Dynamic Activation, Deactivation, and Coking on PT and PTRE Catalysts for Dehydrogenation of Methylcyclohexane (MCH)

Dynamic Activation, Deactivation, and Coking on PT and PTRE Catalysts for Dehydrogenation of Methylcyclohexane (MCH)

B. Imelik e t al. (Editors), MetalSupport and Metal-Additiue Effects in Catalysis 307 0 1982 Elsevier Scientific Publishing Company, Amsterdam -Prin...

325KB Sizes 0 Downloads 113 Views

B. Imelik e t al. (Editors), MetalSupport and Metal-Additiue Effects in Catalysis

307

0 1982 Elsevier Scientific Publishing Company, Amsterdam -Printed in The Netherlands

DYNAMIC ACTIVATION, DEACTIVATION, AND C O K I N G ON PT AND PTRE CATALYSTS FOR

DEHYDROGENATION OF METHYLCYCLOHEXANE (MCH) R o b e r t W. C o u g h l i n , Koel Kawakami, Akran Hasan and Paul Buu Department o f Chemical E n g i n e e r i n g , U n i v e r s i t y o f C o n n e c t i c u t , S t o r r s , CT 06268 (USA)

RESUNE Le depBt de coke d e s a c t i v e l ’ h y d r o g e n o l y s e dans une p r e m i e r e etape, p u i s l a deshydrogenation du IICH. L ’ a d d i t i o n de Re c a t a l y s e 1 ’ 6 l i m i n a t i o n du coke p a r hydrogPnation. Le t r a i t e m e n t p a r ti2 du PtRe non s u l f u r 6 e n l @ v e p l u s de coke e t

a c e q u i e s t observe avec P t . La p r e s u l f u r a t i o n p a r H2S ou 10 ppm de t h i o p h e n e dans l e HCH a m e l i o r e n t l e rendement des

restaure l’hydrogenolyse, c o n t r a i r e n e n t

2 c a t a l y s e u r s au t o l u e n e . Mais 75 ppn de t h i o p h e n e d i m i n u e n t l e rendement de PtRe.

ABSTRACT Coke d e p o s i t i o n f i r s t d e a c t i v a t e s h y d r o g e n o l y s i s r e a c t i o n s and l a t e r dehydrog e n a t i o n o f MCH.

Added Re c a t a l y z e s coke removal by h y d r o g e n a t i o n .

Hydroqen

t r e a t m e n t o f u n s u l f i d e d PtRe c a t a l y s t s removes more coke and r e s t o r e s c o n s i d e r a b l e hydrogenolysis a c t i v i t y i n c o n t r a s t w i t h P t c a t a l y s t s .

Presulfiding with

H2S improves t o l u e n e y i e l d f o r e i t h e r c a t a l y s t , b u t e s p e c i a l l y PtRe.

Thiophene

( 1 0 ppm) i n t h e MCH f e e d improved t o l u e n e y i e l d w i t h e i t h e r c a t a l y s t , whereas 75 ppm improved t h e P t c a t a l y s t b u t l o w e r e d t o l u e n e y i e l d f o r t h e PtRe c a t a l y s t . INTRODUCTION Because dehydrogenation o f naphthenes t o a r o m a t i c s o v e r P t c a t a l y s t s i s r a p i d and o f g r e a t economic importance f o r i n c r e a s i n g t h e o c t a n e v a l u e s o f naphthas, we have i n v e s t i g a t e d t h i s r e a c t i o n f o r m e t h y l c y c l o h e x a n e as a model compound.

Commercial r e f o r m i n g c a t a l y s t s were e i t h e r m o n o m e t a l l i c (0.35% P t )

o r b i m e t a l l i c (0.32%, 0.325% Re) s u p p o r t e d on c h l o r i d e d y-alumina.

