Dirac-Fock-Slater calculations for the elements Z = 100, fermium, to Z = 173

Dirac-Fock-Slater calculations for the elements Z = 100, fermium, to Z = 173

ATOMIC DATA AND NUCLEAR DATA TABLES 19, 83-95 (1977) DIRAC-FOCK-SLATER FOR THE ELEMENTS CALCULATIONS Z = 100, FERMIUM, TO Z = 173* B. FRIC...

1MB Sizes 3 Downloads 38 Views

ATOMIC

DATA AND

NUCLEAR

DATA

TABLES

19, 83-95 (1977)

DIRAC-FOCK-SLATER FOR

THE

ELEMENTS

CALCULATIONS

Z = 100, FERMIUM,

TO Z = 173*

B. FRICKE Theoretische

Physik, Gesamthochschule D35-Kassel, Germany

Kassel

and G. SOFF Institut

fur Theoretische D6-Frankfurt

Physik, Universitat am Main, Germany

Frankfurt

Listed here for the elements Z = 100, fermium, to Z = 173 are energy eigenvalues and total energies found from relativistic Dirac-Fock-Slater calculations. The effect of high ionization on the energy eigenvalues is presented for two examples. The use of these tables in connection with the energy levels of superheavy elements and molecular orbital (MO) x-ray transitions in superheavy quasiatoms, is discussed. In addition, a brief comparison between the results of the Dirac-Fock-Slater and Dirac-Fock calculations is given.

*Work supported by Gesellschaft fur Schwerionenforschung (GSI), Germany, the Bundesministerium fur Forschung und Technologie (BMFT)

Copyright 0 1977 by Academic Press, inc. All rights of reproduction in any form reserved.

83

Atomic

Data

and partially

and

Nuclear

Data

Tables,

(G.S.) by

Vol.

19,

No.

1, January

1977

B. FRICKE and G. SOFF

DFS Energy Eigenvalues 100 5 Z 2 173

CONTENTS

INTRODUCTION Atomic Physics of Superheavy Elements Method of Calculation Comments on the Results EXPLANATION

OF TABLES

TABLES I. Electron Occupation z = 173 II. Energy Eigenvalues III.

Numbers

for the Elements

Z = 100 to

and Total Energies, Z = 100 to Z = 173

Energy Eigenvalues for Z = 100 from DF and DFS Calculations and Binding Energies from Experiment

IV. Energy Eigenvalues for 2 = 139 and Z = 170 in Various States of Ionization

The discussion of the existence of elements near Z = 126 has been brought up again by recent experimental results.7 Also, new theoretical Hartree-Fock calculations8 indicate that stability around Z = 126 is more probable than at Z = 114.

INTRODUCTION

Within the last fifteen years several tables with the results of self-consistent-field (SCF) atomic calculations have been published. Such calculations can be nonrelativistic or relativistic and can make use either of Slater’s exchange approximation or exact exchange. Thus there are four major ways to perform the calculations. In the following we give for each of the four possible methods the best known reference, a short description of the listed results, and the elements covered.

Atomic Physics of Superheavy Elements

Two groups99 lo extended SCF atomic calculations to even higher elements mainly to get results for the ground-state configurations, the first ionization potentials, and the principal maxima and radii of the outerelectron wavefunctions. The data, together with extrapolations from the known elements, were used to get an idea of the chemical behavior’l of the superheavy elements up to Z = 172. A model calculation12 including quantum electrodynamical effects was used to go even to Z = 184. From an atomic-physics point of view, elements with very large proton numbers are especially interesting because many of the corrections, which have to be added to the SCF calculations, are known only in perturbation theory, where the expansion parameter is Za(a = l/137). These corrections take account of the quantum electrodynamical effects, vacuum polarization and vacuum fluctuation, and the so-called Breit interaction which includes magnetic effects and retardation. The accuracy of the experimental binding energies for elements like uranium and plutonium is now better than 1 eV.15 A theoretical calculation with such a small error must include the correlation energy as well as SCF effects of the contributions just mentioned. Comparisons between experiment and calculation of the binding energies of the innermost levels of fermium, which yield a

Nonrelativistic Hartree-Fock-Slater (HFS) calculations by F. Herman and S. Skillman’ with energy eigenvalues, potentials, wavefunctions, and relativistic corrections to the energy eigenvalues, for all elements up to Z = 103. Nonrelativistic Hartree-Fock (HF) calculations by J. B. Mann2 with energy eigenvalues, total energies, radii, two-electron integrals, and wavefunctions for all elements up to Z = 103. See also Refs. 3 and 4. Relativistic Hartree-Fock-Slater (rel. HFS) or DiracFock-Slater (DFS) calculations by C. Lu et a1.5 with energy eigenvalues, total energies, radii, and potentials for all elements up to Z = 126. Relativistic Hartree-Fock (rel. HF) or Dirac-Fock (DF) calculations by J. P. Desclaux6 with energy eigenvalues, radii, wavefunctions, and radial expectation values for all elements up to Z = 126. The tables of Refs. 5 and 6 present results for elements up to Z = 126. This number was chosen because several years ago Z = 126 was assumed to be the center of an island of nuclear stability. Later calculations of the late sixties shifted this island to Z = 114, but 126 was kept as a good endpoint in the tables of Refs. 5 and 6. 84

Atomit

Data

and

Nuckor

Dota

Tables,

Vol.

19,

No.

I,

Januory

1977

B. FRICKE

and G. SOFF

DFS

good agreement, 131r4show that at 2 = 100 the corrections already are of the order of percent. In the region of the superheavy elements they would be even larger. Even if no superheavy elements are found near 2 = 114 or Z = 126 at least the atomic clouds of superheavy elements can be produced for a very short time. The method is that of heavy-ion collision, where the energy is large enough so that two nuclei approach each other so closely that the electron clouds of both ions combine and the electrons feel a nuclear charge Z, + Z, in their center. Brief combination is possible because the velocity, at least for the inner electrons, is much larger than the velocity of the two nuclei approaching each other. If, by some process, an electron hole can be created in the inner level of either atom and thus of the combined atomic cloud, it is possible to observe an x-ray transition during the time of collision. The change of the electrons from the levels of the separated atoms to the levels of the combined system, is shown in the so-called correlation diagram, which has been discussed qualitatively in some detail by Lichteni6 as well as by Barat and Lichten.i7 Ab initio calculations within the adiabatic approximation, based on the Roothaan-Hartree-Fock method, have been made for small-Z systems.i8 For systems with Z >, 40 only relativistic many-electron molecular calculations lead to good results, which are given by Rosen et al. lg For the innermost 1s electrons one-electron calculations by Mtiller et alzO may give a good first approximation. Explanation of the experimentally observed molecular orbital (MO) M-x-ray spectrum by taking into account all possible transitions of the molecular system I-Au, with a combined Z = 132, provides the first evidence of the quasiatomic levels of superheavy elements.21 As already mentioned the behavior of the energy levels as function of the distance between the two nuclei is given in the correlation diagrams, in which the levels of the separated systems are linked with the levels of the combined system. Thus the knowledge of the levels of the atomic systems involved is the first step in the construction of the diagrams. The main purpose of this paper is to give the energy levels of the atoms with Z > 100 (the energy levels of the atoms with Z < 100 may be taken from any of the other tables). A secondary purpose is to give a first orientation for the expected transition energies for the x-ray spectra of possible superheavy elements since these offer the best means of detecting such elements in small quantities.

Method

The Hamiltonian follows :

Energy

Eigenvalues

100 5 Z 5 173

H=CT,--g+x i

e2 i
i

l’i

-rjI

= HO + Hint.

(1)

Using a fully antisymmetrized determinantal wavefunction, one obtains, after the variation of the total energy, the Hartree-Fock equation, which can be written in the form

J/i69

I

~:~~~klrl,cr)) ,,,ezy,, d7’h(r) I

#T(rN/i(r)

= E&(r).

(2)

The total energy is given by the expression

x bb&)d&‘>- &@‘)&@)I~

(3) We have used in this calculation the relativistic Hartree-Fock-Slater approximation [usually called DiracFock-Slater (DFS) calculation] in which the last term on the left side of Eq. (2), the exchange term, is approximated by22 3a 2a

Vexch(r) = - -q37?p(r)]l’3.

(4)

This is a very good description as long as the total electron density p(r) is not too small. For very large radii the total potential l/r is used. This procedure results in the so-called Latter correction.23 We have used here a, = 2/3.

Since we are interested in very heavy elements the wavefunctions have to be found by using the relativistic Dirac operator T = coup + firnc’ in Eq. (2). Because (Y and /? are four component matrices this leads to the set of coupled differential equations

-KJY

of Calculation

a[ci

-

W-)1

=

-a[~

of the atomic problem is given as

-

V(r)] + f

where cx is the fine-structure

85

Atomic

Data

(5)

Ki/r

and Nuclear

constant,

Data

Table.,

Vol.

