Dielectric relaxation spectra for N,N-Dimethylacetamide-water mixures using picosecond time domain reflectometry

Dielectric relaxation spectra for N,N-Dimethylacetamide-water mixures using picosecond time domain reflectometry

JournorQfM_ LiqUidq60(19D1)143-163 Pubhhem B-V, Ammhdam Elssvisr Sci- DIELECTRIC WATER RELAXATION MIXUFES SPECTRA FOR PICOSECOND USINQ TIME...

439KB Sizes 0 Downloads 31 Views

JournorQfM_

LiqUidq60(19D1)143-163 Pubhhem B-V, Ammhdam

Elssvisr Sci-

DIELECTRIC

WATER

RELAXATION

MIXUFES

SPECTRA

FOR

PICOSECOND

USINQ

TIME

S,M,Puranik,A_C,Kumbharkhane

and

DOMAIN

REFLECTOMETRY

S.C.Mehrotra

Departm=nt,Marathwada

Physic6

N,N-DIHETHYLACETAtlIDE-

Univet-mity

Aurangabad,431004

(India) (Received

21

February

1991)

ABSTRACT Using study

has

mixtures The

of

aqueous

obtained system6

be

properties

Thermodynamic are

al60 a6

propErtie the

function

di6apperancW

monomers

by

Of

addition

of

values

of

water

or

trimers

in

DMA.

been

in

these

model.

of

The of

l2KCe56

and

at

have

:

behaviour

concentration

dimers

( ZJ

Davidson-Cole

The! Of

conAnt

relaxation

Arrhenius

and

reported.

A

time The

the

fDMCI)-

dielectric

1,

relaxaion

by

different

N,N-Dimethylacetamide

tcmperature-

described

thirteen

the

(&

and

1

various

can

of

dielectric

technique

in

constant

( G'm

at

out

solutions

dielectric

frequency

system

reflectometry

carried

been

static

high

domain

time

the

dielectric

water

suggest

leaving

behind

INTRODUCTION relaxation

Dielectric binary polar about Of

mixtureu,like liquids eelf mol'ecular

0x7-7322/91/#3~

studies polar

in

polar

different

in

nonpolar

liquid6,provide solute-solute

association, association

81f.m

liquids

of

C

-

l-45

Ehvier

II.

S&noe

U6PfUl and The

type6

of

liquids,or information

solute-solvent

type

N,N-Dimethylacetamide

Publinh

B-V.

All rights msmved

144 (DMA)

and

is

an

specifically

Weighan

CF3J

water

have

studies

in

sOme

aliphatic

temperature The

by objective

solution

of

various

frequency

of by

DMA

the

to

DMA

a

and

pure

of

Die?lectric

[9-111

and

reported

at

DMCl room

technique.

work

time

DMA

been

domain

present

using

temperature

pure

from

using

of

have

and

C71

proper-tie6 region.

solutions Cl21

strongly

et-al

dielectric

microwave

aqueous

alcohols

interact6

Barthel

the

reported

of

It

class.

molecules.

N,N-Dimethylacetamide

relaxation

3t

solvent

with

et-al

PUI-o

in

interesting

i6

domain

to

study

the

aqueous

reflectometry

different .

method

concentration

ranging

water.

EXPERIMENTAL

N,N-Dimethylacetamide without

was

obtained

purification,whereas

water

commercially wan

used

and

used double

after

distillation. measurements

Dielectric domain

reflectometry

Sampling

were

outer

diameter

window

chosen In

our

picosecond

the

the

and for

experiment,a

sample

LRl(t)J

and

points

and

time

is

SMA

pin

sample

a

in

The

the

been

cell 1.35

time

7834

used. with

The

3.5

mm time

The

mm.

reflected been

with

voltage

tunnel

shapes

o5cillo5cope

of

ne.

coaxial

have

use

Tektronix

has

step

by

Pulse

CR,(t)]

5

rising

through study.

unit

length

the

The

coaxial

~a5

generated

oscilloscope.

stored

a

fast

under

with

TDR

experiment

propwated

sampling

with

by

Ci3.1.

