.05526 −1.96 −1.97 5.71 0.2594 1.05344 −2.4 −2.41 8.13 0.3343 1.0508 −2.99 −2.99 10.5 0.3851 1.04902 −3.33 −3.33 11.8 0.4613 1.04635 −3.74 −3.73 12.9 0.5356 1.04372 −3.98 −3.97 13.7 0.6108 1.04106 −4.05 −4.04 14.0 0.709 1.03759 −3.8 −3.79 12.8 0.8085 1.03412 −3.07 −3.07 11.1 0.9045 1.03082 −1.83 −1.84 6.80 1 1.02762 0 – 0 Ethyl benzoate (1) + m-chlorotoluene (2), T = 303.15 K 0 1.06523 0 – 0

d12

Wvis/RT

H12

T12

0.526 0.577 0.652 0.701 0.749 0.823 0.875 0.954 1.035 1.123 1.22 1.359 1.473 1.605 1.811

0 −0.012 −0.031 −0.045 −0.060 −0.079 −0.091 −0.108 −0.123 −0.132 −0.134 −0.124 −0.106 −0.073 0

– 0.304 0.2575 0.2320 0.2063 0.181 0.1655 0.1419 0.1203 0.1009 0.0856 0.0646 0.0497 0.0318 –

– 0.3237 0.2766 0.2506 0.2246 0.1989 0.1829 0.1588 0.1367 0.1168 0.101 0.0793 0.064 0.0456 –

– 1.0441 1.0237 1.0106 0.9947 0.9784 0.9668 0.9460 0.9234 0.8995 0.8775 0.8417 0.8117 0.7715 –

– 0.9764 0.9553 0.9412 0.9242 0.9049 0.8909 0.8658 0.838 0.8079 0.7785 0.7309 0.6904 0.6367 –

0 −0.009 −0.025 −0.035 −0.047 −0.062 −0.072 −0.086 −0.097 −0.104 −0.105 −0.098 −0.083 −0.058 0

– 0.2398 0.2019 0.1808 0.1591 0.1381 0.1251 0.1049 0.0861 0.0691 0.0557 0.0371 0.0236 0.0071 –

– 0.2594 0.221 0.1996 0.1777 0.1562 0.1429 0.1223 0.103 0.0855 0.0716 0.0523 0.0383 0.0214 –

– 0.8647 0.8486 0.8382 0.8257 0.8128 0.8037 0.7872 0.7693 0.7505 0.7331 0.7048 0.6811 0.6493 –

– 0.8133 0.7966 0.7855 0.7721 0.7569 0.7458 0.726 0.7041 0.6803 0.6571 0.6196 0.5876 0.5452

F

Δη (mPa s)

O

Ethyl benzoate (1) + toluene (2), T = 303.15 K 0 0.85755 0 – 0.0488 0.8693 −0.99 −0.99 0.1223 0.88632 −2.29 −2.28 0.1712 0.89722 −3.01 −2.99 0.2201 0.90778 −3.59 −3.59 0.2923 0.92275 −4.28 −4.27 0.3425 0.93277 −4.61 −4.61 0.4176 0.9472 −4.89 −4.89 0.4918 0.96075 −4.93 −4.93 0.5675 0.97393 −4.74 −4.74 0.6436 0.98653 −4.32 −4.33 0.7452 1.00234 −3.45 −3.46 0.8194 1.01318 −2.62 −2.61 0.8969 1.02386 −1.58 −1.58 1 1.03707 0 – T = 313.15 K 0 0.84836 0 – 0.0488 0.86005 −1.24 −1.24 0.1223 0.87699 −2.81 −2.82 0.1712 0.8878 −3.68 −3.68 0.2201 0.89827 −4.40 −4.40 0.2923 0.91317 −5.22 −5.22 0.3425 0.92311 −5.61 −5.61 0.4176 0.93744 −5.94 −5.93 0.4918 0.95094 −5.98 −5.97 0.5675 0.96413 −5.73 −5.73 0.6436 0.97674 −5.22 −5.23 0.7452 0.99258 −4.18 −4.18 0.8194 1.00348 −3.17 −3.17 0.8969 1.01424 -1.92 −1.92 1 1.02762 0 –

Experimental

η (mPa s)

R O

Redlich– Kister

G⁎E (J mol−1)

P

Experimental

ΔZ × 10−3/kg m−2 s−1

N C O

t4:9 t4:10 t4:11 t4:12 t4:13 t4:14 t4:15 t4:16 t4:17 t4:18 t4:19 t4:20 t4:21 t4:22 t4:23 t4:24 t4:25 t4:26 t4:27 t4:28 t4:29 t4:30 t4:31 t4:32 t4:33 t4:34 t4:35 t4:36 t4:37 t4:38 t4:39 t4:40 t4:41 t4:42 t4:43 t4:44 t4:45 t4:46 t4:47 t4:48 t4:49 t4:50 t4:51 t4:52 t4:53 t4:54 t4:55 t4:56 t4:57 t4:58 t4:59 t4:60 t4:61 t4:62 t4:63 t4:64 t4:65 t4:66 t4:67 t4:68 t4:69 t4:70 t4:71 t4:72 t4:73 t4:74 t4:75 t4:76

ΔLf × 10−9/m

U

t4:8

ρ (g cm−3)

D

X1

E

t4:7

T

Ethyl benzoate (1) + toluene (2)