~~

19, No.

the Dirac

1, January

,977

B. FRICKE

DFS

and G. SOFF

Energy

(6)

with the surface thickness t = 2.2 fm and the number of nucleonsA = 0.0073 Z2 + 1.3 Z + 63.6. For the equivalent radius we required R,, = 1.2 AlI3 fm, which determines the half-density radius c. For further details of the actual calculations and numerical procedures we refer to Refs. l-6 and 24. Comments

on the Results

Listed in Table I are the electron occupation numbers of the elements Z = 100 to Z = 173 found from the present DFS calculations. Given are the configurations with the smallest total energies. These are expected to be the ground-state configurations of the free atoms.

- 1MeVt 110

100

120

100 2 Z 5 173

There are only a few minor discrepancies between the results of the Dirac-Fock’O and the Dirac-FockSlater calculations for the differences of the total energies of the lowest states. Of course, the first method is more exact but it needs about an order-of-magnitude more computer time and the differences in the results are negligible for many purposes. For only four elements the lowest configurations came out differently in the two calculations but the difference between the total energies of the two lowest configurations is very small, of the order of 0.1 eV. In the case of the inner levels the additional corrections already noted in the text have to be added. They are small for small Z and of the order of a percent at Z=: 100. First estimates of the quantum electrodynamical corrections for elements near Z z 170 show25 that their influence remains below a few percent of the binding energies. The uncertainty due to the unknown nuclear-charge distribution in this region also is of the same order of magnitude.s In suite of the uncertainties in the DFS results, the listed eneigy eigenvalues of the elements in Table II are expected to give good approximations to the binding energies in the region where one does not know the appropriate corrections. They may be used to construct correlation diagrams and to get a first idea of the ex-

quantum number, and Fi and Gi the small and large components of the wavefunction i, respectively. The quantity ci in Eq. (5) represents the energy required to remove an electron from shell i if all other electrons remain unchanged. Therefore, usually it is called the “binding energy” in the sense of Koopmans’ theorem. Because the Dirac equation for a point nucleus leads to a singularity for the 1s level at 2 = 137 we have used an extended nucleus with a Fermi-type nuclear charge distribution p(r) = po{ 1 + exp [4 in 3(r - c)/t]}-l

Eigenvalues

130

lul

150

160 Atomic

Fig.

1. Energy

eigenvalues

for the inner

electrons

of the elements

86

Z = 100, fermium,

170 Number

-

to Z = 173

Atomic Data and Nuclear Data Tables. Vol. 19, No. I, January

1977

B. FRICKE

and G. SOFF

DFS

petted x-ray transition energies in the combined system during a heavy-ion collision or in a superheavy element which may be found in nature or a physics laboratory. In the DFS calculations there is one parameter in front of Slater’s exchange approximation in Eq. (4) which can be chosen within some narrow limits to yield an optimal agreement with those values one is looking for. Lu et a1.5 have chosen the original value used by Slater namely cy, = 1. This leads to energy eigenvalues which are good approximations for the ionization energies for the outer electrons. The more correct value as = 2/3 is used by most other authors, but this value has the disadvantage that the ionization energies for the outer electrons have to be calculated with the various corrections. Nearly independent of the value of (Y, are the energy eigenvalues of the inner electrons calculated with the DFS approximation which by chance lead to a better agreement with the experimental results than do the exact DF calculations. The differences can be seen in Table III, where we have listed the energy eigenvalues for DF and the DFS calculations for the inner electrons of fermium together with the known experimental results.13*‘” The DFS results seem to be closer to the experimental results. But if all known corrections to the DF calculations are added they, of course, come out to be much more superior. In order to obtain a general view we give the position of the energy eigenvalues in Fig. 1. The sequence of the levels, which is still normal at Z = 100, changes considerably with the higher elements. We see particularly the strong binding of the s and pi/z levels

Energy

Eigenvalues

100 < 2 5 173

with the same principal quantum number. The reason for this is twofold. The wavefunctions of the electrons with a total angular momentum l/2 are drawn nearer to the nucleus. This is the so-called direct relativistic effect. In response to this the other electrons are more strongly shielded and thus pushed away from the nucleus. This is the so-called indirect relativistic effect. The two effects together lead to a very unusual ordering of the levels. Figure 2 shows the energy eigenvalues of the outer electrons of the same elements. The behavior of the levels looks very normal for the elements up to Z z 120 and above Z =: 160. In the intermediate region the onset of the filling of the shells, as well as their behavior with increasing Z, is very complicated. The total energies in Table II provide an idea of how much energy may be gained from the electron cloud when the two atoms combine during a heavy-ion collision. To give an example we assume that Hg combines with Th to form the superheavy quasi atom z = 170:

ET(170) - E&90) - E&80) = (5.878 - 0.721 - 0.534) MeV = 4.623 MeV. This gain in energy is found for the most optimistic case that all electrons are present and contribute to the binding here amounting to more than 4.6 MeV. The total energies also are shown in Fig. 3 where the sharp rise for large Z can be seen even better. In heavy-ion collisions the incoming projectile ion

atomic number2 Fig. 2. Energy

eigenvalues

for the outer

electrons

of the elements

87

Z = 100, fermium,

Atomic

to Z = 173

Dato

and

Nuclear

Data

Tables,

Vol.

19,

No.

1, January

1977

B. FRICKE and G. SOFF

DFS Energy Eigenvalues 100< Z 5 173

is highly ionized and, because of strong ionization processes during the collision, an even higher ionization of the combined system is expected. To give an idea of the effect of this ionization on the energy levels, we have listed in Table IV the energy eigenvalues of elements 2 = 139 and 2 = 170 in various highly ionized states. The table shows that the medium and outer electrons are very strongly affected whereas the innermost electrons are shifted by a considerable amount only for very large ionizations or for ionization of the inner electron shells.

References 1. F. Herman and S. Skillman, Atomic Structure Calculations, (Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963) 2. J. B. Mann,

“Atomic Structure Calculations,” Los Alamos Scientific Reports No. LA-3690 (1967) and LA-3691 (1968)

3. C. Froese Fischer, ATOMIC DATA 4, 301 (1972) 4. J. B. Mann, ATOMIC DATA AND NUCLEAR DATA TABLES 12, 1 (1973)

Acknowledgment We thank Profs. W. Greiner and J. T. Waber for their continuous interest and support.

5. C. C. Lu et al., ATOMIC DATA 3, 1 (1971) 6. J. P. Desclaux, ATOMIC DATA AND NUCLEAR DATA TABLES 12, 3 11 (1973) 7. R. V. Gentry et al., Phys. Rev. Lett. 37, 11 (1976) 8. D. Kolb, to be published

6 E,[MeVI 1

9. B. Fricke and W. Greiner,

Physics Lett. B 30, 317 (1969); B. Fricke, W. Greiner, and J. T. Waber, Theor. Chim. Acta 21, 235 (1971)

energyofatomsas function of theatomicnumber

10. J. B. Mann, Proceedings of the Robert A. Welsh Foundation Conference. XIII. The Transuranium Elements, edited by W. 0. Milligan (Houston, Tex., Nov. 1969) p. 430 11. B. Fricke and J. T. Waber, Actinides Review 1, 433 (1971); B. Fricke, Structure and Bonding 21, 89 (1975) 12. B. Fricke and J. T. Waber, J. Chem. Phys. 57, 371 (1972) 13. M. S. Freedman, F. T. Porter, and J. B. Mann, Phys. Rev. Lett. 28, 711 (1972) 14. B. Fricke, J. P. Desclaux, and J. T. Waber, Phys. Rev. Lett. 28, 714 (1972) 15. G. L. Borchert, Z. Naturforsch.

