Derivation of identities involving some special polynomials and numbers via generating functions with applications

Derivation of identities involving some special polynomials and numbers via generating functions with applications

Applied Mathematics and Computation 220 (2013) 518–535 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation journa...

500KB Sizes 0 Downloads 45 Views

Applied Mathematics and Computation 220 (2013) 518–535

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Derivation of identities involving some special polynomials and numbers via generating functions with applications q Moawwad El-Mikkawy ⇑, Faiz Atlan Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

a r t i c l e

i n f o

Keywords: Bernoulli numbers Bernoulli polynomials Euler numbers Euler polynomials Genocchi numbers Genocchi polynomials Generating functions Maple

a b s t r a c t The current article focus on the ordinary Bernoulli, Euler and Genocchi numbers and polynomials. It introduces a new approach to obtain identities involving these special polynomials and numbers via generating functions. As an application of the new approach, an easy proof for the main result in [6] is given. Relationships between the Genocchi and the Bernoulli polynomials and numbers are obtained. Some interesting identities are discovered. Ó 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction and basic definitions The use of polynomials in many areas of science and engineering is quite remarkable: numerical analysis, operator theory, special functions, complex analysis, statistics, sorting and data compression, etc. Throughout this paper we shall focus on three special polynomials. These useful polynomials are the Bernoulli, Euler and Genocchi polynomials. The Bernoulli polynomials and the Bernoulli numbers, for example, are of fundamental importance in several parts of analysis and in the calculus of finite difference. These polynomials and numbers have applications in many fields. For example, in numerical analysis, statistics and combinatorics. The interested reader may refer to [1,2,4,6–9,11,15–17,19,29,31,41,44] and the references therein. The basic properties of Bernoulli numbers and polynomials are well known and are outlined, for example in [5,10,12,14,22,34,39,42]. The generating functions have an important role in many branches of mathematics, statistics and computer science, see for example [26,27,36,43]. The main object of the current paper is to show that the generating functions approach can be employed efficiently to obtain old and new identities involving the Bernoulli, Euler and Genocchi polynomials and numbers. The current paper is organized as follows: In the next section, we list some important properties, without proofs, for some exponential generating functions. The main results of this paper are given in Sections 3 and 4. Finally, a conclusion is given in Section 5. Throughout the paper, dnm is the kronecker symbol which is equal to 1 or 0 according as n ¼ m or not. Also empty summation is assumed equal to zero. Definition 1.1 [36]. The falling factorial of x; ðxÞn is defined by

q This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. ⇑ Corresponding author. E-mail addresses: [email protected], [email protected] (M. El-Mikkawy), [email protected] (F. Atlan).

0096-3003/$ - see front matter Ó 2013 The Authors. Published by Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.06.014

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

 ðxÞn ¼

1 if xðx  1Þðx  2Þ . . . ðx  n þ 1Þ if

519

n ¼ 0; n P 1:

Definition 1.2 [13]. Let f is a real valued function. The forward difference operator, D of f is defined by

Df ðxÞ ¼ f ðx þ 1Þ  f ðxÞ: Generating functions are one of the most surprising, useful, and clever tools in mathematics, computer science and statistics. By using generating functions, we can transform problems about sequences which they generate into problems about real valued functions. Definition 1.3 [36]. The ordinary generating function (OGF) of a sequence < a0 ; a1 ; a2 ; . . . > is defined by

f ðxÞ ¼

1 X an xn : n¼0

Definition 1.4 [26]. The exponential generating function (EGF) of a sequence < a0 ; a1 ; a2 ; . . . > is defined by

f ðxÞ ¼

1 X xn an : n! n¼0

Throughout this paper, we shall be concerned with the exponential generating functions. For these generating functions, we have 1 1 1 X xn X xn X xn an þ bn ¼ ðan þ bn Þ n! n¼0 n! n¼0 n! n¼0 1 X xn an n! n¼0

!

1 X

xn bn n! n¼0

! ¼

1 X xn cn ; n! n¼0

and

ð1Þ

where cn ¼

n   X n k¼0

k

ak bnk ;

n P 0:

ð2Þ

If gðxÞ is the generating function of the sequence < a0 ; a1 ; a2 ; . . . >, then we may write the correspondence between the sequence and its generating function by using a double-sided arrow as follows

< a0 ; a1 ; a2 ; . . . > $ gðxÞ ¼ a0 þ a1 x þ a2 x2 þ   

ð3Þ

Definition 1.5 [18]. The sequences < B0 ; B1 ; B2 ; . . . > of the Bernoulli numbers, Bn ; n P 0 and < B0 ðxÞ; B1 ðxÞ; B2 ðxÞ; . . . > of the Bernoulli polynomials, Bn ðxÞ; n P 0 are defined by the exponential generating functions

GðtÞ ¼

et

1 X t tn ¼ Bn  1 n¼0 n!

ð4Þ

1 X tex t tn ¼ B ðxÞ ; n et  1 n¼0 n!

ð5Þ

and

Fðx; tÞ ¼

respectively. The first 6 Bernoulli polynomials are

B0 ðxÞ ¼ 1 B1 ðxÞ ¼ x 

1 2

B4 ðxÞ ¼ x4  2 x3 þ x2 

B2 ðxÞ ¼ x2  x þ

1 30

B5 ðxÞ ¼ x5 

1 6

B3 ðxÞ ¼ x3 

5 4 5 3 1 x þ x  x: 2 3 6

The first 11 Bernoulli numbers are

B0 ¼ 1 B1 ¼  B6 ¼

1 42

1 2

B2 ¼

1 6

B7 ¼ 0 B8 ¼ 

1 30

B3 ¼ 0 B4 ¼ 

1 30

B9 ¼ 0 B10 ¼

5 : 66

B5 ¼ 0

3 2 1 x þ x 2 2

520

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

2. Properties of the generating functions G (t) and F (x,t) In this section we are going to list some properties, without proofs, for the exponential generating functions GðtÞ and Fðx; tÞ given in the previous section.                  

Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property Property

1. GðtÞ ¼ Fð0; tÞ. 2. GðtÞ ¼ t þ GðtÞ. 3. GðtÞ ¼ Fð1; tÞ. 4. GðtÞ ¼ et GðtÞ. 5. ðet  1Þ GðtÞ ¼ t. t 6. GðtÞ  Gð2tÞ ¼ et þ1 . t 7. ðe þ 1Þ Gð2tÞ ¼ 2 GðtÞ. 8. Fðx þ 1; tÞ  Fðx; tÞ ¼ t ext . @ 9. @x Fðx; tÞ ¼ t Fðx; tÞ. 10. Fðx; tÞ ¼ ext GðtÞ. 11. Fðx þ y; tÞ ¼ eyt Fðx; tÞ. 12. ðet  1Þ Fðx; tÞ ¼ t ext . 13. Fð1  x; tÞ ¼ Fðx; tÞ. 14. ðet þ 1Þ Fðx; 2tÞ ¼ 2 ext Fðx; tÞ. 15. Fðx þ 12 ; tÞ þ Fðx; tÞ ¼ 2 Fð2 x; 2t Þ. 16. ðet þ 1ÞðFð2x; tÞ  Fðx; 2 tÞÞ ¼ t e2xt . 17. Fðx; tÞFðy; tÞ ¼ Fðx þ y; tÞ þ t ðx þ y  1Þ Fðx þ y; tÞ  t   18. Fðx; tÞFðy; tÞ ¼ 12 t þ GðtÞ Fðxþy ; 2 tÞ. 2

@ Fðx @t

þ y; tÞ.

3. Main results For convenience of the reader, we begin this section by giving the following useful results whose proofs will be omitted, for the sake of space requirement. Lemma 3.1. Let S ¼

Pn

f ðrÞ. If there exist a function gðrÞ such that f ðrÞ ¼ DgðrÞ, then

r¼1

S ¼ gðn þ 1Þ  gð1Þ: Lemma 3.2. Let < a0 ; a1 ; a2 ; . . . > $ AðtÞ. Then, we have

< 0; a0 ; 2 a1 ; 3 a2 ; . . . > $ t AðtÞ;

and

k

< ak ; akþ1 ; akþ2 ; . . . > $

d

dt

k

AðtÞ;

k P 0:

Lemma 3.3. Let < a0 ðxÞ; a1 ðxÞ; a2 ðxÞ; . . . > $ Bðx; tÞ. Then, we have

< 0; a0 ðxÞ; 2 a1 ðxÞ; 3 a2 ðxÞ; . . . > $ t Bðx; tÞ; < ak ðxÞ; akþ1 ðxÞ; akþ2 ðxÞ; . . . > $

and

 k @ Bðx; tÞ; @t

k P 0:

We are now ready to give the main results of this section. Theorem 3.1. The Bernoulli numbers Bn ; n P 0 and polynomials Bn ðxÞ; n P 0 satisfy 

Bn ¼ Bn ð0Þ;



B2kþ1 ¼ 0;



ð1Þn Bn ¼ Bn ð1Þ;

n P 0: k P 1:

ð6Þ ð7Þ

n P 0:

ð8Þ

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535



ð1Þn Bn ¼

n   X n k¼0

k

Bk ;

n P 0:



n1   X n Bk ¼ dn1 ; k k¼0



n1   X n k 2 Bk ¼ 2 ð1  2n Þ Bn ; k k¼0



DBn ðxÞ ¼ n xn1 ;



B0n ðxÞ ¼ n Bn1 ðxÞ;



Bn ðxÞ ¼



m X an ¼ a¼1

ð9Þ

n P 0:

ð10Þ

n P 0:

ð11Þ

n P 1:

ð12Þ

n P 1:

n   X n Bk xnk ; k k¼0

521

ð13Þ

n P 0:

ð14Þ

1 ðBnþ1 ðm þ 1Þ  Bnþ1 ð1ÞÞ: nþ1 n   X n Bk ðxÞ ynk ; k k¼0

ð15Þ



Bn ðx þ yÞ ¼



n1   X n Bk ðxÞ ¼ n xn1 ; k k¼0



Bn ð1  xÞ ¼ ð1Þn Bn ðxÞ;



n1   X   n k 2 Bk ðxÞ ¼ 2 Bn ð2xÞ  2n Bn ðxÞ ; k k¼0



  1 Bn ð2xÞ ¼ 2n1 Bn ðx þ Þ þ Bn ðxÞ ; 2



n1    X   n Bk ð2xÞ  2k Bk ðxÞ ¼ n 2n1 xn1  2 Bn ð2xÞ  2n Bn ðxÞ ; k k¼0



n   X n Bk ðxÞBnk ðyÞ ¼ ð1  nÞBn ðx þ yÞ þ n ðx þ y  1ÞBn1 ðx þ yÞ: k k¼0

n P 0:

ð16Þ

n P 0:

ð17Þ

n P 0:

ð18Þ

n P 0:

ð19Þ

n P 0:

ð20Þ

n P 0:

ð21Þ

ð22Þ

522



M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

 n1  X 2n k¼1

2k

22k1 B2k B2n2k ¼ ðn þ 22n1 Þ B2n ;

n P 2:

ð23Þ

Proof.  To prove(6): From Property 1, we have 1 1 X tk X tk Bk ¼ Bk ð0Þ : k! k¼0 k! k¼0

Comparing the coefficients on both sides, we get

Bn ¼ Bn ð0Þ;

n P 0: j

 To prove (7): From Property 2, we have 1 1 1 X tk X tk X tk ð1Þk Bk ¼ dk1 þ Bk : k! k! k! k¼0 k¼0 k¼0

Comparing the coefficients on both sides, we obtain

ð1Þn Bn ¼ dn1 þ Bn ; Therefore, we get B1 ¼

 12

n P 0: and B2kþ1 ¼ 0;

k P 1, showing that the Bernoulli numbers with odd subscript P3 are zero. h

 To prove (8): From Property 3, we have 1 1 X tk X tk ð1Þk Bk ¼ Bk ð1Þ : k! k¼0 k! k¼0

Comparing the coefficients on both sides, gives

ð1Þn Bn ¼ Bn ð1Þ;

n P 0:

From (6)–(8), we see that Bn ð1Þ ¼ Bn ð0Þ; n – 1.

j

 To prove (9): From Property 4, we have 1 X tk ð1Þk Bk ¼ k! k¼0

1 k X t k¼0

!

k!

