JournorQfM_
LiqUidq60(19D1)143-163 Pubhhem B-V, Ammhdam
Elssvisr Sci-
DIELECTRIC
WATER
RELAXATION
MIXUFES
SPECTRA
FOR
PICOSECOND
USINQ
TIME
S,M,Puranik,A_C,Kumbharkhane
and
DOMAIN
REFLECTOMETRY
S.C.Mehrotra
Departm=nt,Marathwada
Physic6
N,N-DIHETHYLACETAtlIDE-
Univet-mity
Aurangabad,431004
(India) (Received
21
February
1991)
ABSTRACT Using study
has
mixtures The
of
aqueous
obtained system6
be
properties
Thermodynamic are
al60 a6
propErtie the
function
di6apperancW
monomers
by
Of
addition
of
values
of
water
or
trimers
in
DMA.
been
in
these
model.
of
The of
l2KCe56
and
at
have
:
behaviour
concentration
dimers
( ZJ
Davidson-Cole
The! Of
conAnt
relaxation
Arrhenius
and
reported.
A
time The
the
fDMCI)-
dielectric
1,
relaxaion
by
different
N,N-Dimethylacetamide
tcmperature-
described
thirteen
the
(&
and
1
various
can
of
dielectric
technique
in
constant
( G'm
at
out
solutions
dielectric
frequency
system
reflectometry
carried
been
static
high
domain
time
the
dielectric
water
suggest
leaving
behind
INTRODUCTION relaxation
Dielectric binary polar about Of
mixtureu,like liquids eelf mol'ecular
0x7-7322/91/#3~
studies polar
in
polar
different
in
nonpolar
liquid6,provide solute-solute
association, association
81f.m
liquids
of
C
-
l-45
Ehvier
II.
S&noe
U6PfUl and The
type6
of
liquids,or information
solute-solvent
type
N,N-Dimethylacetamide
Publinh
B-V.
All rights msmved
144 (DMA)
and
is
an
specifically
Weighan
CF3J
water
have
studies
in
sOme
aliphatic
temperature The
by objective
solution
of
various
frequency
of by
DMA
the
to
DMA
a
and
pure
of
Die?lectric
[9-111
and
reported
at
DMCl room
technique.
work
time
DMA
been
domain
present
using
temperature
pure
from
using
of
have
and
C71
proper-tie6 region.
solutions Cl21
strongly
et-al
dielectric
microwave
aqueous
alcohols
interact6
Barthel
the
reported
of
It
class.
molecules.
N,N-Dimethylacetamide
relaxation
3t
solvent
with
et-al
PUI-o
in
interesting
i6
domain
to
study
the
aqueous
reflectometry
different .
method
concentration
ranging
water.
EXPERIMENTAL
N,N-Dimethylacetamide without
was
obtained
purification,whereas
water
commercially wan
used
and
used double
after
distillation. measurements
Dielectric domain
reflectometry
Sampling
were
outer
diameter
window
chosen In
our
picosecond
the
the
and for
experiment,a
sample
LRl(t)J
and
points
and
time
is
SMA
pin
sample
a
in
The
the
been
cell 1.35
time
7834
used. with
The
3.5
mm time
The
mm.
reflected been
with
voltage
tunnel
shapes
o5cillo5cope
of
ne.
coaxial
have
use
Tektronix
has
step
by
Pulse
CR,(t)]
5
rising
through study.
unit
length
the
The
coaxial
~a5
generated
oscilloscope.
stored
a
fast
under
with
TDR
experiment
propwated
sampling
with
by
Ci3.1.