7512

effective

the

performed

method

with

performed

rise

generator) with

(TDR)

o~cillo~3cope,

experiment

were

diode line are

(S-52

section

digitized memory.

pulse filled

monitored

pulse

25

without

by sample

with These

1024 two

146 W8i-EZ

pulisPs

oscilloecope further

added

[q(t)3

memory

and

numerLca1

Colez

transfer-d

analysed

by

Cl41

using

in

a

1 inemr

range

lIp(

computer

similar

thw

in

via

to

at

GPIB

fOl-

DMC\

10

and

a3

described

by give

method,whlch

110

to

dielectric

the

manner

calibration

MHz

10

corresponding

calibrating

the

C3,15,161

frequency

spectra

to

Bilinear

permittivity

complex

subtracted

calculations.

were

Data

and

frequencieu GHz,

water

spectra

the

in

The

dielectric used

have

been

of

other

for

dqUECOU6

solutions.

RE!3Ul_TS

AND

The

been non

DISCUSSION

frequency

dependent

fitted linear

by

squares

parameters conktant

relaxation

time

distribution

parameter-8

paremeterrr

earlier From

work

B

The

water

the

are

and

Table in

(GO

1.

Cm

),65inglo

the

Davidson

The

dielectric

I.. The

dielectric

systems-

in

2S°C

the

be

can

aqueous the

of

mixture

static

DMA-water

at

ss61ren

good

agreement

that

tha

by

described

model of

the

be

6olutions

Debye

dependence time

in

DMA

the

from

relaxation of

pure

=l)_whor~la~

model.

for

l,3_lt can

Table

in

deviation

at

(

picosecond

summerirsd

DMCI

constant

with

L-73.

ther

relaxation

are

pure

of

( /3 )

the

determine

frequency

in

has

C177,using

to

die&tric

high

(7;)

cl81

)

( E>bI

equation

method

static

at

obtained

parameters

fit

viz,

dielectric

permittivity

Davidson-Cole

the

least

dielectric

complex

different

of

DHA

towards

the

dielectric modelcds

Debye

follow

dielectric

temparaturea

slightly

Cole-Davidson

the

mixtures,,as

0.

constant the

and

percentage

is

shown

in

146 Table

l.Temperaturs

Dielectric

dependent

N,N-Dimethylacetamide-WAter

Parameters

mixtures.*

----_---_--_-_~-__-------------__-~_--__-__-------~---~--___ TCPSI TempfC E, Eco _~~__---___--_--_--_-~--------__-~~--_____~__~-__--__--_---

5 15 25 40

44.54C7) 42.89(S) 39.37(9) 33.68(3)

6.20(61 3.91(51 4.06(9) 4.02(Z) 95%

3

13 23 40

48.97(2) 47.12(9) 43.53(4) 36.77(5)

5 15 25 40

s1.35(21) 48.89(3) 46.37(4) 40.20(4)

5 15 25 40

57.14(91 56.34(l) 52.49(7) 44.64(12)

5 13 23 40

64.39(9) 63.16(18) SEi.54(10) 49.35(19)

5

15 2!3 40

[email protected](9) 67.89(69) 64.cJ4(11) 54.96(25)

5 1s 23 40

73.06(9) 73.OO(I.B) 6,8.15(14) 59.04(271

0.996(l) O-984(7) 0.978(Z) 1.000(5)

63.5(12) 50.2(l) 35.0(l) 30.6(3)

0.917(9) 0.998(l) O-995(2) O-965(41

lOO.6(4) 72.6(4) 51.0(2) 40.5(5)

0.969(Z) l.OOO(4) 1.000[2) 0.953(7)

117.4(4) 94.3(7) 57.8(3) 49.4(9)

0.989(2) 0.969(S) 0.975(3) 1.000(10)

125.4(4) 82.3(17) 51.7(2) 40.4(9)

0.994(Z) l.CJOO(lI l.cJOO(3) l.OOO(l~

106.@(5) 69.546) 39.7(S) 38.3(9)