A 31, 102 (1976)

16. W. Lichten, Phys. Rev. 164, 13 1 (1967) 17. M. Barat and W. Lichten, Phys. Rev. A 6,211 (1972) 18. E. W. Thulstrup and H. Johansen, Phys. Rev. A 6, 206 (1972); F. P. Larkins, lSt Int. Conf. on Inner Shell Ionization Phenomena, Atlanta, Ga. (1972); for more information see W. Lichten, Atomic Physics 4, edited by G. zu Putlitz, E. W. Weber, and A. Winnacker, (Plenum Press, New York, 1975), p. 249

Atomic number O 50I

I

70 I

I

90I

I

19. A. Rosen, D. Ellis, B. Fricke, and T. Morovic, Abstracts of Contributed Papers, 2nd Int. Conf. Inner Shell Ionization Phenomena, Freiburg (1976) p. 18

110 I I 130 I l 150 l l 170 , c

Fig. 3. Total energies of the atoms up to Z = 173

88

DFS Energy Eigenvalues 100 < Z 2 173

B. FRICKE and G. SOFF

Phys. Rev. 137, A27 (1965); D. A. Liberman, D. T. Cromer, and J. T. Waber, Comp. Phys. Comm. 2, 107 (1971); I. P. Grant, Adv. Phys. 19, 747 (1970). For a summary of references see C. Froese Fischer, Comp. Phys. Comm. 5, 147 (1973)

20. B. Mullet-, J. Rafelski, and W. Greiner, Phys. Lett. B 47, 5 (1973); B. Mtiller and W. Greiner, Z. Naturforsch. A 31, 1 (1976) 21. B. Fricke, T. Morovic, W. D. Sepp, A. Rosen, and D. Ellis, to be published

25. G. A. Rinker and L. Wilets, Phys. Rev. A 12, 748 (1975); M. Gyulassy, Phys. Rev. Lett. 33, 921 (1974); K. T. Cheng and W. R. Johnson, Phys. Rev., in print

22. J. C. Slater, Phys. Rev. 81, 385 (1951) 23. R. Latter, Phys. Rev. 99, 510 (1955) 24. D. A. Liberman,

J. T. Waber, and D. T. Cromer,

EXPLANATION TABLE

OF TABLES

I. Electron Occupation Numbers for the Elements 2 = 100 to Z = 173

Values from present DFS (Dirac-Fock-Slater) TABLE

calculations

II. Energy Eigenvalues and Total Energies, Z = 100 to Z = 173 (in eV)

Values from present DFS (Dirac-Fock-Slater)

calculations

c,t

Nuclear-change density parameters c and t in Eq. (6) in fm (lo-l3 cm)

E,

Total energy

TABLE

III.

Energy Eigenvalues (in eV) for Z = 100 from DF and DFS Calculations and Binding Energies from Experiment

DF

Dirac-Fock

Corrections

Magnetic contribution, retardation, vacuum fluctuation, vacuum polarization, and rearrangement effect including rearrangement in the magnetic contribution

Experiment

From conversion electron energies in the beta decay of 254mEs from F. T. Porter and M. S. Freedman, Phys. Rev. Lett. 27,293 (197 1). The experimental error bars are between 7 and 14 eV

DFS RESULT

Dirac-Fock-Slater

TABLE

CT

results of present authors

values of present authors

IV. Energy Eigenvalues (in eV) for Z = 139 and Z = 170 in Various States of Ionization Same as c,t in TABLE

89

II

B. FRICKE

TABLE 2

5F7/2

100 101 102

8

103

8

1

104

8

2

105

8

106

Energy

Eigenvalues

100 5 2 < 173

I. Electron Occupation Numbers for the Elements (Rn core plus 7S2 and 5F5/26) 6133/Z

6D5/2

7P1/2

7P3/2

6

119

8

4

6

2

4

1

7

120

8

4

6

2

4

2

121

8

4

6

2

4

2

1

122

8

4

6

2

4

2

1

1

123

8

4

6

2

4

2

1

1

3

124

8

4

6

2

4

2

1

8

4

125

8

4

6

2

4

2

1

107

8

4

126

8

4

6

2

4

2

1

108

8

4

2

127

8

4

6

2

4

2

109

8

4

3

128

8

4

6

2

4

2

110

8

4

4

129

8

4

6

2

4

111

8

4

5

130

8

4

6

2

112

8

4

6

1

131

8

4

6

2

113

8

4

6

2

132

8

4

6

114

8

4

6

2

133

8

4

6

115

8

4

6

2

1

134

8

4

6

116

8

4

6

2

2

117

8

4

6

2

3

118

8

4

6

2

4

5G9/2

6F5/2

7D3/2

6F7/2

2

569/Z

6F5/2

7D3/2

6F7/2

135

1

4

154

10

6

2

6

136

2

4

155

IO

6

2

7

2

8

3

3

7Pl/2

7P3/2

Z = 100 to Z = 173

5~712

137

6D5/2

DFS

2

z

6D3/2

and G. SOFF

1

156

10

6

8sl/2

8P1/2

7D3/2

6F5/2

3

1

2

2

2

2

3

2

2

4

2

2

2

5

4

2

2

2

6

4

2

2

2

7

2

4

2

2

2

8

2

4

2

2

3

8

2

4

2

2

4

8

833/Z

951/Z

71)5/Z

1

9P1/2

138

4

3

1

157

10

6

3

8

5

2

2

158

10

6

4

8

140

6

3

1

159

10

6

4

8

141

7

2

2

160

10

6

4

8

1

142

8

2

2

161

10

6

4

8

2

143

9

2

2

162

10

6

4

8

4

144

10

1

3

163

10

6

4

8

5

145

10

3

2

164

10

6

4

8

6

146

10

4

2

165

10

6

4

8

6

147

10

5

2

166

10

6

4

8

6

2

167

IO

6

4

8

6

2

1

4

8

6

2

2

10

6

2

149

10

6

3

168

10

150

10

6

4

169

10

6

4

8

6

2

2

151

lo

6

3

2

170

10

6

4

8

6

2

2

152

lo

6

3

3

171

10

6

4

8

6

2

2

153

lo

6

2

5

172

10

6

4

8

6

2

2

173

10

6

4

8

6

2

2

89 for

Explanation

of Tables

90

6G7/2

1

6

See page

1 3

139

148

X7/2

1

B. FRICKE and G. SOFF

DFS Energy Eigenvalues 100 5 2 2 173

TABLE II. Energy Eigenvalues and Total Energies, 2 = 100 to Z = 173 (in eV)

lSl/Z ZSl/P 2P1/2 2P3/2 3Sll2 3P1/2 3P3/2 3[33/2 305/Z 451/Z 4P1/2 4P3/2 403/Z 4D5/2 4FW2 4F7f2 5S1/2 5P1/2 5P3/2 503/Z 5D5/2 5F5/2 5F7/2 6Sl/2 6Pl/2 6P3/2 6D3/2 7S1/2 7Pl/P ET

lSl/P 251/o 2P1/2 2P3/2 3S1/2 3Pi/2 3P3/2 303/2 3D5/2 4S1/2 4Pl/2 4P3/2 403/Z 405/2 4F5/2 4F7/2 5s1/2 5P1/2 5P3/2 5D3/2 5D5/2 5F5/2 5F7/2 6Sl/2 bP1/2 6P3/2 683/Z bD5/2 7Sl/2 7P1/2 ET

ZIlOO

Z=101

21102

23103

Z-104

z-105

2=106

z=107

2=1oe

Z=109

c=7.000 T-2.2

C-7.252 T=%.E

cc7.399 Tr2.2

Cr7.427 T"2.2

(317.455 T=2.2

c17.483 Tr2.2

cr7.511 T=X.2

c17.538 1=2.2

C-7.566 112.2

c=7.594 Tr2.2

142049.7 27409.6 26555.4 20715.1 7095.7 6694.6 5320.0 4685.2 4420.9 1889.3 1701.9 1328.5 1031.5 965.2 573.4 555.0 433.2 355.5 258.1 144.1 129.8 5.9 3.9 59.5 36.4 21.8

145656.9 28220.2 27355.9 21204.2 7325.6 6918.1 5466.6 ke2i .6 4544.7 1950.8 1768.5 1372.5 1069.6 999.7 600.1 580.6 451.0 371.0 266.9 149.7 134.4 6.4 4.3 61.4 37.6 22.0

4.9

5.0

948461

973705

149346.1 29052.9 28117.9 21699.3 7561.8 7147.5 5615.2 4959.9 4670.0 2032.2 1836.9 1417.0 :E-: . 627.2 606.4 469.1 387.0 275.7 155.4 139.1 7.0 4.6 63.4 38.8 22.3 5.1

999468

153129.4 29915.6 29029.1 22206.7 7811.3 7389.9 5772.6 5106.9 4803.5 2113.3 1914.0 1468.9 1154.1 1076.5 661.3 639.3 494.5 410.1 291.1 167.5 150.1 13.1 10.4 70.4 44.6 2h.2 2.5 5.9

156995.1 30802.8 29905.2 22721.8 8068.9 7640.7 5933.9 5257.7 4940.3 2198.2 1994.8 1523.1 1202.3 1120.7 697.6 674.4 522.0 435.3 308.1 181.2 162.7 20.7 17.7 78.6 51.6 31.1 4.3 7.1 3.5

1025766

1052586

151/z 2s1/2 PP112 PP3/2 351/Z 3P1/2 3P3/2 3D3/2 3D5/2 4S1/2 4P1/2 4P3/2 4D3/2 4D5/2 4F5/2 4F7/2 5S1/2 5P1/2 5P3/2 5D3/2 5D5/2 5F5/2 5F7/2 6Sl/P 6P112 6P3/2 603/2 751/Z 6D5/2 ET