Only a f t e r

t h e c a t a l y s t has been on stream s e v e r a l hours, d u r i n g which a d e p o s i t o f hydrocarbonaceous r e s i n o r coke accumulates, does t h e e f f e c t o f t h e Re promoter become e v i d e n t ( 1 , 2 ) . accumulates

-

R e - c o n t a i n i n g c a t a l y s t s d e a c t i v a t e l e s s r a p i d l y as coke

t h e s e b i m e t a l l i c c a t a l y s t s can m a i n t a i n r e f o r m a t e p r o d u c t octane

308

number a t a s p e c i f i c desired level over the course of time-on-stream without the necessity of increasing temperature or space time as severely as required f o r monometallic P t c a t a l y s t s ( 3 ) . I t has been suggested ( 4 , 5 ) t h a t the a c i d i c alumina s u p p o r t of such catal y s t s may be modified by the Re, and shown ( 6 ) t h a t the Re i s present as an oxide such as Re02 associated with the surface of the alumina. Ludlum and Eischens ( 7 ) conducted an i n f r a r e d study of differences in the chemical natures of such d e p o s i t s ; they observed t h a t some carbon atoms of such deposits a r e bonded t o oxygen ( a s indicated by carboxylate bands a t 1570 and 1450 cm- 1 ) b u t t h a t the presence of Re decreases the f r a c t i o n of such carboxylate in t h e deposits. More recently much a t t e n t i o n has focused on t h e p o s s i b i l i t y of a l l o y format i o n between P t and Re a s well a s between P t and several other second-metal promoters. For example, alloying P t with Cu ( 8 ) o r with Sn ( 9 ) produces s e l e c t i v i t y changes dubbed "ensemble e f f e c t s " and viewed as s h i f t s from m u l t i s i t e mechanisms on c o l l e c t i o n s of contiguous P t atoms in P t - r i c h a l l o y s toward s i n g l e - s i t e mechanisms on P t d i l u t e d with the promoting metal.

In the case of

PtRe c a t a l y s t s i t has a l s o been shown (10) t h a t the combined action of Re plus S converts P t i n t o a c a t a l y s t s e l e c t i v e f o r mild hydrogenation and argued t h a t

sulfur-covered rhenium atoms divide t h e surface of the platinum metal i n t o ensembles of contiguous P t atoms.

Other evidence (11) t h a t P t and Re a r e in

intimate contact within bimetallic c l u s t e r s or ensembles has a l s o been provided by temperature programmed reduction. Many publications have reported c o n f l i c t i n g evidence concerning the degree of association of P t and Re in t h e reduced c a t a l y s t .

Alloying has been advo-

cated (5,10,12,13) as well as s e p a r a t e dispersion (4,14,15) of the two metals. More recently Bertolacini and P e l l e t (16) showed t h a t a physical mixture of P t and Re supported on separate p e l l e t s performed s i m i l a r l y t o p e l l e t s coimpregnated with P t and Re f o r reforming a naphtha t o higher-octane products. Similarly Short e t a1 (17) showed by X-ray absorption spectroscopy t h a t Re i s + not s i g n i f i c a n t l y associated with P t and l i k e l y in the 4 valence s t a t e in reduced bimetal 1 i c c a t a l y s t s .

We have a l s o performed experiments comparing MCH dehydrogenation over P t , PtRe and physical mixtures of supported P t and supported Re and observed behavior s i m i l a r t o t h a t reported by Bertolacini and P e l l e t ( 1 6 ) . Experimental. Catalyst compositions, surface a r e a s , metal dispersions and other experimental d e t a i l s a r e given elsewhere (18). All reactions were conducted a t atmospheric pressure and 50OoC. For the experiments in which

309

c o n v e r s i o n s were measured, t h e H2/MCH m o l a r r a t i o was 9.0, WHSV was 0.14 g MCH/g c a t - h r , t h e mole f r a c t i o n o f MCH was 1/19, and N2 was i n c l u d e d as an a d d i t i o n a l d i l u e n t i n amounts e a u i m o l a r w i t h H2.

The i s o t h e r m a l , heated r e a c t o r

c o n t a i n e d 3 g c a t a l y s t d i l u t e d w i t h 14 g o f 3-mm d i a m e t e r g l a s s beads.