C

t4:6

E

t4:1 t4:2 t4:3 t4:4 t4:5

9

– 0.92 3.12 5.61 9.62 12.3 15.8 17.8 20.2 21.4 21.4 19.5 15.0 8.49 –

0 −0.003 −0.011 −0.02 −0.031 −0.043 −0.053 −0.061 −0.072 −0.076 −0.077 −0.071 −0.056 −0.036 0

– −0.003 −0.011 −0.019 −0.032 −0.041 −0.053 −0.061 −0.070 −0.076 −0.077 −0.073 −0.058 −0.035 –

0.885 0.899 0.926 0.952 0.996 1.022 1.067 1.099 1.149 1.208 1.274 1.375 1.497 1.635 1.811

0 −0.01 −0.032 −0.053 −0.082 −0.103 −0.127 −0.142 −0.163 −0.173 −0.177 −0.166 −0.137 −0.088 0

– −0.0526 −0.0673 −0.0767 −0.0817 −0.0948 −0.1013 −0.1084 −0.1203 −0.127 −0.134 −0.1408 −0.1493 −0.1713 –

– −0.045 −0.060 −0.070 −0.075 −0.088 −0.095 −0.102 −0.115 −0.121 −0.129 −0.136 −0.144 −0.167 –

– 1.1246 1.1046 1.0888 1.0728 1.0506 1.0303 1.0123 0.9812 0.9547 0.925 0.8853 0.8365 0.754 –

– 1.1465 1.1271 1.1126 1.0996 1.0791 1.0625 1.0471 1.0206 0.9994 0.9757 0.9450 0.9070 0.8392 –

– 0.75 2.33 3.94 6.37 7.93 10.0 11.3 12.9 13.9 14.3 13.5 11.0 6.63 –

0 −0.001 −0.012 −0.022 −0.034 −0.046 −0.057 −0.065 −0.075 −0.080 −0.081 −0.074 −0.059 −0.038 0

– −0.003 −0.010 −0.018 −0.033 −0.043 −0.057 −0.065 −0.075 −0.082 −0.083 −0.077 −0.061 −0.035 –

0.741 0.753 0.772 0.793 0.826 0.846 0.881 0.906 0.945 0.99 1.041 1.12 1.215 1.323 1.461

0 −0.007 −0.025 −0.042 −0.065 −0.082 −0.101 −0.113 −0.129 −0.137 −0.14 −0.131 −0.108 −0.069 0

– −0.0297 −0.0718 −0.0807 −0.0856 −0.0982 −0.1046 −0.1114 −0.1231 −0.1297 −0.1366 −0.1435 −0.152 −0.1737 –

– −0.022 −0.065 −0.074 −0.079 −0.091 −0.098 −0.105 −0.117 −0.123 −0.13 −0.137 −0.145 −0.167 –

– 0.9661 0.9264 0.915 0.9047 0.8885 0.8754 0.8633 0.8424 0.8256 0.8069 0.7826 0.7526 0.699 –

– 0.9474 0.9095 0.897 0.8843 0.8668 0.8507 0.8365 0.8119 0.7910 0.7675 0.7362 0.6976 0.6324 –



0



0.751

0









(continued on next page)

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

10

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Table 4 (continued)

G⁎E (J mol−1)

Experimental

Redlich– Kister

Experimental

Redlich– Kister

3.43 7.68 9.62 12.9 14.9 16.3 17.0 16.9 15.8 13.8 10.5 7.61 4.12 –

−0.041 −0.076 −0.089 −0.107 −0.111 −0.107 −0.102 −0.087 −0.072 −0.056 −0.038 −0.026 −0.014 0

– 2.8 6.17 7.64 9.97 11.2 11.9 12.0 11.5 10.4 8.7 6.37 4.49 2.37 –

0 −0.037 −0.066 −0.077 −0.097 −0.104 −0.101 −0.098 −0.086 −0.071 −0.054 −0.038 −0.026 −0.013 0

C

O

– 3.53 6.36 9.55 11.4 13.2 14.2 14.6 14.5 13.9 12.1 9.78 6.35 3.57 –

E R

R

Ethyl benzoate (1) + p-chlorotoluene (2), T = 303.15 K 0 1.05965 0 – 0 0.0536 1.05947 −0.82 −0.82 3.51 0.1068 1.05903 −1.49 −1.49 6.35 0.1858 1.05807 −2.24 −2.23 9.57 0.2507 1.05697 −2.68 −2.68 11.5 0.3392 1.0552 −3.11 −3.11 13.3 0.4157 1.05343 −3.34 −3.33 14.2 0.4913 1.05154 −3.45 −3.44 14.6 0.592 1.04889 −3.43 −3.43 14.5 0.6657 1.04684 −3.27 −3.27 13.9 0.7620 1.04408 −2.84 −2.85 12.0 0.8333 1.042 −2.30 −2.31 9.72 0.9071 1.03986 −1.51 −1.50 6.33 0.9524 1.03853 −0.85 −0.84 3.60 1 1.03707 0 – 0 T = 313.15 K 0 1.04958 0 – 0 0.0536 1.04904 −0.73 −0.73 2.51 0.1068 1.04847 −1.31 −1.31 4.57 0.1858 1.04732 −1.96 −1.96 6.86 0.2507 1.0462 −2.33 −2.33 8.19 0.3392 1.04449 −2.67 −2.67 9.44 0.4157 1.04281 −2.85 −2.85 10.1 0.4913 1.04102 −2.92 −2.92 10.3 0.5920 1.03848 −2.89 −2.89 10.2 0.6657 1.03658 −2.75 −2.75 9.74 0.7620 1.034 −2.38 −2.38 8.47 0.8333 1.0321 −1.93 −1.93 6.92 0.9070 1.03008 −1.25 −1.26 4.49 0.9524 1.02886 −0.71 −0.71 2.54 1 1.02762 0 – 0

d12

Wvis/RT

H12

T12

−0.041 −0.078 −0.092 −0.105 −0.108 −0.106 −0.098 −0.088 −0.073 −0.057 −0.039 −0.026 −0.013 –