160940.5 31709.8 30801.8 23239.2 a329.7 7894.7 6093.7 5406.9 5075.1 2281.6 2074.1 1574.4 1247.4 1161.6 730.6 706.1 546.5 457.4 321.5 191.2 171.4 24.4 21.1 82.9 54.6 31.9 3.8 6.8

i64974.2 32643.6 31726.3 23765.0 8597.8 8158.2 6258.1 5560.h 5213.9 2368.5 2157.9 162a.6 1295.6 1305.4 766.5 740.6 573.9 482.5 337.3 203.6 182.5 30.5 26.8 89.3 59.7 34.6 4.5 7.2

169097.2 33503.7 32678.1 24297 ,a 8877.9 8429.9 6425.4 5717.3 5355.1 2460.6 2244.0 1684.5 1345.3 1250.5 803.7 776.4 602.8 509.0 354.0 216.8 194.4 37.3 33.3 96.3 65.4 37.7 5.5 4.0 7.6

173312.1 34590.4 33658.0 24837.0 9163.9 8709.7 6595.4 5876.3 5498.2 2554.5 2334.9 1741.3 1396.0 1296.4 841.7 812.9 632.6 536.5 371.0 230.4 206.5 44.4 39.9 103.6 71.3 40.8 6.5 4.b 8.1

177621.7 35604.9 34667.1 25382.6 9458.0 8997.9 6767.9 6037.9 5643.3 2651.2 2427.5 1799.2 1447.6 1343.2

1079942

1107844

1136306

1165342

1194968

eao.5 850.1

663.4 564.9 388.4 244.2 218.9 51.7 46.8 111.1 77.3 43.8 7.4 5.3 a.5

Z-110

z-111

z=112

Z-113

2=114

z-115

Z=116

z=117

z=lle

21119

C17.621 Ts2.2

C17.649 1=2.2

C=7.676 T=2*2

c=7.704 T=2.2

c=7.731 T+2.2

cE7.758 Tt2.2

C=7.786 1=2.2

c17.813 T=2.2

c=7.840 Tn2.2

C=7.867 1x2.2

ie2029.4 36648.2 35706.9 25934.7 9760.4 9294.9 6943.0 6202.1 5790.4 2750.7 2523.2 1858.2 1500.4 1390.8 920.1

186538.3 37721.4 36778.9 26493.2 10071.6 9h00.9 7120.7 6368.6 5939.3 2853.3 2622.0 19la.2 1554.0 1439.1 960.4 926.7 728.3 625.1 424.4 273.0 244.5 67.1 61.4 126.7 90.1 49.8 9.4 6.6 9.4

i9iisi.e 38825.9 37884.6 27058.2 10391.7 991b.6 7301.0 6537.9 6090.3 2959.0 2724.0 1979.3 1608.7 1488.4 1OOl.b

195276.6 39965.7 39028.6 27632.5 10724.1 10245.1 7486.8 6712.3 6245.9 3070.8 2832.3 2044.3 1667.3 1541.3 1046.4 1009.2 800.6 692.7 464.7 306.1 274.0 80.6 79.8 146.4 106.9 58.6 13.8 10.1 11.6 4.9

200713.8 41139.6 40210.3 28213.5 11066.4 10584.3 7675.4 6889.6 6403.9 3186.2 2944.3 2110.6 1727.2 1595.3 1092.3 1053.3 e40.9 730.0 487.2 324.9 291.0 98.4 91.1 158.3 117.4 64.6 17.3 13.0 13.5 5.7

205b69.4 42350.7 41433.2 28803.0 ii420.e 10936.4 7868.7 7071.5 6565.8 3307.1 3062.0 2ieo.o 1790.1 1652.0 1141.0 1100.0 883.1 770.6 511.9 345.9 310.0 112.4 104.5 172.6 130.1 72.4 22.7 17.7 16.9 7.8 3.8

210745.9 43598.9 42697.9 29399.2 11786.0 11300.2 eo64.R 7256.1 6729.8 3431.7 3183.8 2250.7 la54.2 1709.9 1190.7 1147.7 927.5 812.7 537.3 367.6 329.6 126.9 lie.4 187.4 143.4 80.5 28.2 22.6 20.3 10.1 4.4

215947.7 44ea5.5 44006.6 30002.0 12162.1 11676.2 8263.7 7443.4 6895.8 3560.2 3309.7 2322.5 1919.5 1768.6 1241.3 1196.2 973.3 856.4 563.2 389.6 349.6 141.7 132.7 202.6 157.1 ea.6 33.7 27.5 23.7 12.4 5.2

221279.4 46212.4 45362.0 30611.4 12549.6 12065.1 8465.3 7633.4 7063.8 3692.7 3439.9 2395.6 1985.9 1828.3 i292.e 1245.5 1020.5 901.7 589.5 4lp.2 369.9 157.0 147.2 214.3 171.4 96.8 39.4 32.4 27.2 14.9 h.0

226748.8 47583.6 46769.2 31229.9 12951.5 12470.0 8672.2 7828.5 7236.4 3831.8 3577.2 2472.3 2056.0 1891.3 1347.6 1298.2 1072.0 951.2 618.9 437.7 393.1 175.1 lb4.6 237.1 lee.7 107.5 47.6 39.9 33.1 19.7 a.4 3.6

1256051

1287542

1319687

1352505 1386015

1420239

1455201

1490925

1527433

eea. i

695.4 594.5 406.2 258.5 231.6 59.3 54.0 lie.7 83.6 46.8 a.4

5.9 a.9

1225199

966.2

762.4 656.8 442.9 287.9 257.7 75.3 69.0 134.9 96.9 52.8 10.4 7.3 9.8

lS1/2 2s1/2 2P1/2 2P3/2 351/i? 3Pl/P 3P3/2 3D3/2 305/P 4s1/2 4P1/2 4P3/2 4D3/2 4D5/2 4F5/2 4F7/2 551/P 5P1/2 5P3/2 503/2 SDS/Z 5F5/2 5F7/2 6Sl/E bPl/Z 6P3/2 6D3/2 605/2 ISl/P 7Pl/2 7P3/2 asl/z ET

See page 89 for Explanation of Tables

91

Atomic Dota and Nuclear

DD+D Tables, Vol. 19, No. 1, Jonuory

1977

B. FRICKE and G. SOFF

TABLE

151/2 2s1/2 2P1/2 2PW2 35112 3P1/2 JP3/2 303/E 3D5/2 4-9112 4P1/2 4P3/2 403/E 405/i! 4F5/2 4f7/2 5S1/2 5Pl/P 5P3/2 503/2 5DS/P 5F5/2 5F7/2 65112 6P1/2 6P3/2 603/2 605/2 7s1/2 ?Pl/2 7P3/2 as1/2 0P1/2 703/2 6F5/2

15112 251/2 PP1/2 2P3/2 351/2 3P1/2 3?3/2 30312 305/2 451/2 4P1/2 4P3/2 403/2 405/2 4F5/2 4F7/2 5S1/2 5P1/2 5P3/2 50312 50512 5F5/2 5F7/2 5G7/2 651/2 6Pl/2 6P3/2 60312 60512 6F5/2 7S1/2 7P1/2 7P3/2 85112 0P1/2 ET

and Total Energies, Z = 100 to Z = 173 (in eV)

2.120

z--121

Z=l22

2=123

21124

z=125

21126

Z=127

z=120

Z=129

Cx7.094 TI2.2

Cl7.921 1=2.2

c17.940 T=2.2

C37.975 1-2.2

c=0.002 r12.2

C18.029 Tr2.2

C~E.056 1=2.2

c=a.082 1=2.2

c=a.109 112.2

C10.136 1=2.2

244024.3 51971.2 51321.9 33127.6 14236.2 13775.9 9312.2 0432.0 7766.7 4270.0 4021.3 2712.4 2275.9 2008.7 1520.3 1463.7 1238.7 1113.0 712.4 519.6 467.6 234.1 221.5 299.2 246.7 142.9 75.3 64.9 53.4 36.7 17.7 6.2 3.3 3.3

250086.7 53526.8 52957.0 3377n.o 14607.1 14239.2 952K.7 0635.2 7945.6 4431.6 4175.7 2790.5 2347.1 2151.9 1575.2 1516.1 1293.4 1166.5 740.2 543.5 400.7 250.1 236.7 316.9 213.0 150.7 80.6 69.4 56.9 39.4 18.4 6.4 3.4 3.4 4.7

256309.9 55130.9 5465b.2 34413.2 15148.6 14716.4 9739.9 0036.3 0120.5 4506.1 4331.9 2865.7 2415.4 2212.0 1626.9 1565.2 1346.1 1218.2 764.6 563.Y 506.4 262.6 240.4 331.3 276.2 154.9 82.5 70.5 57.6 39.7 17.4 b.l 3.3

262670.4 56777.2 56413.2 35053.6 15618.1 15205.1 9950.0 9033.9 0291.4 4741.2 4409.6 2938.1 2480.9 2269.1 1675.6 1611.3 1398.1 1269.b 788.3 583.8 523.8 275.4 260.5 8.6 340.6 292.6 163.9 90.1 77.5 a.9 65.4 47.0 23.1 10.6 6.8