Accel-

e r a t e d coke d e p o s i t i o n and h y d r o g e n a t i o n experiments were conducted u s i n g a DuPont Model 951 Thermogravimetric A n a l y z e r i n which f o u r preweighed c a t a l y s t p e l l e t s (90-95 mg t o t a l mass) were h e l d i n t h e c o n t i n u o u s l y weighed P t sample pan.

The s e n s i t i v i t y o f t h e g r a v i m e t r i c measurement was about 5 ug, t h e TGA

space v e l o c i t y was 3 g MCH/g c a t - h r , and t h e mole f r a c t i o n o f MCH i n t h e gas was a b o u t 0.05. Procedure. 500°C,

The c a t a l y s t charge was s l o w l y r a i s e d f r o m room temperature t o

h e l d f o r one hour a t t h a t t e m p e r a t u r e i n a f l o w ( 5 0 ml/min) o f d r y a i r ,

t h e n t r e a t e d i n f l o w i n g hydrogen ( 5 0 ml/min) f o r t h r e e hours a t 50OoC.

For t h e

f i r s t c y c l e ( c o k i n g and h y d r o g e n a t i o n ) t h e gas c o n t a i n i n g MCH, H2 and N2 i n a 1:9:9 m o l a r r a t i o was f e d t o t h e r e a c t o r ; a f t e r 20 hours on stream, t h e f e e d was s w i t c h e d t o p u r e hydrogen (80 m l / m i n ) f o r 5 hours h y d r o g e n a t i o n .

This

c y c l e was r e p e a t e d u s i n g v a r i o u s t i m e s o f exposure t o hydrocarbon and p u r e hydrogen.

For t h e TGA experiments t h e procedure was t h e same e x c e p t t h e f l o w

f o r each gas stream was 20 ml/min.

Conversions and p r o d u c t y i e l d s were measured

a t 500°C u s i n g b o t h P t and Pt-Re c a t a l y s t s .

The r e a c t i o n p r o d u c t s were sampled

and analyzed a t v a r i o u s t i m e s by gas chromatography. RESULTS AND D I S C U S S I O N F i g u r e s 1 and 2 p r o v i d e a comparison o f t h e b e h a v i o r o f t h e P t and t h e PtRe c a t a l y s t s f o r t h e c y c l i c on-stream o p e r a t i o n .

D u r i n g t h e f i r s t 20 hours o f

o p e r a t i o n w h i l e f e e d i n g MCH, t o l u e n e y i e l d r i s e s t o a maximum a f t e r s e v e r a l hours w i t h t h e P t c a t a l y s t and t h e n f a l l s .

W i t h t h e PtRe c a t a l y s t , however,

t h e r i s e i n t o l u e n e y i e l d i s e s s e n t i a l l y monotonic d u r i n g t h i s i n i t i a l 20 hour period.

A l t h o u g h benzene y i e l d s f a l l m o n o t o n i c a l l y f o r b o t h c a t a l y s t s t h e

decreases a r e less r a p i d f o r t h e PtRe c a t a l y s t .

The f a l l i n benzene y i e l d can

be a s s o c i a t e d i n p a r t w i t h r i s e i n t o l u e n e y i e l d ( p r o b a b l y by a decrease i n s i d e c h a i n c r a c k i n g ) b u t t h e t r a d e - o f f i s n o t complete.

D u r i n g t h i s f i r s t 20

hours t h e n e t y i e l d o f t o t a l a r o m a t i c s (benzene and t o l u e n e ) a l s o f a l l s o f f , b u t t h i s decrease i s s m a l l e r f o r t h e R e - c o n t a i n i n g c a t a l y s t .

This lower r a t i o

o f d e a c t i v a t i o n f o r t h e PtRe c a t a l y s t i s a l s o e v i d e n t w i t h r e s p e c t t o t o t a l c o n v e r s i o n o f MCH d u r i n g t h i s p e r i o d .

The f i r s t r e a c t i o n t o be d e a c t i v a t e d i s

s i d e - c h a i n c r a c k i n g as evidenced by t h e f a l l i n benzene and t h e r i s e i n t o l u e n e y i e l d as carbon d e p o s i t e d on t h e c a t a l y s t d u r i n g t h e f i r s t few hours.