0.775 0.822 0.851 0.913 0.973 1.043 1.122 1.212 1.312 1.419 1.540 1.625 1.714 1.811

−0.06 −0.123 −0.150 −0.193 −0.215 −0.224 −0.226 −0.214 −0.193 −0.162 −0.119 −0.085 −0.047 0

−0.2272 −0.2057 −0.2002 −0.1944 −0.1860 −0.1744 −0.1659 −0.1536 −0.1437 −0.1355 −0.1258 −0.1222 −0.1258 –

−0.222 −0.201 −0.196 −0.191 −0.182 −0.170 −0.162 −0.151 −0.140 −0.131 −0.121 −0.118 −0.121 –

0.8706 0.8695 0.8639 0.8472 0.8376 0.8320 0.8225 0.8187 0.8120 0.8039 0.7985 0.7904 0.7681 –

0.8566 0.8471 0.8376 0.8130 0.7970 0.7848 0.7683 0.7578 0.7439 0.7286 0.7159 0.7025 0.6734 –

– −0.035 −0.069 −0.082 −0.097 −0.101 −0.101 −0.094 −0.085 −0.072 −0.056 −0.038 −0.026 −0.013 –

0.652 0.672 0.711 0.734 0.782 0.827 0.881 0.938 1.006 1.084 1.166 1.257 1.321 1.388 1.461

0 −0.044 −0.089 −0.108 −0.141 −0.159 −0.165 −0.169 −0.160 −0.143 −0.119 −0.088 −0.063 −0.034 0

– −0.2029 −0.1765 −0.1713 −0.1734 −0.1706 −0.1608 −0.1588 −0.1488 −0.1379 −0.1283 −0.1229 −0.1204 −0.1196 –

– −0.196 −0.17 −0.165 −0.168 −0.165 −0.155 −0.154 −0.144 −0.132 −0.123 −0.117 −0.114 −0.114 –

– 0.7526 0.7593 0.7563 0.7391 0.7289 0.7253 0.7132 0.7101 0.7082 0.7059 0.6981 0.6912 0.6818 –

– 0.7415 0.7416 0.7358 0.713 0.6981 0.6896 0.6723 0.6640 0.6570 0.6496 0.6362 0.6253 0.6114

0 −0.103 −0.175 −0.247 −0.275 −0.278 −0.258 −0.227 −0.178 −0.141 −0.095 −0.064 −0.034 −0.017 0

– −0.102 −0.177 −0.246 −0.272 −0.276 −0.258 −0.228 −0.179 −0.141 −0.094 −0.063 −0.034 −0.017 –

0.782 0.745 0.729 0.73 0.751 0.806 0.876 0.959 1.092 1.201 1.359 1.484 1.623 1.713 1.811

0 −0.097 −0.168 −0.248 −0.293 −0.328 −0.337 −0.331 −0.302 −0.268 −0.209 −0.156 −0.093 −0.049 0

– −0.8005 −0.7285 −0.6466 −0.5809 −0.4927 −0.4217 −0.3618 −0.294 −0.2539 −0.2098 −0.185 −0.1624 −0.1498 –

– −0.802 −0.730 −0.647 −0.581 −0.492 −0.421 −0.360 −0.292 −0.252 −0.208 −0.182 −0.160 −0.147 –

– 0.3438 0.4212 0.4808 0.5194 0.5671 0.6055 0.6373 0.6748 0.6973 0.7234 0.7363 0.7486 0.7562 –

– 0.3783 0.4403 0.4832 0.5099 0.5431 0.5702 0.592 0.6176 0.632 0.6484 0.6542 0.6596 0.663

– 2.53 4.56 6.82 8.16 9.39 10.0 10.3 10.3 9.79 8.51 6.91 4.49 2.53 –

0 −0.103 −0.181 −0.254 −0.282 −0.287 −0.268 −0.241 −0.191 −0.152 −0.106 −0.073 −0.038 −0.019 0

– −0.104 −0.180 −0.251 −0.28 −0.287 −0.271 −0.242 −0.192 −0.154 −0.104 −0.070 −0.038 −0.019 –

0.684 0.650 0.632 0.629 0.644 0.686 0.739 0.801 0.904 0.991 1.109 1.206 1.315 1.385 1.461

0 −0.076 −0.135 −0.199 −0.235 −0.262 −0.268 −0.265 −0.24 −0.212 −0.167 −0.126 −0.074 −0.039 0

– −0.785 −0.7289 −0.6454 −0.5792 −0.4931 −0.4258 −0.3736 −0.3063 −0.2651 −0.785 −0.7289 −0.6454 −0.5792 –

– −0.784 −0.728 −0.644 −0.577 −0.491 −0.424 −0.371 −0.303 −0.262 −0.784 −0.728 −0.644 −0.577 –

– 0.3267 0.365 0.4136 0.4475 0.4891 0.5208 0.5428 0.5758 0.5971 0.3267 0.365 0.4136 0.4475 –

– 0.3549 0.3829 0.4179 0.4422 0.472 0.4948 0.5088 0.5323 0.5473 0.3549 0.3829 0.4179 0.4422 –

218 219

charge-transfer complexes between unlike molecules which leads to increase in sound speed and decrease in isentropic compressibility.