0.963(2) l.n00(8) O-989(4) l.OOO(lt)

DMA

6.47(6) 4.57(37) 3.50(B) 4.00(l) 50%

43.711) 37.6(6) 28.3(l) 24.9(2)

DMA

4.53(&I 6.22(12) 4.99(B) 3.42(17) 60%

l.cJOO(9) l.cJOO(9) l.CJOCJ(lI l.OcJO(1)

DMA

4.15(6) 4.20(l) S.69[5) 3.83[10) 70%

35.5f4) 27.3(Z) 17.9(3) 12.9(S)

DMA

4.82(16) 4.CJO(2) S.OC(3) 4.96(4) 80%

B

DMA

3.14I2) 4.i6I5) 6.16lI3) 4.26(4) 90%

for

wtA

6.76[7) 3.49(2) 3.80(13) 4.18(27)

147 40% 5 15 23 40

77,30(10) 74_94(1@) 7l.f1(30) 61-62(lL)

4.46(7) 5.38(E) 5,47(26) 4,00(l) 30%

5 15 25 40

20% 79.73(33 76.90(10) 75.26,(21) 65.36(l)

4.00(3) 4s96,(9) 5.55(19) 4.09(l)

3% 3

0.995(l) 0_996(J_) O-991(8) O-930(5)

38.1(l) 32.0(3) 18.8(41 16.4(3)

1.000(l) 0.985(4) O-961(1) O-942(6)

30s4(6) 20.2(Z) 12.5(5) ll.?(4)

O-848(7) l.OOO(5) l.CJOO(l) 0-90Etl3)

19-2(Z) 12.5(8) 12-i(5) 10.0(6)

O-954(4) 0.944(l) l.OOC~~l) l-000(l)

DNA

4.29(6) 9.36(241 5,09(23) 4.36(6)

82,78(6) 81s89[30) 77-OO(22) 67,37(6)

19 23 40

60-6(2) 43,0(l) 24.8(4) 22-l(3)

DMFI

5.13(12) 4,01(S) 5.02(23) 4.17(8)

aa-00(l) 79,98(B) 76.85(23) &7.3&(8)

O-959(2) O-992(3) Q-997(1) l.OOO(l.)

DMA

10% 5 13 as 40

86-Q(3) S6-8(3) 32,9(6) 27-l(4)

DMC3

6.93(4) 4,36(4) 9.04(18) 4,50(5)

79.23(5) 75,46(S) 73s63(26) 63-29(6)

5 13 23 40

DMA

W&TER 1.000~1) 1.000(l) 1,000(f) l.OOO(2)

6,20(S) 12_9(29) 3 85.00(50) 83.43(70) S-06(10) 9.3(X7) 15 79.50(90) 5-ll(60) e.sca, 25 5,00(10) #S-9(9) 40 7O_SU(20) _-_-__-----_________________________________-_--------_----------_

Fig-it(a) dielectric

and

convstant

the

relaxation

and

then

watear-

l(b),

time

aulfoxfde-water

increases

From

I towards

the

water

Fig_l,the A=

DMA-water

to

converge

towards

behaviour

was

alr;;o reported

El.91

mixtures,

DMA

molecules

interact

time

relaxation

can

but

increases

first

solutions

static

expected;

of

decreaSeS Similar

relSpective1y

in

of

Dimethylstrongly

148 90-

(0)

c

Km

90

70

!a

30

10

0

-A DMA

o!

100

.

.

Figure VB.

.

90

m

.

70

1,

(a)

volume

.

.

.

30

Static

(0

with

bonding,viscobity

[20],al~10

play

molecular

to

seem5 are

The

from

and role

the

obviously,

ihe!se

likely

in

the

self

association

that

hydrogen

mixtures

Eq.CZlJ

at

parametpr6 Tar

thi6

and

Is DMA

generally molecules in

Bolutc9-solvent

effects

water have

system

It

DMA-H$-DMA

the

interac-

pure

DMA-

It

complexes

contentalso

and

of

the time

reduction

the

bonded

low

tu

corrf3lation

water

mobility,

different

addition

mixture.

to

the

in

between

time,

( V,40°C.

rotational in

at

),2S°C;

molecules;

interaction

thermodynamic

Eyring

(+

contribution

bp

formed

)P150C;

Relaxation

:dater

in

important

exceed

tions

constant,(b) DMA

water

important

that,the an

of (e

hydrogen

make6

.

dielectric

JFSoC;

specifically

accepted

.

