APPENDIX A
Derivation of shape derivative for the nanoelasticity problem Firstly, the total potential energy objective function is considered. The objective function and its constraints are as follows, Minimize
J () =
u.b d +
u.t d N
subject to: a(u, δ u, ) + as (u, δ u, ) = −ls (u, ) + l(u, ) (i.e.)
(δ u) : Cbulk : (u) d +
(P(δ u)P) : τ s d+ s (P(δ u)P) : C : (P(u)P) d = u.b d + u.t d.
N
a˙ (u, w, ) + a˙ s (u, w, ) + ˙ls (w, )
=
(u ) : Cbulk : (w)d + (u) : Cbulk : (w )d +
(u) : Cbulk : (w)Vn d + P(w )P : τ s d + (∇s (P(w)P : τ s ) · n
+ κ(P(w)P : τ s ))Vn d + (P(u )P) : Cs : (P(w)P)d+ (P(u)P) : Cs : (P(w )P)d+ (∇s (P(u)P) : Cs : P(w)P) · n Vn d+
(A.1)
Extended Finite Element and Meshfree Methods Copyright © 2020 Elsevier Inc. https://doi.org/10.1016/B978-0-12-814106-9.00019-X All rights reserved.
601
602
Extended Finite Element and Meshfree Methods
(P(u)P) : Cs : ∇s (P(w)P)) · n Vn d+
κ(P(u)P : Cs : P(w)P) Vn d,
˙l(w, ) =
w .td
N
(A.2)
(∇(w.t).n + κ w.t) Vn d
N
u .b d +
w.b Vn d +
+
J˙ =
w .bd +
u . b Vn d +
(∇(u.t).n + κ u.t) Vn d.
(A.3)
N
The Lagrangian of the objective functional is, L = J + l(w, ) − a(u, w, ) − as (u, w, ) − ls (w, ).
(A.4)
The material derivative of the Lagrangian is defined as, L˙ = J˙ + ˙l(w, ) − a˙ (u, w, ) − a˙ s (u, w, ) − ˙ls (w, ).
(A.5)
All the terms that contain w in the material derivative of Lagrangian are collected and the sum of these terms is set to zero, to get the weak form of the state equation,
w .b d +
w .t d =
N
+
(u) : Cbulk : (w ) d
P(w )P : τ s d
+
(P(u)P : Cs : P(w )P)
(A.6)