220

If the strength of the interaction between the components increases, the magnitude of excess values becomes more. In the

221

O

F

Δη (mPa s)

C

Ethyl benzoate (1) + m-chlorotoluene (2), T = 303.15 K 0.0789 1.06323 −0.90 −0.90 3.42 0.1831 1.06067 −1.97 −1.97 7.71 0.2348 1.05939 −2.44 −2.43 9.64 0.3353 1.05687 −3.21 −3.21 12.9 0.4121 1.05484 −3.67 −3.66 14.9 0.4871 1.05278 −3.97 −3.96 16.3 0.5629 1.05059 −4.11 −4.11 17.0 0.6364 1.04842 −4.06 −4.06 16.9 0.7110 1.04611 −3.8 −3.80 15.8 0.7831 1.04387 −3.29 −3.30 13.7 0.8563 1.04155 −2.51 −2.52 10.5 0.9045 1.04004 −1.83 −1.83 7.61 0.9524 1.03854 −1.01 −0.99 4.13 1 1.03707 0 – 0 T = 313.15 K 0 1.05564 0 – 0 0.0789 1.05338 −0.91 −0.91 2.81 0.1831 1.05057 −1.91 −1.92 6.12 0.2348 1.04924 −2.34 −2.34 7.64 0.3353 1.04661 −2.98 −2.98 9.98 0.4121 1.04456 −3.30 −3.29 11.2 0.4871 1.04251 −3.45 −3.45 11.9 0.5629 1.04036 −3.45 −3.45 12.0 0.6364 1.03822 −3.28 −3.28 11.5 0.7110 1.03604 −2.95 −2.95 10.4 0.7831 1.03387 -2.46 −2.46 8.68 0.8563 1.03173 −1.79 −1.80 6.36 0.9045 1.03028 −1.27 −1.27 4.47 0.9524 1.02894 −0.67 −0.67 2.38 1 1.02762 0 – 0

η (mPa s)

R O

Redlich– Kister

ΔZ × 10−3/kg m−2 s−1

P

Experimental

N

t4:80 t4:81 t4:82 t4:83 t4:84 t4:85 t4:86 t4:87 t4:88 t4:89 t4:90 t4:91 t4:92 t4:93 t4:94 t4:95 t4:96 t4:97 t4:98 t4:99 t4:100 t4:101 t4:102 t4:103 t4:104 t4:105 t4:106 t4:107 t4:108 t4:109 t4:110 t4:111 t4:112 t4:113 t4:114 t4:115 t4:116 t4:117 t4:118 t4:119 t4:120 t4:121 t4:122 t4:123 t4:124 t4:125 t4:126 t4:127 t4:128 t4:129 t4:130 t4:131 t4:132 t4:133 t4:134 t4:135 t4:136 t4:137 t4:138 t4:139 t4:140 t4:141 t4:142

ΔLf × 10−9/m

U

t4:79

ρ (g cm−3)

D

X1

E

Ethyl benzoate (1) + toluene (2)

t4:78

T

t4:77

present investigation, there is a possibility of electron donor–acceptor type or charge-transfer interactions between high electro negative oxygen of ester molecule which acts as donor and the πelectron of benzene ring of aromatic hydrocarbons which act as acceptor (isomeric chlorotoluenes due to − I effect) resulting in

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

222 223 224 225 226

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx Table 5 (continued)

) a1

Ethyl benzoate (1) + toluene (2) 298.15 K −0.933 303.15 K −0.845 308.15 K −0.753 313.15 K −0.659

−0.550 −0.558 −0.516 −0.474

0.0016 0.0014 0.0011 0.0019

Ethyl benzoate (1) + o-chlorotoluene (2) 298.15 K −1.1171 −0.5443 303.15 K −1.0319 −0.3806 308.15 K −0.9051 −0.1605 313.15 K −0.8036 0.0186

−0.2030 0.0323 0.0551 0.2058

0.0046 0.0049 0.0035 0.0018

Ethyl benzoate (1) + m-chlorotoluene (2) 298.15 K −1.5253 −0.1557 303.15 K −1.3253 −0.0518 308.15 K −1.1456 −0.0517 313.15 K −0.9657 −0.0511

0.1382 0.3419 0.3842 0.4261

0.0024 0.0011 0.0010 0.0020

−0.3307 −0.2948 −0.1004 0.0954

0.0014 0.0026 0.0013 0.0032

Ethyl benzoate (1) + p-chlorotoluene (2) 298.15 K −2.2151 303.15 K −2.0287 308.15 K −1.8569 313.15 K −1.6853

0.6889 0.6598 0.5737 0.4875

t5:35 t5:36 t5:37 t5:38 t5:39 t5:40 t5:41 t5:42 t5:43 t5:44 t5:45 t5:46 t5:47 t5:48 t5:49 t5:50 t5:51 t5:52 t5:53 t5:54 t5:55 t5:56 t5:57 t5:58 t5:59

Ethyl benzoate (1) + toluene (2) 298.15 K −0.9385 303.15 K −0.8264 308.15 K −0.7208 313.15 K −0.6153

t5:60

κES/(TPa−1)