10

percenkaget

temperatures

and

.

50

been

eummerized

determined in

Table

2

149 Table

2,Activation

energies

mixture

at

(Atic

different

)

N,N-Dimethyl

of

acetamide--water

concentration.

___--_-------_-----_-~~~~ % DMA

fiHf

__-~--_------__-------~~~

Imo)

r3

18,9(16,

1cm

95

9.6(16)

90

13-O(24)

80

16.3(20)

70

16.5(32)

60

21.4(20)

50

19.3i56)

40

22.2<40)

30

19_3(44)

20

16_3(36)

10

18.0(48)

5

9.6(32)

0

V-6(20)

* Number a5

in

obtained

0,07,63.

The

graph

aqueous

(

bracket6



=z

by

9(12)

of

denate

least mean=

square= 63.5

Arrhenius ia

system

uncertainties

f

shown

6?xcC!!45 permittivity

lE

can

determined

in

last e-g-

O-996(1)

(LogC7Ivs

Fig.2 ( GE as

method-

and

1.2

behaviour

TI-W

be

fit

in

digits

significant 44,34(7)

means

1000/T)

0.946

far

means j~O.001.

the?

. )

follows

and

IZXCPSB 122,231

relasation

time

44-342

XW

Figure

2.

behaviour

‘apt-e

Plot for

I&.,

,

and

Euw

0P

plots

-11.2

of

7-. 3.15.

DMCI

excepts

325

.

of

)

1000/T

VB

at

the

are

watfst-.

times

1

mixture

COD

and

relaxtion

Log(

DMA-water

mixture,water fract3_on

of

static

XW

mixture,water

permittivity

and and

3kS

Arrhenius

concentration,

dielectric

Ai,),

Ii-9

the

different

respectively,

( +

. 335

shows

constant

represent6

weight

and

( %

DMA

r83spectively,

exce6s

ID

relaxation

of

are

time

the The v5

the

155

1000/T

3.

Figure WdinSt (

0

ia) mole

)$CJ

Excess

permittivity

percentage (0

)e15aC;

of (+

DMFI

)*2?.i°C;

(b) at

Excess

different (‘I

)r400C.

relaxation temperatures

time

161 of

concentration of

water

in

DMA

DMA

are

in ehown

at

different

temperature.

613%

DMA-water

mixture.

16

different

from

The

L13.241.

addition

of

forms

leading

than be

the

trimer

the

behind

the

moment

excess

mhow

alcohol

the

hydrogen

total

permittivity

positive

excess

disappearence

leading

and

C233

monomer

forms,preferably

or

at

permittivity

t-butyl

of

monomer

structure

dipole

macroscopic

the

appear

correlation

new

The

either

new

of

creation

in

maxima

properties

generate

with

forms,leaving

of

mixture

fraction

weight

Z(b),respectively,

of

behaviour

decrease-

associated

and

dipole-dipole

increase

the

position

dielectric

will

expected

or

Figs.3(a)

aqueou=

to

to

in

This

excess

water

mixturee

The

the

contribution

bond

the

rather can

therefore

of

dimer

or the

alternatively

to

more

eTfective8

[233.

CONCtIJSION The

dilectric

mixtures

have

timsa

domain

and

other

relaxation

been

determined

reflectometry

at (TDR).

dielectric

properties

parameters

fOJ-

various

temperature

Thm

Thermodynamic

are

also

aqueoL~a

DMCS by

the

properties

determined

in

the

paper.