289270.9 58499.0 58271.0 35714.0 16100.6 15720.4 10165.2 9237.7 8467.0 4098.6 4651.3 3006.7 2542.a 2321.9 1720.4 1653.2 1444.3 1315.6 803.9 595.h 532.0 279.7 264.0 6.1 357.6 300.9 164.3 89.1 76.1 5.9 64.0 45.9 20.2 7.4 3.9 3.6

276024.4 b0268.7 60198.3 36371.2 16609.8 16250.7 10378.9 9439.3 0639.9 5059.0 4810.0 3075.9 2605.0 2374.9 1765.3 1695.1 1493.4 1364.9 821.4 609.2 543.7 205.8 269.4 5.6 369.0 311.6 166.7 90.1 76.6 5.4 66.5 47.3 20.2 7.5 3.9

282971.4 62100.6 62215.4 37034.5 17127.5 16803.3 10594.9 9643.1 8814.3 5226.2 4991.5 3145.6 2667.0 2420.3 1810.4 1737.2 1544.1 1416.2 038.9 622.9 554.5 291.9 274.7 5.0 300.9 322.9 169.1 91.1 77.2 4.9 68.4 48.8 20.2 7.6 4.0

290120.5 63997.7 64329.5 37703.7 17662.5 17379.7 10813.1 9049.1 8989.9 5398.0 5172.2 3216.0 2731.2 2481.9 1855.0 1779.5 1596.5 1469.0 856.4 636.6 565.2 297.8 279.9

1681088

1722777 1764622

1007556

1851536

la96636

1942905

232359.0 4P999.4 46229.4 31855.6 13366.4 12809.7 8882.5 0027.0 7411.6 3975.0 3719.9 2550.9 2127.9 1955.9 1404.0 1352.3 1125.6 1003.0 649.3 464.2 417.3 194.1 183.0 257.0 207.1 119.0 56.5 47.9 39.6 25.1 11.3 4.2

ET

II. Energy Eigenvalues

DFS Energy Eigenvalues 100 2 Z 5 173

1564753

238116.4 50462.0 49746.5 32408.9 13795.2 13325.5 9096.h 8229.2 7509.7 4125.2 3860.6 2631.7 2201.9 2022.5 1462.4 1400.2 1181.9 1057.7 601.2 492.3 442.9 214.5 202.7 270.4 227.2 131.5 66.5 57.0 47.1 31.4 15.1 5.4 3.0

1602913

1642191

lS1/2 ES1/2 2P1/2 2P3/2 35112 3Pl/P 3P3/2 303/2 30512 451/2 4P1/2 4P3/2 40312 405/2 4F5/2 4f7/2 5.5112 5P1/2 5P3/2 503/2 505/P 5F5/2 5f7/2 5G7/2 6S1/2 bPl/Z bP3/2 603/2 685/2 6F5/2 7S1/2 7P1/2 7P3/2 asi/ BPI/E 70312

3.4

ET

393:: 334.7 171.5 92.1 77.b 4.4 70.2 50.3 20.2 7.7 4.0

21130

25131

2.132

Z=133

21134

z-135

Z=136

z=137

21138

z=139

Cr0.162 TI2.2

CI0.189 Tl2.2

C38.215 r=2.2

C10.242 1=2.2

C=8.268 T=2.2

C=8.295 T=2.2

C=8.321 TE2.2

csa.347 T=2.2

c=a.374 1x2.2

e-a.400 1.2.2

337800.4 76937.4 79564.3 41862.0 21292.7 21453.7 12188.7 11149.2 10090.1 6575.8 6457.5 3673.7 3145.7 2831.8 2155.2 2058.4 1972.5 1869.0 903.6 739.6 648.2 351.1 327.7 13.5 9.4 492.3 435.4 195.1 105.4 86.8 3.6 87.8 66.0 21.1

346b37.3 79379.8 82620.4 42574.1 21969.9 22249.5 12423.7 11371.4 10275.7 6792.6 6704.6 3749.5 3214.2 2888.3 2203.3 2102.6 2039.7 1944.0 1002.3 754.2 b59.P 357.1 332.8 12.5 a.2 500.7 453.1 197.7 106.5 87.2 3.0 90.5 68.R 21.1

365183.9 84546.2 89339.3 44019.8 23398.7 23967.5 12904.3 11826.2 10654.4 7252.1 7230.7 390fJ.7 3356.6 3005.0 2303.9 2195.4 2184.0 2110.0 1043.6 787.1 604.6 372.6 346.3 13.7 9.0 546.8 495.1 206.2

8.0 4.6

9.0 4.7

355762.4 81917.7 85883.6 43296.1 22b74.4 23089.4 12665.0 11599.9 10466.6 7020.7 6967.5 3029.0 3287.2 2940.9 2255.5 2151.0 2113.1 2027.4 1025.9 772.6 673.9 366.9 341.6 15.1 10.6 529.4 475.5 203.9 111.1 91.1 4.9 96.6 74.8 22.9 3.3 10.1 5.3 2362114

2421754

297400.6 65962.9 b6548.2 30379.1 18215.4 17981.5 11033.6 10057.4 9167.0 5575.5 5360.7 3287.1 2795.2 2536.0 1901.5 1822.0 1650.7 1525.9 074.2 650.4 576.0 303.8 285.1 3.6 405.9 347.2 173.9 93.1 78.1 3.9 72.2 52.0 20.2 7.9 4.1

305061.0 67999.3 60800.4 39060.5 18787.1 10610.6 11256.5 10267.9 9345.5 5758.9 5557.5 3359.0 2060.0 2590.4 1947.6 1064.8 1706.9 1584.6 092.0 664.3 506.9 309.8 290.3 2.8 419.1 360.3 176.3 94.1 78.4 3.5 74.3 53.8 20.2 8.0 4.1

312871.4 70110.1 71335.6 39748.0 19378.3 19268.6 11481.7 10480.6 9525.4 5940.6 5763.1 3431.6 2925.5 2645.2 1994.1 1908.0 1765.1 1646.3 910.1 670.5 597.8 315.9 295.5 2.0 433.0 374.3 178.8 95.2 79.1 3.0 76.5 55.8 20.2 a.2 4.3

320928.7 72305.8 73931.2 40440.8 19997.6 19965.5 11717.5 10703.7 9714.7 6153.7 5987.2 3514.5 3001.1 2710.0 2050.4 1960.7 1035.0 1720.4 937.3 701.4 617.2 330.2 300.8 8.0 454.3 395.9 185.6 99.7 82.7 3.6 80.7 59.5 20.6 a.4 4.3

329237.0 74583.0 76672.4 41156.1 20638.3 20695.9 11956.2 10929.5 9906.0 6366.2 6221.8 3598.0 3078.1 2775.0 2107.6 2014.5 1907.8 1790.b 965.1 725.2 637.3 345.1 322.6 14.5 476.6 418.8 192.7 104.4 86.3 4.1 85.1 63.5 21.1 8.6 4.4

1990396

2039193

2009267

2140769

2193732

lSl/Z PSI/P 2P1/2 2P3/2 351/2 3P1/2 3P3/2 303/E 3D5/2 4Sl/E 4P1/2 4P3/2 4D3/2 40512 4F5/2 4F7/2 55112 5P1/2 5P3/2 50312 505/2 5F5/2 5F7/2 50712 50412 6S1/2 6Pl/2 6P3/2 603/P 605/2 6F5j.2 75112 7P1/2 7P3/2 70312 as112 8P1/2 ET

See page 89 for Explanation

2240236

2304354

'2.: . 4.2 99.5 77.7 22.0 3.1 10.3 5.4

374916.4 07274.1 93019.0 44750.4 24140.5 24891.8 13146.7 12055.4 10844.2 7491.8 7523.8 3984.9 3427.4 3063.5 2353.1 2240.5 2259.6 2197.4 1062.0 802.2 695.7 378.7 351.4 12.5 7.6 565.3 516.2 208.7 113.0 91.7 10::: 01.1 22.0 3.0 10.5 5.6 2483211

of Tables

92

Atomic

Data and Nuclwr

Da+o TobIer, Vol. 19, No. 1, Jmuary

1977

DFS Energy Eigenvalues 100 5 Z < 173

B. FRICKE and G. SOFF

TABLE

ISI/ 251/2 2P1/2 2P3/2 351/P 3P1/2 3P3/2 303/2 305/C 451/2 4P1/2 4P3/2 403/2 40512 4F5/2 4F?/2 ss1/2 5P112 5P3/2 5D3/2 505/P 5FS/E SF712 56712 509/i? 65112 6P1/2 6P3/2 6D3/2 6DS/E 6FW2 751/t 7Pl/2 7P3/2 70312 851/2 BP]/2 ET

lSl/Z 2Sl/E 2P1/2 2P3/2 351/2 3P1/2 3P3/2 3D3/2 30512 4S1/2 4P1/2 4P3/2 4D3/2 4D5/2 4FW2 4F7/2 551/z 5P1/2 5P3/2 5D3/2 505/2 5F5/2 5F7/2 SG7/2 50912 65112 6P1/2 6P3/2 6D3/2 6D5/2 6F5/2 6F7/2 75112 7Pl/2 7P3/2 703/2 BSl/E 8P1/2 ET