−0.6321 −0.7466 −0.7424 −0.7384

0.6774 0.5826 0.4864 0.3902

Ethyl benzoate (1) + o-chlorotoluene (2) 298.15 K −1.0494 −0.9186 303.15 K −1.0427 −0.4101 308.15 K −0.9235 −0.1176 313.15 K −0.8722 0.29654

N C O

Ethyl benzoate (1) + p-chlorotoluene (2) 298.15 K −2.1049 303.15 K −1.9304 308.15 K −1.8234 313.15 K −1.7171

0.3773 0.4962 0.2645 0.2523

0.3792 0.3924 0.5491 0.7076

a0

Ethyl benzoate (1) + toluene (2) 303.15 K −34.286 313.15 K −24.262

a1

0.0044 0.0049 0.0036 0.0018

0.3696 0.5175 0.5738 0.629

0.0026 0.0010 0.0010 0.0020

−1.2611 −1.1785 −0.8168 −0.4532

0.0032 0.0042 0.0034 0.0044

σ

a2 10.1209 7.43280

Ethyl benzoate (1) + o-chlorotoluene (2) 303.15 K −63.0518 −21.2073 313.15 K −40.8083 −20.9303

Ethyl benzoate (1) + o-chlorotoluene (2) 303.15 K −0.6718 −0.3382 313.15 K −0.5355 −0.2687

−0.0686 −0.0314

0.0022 0.0021

Ethyl benzoate (1) + m-chlorotoluene (2) 303.15 K −0.8945 −0.1081 313.15 K −0.6622 −0.0857

−0.022 −0.0006

0.0018 0.0019

Ethyl benzoate (1) + p-chlorotoluene (2) 303.15 K −1.3099 0.4298 313.15 K −1.0473 0.3406

−0.2162 −0.1648

0.0025 0.0013

ΔLf/m

a1

σ

a2

2.659 3.513

0.818 0.437

0.0062 0.0054

Ethyl benzoate (1) + o-chlorotoluene (2) 303.15 K −20.58 −6.874 313.15 K −15.51 −6.533

4.411 −0.693

0.0045 0.0051

Ethyl benzoate (1) + m-chlorotoluene (2) 303.15 K −16.00 −5.343 313.15 K −13.84 −1.333

−1.328 0.352

0.0079 0.0057

Ethyl benzoate (1) + p-chlorotoluene (2) 303.15 K −13.8 −1.275 313.15 K −11.7 −0.607

−4.487 −4.071

0.0070 0.0038

D

0.0030 0.0029 0.0032 0.0038

Redlich–Kister polynomial equation

U

Temperature

σ

b2

Ethyl benzoate (1) + m-chlorotoluene (2) 298.15 K −1.5714 −0.0011 303.15 K −1.4393 0.3942 308.15 K −1.2737 0.4507 313.15 K −1.1077 0.5073

0.001 0.001

a0

T

b1

C

b0

−0.0599 −0.0439

Ethyl benzoate (1) + toluene (2) 303.15 K −19.70 313.15 K −23.83

Hwang equation

t5:34

−0.3112 −0.2472

Temperature

E

Temperature

VE/(cm3 mol−1)

t5:62 t5:63 t5:64 t5:65 t5:66 t5:67 t5:68 t5:69 t5:70 t5:71 t5:72 t5:73 t5:74 t5:75 t5:76

σ

a2 0.017 −0.062 −0.096 −0.131

t5:33

t5:61

Ethyl benzoate (1) + toluene (2) 303.15 K −0.4952 313.15 K −0.3910

σ

a2

F

a0

a1

O

V /(cm mol

t5:78

)

a0

−1

t5:7

3

R O

3

−1

Δη/(cm mol V E

P

E

t5:77

Redlich–Kister polynomial equation

Temperature

Redlich–Kister polynomial equation

t5:6

t5:8 t5:9 t5:10 t5:11 t5:12 t5:13 t5:14 t5:15 t5:16 t5:17 t5:18 t5:19 t5:20 t5:21 t5:22 t5:23 t5:24 t5:25 t5:26 t5:27 t5:28 t5:29 t5:30 t5:31 t5:32

Temperature Table 5 (continued)

E

Temperature

R

t5:5

Table 5 Coefficients of Redlich–Kister (a0, a1 and a2) and Hwang (b0, b1 and b2) calculated from theoretical models and corresponding standard deviation (σ) for various excess/ deviation functions.

R

t5:1 t5:2 t5:3 t5:4

11

Temperature

ΔZ/kg m−2 s−1 a0

Ethyl benzoate (1) + toluene (2) 303.15 K 50.21 313.15 K 37.51

a1

−2.730 −1.525

0.0259 0.0216

Ethyl benzoate (1) + o-chlorotoluene (2) 303.15 K 83.82 32.77 313.15 K 53.97 27.06

−18.46 1.384

0.0537 0.4212

Ethyl benzoate (1) + m-chlorotoluene (2) 303.15 K 65.85 24.87 313.15 K 47.75 8.071

3.21 −3.458

0.0262 0.0221

Ethyl benzoate (1) + p-chlorotoluene (2) 303.15 K 58.63 4.889 313.15 K 41.43 3.051

19.14 14.13

0.0435 0.0435

Temperature

−0.472 −1.133

σ

a2

G⁎E/(J mol−1) a0

a1

σ

a2

Ethyl benzoate (1) + toluene (2) 303.15 K 0.333 −0.37 313.15 K 0.259 −0.33 Ethyl benzoate (1) + o-chlorotoluene (2) 303.15 K −0.293 −0.151 313.15 K −0.317 −0.166

