Direct determination of the phase of reflectivity in CdS and ZnO in the exciton region

Direct determination of the phase of reflectivity in CdS and ZnO in the exciton region

Solid State C o m m u n i c a t i o n s . Vol 11, pp 1 6 5 1 - 1 6 5 3 , 1972 Pergamon Press. P r i n t e d m Great Britain D I R E C T DETERMINAT...

199KB Sizes 0 Downloads 12 Views

Solid State C o m m u n i c a t i o n s . Vol

11, pp 1 6 5 1 - 1 6 5 3 , 1972

Pergamon Press.

P r i n t e d m Great Britain

D I R E C T DETERMINATION OF THE PHASE OF R E F L E C T I V I T Y IN CdS AND ZnO IN THE EXCITON REGION I Fllmskl C h e m i c a l Laboratorb B, T e c h n . Umv. of Denmark, 2800 L y n g b y , Denmark and T Skettrup P h y s i c s Laborator~y III, T e c h n . Univ. of Denmark, 2800 L y n g b y , Denmark

(Received28 September 1972 b> L Hedm)

T h e p h a s e of r e f l e c t l v l t y h a s been m e a s u r e d m CdS and ZnO in the e x c i t o n region at 4.2 K. The s p e c t r a were recorded at normal i n c i d e n c e by e l h p s o m e t n c m e t h o d s , the e l h p t m ~ t y b e i n g reduced by the c r y s t a l d m h r m s m . T h e p h a s e s p e c t r a for the 4--exclton in CdS and the Aand B- e x c i t o n s in ZnO d e v i a t e d c o n s i d e r a b l y from the c o r r e s p o n d i n g s p e c t r a computed by means of K r a m e r s - K r o m g a n a l y s i s . It was found that this kind of b e h a v m u r may be e x p e c t e d in the p r e s e n c e of e x c l t o n free s u r f a c e l a y e r s and m the c a s e of s a m p l e m h o m o g e n e l t l e s .

IN ORDER to d e t e r m i n e the o p t m a l c o n s t a n t s of a medium from r e f l e c t i o n m e a s u r e m e n t s both the a m p l i t u d e and the p h a s e of r e f l e c t l v l t y must be known.

the o p t i c a l axz" ( c - a x i s ) of the c r y s t a l . T h e component of h g h t p o l a r i z e d along the c - a x i s (E ' c) is r e f l e c t e d with dKferent a m p h t u d e and p h a s e m the s p e c t r a l region of d m h r o l s m than the component of light p o l a r i z e d p e r p e n d i c u l a r to the c-ax~s (E I c). H e n c e , the r e f l e c t e d h g h t is e l h p t l c a l l y p o l a r i z e d . The p h a s e d i f f e r e n c e b e t w e e n the components Ell c and K J_ c c a n then be measured by means of an o p t i c a l c o m p e n s a t o r . The ratio of t h e two r e f l e c t l v l t y a m p h t u d e s ~s determined from the s l o p e of the h n e a r l y p o l a r i z e d light emerging from the c o m p e n s a t o r .

However, m e a s u r e m e n t s of the p h a s e of r e f l e c t l v l t y are often a v o i d e d , s i n c e t h e s e , in g e n e r a l , m v o l v e s t e d i o u s l n t e r f e r o m e t r m methods. I n s t e a d , the p h a s e of r e f l e c t l v l t y is computed from the a m p h t u d e of r e f l e c t l v l t y by means of Kramers-Kromg relatmns. We report m this l e t t e r p h a s e m e a s u r e m e n t s m CdS and ZnO by a new method a v o l d m g m t e r ferometry. T h i s is to our knowledge the first time the p h a s e of r e f i e c t l v l t y for e x c l t o n s p e c t r a h a s b e e n m e a s u r e d d l r e c t i y . The p h a s e s p e c t r a obt a i n e d m t h e s e e x p e r i m e n t s d e v i a t e from the corr e s p o n d i n g p h a s e s p e c t r a computed by means of the K r a m e r s - K r o m g r e l a t i o n s .

T h e p a r a m e t e r s of the e l h p t m a l l y p o l a r i z e d h g h t were r e c o r d e d d i r e c t l y by means of an automatin e l h p s o m e t e r to be d e s c r i b e d e l s e w h e r e .

