Accepted Manuscript Dynamic and coordinated expression changes of rice small RNAs in response to Xanthomonas oryzae pv. oryzae Ying-Tao Zhao, Meng Wang, Zhi-Min Wang, Rong-Xiang Fang, Xiu-Jie Wang, YanTao Jia PII:
S1673-8527(15)00137-X
DOI:
10.1016/j.jgg.2015.08.001
Reference:
JGG 389
To appear in:
Journal of Genetics and Genomics
Received Date: 8 June 2015 Revised Date:
4 August 2015
Accepted Date: 7 August 2015
Please cite this article as: Zhao, Y.-T., Wang, M., Wang, Z.-M., Fang, R.-X., Wang, X.-J., Jia, Y.-T., Dynamic and coordinated expression changes of rice small RNAs in response to Xanthomonas oryzae pv. oryzae, Journal of Genetics and Genomics (2015), doi: 10.1016/j.jgg.2015.08.001. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT 1
Dynamic and coordinated expression changes of rice small
2
RNAs in response to Xanthomonas oryzae pv. oryzae
3 Ying-Tao Zhao1*, Meng Wang1*, Zhi-Min Wang1, 2*, Rong-Xiang Fang 3, Xiu-Jie
5
Wang1#, Yan-Tao Jia3#
RI PT
4 6 7
1.
8
Biology, Chinese Academy of Sciences, Beijing 100101, China
9
2.
10
3.
11
Academy of Sciences, Beijing 100101, China
State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental University of Chinese Academy of Sciences, Beijing 100049, China
M AN U
12 13
* These authors contributed equally to this work.
14
#
Corresponding authors:
15 Yan-Tao Jia
17
Tel: 86-10-64861838
18
Fax: 86-10-64858245
19
E-mail:
[email protected]
20
TE D
16
SC
State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese
Xiu-Jie Wang
22
Tel: 86-10-64806590
23
Fax: 86-10-64873428
24
E-mail:
[email protected]
26
The number of text pages: 29
27
The number of figures: 6
28
The number of tables: 1
29
The number of words: 7745
AC C
25
EP
21
30 31
Abbreviations
32
Xoo, Xanthomonas oryzae pv. Oryzae; hpi, hours post infection; ta-siRNAs,
33
trans-acting siRNAs; ROS, Reactive Oxygen Species; LRR, Leucine-Rich Repeat;
34
GA, gibberellin; BR, Brassinosteroid. 1
ACCEPTED MANUSCRIPT
Abstract
36
Endogenous small RNAs are newly identified players in plant immune responses, yet
37
their roles in rice (Oryza sativa) responding to pathogens are still less understood,
38
especially for pathogens that can cause severe yield losses. We examined the small
39
RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection of
40
Xanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99, the causal agent of rice
41
bacterial blight disease. Dynamic expression changes of some miRNAs and
42
trans-acting siRNAs were identified, together with a few novel miRNA targets,
43
including an RLK gene targeted by osa-miR159a.1. Coordinated expression changes
44
were observed among some small RNAs in response to Xoo infection, with small
45
RNAs exhibiting the same expression pattern tended to regulate genes in the same or
46
related signaling pathways, including auxin and GA signaling pathways, nutrition and
47
defense related pathways. These findings reveal the dynamic and complex roles of
48
small RNAs in rice-Xoo interactions, and identified new targets for regulating plant
49
responses to Xoo.
TE D
50 51 52
EP
53
56 57
AC C
54 55
M AN U
SC
RI PT
35
58
Keywords
59
Small RNA, Rice bacterial blight disease, osa-miR159
60 61 62 2
ACCEPTED MANUSCRIPT 63
1. Introduction Small RNAs are important regulators that modulate gene expression at both
65
transcriptional and posttranscriptional levels. MicroRNAs (miRNAs) and small
66
interfering RNAs (siRNAs), which differ in their biogenesis and functions, are two
67
major categories of plant endogenous small RNAs (Axtell, 2013; Li et al., 2014a; Li
68
and Zhou, 2013; Wu, 2013). Plant miRNAs are approximately 21-nucleotides (nt) in
69
length and are produced from hairpin-shaped RNA precursors; whereas plant siRNAs
70
are usually 21- to 24-nt long and generated from double-stranded RNA molecules.