See

page

II. Energy Eigenvalues

and Total Energies, Z = 100 to Z = 173 (in eV)

2=140

25141

21142

z=143

Z=144

Z=145

Z=146

z--147

Z.=l48

z=149

C18.426 Tr2.2

C=8.452 T12.2

c-8.476 T=2.2

CEB.504 T=2.2

we.530 T12.2

C18.556 712.2

C=8.582 T=2.2

C=8.60R T-2.2

GE.634 T-2.2

c=8.660 T=2.2

440669.5 105918.2 121067.2 49278.6 29225.7 31548.7 14666.7 13494.5 12023.9 9120.6 9563.2 4485.5 3881.9 3431.9 2669.8 2530.3 2781.9 2838.8 1195.5 908.7 776.0 427.9 393.6 15.7 9.2 704.7 604.2 232.8 126.7 100.6 3.5 130.9 112.8 25.0 3.0 13.7 8.1

453003.5 109438.7 126990.7 50062.3 30178.R 32869.6 14936.0 13749.7 12232.1 9430.7 9967.9 4579.9 3968.3 3502.7 2731.6 2587.3 21387.5 2972.6 1225.8 934.6 796.7 443.1 407.5 22.1 15.1 737.4 724.4 240.4 131.8 104.2 4.1 138.1 121.2 25.5

465773.5 113083.8 133351.6 50853.3 31162.6 34254.7 15208.5 14007.9 12442.1 9750.7 10390.6 4675.8 4056.1 3574.4 2794.4 2645.1 2996.9 3112.7 1256.8 960.9 817.9 458.7 421.7 28.9 21.4 771.5 766.9 248.1 136.9 107.9

478997.2 116855.5 140183.9 51651.8 32177.6 35705.1 15484.3 14269.3 12654.0 10080.7 10831.3 4773.1 4145.2 3647.0 2858.0 2703.6 3109.9 3259.0 1288.5 987.9 839.4 474.7 436.2 35.9 LB.0 806.9 811.5 255.9 142.1 111.6 5.2 153.4 139.5 26.4 2.8 15.5 9.9

492696.0 120759.7 147526.4 52461.6 33228.1 37225.3 15767.4 14537.8 12871.8 10424.6 11294.1 4875.7 4239.6 3724.4 2926.4 2766.7 3230.6 3415.5 1324.6 1019.3 865.3 495.0 454.9 47.1 38.7 847.5 862.3 267.6 151.2 118.9 8.3 165.1 153.1 28.6 3.3 17.2 11.5

2896743

2974135

3054251

3137210

3223127

386752.9 90713.3 97819.9 45768.9 25147.5 26142.7 13515.2 12416.8 11150.1 7833.0 7932.1 4118.0 3553.7 3170.4 2451.4 2332.2 2374.8 2331.8 1106.4 840.3 127.9 403.2 374.1 23.6 18.1 601.7 557.0 221.1 122.4 99.7 7.3 112.8 91.5 26.0 4.6 13.0 7.6

397219.3 93673.4 102063.1 46518.1 25959.4 27180.4 13767.4 12655.A 11347.1 8095.0 8253.1 4201.9 3630.1 3232.8 2505.3 2381.7 2459.6 2433.6 1129.9 859.6 743.0 413.2 383.0 26.2 20.5 625.9 585.1 227.6 127.2 103.7 9.2 119.8 98.8 27.7 5.3 14.2 6.5

408040.0 96739.7 106597.1 47269.8 26794.9 28268.0 14018.1 12893.2 11541.5 8361.6 8585.6 4282.7 3703.3 3291.7 2555.7 2427.6 2543.3 2536.4 1149.7 875.0 754.1 419.2 387.9 24.7 18.8 646.9 610.7 230.1 128.2 103.9 8.5 123.4 103.1 27.7 5.1 14.6 a.9

419234.0 99919.4 111451.9 48028.1 27658.5 29412.1 14271.5 13133.3 11737.4 8637.1 8934.3 4364.5 3777.4 3351.1 2606.5 2473.8 2630.1 2644.6 1169.7 890.7 765.3 425.3 392.8 23.2 17.0 660.8 637.8 232.6 129.2 104.2 7.8 127.3 107.6 27.6 4.9 15.0 9.2

430821.0 103219.4 116659.4 48796.8 28555.1 30619.0 14531.7 13379.9 11938.8 8925.6 9303.6 4451.2 3856.4 3415.0 2661.7 2524.3 2723.9 2762.3 1193.9 910.6 780.6 435.4 401.7 25.7 19.3 695.7 670.6 239.3 134.1 108.2 9.7 134.9 116.0 29.4 5.5 16.4 10.4

2546574

2612051

2679692

2749602

2821893

Z=150

z=151

Z-152

z-153

z-154

z.155

Z=156

21157

Z'15R

21159

c=8.686 Tr2.2

csu.711 T=2.2

C18.737 T=2.2

C10.763 T=2.?

C=8.780 T=2.2

C=0.814 T=2.2

C18.839 T=2.2

C18.865 T=2.2

cIa.890 T=2.2

C18.916 712.2

585797.1 146938.4 204200.2 57465.3 40188.0 47703.0 17512.2 16191.8 14193.1 12677.5 14415.2 5495.6 4808.6 4180.9 3327.5 3133.8 4007.8 4456.0 1526.9 1192.3 1000.7 596.0 545.5 93.0 81.1 1093.8 1187.0 313.2 180.3 137.0 7.9 2.5 217.5 222.7 28.1 2.0 20.2 15.4

603310.9 151773.6 216080.9 58333.8 41468.5 49676.4 17820.6 16484.5 14425.2 13094.3 14999.1 5609.0 4913.2 4265.0 3402.1 3202.2 4155.6 4654.6 1567.4 1227.8 1029.2 618.7 566.3 106.2 93.8 1144.6 1253.5 325.9 190.1 144.6 11.5 5.b 232.2 241.3 30.5 2.4 22.8 18.1

621441.6 156741.7 228740.9 59211.6 42782.6 51710.1 18133.3 16781.2 14659.7 13521.9 15599.0 5724.3 5019.6 4350.2 3477.9 3271.7 4307.5 4859.0 1608.8 1264.1 1058.3 641.9 587.5 119.9 106.8 1197.1 1322.3 338.9 200.1 152.3 15.2 8.6 247.5 260.7 32.8 2.9 25.1 20.8

640205.8 161841.7 242207.2 60098.A 44130.3 53802.7 18450.1 17081.9 14996.7 13960.3 16214.5 5R41.6

659621.6 167078.2 256513.7 61003.2 45519.4 55960.5 18778.6 17394.2 15143.6 14416.6 16852.6 5967.2 5244.4 4530.8 3639.6 3420.1 4630.2 5291.0 1700.3 1345.1 1124.2 695.8 637.3 154.6 140.1 1313.1 1472.8 371.6 226.6 173.9 28.5 20.5 285.6 308.0 42.3 7.9 34.9 31.7 4.0

3807237

3917011

4030583

506885.0 124794.6 155411.6 53279.6 34311.1 38812.3 16054.1 14809.8 13091.9 10779.1 11775.3 4980.1 4335.7 3803.0 2995.9 2831.0 3355.4 3578.6 1361.6 1051.6 891.8 515.9 474.2 58.9 50.0 889.9 915.6 279.8 160.5 126.4 11.7 177.4 167.6 30.7 3.7 18.9 13.1

521579.0 128958.2 163472.1 54102.1 35422.8 40462.3 16340.R 15081.6 13310.3 11140.2 12270.8 5082.4 4429.7 3879.0 3062.8 2892.4 3480.5 3744.3 1395.7 1080.9 915.1 533.5 490.2 67.5 58.0 930.1 967.7 288.5 166.5 130.6 12.6 8.0 186.7 179.4 31.2 3.6 19.R 14.1

536796.7 133251.6 172943.9 54929.4 36563.7 42174.8 16627.2 15353.0 13527.0 11507.9 lPTR0.3 5182.5 4521.3 3952.2 3126.7 2950.7 3605.6 3912.4 1426.7 1107.0 935.1 547.8 502.7 72.6 62.5 968.0 10!8.3 293.6 168.9 131.4 10.9 6.2 193.1 188.4 30.2 3.1 19.8 14.3