The r e f l e c t m n m e a s u r e m e n t s were performed with normal i n c i d e n t hght p o l a r i z e d 45 ° a w a y from

1651

S i n c e the a b s o r p t i o n for E!] c Is n e g h g l b l e m the s p e c t r a l region of the 4--exclton m CdS ( q and B- e x c l t o n s m ZnO), the p h a s e of r e f l e c t l v l t y for El * c m zero m t h i s region. Hence, t h e m e a s u r e d p h a s e d i f f e r e n c e dzrectly y i e l d s the p h a s e spectrum for the A- e x c l t o n m CdS and the A- and B- e x c l t o n s

1652

CdS AND ZnO IN THE E X C I T O N R E G I O N

in ZnO For higher energ5 excItons the recorded s p e c t r a are l e s s useful s i n c e both reflectl~,t~ components (E c and E ± c) ~ary w~th energ}

Vol

11, No 12

40" 30" 20"

360"I

10" O" Z nO 1.2~:

270"I

eV

-10" -20"

I 180

-30"

t

I

0

~ S ' " 3 38 3 36

C

' 31.0

3~2

3-~I

3 z5



FIG. 1. P h a s e s p e c t r a in the e x c l t o n region of ZnO at 4.2°K. The arrows m d m a t e the minima of r e f l e c t t w t y for the different e x c l t o n s . The full h n e is the measured spectrum which in the region of the 4- and B- e x m t o n s is the phase of reflect l v l t y , while it at higher e n e r g i e s yields the phase difference b e t w e e n the hght polarized with E i c and E ± c. The dashed h n e is the p h a s e spectrum o b t a i n e d from K r a m e r s - K r o m g a n a l y s m of the c o r r e s p o n d i n g reflection spectrum. The dots r e p r e s e n t the phase c a l c u l a t e d from the model i n v o l v i n g an e x c l t o n free s u r f a c e layer with a t h m k n e s s of 60A.

In the following we s h a l l only c o n s i d e r the s p e c t r a of the 4- e x c l t o n for CdS and the 4- and B- e x c I t o n s for ZnO, t a k e n at 4 2°K T h e s e s p e c tra exhibit an unexpected b e h a w o u r ( F i g s 1 and 2) T h e r e f l e c t i o n s p e c t r a are s t m d a r to those earlier reported, 1.2 and are not shown in the figures. For CdS the maxlmum of phase occurs near the r e f l e c t t v l t y minimum as expected, but the phase is c h a n g i n g s i g n , before returning to zero For ZnO the phase goes through aI1 v a l u e s bet w e e n 0 and 2~, and there is no maximum of p h a s e T h e K r a m e r s - K r o m g transforms are a l s o shown m t h e figures The largest d i s c r e p a n c i e s b e t w e e n the experimental and K - K transformed curves occur near the l o n g i t u d i n a l r e s o n a n c e energy where the phase is e x p e c t e d to be large. In this region the phase of CdS becomes n e g a t i v e , while the phase ot ZnO c o n t i n u e s to i n c r e a s e i n s t e a d of d e c r e a s i n g T h i s behavlour of the phase s p e c t r a of ZnO is observed

A

B

FIG 2 P h a s e s p e c t r a m the e x c l t o n region of CdS at 4 2°K The arrows i n d i c a t e the minima of reflecttwt~ for the different e x m t o n s T h e f u l l line is the measured spectrum which for the 4exclton is the phase reflect1~lt~ and for the Be x c l t o n the phase difference b e t w e e n E I c and E ± c The dashed h n e is the phase computed from a K r a m e r s - K r o m g a n a l s s l s The dots are c a l c u l a t e d from the model with an e \ c l t o n free surface layer of a t h i c k n e s s of 80A Howe~er, an exctton b r o a d e m n g of l- = 1 S meV is included to avoid the phase change oi 2 = as in F i g 1

only at very low temperatures At higher temperatures the phase of the B- exctton changes sign and the spectrum looks slmilar to the CdS- spectru,n It was a l s o observed that the reflected light cont a m e d a component of d e p o l a n z e d light s h o w i n g a pronounced peak near the minima of r e f l e c u v l t v The K r a m e r s - K r o m g relations are valid for a system with a causal linear response where the response function ts bounded at mflmte frequencte~ However, the K r a m e r s - K r o m g relations between phase and amplitude of refelctlon are not directly apphcable w h e n the crystal ts surrounded b~ a 3 medium with refractlve index different from umty, or m obhque mcldence, 3 m case of a laser structure 4 or an m h o m o g e n e o u s m e d m m s W e have been consldermg both the case of a [a~er structure and of an m h o m o g e n e o u s crystal Both models can explain the unusual features of the phase spectra W e have apphed the model of Hopfleld and T h o m a s " w h m h include an exc~ton free surface layer wlth a constant background dlelectrlc constant This layer was introduced m order to interpret a spike at the longltudmal energ? m the reflectlon spectrum. s.7 Such a layer In connection ~tth the small damping necessary for observing the spike '~ ~ii produce large phase shifts (up to 2,-) as observed