Towards

t h e end o f t h e f i r s t 20 h r , coke d e p o s i t i o n begins t o r e t a r d t h e dehydrogenat i o n f u n c t i o n o f t h e P t b u t n o t t h e PtRe.

310

Fig. 1

Fig. 2

311 S w i t c h i n g o f f t h e hydrocarbon ( b u t m a i n t a i n i n g t h e f l o w o f H2 and t h e temp e r a t u r e ) from t = 2 0 hours t o t=25 hours a l s o has r e m a r k a b l y d i f f e r e n t e f f e c t s on t h e two c a t a l y s t s .

Most n o t a b l e i s t h e v e r y sharp decrease i n t o l u e n e

y i e l d w i t h t h e PtRe c a t a l y s t i n . c o n t r a s t t o a s l i g h t i n c r e a s e i n t o l u e n e y i e l d f o r the P t c a t a l y s t .

The c r a c k i n g a c t i v i t y ( t o C6-products) o f t h e PtRe c a t a -

l y s t i s a l s o g r e a t l y i n c r e a s e d by t h i s t r e a t m e n t i n H2 f o r 5 hours whereas t h a t for the P t c a t a l y s t i s affected f a r less.

I t appears t h a t t h e hydrogen

t r e a t m e n t r e s t o r e s c r a c k i n g s i t e s and d e a c t i v a t e s s i t e s f o r dehydroaromatizat i o n s i t e s on t h e PtRe c a t a l y s t , b u t a f f e c t s c r a c k i n g s i t e s l i t t l e and r e s t o r e s d e h y d r o a r o m a t i z a t i o n s i t e s on t h e P t c a t a l y s t . w i t h pure

A second t r e a t m e n t

H2 [from t = 3 2 hours t o t = 4 2 h o u r d produces v e r y s i m i l a r e f f e c t s .

A l t h o u g h t r e a t m e n t i n p u r e H 2 l o w e r s y i e l d and s e l e c t i v i t y f o r t o l u e n e and t o t a l a r o m a t i c s o v e r t h e PtRe c a t a l y s t , i t r a i s e s these f a v o r a b l e p r o p e r t i e s f o r the P t c a t a l y s t .

N e v e r t h e l e s s , t h i s t r e n d r e v e r s e s a f t e r t h e MCH i s

s w i t c h e d back onstream; a f t e r about o n l y f i v e hours o f exposure t o MCH t h e PtRe c a t a l y s t b e g i n s t o surpass t h e P t c a t a l y s t i n y i e l d and s e l e c t i v i t y f o r t o l u e n e and a r o m a t i c s . Less coke d e p o s i t s , and d e p o s i t s more s l o w l y , on t h e PtRe c a t a l y s t t h a n on the P t catalyst.

D u r i n g t h e f i r s t 20 hours, t h e TGA measurements showed an

i n i t i a l l a g i n w e i g h t g a i n due t o coke d e p o s i t i o n on t h e PtRe c a t a l y s t b u t n e a r l y no l a g f o r t h e P t c a t a l y s t .

D u r i n g exposure t o hydrogen a l o n e more

coke i s removed and removed more r a p i d l y , f r o m t h e PtRe c a t a l y s t .

Figure 3

shows t h e d i f f e r e n c e s between t h e two c a t a l y s t s f o r coke removal by hydrog e n a t i o n i n t h e 20-25 h r i n t e r v a l , and subsequent coke d e p o s i t i o n d u r i n g r e exposure t o MCH i n t h e 25-35 h r i n t e r v a l . y e t a n o t h e r c y c l e o f exposure t o p u r e H 2 ,

S i m i l a r r e s u l t s were o b t a i n e d f o r t h e n MCH.

I t may be t h a t t h e coke

a c t i v a t e s d e h y d r o a r o m a t i z a t i o n s i t e s and d e a c t i v a t e s c r a c k i n g s i t e s on t h e PtRe c a t a l y s t , b u t t h e e f f e c t s a r e d i f f e r e n t w i t h t h e P t c a t a l y s t .