552562.7 137682.0 182669.0 55768.4 37741.0 43956.0 16920.9 15631.5 13749.4 11B89.8 13310.8 5287.7 4618.1 4030.0 3195.2 3013.5 3738.3 4090.2 1461.9 1137.3 959.1 566.0 519.2 81.6 70.9 1010.9 1074.8 302.4 175.0 135.6 11.8 h.7 203.1 201.6 30.7 3.0 20.8 15.5

568823.9 142223.2 193032.9 56606.4 38941.6 45789.1 17212.2 15907.2 13967.9 12276.2 13851.7 5390.1 4711.7 4104.3 3260.2 3072.6 3870.5 4269.3 1493.9 1164.4 979.6 580.8 532.2 87.2 75.9 1051.5 1129.6 307.6 177.4 136.1 9.0 4.6 209.9 211.6 29.7

3404311

3499814

3598731

3701115

3312120

lSl/2 PS1/2 2P1/2 2P3/2 3S1/2 3P1/2 3P3/2 303/2 3D5/2 4.51/2 4P1/2 4P3/2 40312 4DW2 4F5/2 4F7/2 551/2 SP1/2 SP3/2 503/E 5D5/2 5F5/2 5F7/2 507/P 5G9/2 65112 6P1/2 bP3/2 6D3/2 6DW2 6FS/2 751/2 7Pl/2 7P3/2 7D3/2 851/2 8P1/2 ET

15112 251/2 2Pl/2 2P3/2 3Sl/2 3P1/2 3P3/2 3D3/2 3D5/2 451/2 4P1/2 4P3/2 403/2 405/i! 4F5/2 4F7/2 551/2 5P1/2 5P3/2 50312 SDS/2 5F5/2 5F7/2 507/P 509/Z 6S1/2 6Pl/P bP3/2 6D3/2 6D5/2 bF5/2 6F7/2 75112 7P1/2 7P3/2 7D3/2 851/E 8P1/2 95112

2::: 15.9

ET

89 for

Explanation

1::: 8.7

14::: 130.0 26.0 2.9 14.9 9.3

XT . 3554.9 3342.2 4463.7 5069.1 1651.1 1301.1 1087.9 665.6 609.1 134.1 120.3 1251.2 1393.4 352.2 210.4 160.2 19.1 11.9 263.4 281.1 35.0 3.3 27.5 23.7

4148031

4269367

of Tables

93

Atomic Dota and Nuclear

Dota Tables, Vol. 19, No. 1, Jonuory

1977

B. FRICKE and G. SOFF

TABLE

lS1/2 PSl/2 2Pl/E 2P3/2 3S1/2 3P1/2 3P3/2 303/2 30512 451/2 4Pl/P 4P3/2 403/Z 4D5/2 4F5/2 4F7/2 5S1/2 5P1/2 5P3/2 5[33/2 5D5/2 5F5/2 5F7/2 5G7/2 50912 LSl/P 6P1/2 6P3/2 bD3/2 bD5/2 6F5/2 6F7/2 7S1/2 7Pl/2 7P3/2 7D3/2 7D5/2 BSl/E 8Pl/P 9S1/2 ET

II. Energy Eigenvalues

DFS Energy Eigenvalues 100 < 2 5 173

and Total Energies, Z = 100 to Z = 173 (in eV)

21160

21161

Z-162

Z=l63

Z=164

21165

21166

Z=167

Z=l68

Z=169

C=8.941 1=2.2

C18.966 Tat.2

C18.992 TE2.2

c19.017 TI2.2

C19.042 TSP.2

C=9.068 7-2.2

co9.093 1=2.2

Ci9.118 T12.2

c19.143 1=2.2

C19.168 112.2

679704.4 172439.7 271668.2 61912.4 46931.0 50169.4 19105.9 17705.1 15387.2 14878.4 17500.1 6090.0 5358.0 4621.4 3720.4 3494.1 4796.3 5513.7 1745.9 1385.4 1156.5 722.2 661.4 171.3 156.0 1372.3 1550.1 387.0 239.0 183.6 34.0 25.4 304.3 331.6 45.7 9.3 5.0 38.6 36.0 4.1

700462.9 177927.3 287696.7 62830.2 48386.5 60431.9 19437.1 18019.4 15632.7 15350.4 18161.7 6214.1 5472.9 4712.6 3802.0 3568.7 4966.1 5741.1 1791.9 1426.1 1189.1 748.6 685.6 188.0 171.9 1432.8 1629.1 402.5 251.3 193.2 39.5 30.1 323.4 355.8 49.0 10.6 5.6 42.3 40.5 4.3

721909.6 183529.8 304608.6 63750.0 49862.2 62740.3 19766.2 18331.3 15874.2 15827.0 18831.1 6334.7 5584.1 4799.5 3879.1 3638.7 5134.7 5968.2 1834.1 1462.9 1217.4 771.0 705.7 200.6 183.8 1490.4 1705.6 414.1 259.8 198.9 41.1 31.1 338.9 376.7 48.5 8.6 3.5 42.4 41.5

744064.2 189261.7 322430.9 64687.6 5137R.6 65110.3 20106.2 18654.2 16124.6 16320.4 19521.1 6462.8 5702.6 4893.1 3962.9 3715.2 5312.6 6205.9 1881.9 1505.2 1251.1 796.5 730.8 218.1 200.5 1554.4 1788.9 430.2 272.7 20H.9 46.9 36.1 359.3 402.7 51.7 9.8 3.9 46.3 46.3

766933.7 195112.3 341169.2 65635.4 52928.2 67533.5 20450.9 18981.4 16377.5 16824.6 20225.2 6592.9 5823.1 4987.9 4047.8 3792.6 5494.0 6448.8 1930.5 1548.3 1285.2 826.5 756.4 236.1 217.7 1620.0 1874.4 446.7 285.9 219.0 52.8 41.2 380.3 429.6 54.9 11.1 4.4 50.3 51.4

4394763

4524233

4657079

4795616

4937547

15112 2.5112 PPl/P 2P3/2 3S1/2 3P1/2 3P3/2 3D312 3D5/2 4S1/2 4P1/2 4P3/2 4D3/2 4DW2 4F5/2 4F7/2 5S1/2 5P1/2 5P3/2 5D3/2 5D5/2 5F5/2 5F7/2 5G7/2 5G9/2 6S1/2 6Pl/2 6P3/2 60312 6D5/2 6F5/2 6F7/2 7S1/2 7P1/2 7P3/2 7D3/2 7D5/2 8S1/2 8P1/2 9S1/2 9Pl/P 8P3/2 ET

lS1/2 2s1/2 2Pl/E 2P3/2 35112 3P1/2 3P3/2 3D3/2 3D5/2 45112 4P1/2 4P3/2 403/2 405/2 4F5/2 4F7/2 5s1/2 5P1/2 5P3/2

790530.3 201081.6 360834.6 66596.1 54513.6 70012.3 20802.7 19315.5 16635.4 17342.1 20945.9 6727.5 5948.0 5086.3 4136.3 3873.4 5683.6 6699.3 1982.6 1594.8 1322.4 G57.5 784.9 257.0 237.7 1689.9 1964.6 466.0 301.9 231.8 61.4 49.0 404.6 459.8 60.6 14.6 6.8 56.9 59.3 4.5

814861.0 207165.0 3131431.9 67568.2 56132.9 72545.2 21160.2 19655.1 16896.8 17871.3 21681.5 6865.2 6075.6 5187.0 4227.0 3956.2 5877.5 6955.9 2036.5 1643.1 1361.2 990.0 a14.8 279.3 259.1 1762.5 2057.8 406.6 319.1 245.8 71.1 57.8 430.5 492.0 67.3 19.0 10.0 64.6 68.4 5.2

839932.1 213359.4 402964.8 68551.3 57785.9 75132.2 21522.9 19999.8 17161.2 18411.7 22431.8 7005.4 6206.1 5289.4 4319.3 4040.5 6076.1 7218.1 2091.8 1692.7 1400.9 923.5 845.6 302.5 281.5 1837.4 2153.8 507.9 337.1 260.4 81.4 67.3 457.6 525.5 74.4 23.8 13.5 72.8 78.2 6.1 4.5

865749.2 219661.4 425434.8 69545.0 59471.6 77773.5 21890.4 2034R.9 17428.0 18962.9 23196.2 7147.6 6338.2 5392.8 4412.7 4125.6 6278.7 7485.4 2148.0 1743.0 1441.1 957.4 676.8 326.0 304.0 1913.8 2251.7 529.6 355.3 275.0 91.8 76.7 485.2 559.8 81.4 28.4 16.8 81.1 88.1 7.0 5.4