0.149 0.117

0.0022 0.0018

0.024 0.063

0.0015 0.0026

0.8973 0.9572

0.0117 0.0167

Ethyl benzoate (1) + m-chlorotoluene (2) 303.15 K −0.419 0.152 313.15 K −0.398 0.112

−0.013 0.013

0.0017 0.0025

13.7839 1.94280

0.0161 0.0168

Ethyl benzoate (1) + p-chlorotoluene (2) 303.15 K −0.898 0.919 313.15 K −0.951 0.906

−0.379 −0.360

0.0014 0.0018

Ethyl benzoate (1) + m-chlorotoluene (2) 303.15 K −50.5504 −15.5518 313.15 K −34.6787 −4.5971

−4.2848 0.9486

0.0151 0.0159

Ethyl benzoate (1) + p-chlorotoluene (2) 303.15 K −42.5255 −2.4798 313.15 K −29.2603 −1.5120

−14.5670 −13.0708

0.0112 0.0119

(continued on next page)

t5:79 t5:80 t5:81 t5:82 t5:83 t5:84 t5:85 t5:86 t5:87 t5:88 t5:89 t5:90 t5:91 t5:92 t5:93 t5:94 t5:95 t5:96 t5:97 t5:98 t5:99 t5:100 t5:101 t5:102 t5:103 t5:104 t5:105 t5:106 t5:107 t5:108 t5:109 t5:110 t5:111 t5:112 t5:113 t5:114 t5:115 t5:116 t5:117 t5:118 t5:119 t5:120 t5:121 t5:122 t5:123 t5:124 t5:125 t5:126 t5:127 t5:128 t5:129 t5:130 t5:131 t5:132 t5:133 t5:134 t5:135 t5:136 t5:137 t5:138 t5:139 t5:140 t5:141 t5:142 t5:143 t5:144 t5:145 t5:146 t5:147

negative κsE values. The algebraic values of κEs for the binary mixtures 227 of ethyl benzoate with toluene and isomeric chlorotoluenes follow the 228 order: 229 toluene b o ‐ chlorotoluene b m ‐ chlorotoluene b p ‐ chlorotoluene:

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

231

12

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

0.0

0 -2

-0.1

-6

-0.2

κSE / T Pa-1

VE / cm3 mol-1

-4

-0.3

-8 -10 -12

-0.4

F

-14 -0.5

0.0

0.2

0.4

0.6

0.8

-18 0.0

1.0

0.2

X1

R O

D

L f¼ 2 V a =Y

ð16Þ

T

X

n XB i¼1 i i



E

XS i¼1 i i

C

where K is the Jacobson's constant and Lf is the intermolecular free length of the binary mixture. Schaaff's collision factor theory (CFT):

um ¼ u∞

ð15Þ

R

Vm −1

where Va represents the available volume per mole and Y is the surface area per mole of the component molecule. An examination of ΔLf values in Table 3 suggests that these values are negative in all the binary mixtures over the entire composition range at 303.15 and 313.15 K. These negative values of ΔLf in the present investigation suggest that the dipole–dipole interactions were dominant in the liquid mixtures leading to more compact structure. Further, an increase in ΔLf value results in the increase in the distance between

R

where u∞ = 1600 m s , Si, Bi and Xi are the space filling factor, the actual volume of the molecule per mole of pure component in the mixture and mole fraction of ith component, respectively.

0.0

-0.1

0 -1 -2 -3

κSE / T pa-1

-0.2

-4

U

VE / cm3 mol-1

239

ð14Þ

1=2

E

K L f;m ρm

P

The intermolecular free length (Lf) of a pure component [26] is de- 240 fined as “it is the ratio of available volume to the surface area of the mol- 241 ecule” and is given by 242

X n

238

1.0

Moreover, experimental sound speed data were analyzed in terms of free length theory (FLT) [24] and collision factor theory (CFT) [25]. Jacobson's free length theory (FLT):

O

236

0.8

Fig. 3. Curves of deviation in isentropic compressibility (KES) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 303.15 K.

um ¼ 235

0.6

Fig. 1. Curves of excess molar volume (VE) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 303.15 K.

C

233

0.4

X1

N

232

O

-16

-0.3

-5 -6 -7 -8 -9 -10

-0.4

-11 0.0

0.2

0.4

0.6

0.8

1.0

X1 Fig. 2. Curves of excess molar volume (VE) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 313.15 K.

-12 0.0

0.2

0.4

0.6

0.8

1.0

X1 Fig. 4. Curves of deviation in isentropic compressibility (KES) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) pchlorotoluene (▼) at 313.15 K.

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

244 245 246 247 248 249 250

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

0.0

13

0

-1 -0.1

ΔLf ×10-9/m

Δη / m Pa. s

-2

-0.2

-3

-4 -0.3

0.2

0.4

0.6

0.8

-6 0.0

1.0

0.2

-0.1

1.0

P

(i) The difference in size and shape of the component molecules and the loss of dipolar association in pure component may contribute to a decrease in viscosity. (ii) Specific interactions between unlike components such as dipole– dipole interaction bond and charge-transfer complex formation may cause an increase in viscosity in mixtures than in pure components.