71
According to their origins, plant siRNAs can be divided into several categories,
72
including non-miRNA hairpin-derived small RNAs, heterochromatic siRNAs,
73
trans-acting siRNAs (ta-siRNAs), phased siRNAs, natural antisense siRNAs, and
74
millions of unclassified small RNAs (Axtell, 2013).
M AN U
SC
RI PT
64
Plants have evolved a complicated and efficient immune system to respond to
76
bacterial infections, in which small RNAs are indispensable key players (Boccara et
77
al., 2014; Katiyar-Agarwal and Jin, 2010; Li et al., 2012; Liu et al., 2014; Pumplin
78
and Voinnet, 2013; Ruiz-Ferrer and Voinnet, 2009; Seo et al., 2013). In Arabidopsis
79
(Arabidopsis thaliana), bacterial infection can induce the expressions of ath-miR393,
80
ath-miR160, and ath-miR167 (Fahlgren et al., 2007; Navarro et al., 2006), and repress
81
the expression of ath-miR398 (Jagadeeswaran et al., 2009), in accompany with the
82
opposite expression changes of their target genes. Osa-miR160 and osa-miR398 are
83
also important for rice (Oryza sativa) immunity against the blast fungus (Li et al.,
84
2014b). Bacterial infection in Arabidopsis also induces the expression of two other
85
types of endogenous small RNAs, the natural antisense siRNAs and the long siRNAs
86
(Katiyar-Agarwal et al., 2006; Katiyar-Agarwal et al., 2007). Recently, a novel
87
category of siRNAs, the phased siRNAs that derived from host disease resistance
88
genes, was identified in multiple plant species with important functions in
89
plant-bacteria interactions (Fei et al., 2013; Kallman et al., 2013; Shivaprasad et al.,
90
2012; Zhai et al., 2011). Intriguingly, bacteria could directly inject effector proteins
AC C
EP
TE D
75
3
ACCEPTED MANUSCRIPT 91
into Arabidopsis cells to repress the biogenesis, stability and activity of the host
92
miRNAs (Navarro et al., 2008; Qiao et al., 2013; Weiberg et al., 2013). Xanthomonas oryzae pv. oryzae (Xoo) is the causal pathogen of rice bacterial
94
blight, one of the most destructive bacterial diseases with severe yield losses in
95
irrigated rice (Gnanamanickam et al., 1999). Previous studies on rice responding to
96
Xoo infections were predominantly focused on protein-coding genes (Bart et al.,
97
2010; Deng et al., 2012; Ding et al., 2012; Fitzgerald et al., 2005; Gomi et al., 2010;
98
Jiang et al., 2013; Lee et al., 2009; Li et al., 2006; Shen et al., 2010; Sun et al., 2004;
99
Tao et al., 2009; Yuan et al., 2010), whereas the roles of rice small RNAs in this
100
process are still poorly understood. To investigate the functions of small RNAs in
101
rice-Xoo interactions, we profiled the expression patterns of small RNAs in the leaves
102
of Xoo-infected and mock-inoculated rice using high-throughput sequencing
103
technology. We found that different groups of rice small RNAs were dynamically
104
regulated at specific time points during the first 24 hours post Xoo infection.
105
Especially, some coordinately expressed miRNAs and ta-siRNAs involved in the
106
regulation of genes in the same or related signaling pathways. We also identified and
107
validated that a RLK gene could be directly targeted by osa-miR159a.1 after Xoo
108
infection.
EP
109
TE D
M AN U
SC
RI PT
93
2. Results
111
2.1 Expression profiles of rice small RNAs after Xoo infection
112
AC C
110
To explore the roles of small RNAs in the rice-bacteria interactions, we
113
systematically examined the expression profiles of rice small RNAs during the first 24
114
hours after infection with Xoo PXO99, the causal pathogen of bacterial blight on rice
115
leaves. RNA samples were collected from the pathogen-infected and mock leaves
116
(treated by water) at 2, 6, 12, and 24 hours post infection (hpi), respectively. Small
117
RNAs were isolated from each sample and sequenced by the Illumina sequencing
118
technology. After removing adaptors and low quality reads, a total of 91,685,066 4
ACCEPTED MANUSCRIPT 119
reads with lengths of 18- to 30-nt were obtained (Fig. S1A), representing
120
approximately 10 million high quality reads from each library. Consistent with previous reports in rice (Du et al., 2011; Jeong et al., 2011;
122
Rodrigues et al., 2013; Song et al., 2012a; Song et al., 2012b; Wei et al., 2011; Zhai et
123
al., 2013), 24-nt small RNAs were the most abundant population in both the total
124
reads and the non-redundant sequences, and the 21- and 22-nt small RNAs were the
125
second largest populations (Fig. S1B). The expression abundance of small RNAs
126
varied a lot within the population, with ~77% of the non-redundant sequences in each
127
library were sequenced only once, whereas ~3% of the non-redundant sequences,
128
which accounted for ~70% of the total reads, were sequenced 10 or more times (Fig.