892316.7 226068.5 440642.2 70549.7 61190.7 80470.1 22262.9 20702.8 17697.6 19525.0 23975.2 7292.2 6472.6 5497.7 4507.4 4211.9 6485.7 7758.1 2205.3 1794.5 1482.1 992.0 908.6 350.2 327.2 1992.3 2352.1 551.7 374.1 290.0 102.5 86.5 513.8 595.2 80.6 33.2 20.2 89.8 98.6 8.0 6.5 5.6

5083690

5234064

5388684

5547557

5710683

z=170

z=171

Zr172

z=173

11170

21171

Z=172

z=173

c19.193 Tr2.2

W9.463 b2.2

Cs9.243 T=2.2

C19.268 Tr2.2

cr9.193 T=P.P

C19.463 Tr2.2

09.243 T=2.2

C19.268 Tr2.2

919638.3 232578.3 473186.8 71566..0 62943.6 83223.8 22641.4 21062.4 17970.5 20098.8 24769.6 7439.9 6609.9 5604.7 4604.2 4300.1 6697.9 8037.0 2264.4

938807.3 237306.9 490782.6 72617.0 64299.3 85410.8 23032.7 21434.1 18251.3 20558.9 25420.1 7591.9 6751.3 5714.2 4703.1 4389.9 6871.6 8269.6 2324.5

967112.1 243942.1 516427.1 73655.4 66100.2 8G252.7 23420.9 21802.9 18528.9 21149.0 26237.5 7743.5 bG92.3 5823.2 4801.8 4479.5 7090.0 8556.7 2385.0

1006175.0 252712.6 551833.0 74685.2 68406.9 91842.9 23810.7 22173.5 18808.5 21890.2 27247.8 7899.8 7038.2 5937.0 4905.5 4574.1 7363.8 8910.2 2451.4

5D3/2 5D5/2 5F5/2 5F7/2 5G7/2 5G9/2 651/P 6Pl/2 6Pi/E 6D3/2 6D5/2 6F5/2 6F7/2 75112 7P1/2 7P3/2 7D3/2 7D5/2 8S1/2 8P1/2 8P3/2 9S1/2 9P1/2 6G7/2 ET

See page 89 for Explanation

1847.7 1524.5 1028.0 941.7 375.6 351.7 2073.4 2455.6 575.2 394.0 306.1 114.3 97.3 544.0 632.5 96.7 38.9 24.5 99.5 110.2 6.6 9.4

1901.7 1567.1 1064.0 974.6 400.7 375.7 2140.9 2543.0 598.0 413.2 321.3 125.1 107.0 569.1 664.2 103.5 43.3 27.4 106.9 119.5 1::: 8.7

6006887

1956.2 1610.1 1100.5 1008.1 426.5 400.5 2224.4 2649.8 621.6 433.2 337.2 136.6 117.5 600.0 702.5 111.1 48.5 31.1 116.4 131.2 7.6 11.2 10.1

6180167

2016.5 1658.9 1143.0 1047.5 458.4 431.3 2331.4 2783.6 651.4 459.4 359.2 154.4 134.2 642.8 753.9 124.9 60.0 41.1 133.7 151.0 13.9 18.4 17.7 n.5 6405743

of Tables

94

Atomic Doto and Nuclwr

Data Tables, Vol. 19, No. 1, January

1977

B. FRICKE

TABLE

DFS

and G. SOFF

lSl/2

143028

2s1/2

27803

2Pl/2

26868

2P3/2

Corrections

21017

56::: 516.2 200.7 113.0 91.7 3.6 102.6 81.1 22.0

-91 -153 -92

+41 +8

-457

+155

-96

+13

-9

+11

+3

100 5 Z 5 173

+26 +4 0

SUP?

Experiment

DFS Result

-99

141953

141963

-69

27581

27573

27410

-77

26646

26664

26555

-70

20869

20868

20715

142050

+6

-42

7213

7200

7096

+1

-49

6783

6779

6695

0 -46

5411

5408

5320

4814

4746

4685

3D5/2

4540

4484

4421

451/2

1993

1940

1889

4P1/2

1793

1743

1702

4P3/2

1411

1371

1328

4D3/2

1099

1059

1031

4D5/2

1031

989

965

7292

-19

+1

3Pl/2

6864

-33

+3

-3

3P3/2

5474

-20

+2

+1

3D3/2

21139

374916.4 07274.2 93019.1 44750.4 24148.5 24891.8 13146.7 12055.4 10844.2 7491.8 7523.0 3984.9 3427.4 3063.5 2353.1 2240.5 2259.6 2197.4 1062.8 802.2 695.7 378.7 351.4 12.5

-715

3S1/2

TABLE

lSl/2 2s1/2 2Pl/2 2P3/2 351/2 w1/2 3P3/2 303/2 305/2 4Sl/2 4Pl/2 4P3/2 403/2 4DW2 4f5/2 4f7/2 5Sl/2 SPllP 5P3/2 5D3/2 SDS/2 5f5/2 5f7/2 507/2 5G9/2 6Sl/P bPl/Z 6P3/2 6D3/2 6DW2 6fW2 751/2 7Pl/2 7P3/2 703/2 i351/2 8P1/2

Eigenvalues

III. Energy Eigenvalues (in eV) for Z = 100 from DF and DFS Calculations and Binding Energies from Experiment DF Result

NEUTRAL

Energy

IV. Energy-- Eigenvalues (in eV) for Z = 139 and Z = 170 in Vkious States of Ionization

c-e.4

.s*

-25

1=2.2 17*

2=170

29+

3s*

375016.1 87373.9 93118.7 44850.3 24248.6 24991.0 13246.6 12155.4 10944.2 7591.3 7623.4 4Q04.2 3526.7 3162.7 2452.5 2339.9 2356.7 2296.5 1161.9 901.3 794.9 477.8 450.5 111.3 106.4 664.5 615.4 307.4 211.0 189.1

375254.5 07b14.7 93350.6 45092.3 24494.1 25236.2 13494.9 12402.2 11191.7 7844.1 7875.4 4339.3 3701.3 3417.7 2706.9 2594.5 2613.1 2551.1 1409.9 1148.4 1039.8 720.9 692.5 317.0

375734.0 88093.7 93837.0 45572.7 24982.2 25722.0 13989.0 12892.6 11684.0 8340.0 8377.6 4845.5 4207.0 3923.4 3212.4 3100.3 3110.0 3049.5 1882.3 1618.5 1503.1 1180.6 1148.9

375974.5 RO335.3 94070.4 45813.8 25219.1 25960.1 14223.3 13128.6 11919.2 8578.5 8608.8 5072.6 4514.9 4150.3 3440.4 3327.9 3331.9 3272.0 2098.0 1833.9 1717.0 1393.8 1361.4

898.4 849.6 517.9 414.0 387.0

1281.9 893.8 777.2 739.9

1535.5 1488.7 1084.2 963.8

198.6 176.5 109.5

385.1 361.1

NEUTRAL lSl/2 251/2 2Pl/P 2P3/2 351/2 3P112 3P3/2 3D3/2 305/2 451/2 4Pl/2 4P3/2 603/2 4D5/2 4f5/2 4f7/2 551/2 5Pl/2 5P3/2 5D3/2 SDS/2 5fW2 5f7/2 SG7/2 5G9/2 651/P 6Pl/2 6P3/2 6D3/2 6D5/2 6f5/2 6f7/2 751/2 7Pl/2 7P3/2 7D3/2 7D5/2 BSl/2 BPl/2 EP3/2 951/2

1::: 5.6

See page 89 for Explanation of Tables

95

919638.3 232578.8 473186.0 71566.1 62943.6 83223.8 22641.4 21062.4 17970.5 20098.9 24769.7 7439.9 6609.9 5604.8 4604.3 4300.1 6697.9 8037.0 2264.4 1847.7 1524.5 1020.0 941.7 375.6 351.7 2073.4 2455.6 575.2 394.0 306.1 114.3 97.3 544.0 632.5 96.7 38.9 24.5 99.5 110.2 6.6 9.4

c19.193 36* 920676.6 233594.2 474222.2 72568.5 63943.1 84229.3 23630.1 22053.8 18959.3 21084.2 25759.0 0412.2 7503.9 6576.1 5570.4 5272.9 7667.4 9010.5 3219.1 ERO2.3 2475.1 1978.2 1889.9 1322.4 1297.2 3024.5 3411.7 1481.4 1291.6 1187.9 972.9

112.2 701

1oa*

14e*

923114.4 235966.5 476654.1 74096.4 66257.1 86367.8 25903.7 24337.1 21232.4 23346.7 28037.5 10620.4 9800.4 8776.8 7794.9 7453.2 9855.9 11225.0 5245.6 4830.0 4458.3 3967.2 3319.0

927970.4 240711.2 4815OO.n 79535.7 70846.5 91232.4 30311.4 28806.0 25650.7 27683.7 32466.9 14632.8 13863.5 12761.5 11877.6 11531.5 13770.0

940986.6 253012.2 494454.2 91190.1 82149.7 103050.0 40218.8 39230.0