It i s

w e l l known t h a t H2 can suppress coke f o r m a t i o n b u t t h e p r e s e n t r e s u l t s a l s o demonstrate t h a t t h e presence o f Re a l s o suppresses coking. F i g u r e 4 shows r e s u l t s f o r PtRe a f t e r t h e c a t a l y s t was p r e t r e a t e d w i t h 10 ppm o f H2S f o r 26 hours b e f o r e use.

I t i s seen t h a t t h i s p r e t r e a t m e n t

g r e a t l y i n c r e a s e s t h e t o l u e n e y i e l d and i t s p e r s i s t a n c e , l o w e r s t h e d e a c t i v a t i o n r a t e and suppresses s i d e c h a i n c r a c k i n g t o benzene.

F i g u r e 5 shows

t h a t p r e s u l p h i d i n g t h e P t c a t a l y s t does n o t improve i t s performance n e a r l y a s much as f o r PtRe shown i n F i g u r e 4.

Even so, t h e H2S p r e t r e a t m e n t does improve

t o l u e n e y i e l d s s l i g h t l y f o r t h e P t c a t a l y s t as r e v e a l e d by comparing F i g u r e s

5 and 1 .

I t appears t h a t p r e s u l f i d i n g w i t h H2S d e a c t i v a t e s s i t e s f o r b r e a k i n g

C-C bonds; s i m i l a r l y coke d e p o s i t i o n seems t o s l o w l y d e a c t i v a t e such c r a c k i n g

( F i g u r e s 1 and 2 ) b u t appears t o be f a r l e s s e f f e c t i v e t h a n p r e s u l p h i d i n g w i t h

312

4.0

I p

2.86%

I

3.5 ap

3 I

I-

z

?

5 3.0

0

w Y

0 0

2.5 20

23

TIME,HR

25

30

TIME,hR

Fig. 3

I

s

v)

8o TOLUENE

0

70-

0

\

3

0"

P4 -Re CAT S/Re = 0.75

-.

60305

PENZENE--

0

Fig. 4

I

I

4

8

I

I

12

16

--XI

IJ'

1

1

---x7-4-

I

I/

28

32

. I

I

44

TIMI . HR

313

H2S. B e r t o l a c i n i and P e l l e t ( 1 6 ) showed Re s e l e c t i v e l y removes coke p r e c u r s o r s and F i g u r e 3 shows t h a t Re i s a c a t a l y s t f o r removing coke by h y d r o g e n a t i o n . P r e s u l f i d i n g w i t h H2S appears t o d e a c t i v a t e s e l e c t i v e l y t h e h y d r o c r a c k i n g f u n c t i o n o f PtRe so t h a t s i d e c h a i n c r a c k i n g i s r e t a r d e d b u t t h e dehydroa r o m a t i z a t i o n i s u n a f f e c t e d , o r perhaps improved.

Surprisingly, treating

a l r e a d y coked PtRe w i t h H2S has d e l e t e r i o u s e f f e c t s on t o l u e n e y i e l d s ; perhaps t h e dehydrogenation s i t e s g e t d e a c t i v a t e d by S o n l y a f t e r t h e c r a c k i n g s i t e s a r e a l r e a d y b l o c k e d , e.g.,

by coke.

This behavior i s i n accord w i t h Blakely

and S o m o r j a i ’ s view ( 1 9 ) o f t h e P t atoms a t k i n k s i n s u r f a c e s t e p s as p r e f e r e n t i a l s i t e s f o r C - C bond b r e a k i n g ; such atoms o f l o w e r c o o r d i n a t i o n number would be more s u s c e p t i b l e t o bonding w i t h p o i s o n s l i k e S. Experiments w i t h 10 ppm o f t h i o p h e n e i n t h e MCH f e e d a l s o improved t h e performance of t h e P t and t h e PtRe c a t a l y s t o v e r t h e course o f about 40 hours. Compared t o H2S p r e t r e a t m e n t , however, improvements due t o t h i o p h e n e i n t h e f e e d became a p p a r e n t much l a t e r : 20 h r i n t h e case o f PtRe.