129
1A and 1B).
M AN U
SC
RI PT
121
Genomic comparison revealed that ~90% of the total small RNAs had perfect
131
matches on the rice genome (Fig. S1A). To further classify these mapped small
132
RNAs, we compared their mapping locations with the rice genomic annotations.
133
About 20% sequenced small RNAs were known rice miRNAs, and the rest were
134
mainly derived from rRNAs, repeat regions, and the sense or antisense strand of
135
protein coding genes (Fig. 1C). In concert with previous findings, 89% of small RNAs
136
derived from miRNA genes were 21- or 22-nt in length, whereas 73% repeat-region
137
derived small RNAs were 24-nt long (Fig. 1D).
EP
TE D
130
138
2.2 Dynamic expression alterations of rice small RNAs in response to Xoo
140
infection
141
AC C
139
To identify small RNAs that may involve in Xoo infection response, we
142
compared the small RNA expression profiles of Xoo-infected rice with those of the
143
controls. To ensure the reliability of the comparison results, only small RNAs with 10
144
or more reads in at least one library were included in the analysis. About 10-14% of
145
small RNAs were differentially regulated at different time points after Xoo infection
146
(13.8% at 2 hpi, 13.6% at 6 hpi, 10.0% at 12 hpi, and 10.7% at 24 hpi, respectively) 5
ACCEPTED MANUSCRIPT 147
(Fig. 2A). Notably, the amount of small RNAs induced by Xoo was comparable
148
among the four time points, whereas the amount of the repressed small RNAs was
149
gradually decreased, especially at 12 hpi and 24 hpi (Fig. 2A). To further examine the dynamic expression changes of small RNAs, we focused
151
on the 9586 highly expressed small RNAs with abundance ≥50 reads in all eight
152
libraries. Among them, 1030, 810, 477, and 717 small RNAs were induced or
153
repressed by Xoo infection at 2 hpi, 6 hpi, 12 hpi, and 24 hpi, respectively (Fig. 2B).
154
In addition, about 4% of the differentially expressed small RNAs were repressed at 2
155
hpi, but consistently induced at the later time points (Fig. 2B).
SC
RI PT
150
156
2.3 MiRNAs and ta-siRNAs exhibited variable expression patterns in response to
158
Xoo infection
M AN U
157
To investigate how small RNAs modulate plant immune system in response to
160
Xoo infection, we first focused on the expression changes of miRNAs and trans-acting
161
siRNAs (ta-siRNAs), which have been demonstrated to play critical roles in plant
162
immune responses (Katiyar-Agarwal and Jin, 2010; Li et al., 2014b; Pumplin and
163
Voinnet, 2013; Ruiz-Ferrer and Voinnet, 2009; Seo et al., 2013). Taken together, 509
164
out of the 592 known rice miRNA precursors (miRBase release 20) and all known
165
ta-siRNAs derived from the three known rice TAS genes were detected in our
166
samples. In addition to the known miRNAs, we also found that a few miRNA
167
isoforms and miRNA*s had higher or comparable read abundance than their
168
corresponding miRNAs in our data sets (Table S1), indicating that they may have
169
more important functions than their corresponding miRNAs under our examined
170
conditions. For example, the expression of osa-miR397b was almost undetectable in
171
both the control and Xoo infected samples, whereas six of its isoforms with shorten or
172
shifted sequences had thousands of reads in most samples (Fig. S2). Comparing with
173
the public AGO protein association data of rice small RNAs, osa-miR393b-3p, the
AC C
EP
TE D
159
6
ACCEPTED MANUSCRIPT 174
pairing sequence of osa-miR393b, also had higher AGO association than
175
osa-miR393b (Table S2). We next analyzed the expression changes of abundant small RNAs (with 40 or
177
more reads in at least one library) mapped to miRNA and ta-siRNA precursors. Using
178
1.5-fold expression change at one or more examined time points, 48 mature miRNAs,
179
miRNA isoforms or miRNA*s, and ta-siRNAs were identified as differentially
180
expressed between the Xoo-infected rice and controls (Table S3). These differentially
181
expressed small RNAs were further classified into four classes based on their
182
temporal expression dynamics (Fig. 3A). The expressions of small RNAs in cluster I,
183
including osa-miR160, osa-miR167, osa-miR827, osa-miR393, osa-miR393b-3p and
184
TAS3b (D6+), were rapidly induced by Xoo infection at 2 hpi, but the induction was
185
gradually tapered off at the sequential time points, and completely repressed at 24 hpi
186
(Fig. 3A). Such expression differences were also confirmed by quantitative RT-PCR
187
and northern-blot hybridization (Fig. 3B and 3C), indicating the fidelity of the
188
sequencing results. Small RNAs in cluster II, mainly comprised of miRNA397,
189
miR397* and their isoforms, as well as miR1432 and its isoforms, were specifically
190
induced at 6 hpi, but without obvious expression changes at other time points (Fig.