! tk : Bk k! k¼0

1 X

Using (2), yields

ð1Þn Bn ¼

n   n   X X n n ð1Þnk Bk ¼ Bk ; k k k¼0 k¼0

 To prove (10): From Property 5, we obtain 1 k X t k¼0

!

k!

! 1 1 1 X X tk tk X tk  Bk Bk ¼ dk1 : k! k! k! k¼0 k¼0 k¼0

By using (2), we get n   X n Bk  Bn ¼ dn1 : k k¼0

Consequently, we have

n P 0: j

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

523

n1   X n Bk ¼ dn1 : j k k¼0

 To prove (11): Rewriting Property 6 in the form

ðet þ 1Þ ðGðtÞ  Gð2tÞÞ ¼ t; yields ! 1 k 1 1 X X t tk X tk þ1 ð1  2k ÞBk ¼ dk1 : k! k! k! k¼0 k¼0 k¼0 Consequently, we have 1 k X t k¼0

k!

!

! 1 1 1 X X tk tk X tk k þ ð1  2 Þ Bk ð1  2k Þ Bk ¼ dk1 : k! k! k! k¼0 k¼0 k¼0

By using (2), we get n   X n ð1  2k Þ Bk þ ð1  2n Þ Bn ¼ dn1 ; k k¼0

hence, n1   X n ð1  2k Þ Bk þ 2 ð1  2n Þ Bn ¼ dn1 : k k¼0

Therefore, we have n1   X n k 2 Bk ¼ 2 ð1  2n Þ Bn ; k k¼0

n P 0;

having used (10). The same result may also be obtained by using property (7).

j

 To prove (12): From Property 8, we have 1 1 1 1 X X tk X tk X tkþ1 tk Bk ðx þ 1Þ  Bk ðxÞ ¼ ðk þ 1Þ xk ¼ k xk1 : k! k¼0 k! k¼0 ðk þ 1Þ! k¼0 k! k¼0

Comparing the coefficients on both sides, gives

DBn ðxÞ ¼ Bn ðx þ 1Þ  Bn ðxÞ ¼ n xn1 ;

n P 1: j

 To prove (13): From Property 9, we have 1 @ X tk Bk ðxÞ @x k¼0 k!

! ¼

1 X ðk þ 1Þ Bk ðxÞ k¼0

tkþ1 : ðk þ 1Þ!

Consequently, we get 1 1 X tk X tk B0k ðxÞ ¼ k Bk1 ðxÞ : k! k! k¼0 k¼0

(Dash means differentiation with respect to x). Comparing the coefficients on both sides, yields

B0n ðxÞ ¼ n Bn1 ðxÞ;

n P 1:

ð24Þ

A more general result is given by



k d Bn ðxÞ ¼ ðnÞk Bnk ðxÞ; dx

k P 0: j

524

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

 To prove (14): From Property 10, we have 1 X tk Bk ðxÞ ¼ k! k¼0

1 X tk xk k! k¼0

!

! 1 X tk : Bk k! k¼0

Using (2), we obtain

Bn ðxÞ ¼

n   X n Bk xnk ; k k¼0

n P 0:

ð25Þ

Rewriting Property 10, in the form

GðtÞ ¼ ext Fðx; tÞ: Then, we can easily see that

Bn ¼

n   X n k¼0

k

ð1Þnk Bk ðxÞ xnk ;

n P 0;

showing that the Bernoulli numbers can be expressed in terms of the Bernoulli polynomials. j  To prove (15): From Property 10, we have

Fðx; tÞ ¼ GðtÞ ext : Integrating both sides with respect to x from x ¼ a to x ¼ a þ 1 (a is any real number), gives

Z

aþ1

Fðx; tÞ dx ¼ eat :

ð26Þ

a

Therefore,

Z

! 1 1 X X tk tk Bk ðxÞ ak : dx ¼ k! k! k¼0 k¼0

aþ1

a

Hence, 1 Z X



aþ1

Bk ðxÞ dx

a

k¼0

1 tk X tk ¼ ak : k! k¼0 k!

Comparing the coefficients on both sides, yields

Z

aþ1

Bn ðxÞ dx ¼ an ;

n P 0:

ð27Þ

a

Setting a ¼ 0 in (27), gives

Z

1

Bn ðxÞ dx ¼ dn0 ;

n P 0:

ð28Þ

0

Using (24), we obtain

Bnþ1 ð1Þ  Bnþ1 ð0Þ ¼ ðn þ 1Þ dn0 ;

n P 0:

Consequently, we have

B1 ð1Þ ¼

1 2

and Bn ð1Þ ¼ Bn ð0Þ;

n > 1:

From (27), (13) and Definition 1.2, we have

1 DBnþ1 ðaÞ ¼ an : nþ1 Summing over a from 1 to m, on both sides gives the power sum

fn ðmÞ ¼

m X an ¼ a¼1

! m X 1 1 DBnþ1 ðaÞ ¼ ðBnþ1 ðm þ 1Þ  Bnþ1 ð1ÞÞ: n þ 1 a¼1 nþ1

having used Lemma 3.1. j

ð29Þ

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

 To prove (16): From Property 11, we have 1 X tk Bk ðx þ yÞ ¼ k! k¼0

1 X tk yk k! k¼0

!

525

! 1 X tk : Bk ðxÞ k! k¼0

By using (2), we get

Bn ðx þ yÞ ¼

n   X n Bk ðxÞ ynk ; k k¼0

n P 0:

ð30Þ

Setting x ¼ 0 in (30) gives (14) and setting y ¼ 1, then (30) yields

Bn ðx þ 1Þ ¼

n   X n Bk ðxÞ; k k¼0

n P 0:

ð31Þ

If we put x ¼ y in (30), then we have

Bn ð2xÞ ¼

n   X n Bk ðxÞ xnk ; k k¼0

n P 0: j

ð32Þ

 To prove (17): From Property 12, we have 1 k X t k¼0

k!

! 1

! 1 1 X X tk tkþ1 ¼ Bk ðxÞ ðk þ 1Þ xk : k! ðk þ 1Þ! k¼0 k¼0

Consequently, we get 1 k X t k¼0

!

k!