8-10 h o u r s i n t h e case o f P t and a l m o s t

U s i n g 75 ppm t h i o p h e n e i n t h e MCH f e e d gave s t i l l

g r e a t e r improvement w i t h t h e P t c a t a l y s t b u t i m p a i r e d t o l u e n e y i e l d w i t h t h e PtRe c a t a l y s t .

W i t h 75 ppm thiophene, P t gave b e t t e r performance t h a n when

p r e s u l f i d e d by H2S, b u t PtRe gave worse performance t h a n n o n - s u l f u r t r e a t e d PtRe.

I t i s n o t e w o r t h y t h a t when s u l f i d e d ( b y e i t h e r H2S o r t h i o p h e n e )

PtRe was s u b s e q u e n t l y exposed t o p u r e HZ a f t e r exposure t o MCH, t h e hydrog e n a t i o n d i d n o t cause r e g e n e r a t i o n o f h y d r o g e n o l y s i s a c t i v i t y as was c l e a r l y t h e case f o r PtRe c a t a l y s t s i n t h e absence o f S. h y d r o g e n o l y s i s s i t e s on PtRe i s s t r o n g l y bound.

I

0

0 -

Fig. 5 .

Apparently t h e S blocking

314

REFERENCES 1 H.E. Kluksdahl, U.S. P a t e n t 3,415,737 ( 1 9 6 8 ) . 2 R . L . J a c o b s o n , H . E . Kluksdahl, C.S. McCoy and R.W. D a v i s , Proc. Am. P e t r o l . I n s t . , p. 504 ( 1 9 6 9 ) . 3 F.G. C i a p e t t a and D.M. Wallace, C a t a l . Revs. 5 ( 1 9 7 1 ) 6 7 . 4 M . F . L . Johnson, C a t a l . 39(1975)487. 5 N.W. Webb, 3. C a t a l . 39(1975)485. 6 M . F . L . Johnson and V . M . LeRoy, J . C a t a l . 3 5 ( 1 9 7 4 ) . 7 K . H . Ludlurn, and R . P . E i s c h e n s , p r e p r i n t Div. o f Petroleum Chem., Arner. Chern. SOC. 21(1976)375. 8 J.C. d e J o n g s t e , V. Ponec and F.G. G a u l t , J . C a t a l . 63(1980)395. 9 F.M. Dautzenberg, J.N. H e l l e , P. Biloen and W . M . H . S a c h t l e r , J. C a t a l . 63(1980)119. 1 0 P . B i l o e n , J.M. H e l l e , H.Verbeek, F.M. D a u t z e n b e r t and W . M . H . S a c h t l e r , 63(1980)112. 11 N. Wagstaff and R. Prins, J . C a t a l . 59(1979)434. 12 J . F r e e l , R e p r i n t s Div. o f P e t r o l . Chern. p. 11 ACS D a l l a s Meeting, A p r i l 8, 1973. 1 3 C . B o l i v a r , H. C h a r c o s s e t , R. F r e t y , M. Primet, t. Tourneyon, C . B e t i z e a u , G. L e c l e r q and R. Maurel, J . C a t a l . 39(1975)249; 45( 1976)163; 45(1576)179. 1 4 B . D . McNicol, J . Catal 46(1977)438. 1 5 J.B. Peri, J . C a t a l . 52(1978)144. 1 6 R.J. B e r t o l a c i n i and R.J. P e l l e t , Proc. I n t l . Symp. on C a t a l y s t D e a c t i v a t i o n , Vol. 6 , E l s e v i e r , 1980, p. 73. 1 7 D . R . S h o r t , S.M. Khalid, J.R. Katzer and F1.J. K e l l e y , s u b m i t t e d f o r publication t o J. Catal. 1 8 P. B u u , M.S. D i s s e r t a t i o n , U n i v e r s i t y of C o n n e c t i c u t , 1980. 19 D.W. B l a k e l y and S o m o r j a i , J . C a t a l . 42(1976)181.