7512
effective
the
performed
method
with
performed
rise
generator) with
(TDR)
o~cillo~3cope,
experiment
were
diode line are
(S-52
section
digitized memory.
pulse filled
monitored
pulse
25
without
by sample
with These
1024 two
146 W8i-EZ
pulisPs
oscilloecope further
added
[q(t)3
memory
and
numerLca1
Colez
transfer-d
analysed
by
Cl41
using
in
a
1 inemr
range
lIp(
computer
similar
thw
in
via
to
at
GPIB
fOl-
DMC\
10
and
a3
described
by give
method,whlch
110
to
dielectric
the
manner
calibration
MHz
10
corresponding
calibrating
the
C3,15,161
frequency
spectra
to
Bilinear
permittivity
complex
subtracted
calculations.
were
Data
and
frequencieu GHz,
water
spectra
the
in
The
dielectric used
have
been
of
other
for
dqUECOU6
solutions.
RE!3Ul_TS
AND
The
been non
DISCUSSION
frequency
dependent
fitted linear
by
squares
parameters conktant
relaxation
time
distribution
parameter-8
paremeterrr
earlier From
work
B
The
water
the
are
and
Table in
(GO
1.
Cm
),65inglo
the
Davidson
The
dielectric
I.. The
dielectric
systems-
in
2S°C
the
be
can
aqueous the
of
mixture
static
DMA-water
at
ss61ren
good
agreement
that
tha
by
described
model of
the
be
6olutions
Debye
dependence time
in
DMA
the
from
relaxation of
pure
=l)_whor~la~
model.
for
l,3_lt can
Table
in
deviation
at
(
picosecond
summerirsd
DMCI
constant
with
L-73.
ther
relaxation
are
pure
of
( /3 )
the
determine
frequency
in
has
C177,using
to
die&tric
high
(7;)
cl81
)
( E>bI
equation
method
static
at
obtained
parameters
fit
viz,
dielectric
permittivity
Davidson-Cole
the
least
dielectric
complex
different
of
DHA
towards
the
dielectric modelcds
Debye
follow
dielectric
temparaturea
slightly
Cole-Davidson
the
mixtures,,as
0.
constant the
and
percentage
is
shown
in
146 Table
l.Temperaturs
Dielectric
dependent
N,N-Dimethylacetamide-WAter
Parameters
mixtures.*
----_---_--_-_~-__-------------__-~_--__-__-------~---~--___ TCPSI TempfC E, Eco _~~__---___--_--_--_-~--------__-~~--_____~__~-__--__--_---
5 15 25 40
44.54C7) 42.89(S) 39.37(9) 33.68(3)
6.20(61 3.91(51 4.06(9) 4.02(Z) 95%
3
13 23 40
48.97(2) 47.12(9) 43.53(4) 36.77(5)
5 15 25 40
s1.35(21) 48.89(3) 46.37(4) 40.20(4)
5 15 25 40
57.14(91 56.34(l) 52.49(7) 44.64(12)
5 13 23 40
64.39(9) 63.16(18) SEi.54(10) 49.35(19)
5
15 2!3 40
[email protected](9) 67.89(69) 64.cJ4(11) 54.96(25)
5 1s 23 40
73.06(9) 73.OO(I.B) 6,8.15(14) 59.04(271
0.996(l) O-984(7) 0.978(Z) 1.000(5)
63.5(12) 50.2(l) 35.0(l) 30.6(3)
0.917(9) 0.998(l) O-995(2) O-965(41
lOO.6(4) 72.6(4) 51.0(2) 40.5(5)
0.969(Z) l.OOO(4) 1.000[2) 0.953(7)
117.4(4) 94.3(7) 57.8(3) 49.4(9)
0.989(2) 0.969(S) 0.975(3) 1.000(10)
125.4(4) 82.3(17) 51.7(2) 40.4(9)
0.994(Z) l.CJOO(lI l.cJOO(3) l.OOO(l~