191
3A). The expression profile of small RNAs in cluster III was in contrast to those in
192
cluster I, which were repressed by at 2 hpi but consistently induced at 6, 12, and 24
193
hpi (Fig. 3A).
194
miR166a and miR398b, were almost repressed at all examined time points (Fig. 3A).
195
It is worth to note that miR398b and miR398b* showed different expression patterns
196
(Fig. 3A), indicating that they might play different roles in the Xoo resistant response.
SC
M AN U
TE D
EP
The IV cluster of small RNAs, including miR159a and its isoform,
AC C
197
RI PT
176
198
2.4 MiRNAs and ta-siRNAs with same expression patterns tend to function
199
synergistically on the same or related signaling pathways
200
Using previously reported plant miRNA target prediction criteria (Allen et al.,
201
2005; Zhao et al., 2012), we identified 95 putative targets (Table S4) for the 7
ACCEPTED MANUSCRIPT differentially expressed miRNAs and ta-siRNAs. Most of the predicted targets were
203
homologous to the known targets of Arabidopsis miRNAs and ta-siRNAs. The
204
predicted targets of miR160 and TAS3b were validated by 5′-RNA ligase-mediated
205
(RLM)-RACE experiments. Direct cleavage on the mRNAs of OsARF18
206
(Os06g47150) by osa-miR160 and on the mRNAs of OsARF15 (Os05g48870) by rice
207
TAS3b (D6+) were detected (Fig. 4), which were consistent with previous reports (Li
208
et al., 2010; Wu et al., 2009; Zhou et al., 2010). Similarly, we also confirmed the
209
miRNA::target relationships between osa-miR393b and auxin receptors (OsTIR1,
210
Os05g05800 and OsAFB2, Os04g32460) (Xia et al., 2012; Zhou and Wang, 2013), as
211
well as for osa-miR398b and a gene encoding Copper/zinc superoxide dismutase
212
(OsCSD1, Os03g11960) (Fig. 4). Functional analysis for these target genes revealed
213
that they were enriched in biological processes related to plant immune system, such
214
as stimulus responses, regulation of cell death, and several signaling pathways (Fig.
215
5B).
M AN U
SC
RI PT
202
Intriguingly, we found that miRNAs and ta-siRNAs with similar expression
217
patterns tend to regulate genes involved in the same or related signaling pathways
218
(Table S4). For example, sixty percent (12 of 20) of small RNAs in cluster I targeted
219
genes involved in the auxin signaling pathway, including ARFs and TIRs (Fig. 4,
220
Table 1 and S4). Furthermore, we found that the expression patterns of these target
221
genes were anti-correlated with the expression patterns of miRNAs and ta-siRNAs
222
(Fig. 3A and 5A). For example, contrary to the expression pattern of osa-miR160
223
(Fig. 3A and 3B), the mRNA levels of its two targets, OsARF18 and OsARF16
224
(Os10g33940), were consistently repressed at 2, 6, and 12 hpi, but significantly
225
increased at 24 hpi in Xoo-infected rice (Fig. 5A). Similar anti-correlated expression
226
patterns were also observed for osa-miR167, osa-miR827, TAS3b and their targets
227
(Fig. 5A). In addition to auxin responsive genes, small RNAs in cluster I also targeted
228
several transporter genes, such as OsMATE1, OsSPX-MFS1, OsSPX-MFS2, OsST1,
AC C
EP
TE D
216
8
ACCEPTED MANUSCRIPT 229
and OsST2 (Table 1), which might function synergistically with the auxin pathway to
230
repress pathogen growth in rice. Similarly, osa-miR398b in cluster IV targeted genes involved in reactive oxygen
232
species (ROS) pathway. The predicted targets of osa-miR398b were OsCSD1,
233
OsCSD2, and OsCOX5b.1 (Table S4), which are orthologs of ath-miR398 targets in
234
Arabidopsis (Beauclair et al., 2010; Dugas and Bartel, 2008; Jones and Takemoto,
235
2004; Li et al., 2010; Sunkar et al., 2006; Yamasaki et al., 2007). Here we confirmed
236
that OsCSD1 was targeted by osa-miR398b. Except for OsCSD1, several OsCSD
237
genes have been reported to be targeted by miR398b (Li et al., 2014b). As
238
antioxidants, CSDs can protect plants from pathogen induced ROS damage (Heller
239
and Tudzynski, 2011; Mittler et al., 2004).