! 1 1 1 X X tk tk X tk  Bk ðxÞ Bk ðxÞ ¼ k xk1 : k! k! k! k¼0 k¼0 k¼0

Using (2), gives n   X n Bk ðxÞ  Bn ðxÞ ¼ n xn1 ; k k¼0

n P 0:

ð33Þ

Therefore, n1   X n Bk ðxÞ ¼ n xn1 : k k¼0

ð34Þ

In [26], Eq. (34) is the definition of the Bernoulli polynomials. From (31) and (34) we obtain

DBn ðxÞ ¼ Bn ðx þ 1Þ  Bn ðxÞ ¼ n xn1 ;

n P 1: j

 To prove (18): From Property 13, we have 1 1 X tk X tk Bk ð1  xÞ ¼ ð1Þk Bk ðxÞ : k! k¼0 k! k¼0

Comparing the coefficients on both sides, we obtain

Bn ð1  xÞ ¼ ð1Þn Bn ðxÞ;

n P 0:

ð35Þ

Setting x ¼ 0 in (35), yields

Bn ð1Þ ¼ ð1Þn Bn ð0Þ ¼ ð1Þn Bn ;

 To prove (19): From Property 14, we have 1 k X t k¼0

k!

!

n P 0: j

! ! ! 1 1 1 1 X X X X tk tk tk tk þ : 2k Bk ðxÞ 2k Bk ðxÞ ¼ 2 xk Bk ðxÞ k! k! k! k! k¼0 k¼0 k¼0 k¼0

526

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

Using (2), gives

n   n   X X n k n 2 Bk ðxÞ þ 2n Bn ðxÞ ¼ 2 Bk ðxÞ xnk ; k k k¼0 k¼0

n P 0:

Hence,

n   n   X X n k n 2 Bk ðxÞ ¼ 2 Bk ðxÞ xnk  2n Bn ðxÞ; k k k¼0 k¼0

n P 0:

ð36Þ

Using (32) in (36), we obtain n1   X   n k 2 Bk ðxÞ ¼ 2 Bn ð2xÞ  2n Bn ðxÞ ; k k¼0

n P 0:

Putting x ¼ 0 in the previous result, yields

Bn ¼

n1   X n k 1 2 Bk ; 2 ð1  2n Þ k¼0 k

n P 1: j

ð37Þ

 To prove (20): From Property 15, we have

 k 1  1 X X 1 t 1 tk Bk ðx þ Þ þ Bk ðxÞ ¼2 B ð2xÞ : k k 2 k! k! k¼0 k¼0 2

Comparing the coefficients on both sides, gives

  1 1 þ Bn ðxÞ ¼ n1 Bn ð2xÞ; Bn x þ 2 2

n P 0:

Consequently, we get

    1 þ Bn ðxÞ ; Bn ð2xÞ ¼ 2n1 Bn x þ 2

n P 0:

In particular, if x ¼ 0, then we get

Bn

  1 ð1  2n1 Þ ¼ Bn ; 2 2n1

n P 0: j

ð38Þ

 To prove (21): From Property 16, we have 1 k X t k¼0

!

k!

! 1  1  1 1  tk  tk X X X X tkþ1 tk þ Bk ð2xÞ  2k Bk ðxÞ Bk ð2xÞ  2k Bk ðxÞ ¼ ðk þ 1Þ 2k xk ¼ k 2k1 xk1 : k! k! k¼0 ðk þ 1Þ! k¼0 k! k¼0 k¼0

Using (2), yields n    X n Bk ð2xÞ  2k Bk ðxÞ þ ðBn ð2xÞ  2n Bn ðxÞÞ ¼ n 2n1 xn1 ; k k¼0

n P 0:

Consequently, we have n1    X n Bk ð2xÞ  2k Bk ðxÞ ¼ n 2n1 xn1  2 ðBn ð2xÞ  2n Bn ðxÞÞ; k k¼0

 To prove (22): From Property 17, we have 1 X

tk Bk ðxÞ k! k¼0

!

1 X tk Bk ðyÞ k! k¼0

!

n P 0: j

1 1 1 X X tk tkþ1 @ X tk ¼ Bk ðx þ yÞ þ ðx þ y  1Þ ðk þ 1Þ Bk ðx þ yÞ t Bk ðx þ yÞ @t k! ðk þ 1Þ! k! k¼0 k¼0 k¼0

¼

1 1 1 X X tk tk X tk Bk ðx þ yÞ þ ðx þ y  1Þ k Bk1 ðx þ yÞ  k Bk ðx þ yÞ : k! k! k! k¼0 k¼0 k¼0

!

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

527

By using (2), we get n   X n Bk ðxÞBnk ðyÞ ¼ ð1  nÞ Bn ðx þ yÞ þ n ðx þ y  1ÞBn1 ðx þ yÞ: k k¼0

ð39Þ

Setting x ¼ y ¼ 0 in (39), we obtain the quadratic recurrence relation n   X n Bk Bnk ¼ ð1  nÞ Bn  n Bn1 ; k k¼0

n P 1;

which is also known in its equivalent form

 n1  X 2n B2k B2n2k ¼ ð2n þ 1Þ B2n ; 2k k¼1

n P 2: j

ð40Þ

More than 250 years ago, Euler discovered the identity (40). It gives the sum of products of the Bernoulli numbers.  To prove (23): From Property 18, we have 1 X tk Bk ðxÞ k! k¼0

!

1 X tk Bk ðyÞ k! k¼0

!