106.@(5) 69.546) 39.7(S) 38.3(9)
0.963(2) l.n00(8) O-989(4) l.OOO(lt)
DMA
6.47(6) 4.57(37) 3.50(B) 4.00(l) 50%
43.711) 37.6(6) 28.3(l) 24.9(2)
DMA
4.53(&I 6.22(12) 4.99(B) 3.42(17) 60%
l.cJOO(9) l.cJOO(9) l.CJOCJ(lI l.OcJO(1)
DMA
4.15(6) 4.20(l) S.69[5) 3.83[10) 70%
35.5f4) 27.3(Z) 17.9(3) 12.9(S)
DMA
4.82(16) 4.CJO(2) S.OC(3) 4.96(4) 80%
B
DMA
3.14I2) 4.i6I5) 6.16lI3) 4.26(4) 90%
for
wtA
6.76[7) 3.49(2) 3.80(13) 4.18(27)
147 40% 5 15 23 40
77,30(10) 74_94(1@) 7l.f1(30) 61-62(lL)
4.46(7) 5.38(E) 5,47(26) 4,00(l) 30%
5 15 25 40
20% 79.73(33 76.90(10) 75.26,(21) 65.36(l)
4.00(3) 4s96,(9) 5.55(19) 4.09(l)
3% 3
0.995(l) 0_996(J_) O-991(8) O-930(5)
38.1(l) 32.0(3) 18.8(41 16.4(3)
1.000(l) 0.985(4) O-961(1) O-942(6)
30s4(6) 20.2(Z) 12.5(5) ll.?(4)
O-848(7) l.OOO(5) l.CJOO(l) 0-90Etl3)
19-2(Z) 12.5(8) 12-i(5) 10.0(6)
O-954(4) 0.944(l) l.OOC~~l) l-000(l)
DNA
4.29(6) 9.36(241 5,09(23) 4.36(6)
82,78(6) 81s89[30) 77-OO(22) 67,37(6)
19 23 40
60-6(2) 43,0(l) 24.8(4) 22-l(3)
DMFI
5.13(12) 4,01(S) 5.02(23) 4.17(8)
aa-00(l) 79,98(B) 76.85(23) &7.3&(8)
O-959(2) O-992(3) Q-997(1) l.OOO(l.)
DMA
10% 5 13 as 40
86-Q(3) S6-8(3) 32,9(6) 27-l(4)
DMC3
6.93(4) 4,36(4) 9.04(18) 4,50(5)
79.23(5) 75,46(S) 73s63(26) 63-29(6)
5 13 23 40
DMA
W&TER 1.000~1) 1.000(l) 1,000(f) l.OOO(2)
6,20(S) 12_9(29) 3 85.00(50) 83.43(70) S-06(10) 9.3(X7) 15 79.50(90) 5-ll(60) e.sca, 25 5,00(10) #S-9(9) 40 7O_SU(20) _-_-__-----_________________________________-_--------_----------_
Fig-it(a) dielectric
and
convstant
the
relaxation
and
then
watear-
l(b),
time
aulfoxfde-water
increases
From
I towards
the
water
Fig_l,the A=
DMA-water
to
converge
towards
behaviour
was
alr;;o reported
El.91
mixtures,
DMA
molecules
interact
time
relaxation
can
but
increases
first
solutions
static
expected;
of
decreaSeS Similar
relSpective1y
in
of
Dimethylstrongly
148 90-
(0)
c
Km
90
70
!a
30
10
0
-A DMA
o!
100
.
.
Figure VB.
.
90
m
.
70
1,
(a)
volume
.
.
.
30
Static
(0
with
bonding,viscobity
[20],al~10
play
molecular
to
seem5 are
The
from
and role
the
obviously,
ihe!se
likely
in
the
self
association
that
hydrogen
mixtures
Eq.CZlJ
at
parametpr6 Tar
thi6
and
Is DMA
generally molecules in
Bolutc9-solvent
effects
water have
system
It
DMA-H$-DMA
the
interac-
pure
DMA-
It
complexes
contentalso
and
of
the time
reduction
the
bonded
low
tu
corrf3lation
water
mobility,
different
addition
mixture.
to
the
in
between
time,
( V,40°C.
rotational in
at
),2S°C;
molecules;
interaction
thermodynamic
Eyring
(+
contribution
bp
formed
)P150C;
Relaxation
:dater
in
important
exceed
tions
constant,(b) DMA
water
important
that,the an
of (e
hydrogen
make6
.
dielectric
JFSoC;
specifically
accepted
.