M AN U
SC
RI PT
231
240 241
2.5 MiR159 directly targeted GAMYB and a Leucine-Rich Repeat (LRR) protein
242
kinase
Osa-miR159a.1 was another Xoo repressed miRNA. Consistent with previous
244
reports (Tsuji et al., 2006; Wu et al., 2009), the target relationships between
245
Osa-miR159a.1 and GAMYB transcription factor (OsGAMYB1, Os01g59660) were
246
detected in our samples (Fig. 3A and 4). GAMYB is an important transcriptional
247
factor for gibberellin (GA) signaling pathway which regulate rice development and
248
immunity (Bari and Jones, 2009; Yang et al., 2013). When the expression of
249
osa-miR159a.1 was decreased at 24 hpi (Fig. 3A), the expression of OsGAMYB1 was
250
increased at the same time point (Fig. 5A).
EP
AC C
251
TE D
243
Intriguingly, we predicted and confirmed that OsLRR-RLK2 (Os12g10740),
252
which encodes a protein with leucine-rich repeat and a receptor-like kinase domain,
253
was an authentic target of osa-miR159a.1 in rice (Fig. 4). Furthermore, we showed
254
that the expression of OsLRR-RLK2 was induced at 24 hpi when osa-miR159a.1 was
255
repressed at the same time point (Fig. 3A and 5A), demonstrating the effective
256
regulation of OsLRR-RLK2 expression by osa-miR159a.1 under Xoo infection. LRR 9
ACCEPTED MANUSCRIPT 257
domain-containing proteins are central players in the plant immune system (Dangl
258
and Jones, 2001; Dodds and Rathjen, 2010; Jaillais et al., 2011; Jones and Takemoto,
259
2004; Kobe and Kajava, 2001). Thus, osa-miR159a.1 may directly regulate rice
260
pathogen responses through targeting OsLRR-RLK2.
262
RI PT
261
3. Discussion
Bacterial blight, a serious disease of rice, is caused by Xoo infection and results
264
in severe yield losses. As small RNAs have been proven to play crucial roles in
265
diverse physiological and pathological processes in plants, understanding the roles of
266
rice small RNAs in bacterial blight disease progress will shed light on the cultivation
267
of rice cultivars with resistance to Xoo infection. In this study, to illuminate the
268
functions of small RNAs responding to Xoo infection at early stages, we
269
systematically examined the sequential expression profiles of rice small RNAs after
270
Xoo infection by high-throughput sequencing. We observed the dynamic expression
271
changes of small RNAs at four time points after Xoo infection, identified 48 miRNAs,
272
miRNA isoforms, and ta-siRNAs that were differentially expressed in Xoo-infected
273
rice, and also found the synergetic functions of miRNA in gene regulatory network.