! ! 1 1 1 x þ y t kþ1 x þ y tk X X 1X tk ðk þ 1Þ 2k Bk þ Bk 2k B k 2 k¼0 2 2 ðk þ 1Þ! k! k! k¼0 k¼0 ! ! 1 1 1     X tk X k 1 X k1 x þ y tk x þ y tk : ¼ k 2 Bk1 þ Bk 2 Bk 2 k¼0 2 2 k! k! k! k¼0 k¼0

¼

By using (2), we obtain n   n   x þ y X X n n k  x þ y Bk ðxÞBnk ðyÞ ¼ n 2n2 Bn1 2 Bk þ Bnk : 2 2 k k k¼0 k¼0

Setting x ¼ y in (41), yields n   n   X X n n k Bk ðxÞBnk ðxÞ ¼ n 2n2 Bn1 þ 2 Bk Bnk : k k k¼0 k¼0

But, Bn ðxÞ ¼ ð1Þn Bn ð1 þ xÞ. Therefore, n   n   X X n n k ð1Þnk Bk ðxÞBnk ð1 þ xÞ ¼ n 2n2 Bn1 þ 2 Bk Bnk : k k k¼0 k¼0

Putting x ¼ y ¼ 0 in (41), gives n   X n ð1  2k ÞBk Bnk ¼ n 2n2 Bn1 : k k¼0

Replacing n by 2n, we get

 2n  X 2n ð1  2k ÞBk B2nk ¼ 0; k k¼0

n P 2:

Consequently, we have

  n1  n1  X X 2n k 2n 4 B2k B2n2k ¼ ð1  4n Þ B2n þ B2k B2n2k ; 2k 2k k¼1 k¼1 By using (40), we end up with the quadratic identity

 n1  X 2n 2k1 2 B2k B2n2k ¼ ðn þ 22n1 ÞB2n ; 2k k¼1

n P 2: j

n P 2:

ð41Þ

528

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

4. Applications and further results 4.1. A connection between the Bernoulli polynomials, Bn ðxÞ and the Euler polynomials, En ðxÞ We begin this subsection by giving the following definition for the Euler polynomials. These polynomials are closely related to the Bernoulli polynomials [28]. Definition 4.1.1. ([12]). The sequence < E0 ðxÞ; E1 ðxÞ; E2 ðxÞ; . . . > of the Euler polynomials En ðxÞ; n P 0 is defined by the exponential generating function 1 X 2 ext tk ¼ Ek ðxÞ : t e þ 1 k¼0 k!

Hðx; tÞ ¼

ð42Þ

The basic properties of Euler numbers and polynomials can be found in [10,12,28,39]. The first 6 Euler polynomials are

E0 ðxÞ ¼ 1

E1 ðxÞ ¼ x 

E4 ðxÞ ¼ x4  2x3 þ x

1 2

E2 ðxÞ ¼ x2  x

3 1 E3 ðxÞ ¼ x3  x2 þ 2 4

5 5 1 E5 ðxÞ ¼ x5  x4 þ x2  : 2 2 2

The exponential generating functions GðtÞ; Fðx; tÞ and Hðx; tÞ satisfy the relationship

Fðx; tÞ ¼

  1 t þ GðtÞ Hðx; tÞ; 2

ð43Þ

as can be easily checked. We are now in a position to give an easy proof for the following theorem, which is the main result in [6], (see also [40]). Theorem 4.1.1. The Bernoulli polynomials Bn ðxÞ; n P 0 are related to the Euler polynomials En ðxÞ; n P 0 by

Bn ðxÞ ¼

  n X n k¼0 k–1

k

Bk Enk ðxÞ ¼

n   X n k¼0

k

ð1  dk1 Þ Bk Enk ðxÞ:

Proof. From (43), we have

! ! ! 1 1 1 X X tk 1X t kþ1 tk tk ¼ Ek ðxÞ ðk þ 1Þ Ek ðxÞ þ Bk Ek ðxÞ 2 k¼0 k! ðk þ 1Þ! k! k! k¼0 k¼0 k¼0 ! ! 1 1 1 X X 1X tk tk tk : ¼ k Ek1 ðxÞ þ Bk Ek ðxÞ 2 k¼0 k! k! k! k¼0 k¼0

1 X tk Bk ðxÞ ¼ k! k¼0

1 X 1 tk tþ Bk 2 k! k¼0

!

1 X

Using (2), we obtain

Bn ðxÞ ¼

    n   n   n X X X n n n n 1 Bk Enk ðxÞ ¼  B1 En1 ðxÞ þ Bk Enk ðxÞ ¼ Bk Enk ðxÞ n En1 ðxÞ þ 2 k 1 k k k¼0 k¼0 k¼0

n   X n ¼ ð1  dk1 Þ Bk Enk ðxÞ: j k k¼0

k–1 ð44Þ

4.2. A Connection between the Bernoulli Polynomials, Bn ðxÞ and the Genocchi polynomials, Gn ðxÞ In recent years there has been a flurry of activity for doing research with Genocchi numbers and polynomials. See for instance, [3,21,23–25,30,32,35,37,38,40]. These numbers and polynomials are given by the following definition. Definition 4.2.1 [25]. The sequences < G0 ; G1 ; G2 ; . . . > of the Genocchi numbers, Gn ; n P 0 and < G0 ðxÞ; G1 ðxÞ; G2 ðxÞ; . . . > of the Genocchi polynomials, Gn ðxÞ; n P 0 are defined by the exponential generating functions

WðtÞ ¼

1 X 2t tn ¼ Gn : et þ 1 n¼0 n!

ð45Þ

529

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

and 1 X 2 t ext tn ¼ Gn ðxÞ ; et þ 1 n¼0 n!

Q ðx; tÞ ¼

ð46Þ

respectively. The first 11 Genocchi numbers Gn ¼ Gn ð0Þ are

G0 ¼ 0

G1 ¼ 1

G2 ¼ 1

G3 ¼ 0

G4 ¼ 1

G5 ¼ 0

G6 ¼ 3

G7 ¼ 0

G8 ¼ 17

G9 ¼ 0

G10 ¼ 155:

The first few Genocchi polynomials are

G0 ðxÞ ¼ 0

G1 ðxÞ ¼ 1

G4 ðxÞ ¼ 4x3  6x2 þ 1

G2 ðxÞ ¼ 2x  1

G3 ðxÞ ¼ 3x2  3x

G5 ðxÞ ¼ 5x4  10x3 þ 5x

G6 ðxÞ ¼ 6x5  15x4 þ 15x2  3:

Consider

< E0 ðxÞ; E1 ðxÞ; E2 ðxÞ; . . . > $ Hðx; tÞ:

ð47Þ

Using Lemma 3.3, yields

< 0; E0 ðxÞ; 2 E1 ðxÞ; 3 E2 ðxÞ; . . . > $ t Hðx; tÞ ¼ Qðx; tÞ:

ð48Þ

(See (42) and (46)). On the other hand, we have from (46),

< G0 ðxÞ; G1 ðxÞ; G2 ðxÞ; . . . > $ Qðx; tÞ:

ð49Þ

From (48) and (49), we get

Gn ðxÞ ¼ n En1 ðxÞ;

n P 1:

ð50Þ

It is easy to see that the exponential generating functions GðtÞ; Fðx; tÞ and Q ðx; tÞ are related by

t Fðx; tÞ ¼



 1 t þ GðtÞ Q ðx; tÞ: 2

ð51Þ

We are now ready to give a connection between the Bernoulli polynomials Bn ðxÞ; n P 0 and the Genocchi polynomials Gn ðxÞ; n P 0. This connection is given by the following result. Theorem 4.2.1. The Bernoulli polynomials Bn ðxÞ; n P 0 can be expressed by the Genocchi polynomials Gn ðxÞ; n P 0 as

Bn ðxÞ ¼

   n n  X nþ1 nþ1 1 1 X Bk Gnþ1k ðxÞ ¼ ð1  dk1 ÞBk Gnþ1k ðxÞ: nþ1 n þ 1 k¼0 k k k¼0

ð52Þ

k–1 First Proof. Using (51), we have 1 X ðk þ 1Þ Bk ðxÞ k¼0

tkþ1 ¼ ðk þ 1Þ!

1 X 1 tk tþ Bk 2 k! k¼0

!

1 X tk Gk ðxÞ k! k¼0

!

! ! 1 1 1 X X 1X t kþ1 tk tk ¼ : ðk þ 1Þ Gk ðxÞ þ Bk Gk ðxÞ 2 k¼0 ðk þ 1Þ! k! k! k¼0 k¼0

Consequently,

! ! 1 1 1 1 X X X tk 1 X tk tk tk k Bk1 ðxÞ ¼ k Gk1 ðxÞ þ Bk Gk ðxÞ : k! 2 k¼0 k! k! k! k¼0 k¼0 k¼0 Using (2), we obtain

n Bn1 ðxÞ ¼

    n   n   n X X X n n n n 1 Bk Gnk ðxÞ ¼  B1 Gn1 ðxÞ þ Bk Gnk ðxÞ ¼ Bk Gnk ðxÞ n Gn1 ðxÞ þ 2 k 1 k k k¼0 k¼0 k¼0

n   X n ð1  dk1 Þ Bk Gnk ðxÞ: ¼ k k¼0

Therefore, we have

k–1

530

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

Bn ðxÞ ¼

 n  nþ1 1 X ð1  dk1 Þ Bk Gnþ1k ðxÞ; n þ 1 k¼0 k

since G0 ðxÞ ¼ 0: j Alternative proof. We have [6,40],

  n X n

Bn ðxÞ ¼

k

k¼0

Bk Enk ðxÞ:

k–1 By using (50), we get

  n   n X nþ1 1 k Bk Gnþ1k ðxÞ: Bn ðxÞ ¼ Bk Gnþ1k ðxÞ ¼ nþ1 nþ1k k k¼0 k¼0 k–1 k–1 n X

ð53Þ

having used the identity



nþ1 k

 ¼

nþ1 nþ1k

  n : j k

4.3. Further properties and identities It is worth mentioned that new more interesting identities can be obtained using the technique of this paper by adding new properties. Here we add the following 10 additional properties. 

ð1 þ et Þ WðtÞ ¼ 2 t:

ð54Þ



WðtÞ  WðtÞ ¼ 2 t:

ð55Þ



GðtÞ  Gð2tÞ ¼



Qðx; tÞ ¼ ext WðtÞ:



Z 0

1

1 WðtÞ: 2

t Q ðx; tÞ dx ¼ 2 tanhð Þ: 2

ð56Þ

ð57Þ

ð58Þ



@ Q ðx; tÞ ¼ t Q ðx; tÞ: @x

ð59Þ



Qðx þ 1; tÞ þ Qðx; tÞ ¼ 2 t ext :

ð60Þ



GðtÞ WðtÞ ¼ t Gð2tÞ:

ð61Þ



ð2 t  2 WðtÞÞFðx; tÞ ¼ t Qðx; tÞ:

ð62Þ



  @ Qðx; tÞQðy; tÞ ¼ 2 t Q ðx þ y; tÞ  Q ðx þ y; tÞ  t ðx þ y  1ÞQ ðx þ y; tÞ : @t

ð63Þ

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

531

The property (54), together with (2), gives

Gn ¼ dn1 

n1   n 1X Gk ; 2 k¼1 k

n P 0:

ð64Þ

From (55), one can see that

G1 ¼ 1;

G2nþ1 ¼ 0;

n P 1:

ð65Þ

Therefore using (50), we get

E2n ð0Þ ¼ 0;

n P 1:

ð66Þ

(See Theorem 3.2 in [20]). Similarly using (56), we obtain

Gn ¼ 2 ð1  2n Þ Bn ;

n P 0:

ð67Þ

From (11) and (67), we have the following curious identity between the Bernoulli and Genocchi numbers

Gn ¼

n1   X n k 2 Bk ; k k¼0

n P 1:

ð68Þ

Note that this identity can also be obtained from (37). The property (57), together with (2), yields

Gn ðxÞ ¼

n   X n Gk xnk ; k k¼0

n P 0:

ð69Þ

Using (58), together with the following series expansion for tanhðtÞ

tanhðxÞ ¼

1 X 4n ð4n  1Þ B2n

2n!

n¼1

x2n1 ;

we see that

Z

1

2 Gnþ1 : n P 1; nþ1

Gn ðxÞ dx ¼ 

0

ð70Þ

Therefore, we have

Z

1

En ðxÞ dx ¼ 

0

2 Enþ1 ð0Þ ; nþ1

n P 1:

In particular, by using (66), then we have

Z

1

E2n1 ðxÞ dx ¼ 0;

n P 1:

0

From (59), we obtain

G0n ðxÞ ¼ n Gn1 ðxÞ;

n P 1:

Using (60), gives

Gn ðx þ 1Þ þ Gn ðxÞ ¼ 2 n xn1 ;

n P 1:

ð71Þ

Replacing x by x and n by n þ 1 in (71), we see that

Gnþ1 ðxÞ þ Gnþ1 ð1  xÞ ¼ ð1Þn ðGnþ1 ðxÞ þ Gnþ1 ð1 þ xÞÞ ¼ ð1Þn 2 ðn þ 1Þ xn : Thus the sums Gn ðxÞ þ Gn ð1 þ xÞ and consequently, En ðxÞ þ En ð1 þ xÞ are even functions if n is odd. Putting x ¼ 0 in (71), yields

Gn ð1Þ þ Gn ¼ 2 dn1 :

ð72Þ

From (72), we see that

Gn ð1Þ ¼ Gn ð0Þ ¼ Gn ;

n P 2:

ð73Þ

Making use of (61), together with (2), we arrive at

Bn ¼

n1   X n 1 Bk Enk ð0Þ: ð2n  1Þ k¼0 k

ð74Þ

532

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

Using (67) in (74) together with the fact that B1 ¼  12, we get n1   X n

k

k¼0 k–1

Bk Enk ð0Þ ¼ 

1 dn1 ; 2

ð75Þ

on simplification. The following identity is a direct consequence of (75) n2   X n

k

k¼0

Bk Gnk ¼  dn2 :

ð76Þ

k–1 It is worth mentioned that the identity (76) may be also obtained by using (52), (28) and (70). Eq. (76) is also equivalent to

  n

n X

k

k¼2

Gk Bnk ¼  dn2 : ð77Þ

k–n  1 Replacing n by 2n þ 2 and k by k þ 1 in (77), gives



2nþ1 X

2n þ 2

 Gkþ1 B2nþ1k ¼ dn0 :

kþ1

k¼1 k–2n But



2n þ 2



kþ1

¼

2n þ 2 kþ1



2n þ 1



k

:

Hence,



2nþ1 X

2n þ 1 k

k¼1



ð2n þ 2Þ Ek ð0Þ B2nþ1k ¼ dn0 ;

k–2n having used (50). Consequently, we have 2nþ1 X

2n þ 1



k

k¼1

Ek ð0Þ B2nþ1k ¼ 

1 dn0 ; 2ðn þ 1Þ

ð78Þ

having used (66). The identity (78) is Theorem 3.3 in the very recent paper [20]. Using (72) and (7), we get

 n1  X 2n k¼0

2k

B2k G2n2k ¼

 n  X 2n k¼1

2k

G2k B2n2k ¼ dn1 :

ð79Þ

By using (78), together with (66) we see that

 n  X 2n þ 1 k¼0

2k þ 1

E2kþ1 ð0Þ B2n2k ¼ 

1 dn0 : 2ðn þ 1Þ

ð80Þ

Using (50) in (80), gives

 n  X 2n k¼1

2k

E2k ð0Þ B2n2k ¼  dn1;0 :

ð81Þ

The property (62), together with (2), gives n1   X n 1 Ek ð0Þ Bnk ðxÞ ¼  Gn ðxÞ; 2 k k¼1

n P 1:

ð82Þ

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

533

The property (63), together with (2), yields n1   X n Gk ðxÞGnk ðyÞ ¼ 2 ððn  1Þ Gn ðx þ yÞ  n ðx þ y  1Þ Gn1 ðx þ yÞÞ; k k¼1

n P 2:

ð83Þ

It follows from (83) that if y ¼ 1  x, then we have n1   X n Gk ðxÞGnk ð1  xÞ ¼ 2 ðn  1Þ Gn ; n P 2; k k¼1

for any rael x;

ð84Þ

having used (73). Setting x ¼ y ¼ 0 in (83), we get the following quadratic identity n1   X n Gk Gnk ¼ 2 n Gn1 þ 2 ðn  1Þ Gn ; k k¼1

n P 2:

At this stage, let us consider the sequence < E0 ; E1 ; E2 ; . . . > of the Euler numbers En ; n P 0, defined by

EðtÞ ¼

1 X 2 1 tn ¼ ¼ En : et þ et coshðtÞ n¼0 n!

ð85Þ

Therefore,

< E0 ; E1 ; E2 ; . . . >$ EðtÞ ¼

1 X

En

n¼0

tn : n!

The odd-indexed Euler numbers are all zero. The even-indexed ones have alternating signs, and are given by the recursive recurrence relation

 n1  X 2n E2k ; E2n ¼  2k k¼0

E0 ¼ 1;

n P 1:

ð86Þ

The first few values for the Euler numbers are

E0 ¼ 1

E2 ¼ 1

E4 ¼ 5

E6 ¼ 61

E8 ¼ 1385

E10 ¼ 50521

The relationship between the two generating functions WðtÞ and EðtÞ is given by

et Wð2 tÞ ¼ 2 t EðtÞ:

ð87Þ

Using (87), together with (2), yields

En1 ¼

! n   n k1 1 X 2 Gk þ 2n1 Gn ; n k¼1 k

n P 1:

ð88Þ

Consequently, we have

En ¼

n   X n k¼0

k

1 2k Ek ð0Þ ¼ 2n En ð Þ; 2

ð89Þ

having used (50), together with the fact that the Euler polynomials En ðxÞ satisfy [8]

En ðxÞ ¼

n   X n Ek ð0Þ xnk : k k¼0

Let us finish this subsection by giving some identities concerning the Euler numbers. Using (89) in (84) with x ¼ 12, gives the identity n1   X n k¼1

Since

k

k ðn  kÞ Ek1 Enk1 ¼ 2n1 n ðn  1ÞEn1 ð0Þ;

n P 1:

    n n2 k ðn  kÞ ¼ n ðn  1Þ, we get, k k1

 n1  X n2 k¼1

k1

Ek1 Enk1 ¼ 2n1 En1 ð0Þ;

n P 3;

ð90Þ

534

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

on simplification. Replacing n by n þ 2 on both sides and k by k þ 1 in (90), gives n   X n k¼0

k

Ek Enk ¼ 2nþ1 Enþ1 ð0Þ;

n P 1:

Consequently, showing that the Euler numbers, En satisfy the quadratic recurrence relation

 n  X 2n k¼0

2k

E2k E2n2k ¼ 22nþ1 E2nþ1 ð0Þ;

n P 1:

ð91Þ

5. Conclusion The current paper is addressed a generating function approach to obtain old and new identities. The approach is employed in a constructive way to obtain identities involving the Bernoulli, Euler and Genocchi polynomials and numbers. We established some properties for generating functions and two applications are given. Among the applications, we should stress that a simple proof for the main result in [6], (see also [40]) is given. Finally, some useful relationships between the Bernoulli, Euler and Genocchi polynomials and numbers are obtained. All properties and results of this paper are tested using the Computer Algebra System (CAS), Maple [33]. Acknowledgments The authors wish to thank anonymous referees, Prof. Dr. Melvin Scott, Editor-in-Chief and Prof. Dr. T.E.Simos, Senior Editor for useful comments that enhanced the quality of this paper. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41]

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, NewYork, 1972. T. Agoh, K. Dilcher, Convolution identities and lacunary recurrences for Bernoulli numbers, J. Number Theory 124 (2007) 105–122. A. Bayad, T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (2) (2010) 247–253. J. Bernoulli, Ars Conjectandi, Thurnisiorum, Basel, 1713. Bernoulli polynomials, entry in: . G.S. Cheon, A note on the Bernoulli and Euler polynomials, Appl. Math. Lett. 16 (3) (2003) 365–368. W.Y.C. Chen, L.H. Sun, Extended Zeilberger’s algorithm for identities on Bernoulli and Euler polynomials, J. Number Theory 129 (9) (2009) 2111–2132. W. Chu, R. Zhou, Convolutions of Bernoulli and Euler polynomials, Sarajevo J. Math. 6 (18) (2010) 147–163. W. Chu, P. Magli, Summation formulae on reciprocal sequences, Eur. J. Comb. 28 (3) (2007) 921–930. W. Chu, C.Y. Wang, Arithmetic identities involving Bernoulli and Euler numbers, Results Math. 55 (1–2) (2009) 65–77. W. Chu, C.Y. Wang, Convolution formulae for Bernoulli numbers, Integral Transforms Spec. Funct. 21 (6) (2010) 437–457. L. Comtet, Advanced Combinatories, Reidel, Dordrecht, 1974. S.D. Conte, C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third ed., McGraw-Hill, 1981. F. Costabile, F. Dell’accio, M.I. Gualtieri, A new approach to Bernoulli Polynomials, available at: . W. WU Dane, Bernoulli numbers and sums of powers, Int. J. Math. Ed. Sci. Tech. 32 (3) (2001) 440–443. H.M. Edwards, Fermat last theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag Inc., New York, 1977. L. Euler, Institutiones calculi differentialis, in: Opera Omnia, in: G. Kowalewski (Ed.), Opera Mathematica, vol. 10, Teubner, Stuttgart, 1980. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 1980. M.X. He, P.E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math. 139 (2002) 231–237. S. Hu, D. Kim, M.-S. Kim, New identities involving Bernoulli, Euler and Genocchi numbers, Adv. Difference Equ. 2013 (2013) 74. L.-C. Jang, T. Kim, D.-H. Lee, D.-W. Park, An application of polylogarithms in the analogs of Genocchi numbers, Notes Number Theory Discrete Math. 7 (3) (2001) 65–70. M. Kaneko, A recurrence formula for the Bernoulli numbers, Proc. Japan Acad. Ser. A Math. Sci. 71 (8) (1995) 192–193. J.Y. Kang, Symmetric properties of Genocchi polynomials with weak weight a, Appl. Math. Sci. 7 (18) (2013) 875–881. T. Kim, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. 20 (1) (2010) 23–28. T. Kim, S.-H. Rim, D.V. Dolgy, S-H. Lee, Some identities of Genocchi polynomials arising from Genocchi basis, Inequal. Appl. 2013 (2013) 43. D. Kincaid, W. Cheney, Numerical Analysis: Mathematics of Scientific Computing, third ed., American Mathematical Society, 2002. D.V. Kruchinin, V.V. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, J. Math. Anal. Appl. (2013), . H. Liu, W. Wang, Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math. 309 (2009) 3346–3363. C. Long, Pascal’s triangle, difference tables and arithmetic sequences or order N, College Math. J. 15 (1984) 290–298. Q-M. Luo, Extensions of the Genocchi polynomials and their fourier expansions and integral representations, Osaka J. Math. 48 (2011) 291–330. C.-Y. Ma, S.-L. Yang, Pascal type matrices and Bernoulli numbers, Int. J. Pure Appl. Math. 58 (3) (2010) 249–254. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, third ed., Springer-Verlag, New York, Inc., New York, 1966. Maple programming guide, . S. Ramanujan, Some properties of Bernoulli’s numbers, J. Indian Math. Soc. (N.S.) 3 (1911) 219–234. S.-H. Rim, K.-H. Park, E.-J. Moon, On Genocchi numbers and polynomials, Abstr. Appl. Anal., vol. 2008, pp. 7. (Article ID 898471)http://dx.doi.org/ 10.1155/2008/898471. K.H. Rosen, Handbook of discrete and combinatorial mathematics, CRC Press, Boca Raton, FL, 2000. C.S. Ryoo, Calculating zeros of the twisted Genocchi polynomials, Adv. Stud. Contemp. Math. 17 (2) (2008) 147–159. C.S. Ryoo, On the structure of the zeroes of (h,q)-Genocchi polynomials, Int. J. Pure Appl. Math. 78 (2) (2012) 263–271. P.Sebah, X. Gourdon, Introduction on Bernoulli numbers, available at: numbers.computation.free.fr/Constants/constants.html+ H.M. Srivastava, A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (4) (2004) 375–380. K.-J. Wu, Z.-W. Sun, H. Pan, Some identities for Bernoulli and Euler polynomials, Fibonacci Quat. 42 (2004) 295–299.

M. El-Mikkawy, F. Atlan / Applied Mathematics and Computation 220 (2013) 518–535

535

[42] B. Sury, Bernoulli numbers and the Riemann Zeta function, Resonance, July 2003, available at: www.ias.ac.in/resonance/July2003/July2003p5462.htm+. [43] H.S. Wilf, Generatingfunctionology, A K Peters 1994, second/ third ed., Second edition available from . [44] A. Zkiri, F. Bencherif, A new recursion relationship for Bernoulli numbers, Ann. Math. Inf. 38 (2011) 123–126.