10
percenkaget
temperatures
and
.
50
been
eummerized
determined in
Table
2
149 Table
2,Activation
energies
mixture
at
(Atic
different
)
N,N-Dimethyl
of
acetamide--water
concentration.
___--_-------_-----_-~~~~ % DMA
fiHf
__-~--_------__-------~~~
Imo)
r3
18,9(16,
1cm
95
9.6(16)
90
13-O(24)
80
16.3(20)
70
16.5(32)
60
21.4(20)
50
19.3i56)
40
22.2<40)
30
19_3(44)
20
16_3(36)
10
18.0(48)
5
9.6(32)
0
V-6(20)
* Number a5
in
obtained
0,07,63.
The
graph
aqueous
(
bracket6
’
=z
by
9(12)
of
denate
least mean=
square= 63.5
Arrhenius ia
system
uncertainties
f
shown
6?xcC!!45 permittivity
lE
can
determined
in
last e-g-
O-996(1)
(LogC7Ivs
Fig.2 ( GE as
method-
and
1.2
behaviour
TI-W
be
fit
in
digits
significant 44,34(7)
means
1000/T)
0.946
far
means j~O.001.
the?
. )
follows
and
IZXCPSB 122,231
relasation
time
44-342
XW
Figure
2.
behaviour
‘apt-e
Plot for
I&.,
,
and
Euw
0P
plots
-11.2
of
7-. 3.15.
DMCI
excepts
325
.
of
)
1000/T
VB
at
the
are
watfst-.
times
1
mixture
COD
and
relaxtion
Log(
DMA-water
mixture,water fract3_on
of
static
XW
mixture,water
permittivity
and and
3kS
Arrhenius
concentration,
dielectric
Ai,),
Ii-9
the
different
respectively,
( +
. 335
shows
constant
represent6
weight
and
( %
DMA
r83spectively,
exce6s
ID
relaxation
of
are
time
the The v5
the
155
1000/T
3.
Figure WdinSt (
0
ia) mole
)$CJ
Excess
permittivity
percentage (0
)e15aC;
of (+
DMFI
)*2?.i°C;
(b) at
Excess
different (‘I
)r400C.
relaxation temperatures
time
161 of
concentration of
water
in
DMA
DMA
are
in ehown
at
different
temperature.
613%
DMA-water
mixture.
16
different
from
The
L13.241.
addition
of
forms
leading
than be
the
trimer
the
behind
the
moment
excess
mhow
alcohol
the
hydrogen
total
permittivity
positive
excess
disappearence
leading
and
C233
monomer
forms,preferably
or
at
permittivity
t-butyl
of
monomer
structure
dipole
macroscopic
the
appear
correlation
new
The
either
new
of
creation
in
maxima
properties
generate
with
forms,leaving
of
mixture
fraction
weight
Z(b),respectively,
of
behaviour
decrease-
associated
and
dipole-dipole
increase
the
position
dielectric
will
expected
or
Figs.3(a)
aqueou=
to
to
in
This
excess
water
mixturee
The
the
contribution
bond
the
rather can
therefore
of
dimer
or the
alternatively
to
more
eTfective8
[233.
CONCtIJSION The
dilectric
mixtures
have
timsa
domain
and
other
relaxation
been
determined
reflectometry
at (TDR).
dielectric
properties
parameters
fOJ-
various
temperature
Thm
Thermodynamic
are
also
aqueoL~a
DMCS by
the
properties
determined
in
the
paper.
CICKNOWLEDGEMENTS WI?
are
thankful
Dr.P.B.Patil SpelZial supply
and thanks
of
system,
We
Dutt,T,I,F.R-,Bombay, of
Science
acknowledgad.
and
Prof.V.V.Itagi
G.S.Raju to
DMA
to
and
for
for
di-cussion
encourwgment and
and
suggestions,
Dr.S.Doraiswamy,T.I.F_R.~Dombay,for many
useful
are
discussions
also Tha
Technology
thankful
financial (DST),New
the regarding to
support Delhi
from is
this
Q-Bhaskar Department thankfully
REFERENCES 1.