276

D

266

E

T

C

0.0

0.8

indicates the existence of specific interactions between like and unlike molecules when they are mixed. The deviations in viscosity (Δη) data (Figs. 9 and 10) of all the binary mixtures are negative over the entire composition range at 303.15 and 313.15 K. According to Fort and Moore [27] the negative Δη values are an indication of existence of the dispersion forces without involving the formation of any hetero-molecular complexes. The deviation in viscosity (Δη) gives a qualitative estimation of the strength of the intermolecular interactions which may be generally explained by considering the following factors [28]:

0

-1

-2

ΔLf ×10-9/m

265

E

263 264

R

261 262

R

259 260

N C O

257 258

U

255 256

Δη / m Pa. s

253 254

surfaces of the two molecules whereas a decrease in ΔLf value produces a decrease in the distance between surfaces of two molecules. Acoustic impedance (Z) is a measure of how much sound pressure is generated by the vibration of molecules of a particular acoustic medium at a given frequency. The sign and magnitude of values of ΔZ were found to depend upon several contributions namely, physical or/and chemical. The physical contributions comprise the dispersion forces and nonspecific physical weak interactions that lead to negative values in ΔZ. Chemical contributions involve specific interactions such as formation of new H-bonds, charge-transfer complex and strong dipole–dipole interactions between component molecules resulting in positive ΔZ values, making the system more ordered due to increased intermolecular interactions. An examination of ΔZ data in the Table 3 suggests that the values are positive for all the binary systems over the entire composition range at 303.15 and 313.15 K. A positive deviation in ΔZ also

0.6

X1

Fig. 7. Curves of deviation in intermolecular free length (ΔLf) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 303.15 K.

Fig. 5. Curves of deviations in viscosity (Δ η) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 303.15 K.

251 252

0.4

R O

X1

O

-0.4 0.0

F

-5

-3

-4

-0.2 -5

-6 0.0

0.2

0.4

0.6

0.8

1.0

X1 Fig. 6. Curves of deviations in viscosity (Δ η) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 313.15 K.

0.0

0.2

0.4

0.6

0.8

1.0

X1 Fig. 8. Curves of deviation in intermolecular free length (ΔLf) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 313.15 K.

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

267 268 269 270 271 272 273 274 275

277 278 279 280 281 282

14

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

24

0.1

20

G*E / J.mol-1

ΔΖ×10-3/ Kgm-2s-1

0.0 16

12

8

-0.1

-0.2

F

4

0 0.0

0.2

0.4

0.6

0.8

0.0

1.0

0.2

301 302 303

R O

P

D

T

C

E

16

12

8

0.1

0.0

0.6

0.8

1.0

X1 Fig. 10. Curves of deviation in acoustic impedance (ΔZ) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 313.15 K.

309 310 311 312

314

-0.1

-0.3 0.4

307 308

In this paper, the experimental values of density, viscosity and sound speed data for the binary mixtures of ethyl benzoate with toluene, ochlorotoluene, m-chlorotoluene and p-chlorotoluene at 303.15 and 313.15 K were measured over the entire range of composition. From these physical property data, excess molar volumes, deviation in viscosity, excess isentropic compressibility, deviation in intermolecular free length, deviation in acoustic impedance and excess Gibb's free energy of activation of viscous flow have been calculated and correlated by theoretical models to derive the coefficients and standard deviation. Excess

-0.2

0.2

305 306

313

4

0 0.0

304

4. Conclusions

G*E / J.mol-1

300

R

298 299

R

296 297

1.0

isomeric chlorotoluenes over the entire composition range at 303.15 and 313.15 K. According to Reed et al. [30] the positive deviation in G⁎E may be attributed to specific interactions between unlike molecules, such as hydrogen bonding, dipole–dipole interaction and charge-transfer complex whereas negative deviations may be ascribed to dispersion forces. In the present case, the positive values of G⁎E may be due to the formation of charge-transfer complex between component molecules whereas negative deviations suggest the existence of dispersion or weak interaction [5,6].

O

294 295

0.8

Fig. 11. Curves of Gibb's free energy of activation of viscous flow (G⁎E) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 303.15 K.

C

292 293

N

290 291

U

288 289

The former effect produces negative deviation in viscosity and the latter effect creates positive deviation in viscosity. An examination of deviation in viscosity (Δη) data in Figs. 9 and 10 for the mixtures of ethyl benzoate with toluene and isomeric chlorotoluenes reveals that the dispersive interactions were dominant in the mixtures over the dipole–dipole interaction and charge-transfer complex formation between the unlike component molecules. This type of behavior supports the observations made by Rastogi et al. [29]. According to their view, the strength of specific or dispersion forces is not the only factor influencing the Δη, but the molecular size and shape of the components are also equally important. A positive value of d12 is an indication of the presence of specific interactions while a negative value of d12 suggests the presence of weak interactions between the unlike molecules [27]. A perusal of Table 3 reveals that the values of d12 are positive for binary mixtures of ethyl benzoate with toluene and negative for ethyl benzoate with isomeric chlorotoluenes over the entire composition range at 303.15 and 313.15 K. Also, the values Wvis/RT, H12 and T12 are positive for all binary mixtures over the entire range of composition, suggesting strong dipole–dipole interactions between unlike molecules. A perusal of Table 3 shows that the values of G⁎E are positive for mixture of ethyl benzoate with toluene and negative for ethyl benzoate with

ΔΖ×10-3/ Kgm-2s-1

286 287

0.6

E

Fig. 9. Curves of deviation in acoustic impedance (ΔZ) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 303.15 K.