CICKNOWLEDGEMENTS WI?

are

thankful

Dr.P.B.Patil SpelZial supply

and thanks

of

system,

We

Dutt,T,I,F.R-,Bombay, of

Science

acknowledgad.

and

Prof.V.V.Itagi

G.S.Raju to

DMA

to

and

for

for

di-cussion

encourwgment and

and

suggestions,

Dr.S.Doraiswamy,T.I.F_R.~Dombay,for many

useful

are

discussions

also Tha

Technology

thankful

financial (DST),New

the regarding to

support Delhi

from is

this

Q-Bhaskar Department thankfully

REFERENCES 1.

E.Tombari,G.Chry8=ikom,D.Gestblom 43

2.

(1989)

R.H.Cole,J.Mol.Liq.

53.

J.P.Perl,D.T.Wasan,P.Winz.or (1984)

3 _

and

and

IV

R.H.Cole,J.Mol.Liq.

28

103.

S.Mashimo,T.UmeharA,T.Ot~=S.Kuw~b~ra,N.Shinyashiki S.Yagihara,

J.Mol.Liq.

4.

K.Higa5i

,

5.

S.S.Krishnamurthy

36

(1987)

Bull.Chem.Soc.Jpn and

and

135.

(Japan)

39

S.Soundara.jwn,

(1966)

2157.

J.Phy.Chem.

73(1969)

4036. 5.

J.S.Dhull,D.R.Sharma, Indian

7.

D-S-Gill

J.Phys.Part

C

56

and

(19S21

K.N.Lakshminrayana,

334.

J.Earthel,K.Eachhuber,R.Fuchher,J.B,Gill Chemical

Physics

Lett.

8.

R.M.Meighan

and

9.

M.Stockhausen,H.Utzel

67

R-H-Cole,

amd

(1990)

62.

J.PhsChem. and

M.Kleebaur,

68

(1964)

503.

E.Seftr,Z.Phye.Chen.

133

(1982)

69. 10.

E.S.Verstakov,P.S.Yastr~mskii~Yu.M.K~~=l~r,V.V.Gon~harov and

11.

V.V.Kokovin,

Zh.Strukt.Khim.

M.Storkhau=en (1985)

13.

and

(1980)

636. and

20

U-at-ked,

(1979)

Yu.M.

939.

J.Chem.Soc.Faraday

Trans.1

81

397.

A.C.Kumbharkhane,S.M.Puranik Soc.Faraday

14.

21

E.S.Verstakov,V.V.Goncharov,P.S.Yastremskii Kessler,

12.

J.Struct.Chem.

Trane(accepted

and for

S.C.Mehrotra,

J.Chem.

publication3

R.H.Cole,J.Q.Berheri~n?S.Ma~himo~G.Chrys~ikom~~.Eurn~~ and

E.Tombari,

13.

R.H.Cole,IEEE

16.

S.Mashimo, Phys.

90

J.Appl.Phys. Tran6.Instrum.tiana. S.Kuwabara,S.Yagihara

(1989)

3292.

66

(1989)

793.

IM-32137 and

(1983)

K.Higasi,

42. J .Chem.

163 17,

D-W-Davidson

18,

P_R.Bevington, Physical

19.

and

R.H.Cole, Data

J.Chem.Phys.

Reduction Mc_Btaw

Science-

U.Kaatze,R.Pottel

and

and

Hill

19

Error

Book

M-Schafer,

(i951)

1484.

Analysis

Co.;New

for

York

J_Phys.Chem.

the

(1969). 93

(1989)

5623. T)O.

E.C.Qordalla,M-D.Zedler,

21.

H.Eyring,

iz.

J.P.Hased,

Mol.Phys..

J_Chem.PhysAqueous

4

II9361

Dielectric

59

(198~~

817.

283. Chapman

and

Hall,

London

(197JI* 23.

CI.Luzar,

24,

M.Tabellout,P.Lanceleur,J.R.EmEry,D,Hayward Pethrick,

25.

J.Mol,l_iq.

46

(1990)

J.Chem,Soc.Faraday

211and Trans-

Sot-

64

(1968)

(1990) and

M.J.blandamer,D.E,Clarke,N.J-H-dden Trane-Faraday

86

2c392-

R-A-

1493.

M-C.R.Symon,