Vol 11, No 12

CdS AND ZnO IN THE E X C I T O N R E G I O N

1653

In c o n c l u s i o n , it may be s t a t e d that in the c a s e of e x c i t o n s p e c t r a the use of K r a m e r s - K r o n i g r e l a t i o n s may l e a d to incorrect r e s u l t s for the p h a s e Both the a m p l i t u d e and the p h a s e of ref l e c t i v i t y must be m e a s u r e d to obtain the correct ~alue of the complex r e f l e c t l v i t y Furthermore, it was found that the model involving an e x c l t o n free s u r f a c e la~er may e x p l a i n the o b s e r v e d p h a s e s p e c t r a T h i s method of measuring r e f l e c t i o n - , p h a s e - and d e p o l a r i z a t i o n s p e c t r a s i m u l t a n e o u s l y s e e m s to be a p r o m i s i n g method of d e t e r m i n i n g crystal properties directly

for ZnO. Using e x p r e s s i o n (30) of r e f e r e n c e 6 and the p a r a m e t e r s of r e f e r e n c e 8 we o b t a i n the p o i n t s In F i g . 1 for ZnO ~ h i c h a g r e e well with the measured cur~e In t h i s model the d r a s t i c p h a s e c h a n g e is a d i r e c t c o n s e q u e n c e of the e x c l t o n free s u r f a c e layer. In c a s e of CdS ( F i g . 2) the p h a s e c h a n g e is not s o pronounced and b r o a d e n i n g is therefore introduced into the model The p r e s e n c e of the d e p o l a r i z e d r e f l e c t e d light is not e x p l a i n e d by t h i s model and another model i n v o l v i n g i n h o m o g e n l t i e s introduced as a randoml~ s t r a t i f i e d medium with a d i s t r i b u t i o n of r e s o n a n c e f r e q u e n c i e s is a l s o c o n s i d e r e d P r e liminary calculattons involving Monte-Carlo methods for light r e f l e c t e d from this kind of medium i n d i c a t e s a large d e p o l a r i z a t i o n e f f e c t near the l o n g i t u d i n a l r e s o n a n c e frequency. T h e s e c a l c u l a t i o n s a l s o predict large p h a s e s h i f t s (up to 2~) as in the c a s e of the model with an e x c l t o n free s u r f a c e l a y e r . This is not s u r p r i s i n g both m o d e l s involve l a y e r s

-lcknowledo, ements - T h e authors w i s h to thank Professor R W Asmussenand Professor N I Meyer for their i n t e r e s t in the work

REFERENCES 1.

THOMAS D G , J. Phys. Chem. Sohds 15, 86 (1960)

?

THOMAS D G and H O P F I E L D J J ,

3

PLASKETT JS

4.

LUPASHKO E A., MIKOSLAVSKII V K and SHKLYAREVSKII I N., Opt Spectrosc. 29, 419 (1970)

5.

F I L I N S K I I., Phys. Status Sohdt (b) 49, 577 (1972).

6.

HOPFIELD JJ

7

S E L L D D , DINGLE R , STOKOWSKIS E and D I L O R E N Z O J V , Phys

8.

S K E T T R U P T and B A L S L E V I., Phys

9.

NIELSEN K and F I L I N S K I I . , t o be p u b l i s h e d

Phys. Rev 116, 573 (1959).

and SCHATZ P N , J .

Chem. Phys. 38, 612 (1963).

and THOMAS D G , Phys. Rev

132, 563 (1963).

Rev. Let! 27, 1644 (1971)

Rev B3, 1457 (1971)

F u r CdS und ZnO wurde der P h a s e n w i n k e l d e s komplexen R e f l e x l o n s k o e f f i z i e n t e n im E x c l t o n b e r e i c h bel 4,2 K g e m e s s e n . Bel l i n e a r p o l a r i s l e r t e m , s e n k r e c h t e l n f a l l e n d e m L i c h t wlrd wegen d e s D i k r m s m u s des K r i s t a l i e das r e f l e k t l e r t e L l c h t e l l i p t l s c h p o l a r l s l e r t , d i e Spektren wurden dutch e m e n a u t o m a t l s c h e n E l h p s o m e t e r aufgezelchnet. Die P h a s e n s p e k t r e n d e s 4- E x z l t o n s in CdS s o w l e die j e n l g e n der ,qund B- E x z l t o n e n in ZnO wlchen m e r k h c h yon den m i t t e l s der K r a m e r s - K r o m g s c h e n R e l a t l o n e n b e r e c h n e t e n Spektren ab M o g h c h e U r s a c h e d i e s e r A b w e l c h u n g 1st die N i c h t b e r u c k s i c h t i g u n g der K r i s t a l h n h o m o g e n l t a t und der E x l s t e n z e l n e r O b e r f l a c h e n s c h i c h t ohne exzitonen