284 285

0.4

X1

X1

283

O

-0.3

0.0

0.2

0.4

0.6

0.8

1.0

X1 Fig. 12. Curves of Gibb's free energy of activation of viscous flow (G⁎E) vs. mole fraction for the binary mixtures of ethyl benzoate + toluene (!), o-chlorotoluene (,), m-chlorotoluene (7) p-chlorotoluene (▼) at 313.15 K.

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

315 316 317 318 319 320 321 322

D. Vijayalakshmi et al. / Journal of Molecular Liquids xxx (2014) xxx–xxx

Appendix A. Supplementary data

333 334

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.molliq.2014.05.015.

335

References

R O

[1] M. Gowrisankar, P. Venkateswarlu, K. Siva kumar, S. Sivarambabu, J. Mol. Liq. 173 (2012) 172–179. [2] M. Gowrisankar, P. Venkateswarlu, K. Sivakumar, S. Sivarambabu, J. Soln. Chem. 42 (2013) 916–935. [3] G.S. Manukonda, P. Venkateswarlu, S.K. Kasibhatta, S.R.B. Sakamuri, Korean J. Chem. Eng. 30 (2013) 1131–1141. [4] M. Gowrisankar, P. Venkateswarlu, K. Siva kumar, S. Sivarambabu, J. Ind. Eng. Chem. 20 (2014) 405–418. [5] M. Gowri sankar, P. Venkateswarlu, K. Sivakumar, S. Sivarambabu, Arab. J. Chem. (2013), http://dx.doi.org/10.1016/j.arabjc 2013.09.042.

D E T C E R R

336 337 338 339 340 341 342 343 344 345

N C O

329

U

327 328

F

332

325 326

[6] M. Gowri sankar, P. Venkateswarlu, K. Sivakumar, S. Sivarambabu, J. Therm. Anal. Calorim. 115 (2014) 1821–1827. [7] B. Nagarjun, A.V. Sarma, G.V. Rama Rao, C. Rambabu, Int. J. Thermodyn. (2013), http://dx.doi.org/10.1155/2013/285796 ((2013) Article ID 285796). [8] M. Maria Palaiologou, I.E. Molinou, J. Chem. Eng. Data 40 (1995) 880–882. [9] M. Maria Palaiologou, J. Chem. Eng. Data 41 (1996) 1036–1039. [10] M.V. Rathnam, D.R. Ambavadekar, M. Nandini, Int. J. Thermodyn. (2013), http://dx. doi.org/10.1155/2013/413878 (Article ID 413878). [11] M.V. Rathnam, M. Sudhir, M.S. Kumar, J. Chem. Eng. Data 54 (2009) 305–309. [12] V. Syamala, P. Venkateswarlu, K. Sivakumar, J. Chem. Eng. Data 51 (2006) 928–934. [13] S.C. Bhatia, R. Rani, J. Sangwan, R. Bhatia, Int. J. Thermophys. 32 (2011) 1163–1174. [14] N.V. Sastry, R.R. Thakor, M.C. Patel, J. Mol. Liq. 144 (2009) 13–22. [15] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, fourth ed. McGraw Hill, New York, 1987. [16] L. Grunberg, A.H. Nissan, Nature 164 (1949) 799–800. [17] P.K. Katti, M.H. Chaudhri, J. Chem. Eng. Data 9 (1964) 442–443. [18] R.K. Hind, E. McLaughlin, A. Ubbelohde, Trans. Faraday Soc. 56 (1960) 328–330. [19] M. Tamura, M. Kurata, Bull. Chem. Soc. Jpn. 25 (1952) 32–37. [20] O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345–348. [21] C.A. Hwang, J.C. Holste, K.R. Hall, G.A. Mansoori, Fluid Phase Equilib. 62 (1991) 173–189. [22] K. Sivakumar, P.R. Naidu, J. Chem. Eng. Data 39 (1994) 2–4. [23] G.C. Benson, O. Kiyohara, J. Chem. Thermodyn. 11 (1979) 1061–1067. [24] B. Jacobson, J. Chem. Phys. 20 (1952) 927–928. [25] W. Schaaffs, Z. Med. Phys. 115 (1940) 69–75. [26] J.D. Pandey, S. Vinay, M.K. Yadav, A. Singh, Indian J. Chem. A 47 (2008) 1020–1025. [27] R.J. Fort, W.R. Moore, Trans. Faraday Soc. 61 (1965) 2102–2111. [28] K. Tiwari, C. Patra, V. Chakravarthy, Acoust. Lett. 19 (1995) 53–59. [29] R.P. Rastogi, J. Nath, J. Misra, J. Phys. Chem. 71 (1967) 1277–1286. [30] T.M. Reed, T.E. Taylor, J. Phys. Chem. 63 (1959) 58–67.

O

330 331

volume, excess isentropic compressibility, deviation in viscosity and deviation in intermolecular free length data for all binary systems are negative over the entire composition range. The data of deviation in acoustic impedance was positive for all the binary mixtures whereas excess Gibb's free energy of activation of viscous flow data was positive for the binary mixtures of ethyl benzoate with toluene and negative with isomeric chlorotoluenes over the entire composition range. The sign and magnitude of these quantities have been discussed in terms of molecular interactions between the mixing components.

P

323 324

15

Please cite this article as: D. Vijayalakshmi, et al., Densities, viscosities and speeds of sound of binary mixtures of ethyl benzoate with toluene, and isomeric chlorotoluenes at diffe..., Journal of Molecular Liquids (2014), http://dx.doi.org/10.1016/j.molliq.2014.05.015

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372