E.Tombari,G.Chry8=ikom,D.Gestblom 43
2.
(1989)
R.H.Cole,J.Mol.Liq.
53.
J.P.Perl,D.T.Wasan,P.Winz.or (1984)
3 _
and
and
IV
R.H.Cole,J.Mol.Liq.
28
103.
S.Mashimo,T.UmeharA,T.Ot~=S.Kuw~b~ra,N.Shinyashiki S.Yagihara,
J.Mol.Liq.
4.
K.Higa5i
,
5.
S.S.Krishnamurthy
36
(1987)
Bull.Chem.Soc.Jpn and
and
135.
(Japan)
39
S.Soundara.jwn,
(1966)
2157.
J.Phy.Chem.
73(1969)
4036. 5.
J.S.Dhull,D.R.Sharma, Indian
7.
D-S-Gill
J.Phys.Part
C
56
and
(19S21
K.N.Lakshminrayana,
334.
J.Earthel,K.Eachhuber,R.Fuchher,J.B,Gill Chemical
Physics
Lett.
8.
R.M.Meighan
and
9.
M.Stockhausen,H.Utzel
67
R-H-Cole,
amd
(1990)
62.
J.PhsChem. and
M.Kleebaur,
68
(1964)
503.
E.Seftr,Z.Phye.Chen.
133
(1982)
69. 10.
E.S.Verstakov,P.S.Yastr~mskii~Yu.M.K~~=l~r,V.V.Gon~harov and
11.
V.V.Kokovin,
Zh.Strukt.Khim.
M.Storkhau=en (1985)
13.
and
(1980)
636. and
20
U-at-ked,
(1979)
Yu.M.
939.
J.Chem.Soc.Faraday
Trans.1
81
397.
A.C.Kumbharkhane,S.M.Puranik Soc.Faraday
14.
21
E.S.Verstakov,V.V.Goncharov,P.S.Yastremskii Kessler,
12.
J.Struct.Chem.
Trane(accepted
and for
S.C.Mehrotra,
J.Chem.
publication3
R.H.Cole,J.Q.Berheri~n?S.Ma~himo~G.Chrys~ikom~~.Eurn~~ and
E.Tombari,
13.
R.H.Cole,IEEE
16.
S.Mashimo, Phys.
90
J.Appl.Phys. Tran6.Instrum.tiana. S.Kuwabara,S.Yagihara
(1989)
3292.
66
(1989)
793.
IM-32137 and
(1983)
K.Higasi,
42. J .Chem.
163 17,
D-W-Davidson
18,
P_R.Bevington, Physical
19.
and
R.H.Cole, Data
J.Chem.Phys.
Reduction Mc_Btaw
Science-
U.Kaatze,R.Pottel
and
and
Hill
19
Error
Book
M-Schafer,
(i951)
1484.
Analysis
Co.;New
for
York
J_Phys.Chem.
the
(1969). 93
(1989)
5623. T)O.
E.C.Qordalla,M-D.Zedler,
21.
H.Eyring,
iz.
J.P.Hased,
Mol.Phys..
J_Chem.PhysAqueous
4
II9361
Dielectric
59
(198~~
817.
283. Chapman
and
Hall,
London
(197JI* 23.
CI.Luzar,
24,
M.Tabellout,P.Lanceleur,J.R.EmEry,D,Hayward Pethrick,
25.
J.Mol,l_iq.
46
(1990)
J.Chem,Soc.Faraday
211and Trans-
Sot-
64
(1968)
(1990) and
M.J.blandamer,D.E,Clarke,N.J-H-dden Trane-Faraday
86
2c392-
R-A-
1493.
M-C.R.Symon,