TE D
M AN U
SC
263
A previous study has shown that the progression of bacterial blight in rice can be
275
dissected into multiple stages with distinct symptoms (Adhikari et al., 1994),
276
reflecting the dynamic responses of rice after Xoo infection. Here, we have for the
277
first time provided the expression profiles of small RNAs in rice leaves within the
278
first 24 hours after Xoo infection, which will serve as a resource for the identification
279
of functions small RNAs involving in rice pathogen responses. Majority of the small
280
RNAs with differential expression between the control and Xoo infected rice
281
exhibited varied abundance at different post infection time points, in addition, small
282
RNAs regulating the same or related signaling pathways tended to have similar
283
expression patterns, indicating their active functions in regulating pathogen responses
284
(Fig. 6). For example, small RNAs in cluster I predominantly (60%) regulate genes
AC C
EP
274
10
ACCEPTED MANUSCRIPT involved in the auxin pathway (Fig. 3, 4 and 5; Table 1). Auxin has been reported to
286
play key roles in plant-pathogen interactions through modulating the pathogen growth
287
(Bari and Jones, 2009; Ding et al., 2008; Domingo et al., 2009; Kazan and Manners,
288
2009; Navarro et al., 2006; Robert-Seilaniantz et al., 2011; Truman et al., 2010; Wang
289
et al., 2007), and ARFs could function as either activators or repressors in certain cell
290
types or environments (Guilfoyle and Hagen, 2007). Moreover, Transport Inhibitor
291
Response 1 (TIR1) family of auxin receptors was directly regulated by miR393 that
292
also plays important roles in plant-pathogen interactions (Navarro et al., 2006).
RI PT
285
Intriguingly, osa-miR393b-3p, the pairing sequence of osa-miR393b in cluster I
294
was also rapidly induced by Xoo infection at 2 hpi (Fig. 3A). In Arabidopsis,
295
ath-miR393b-3p is associated with AGO2 and targets three membrane trafficking
296
genes, including MEMBRIN 12 (MEMB12) which is a negative regulator of
297
Pathogenesis-Related 1 (PR1) secretion (Pumplin and Voinnet, 2013; Zhang et al.,
298
2011). Although the sequences of miR393b-3p are different in rice and Arabidopsis,
299
osa-miR393b-3p was also predicted to target OsMEMB12 (Table S4). The
300
co-evolutionary target relationship of miR393b-3p and MEMB12 indicated that
301
miR393b-3p might be important to plant disease resistance (Fig. 6).
TE D
M AN U
SC
293
Unlike miRNAs in cluster I, most miRNAs in cluster II were mainly induced at 6
303
hpi (Fig. 3A) and have been reported to be involved in abiotic stresses (Khraiwesh et
304
al., 2012; Gielen et al., 2012; Guleria et al., 2011). For example, dramatic expression
305
changes of miR397 and miR408 had been observed under drought and metal stresses
306
(Gielen et al., 2012; Khraiwesh et al., 2012). In addition, osa-miR397 regulates the
307
Brassinosteroid (BR) signaling pathway by targeting OsLAC (Zhang et al., 2013). As
308
BR has been found to modulate plant immunity (Albrecht et al., 2012; Belkhadir et al.,
309
2012; Nakashita et al., 2003; Wang, 2012), the induced expression of miR397 under
310
Xoo infection indicates that miR397 might play important roles in plant disease
311
responses (Fig. 6).
AC C
EP
302
11
ACCEPTED MANUSCRIPT Besides Xoo induced miRNAs, we also identified several miRNAs with
313
repressed expression after Xoo infection, such as miR159a.1 and miR398b (Fig. 3A).
314
Among them, miR159a.1 was confirmed to regulate one LRR protein kinase,
315
OsLRR-RLK2 (Fig. 4 and 5A). It is well known that LRR protein kinases are essential
316
for plant disease response (Dodds and Rathjen, 2010; Jaillais et al., 2011).
317
Osa-miR159a.1 may be directly involved in rice pathogen responses through
318
regulating OsLRR-RLK2 (Fig. 6). Osa-miR398b is another Xoo repressed miRNA that
319
was reported to negatively regulate responses against bacterial pathogens
320
(Jagadeeswaran et al., 2009; Li et al., 2010). However, osa-miR398b was increased by
321
blast fungus and is a positively regulator for fungal pathogens in rice (Li et al., 2014b).
322
Thus, osa-miR398b may regulate rice innate immunity in the contrary manners for
323
bacterial and fungal pathogens. Several OsCSD genes involved in ROS pathway were
324
reported to be targeted by miR398b except for OsCSD1 (Fig. 4) (Li et al., 2014b).
325
Different from miR398b, miR398* in cluster III increased by Xoo infection was
326
predicted to target OsRAPTOR1 (Fig. 3A and Table S4). The RAPTOR proteins are
327
binding partners of the target of rapamycin (TOR) kinase, which is important for cell
328
growth and nutrient responses (Dobrenel et al., 2011; Dobrenel et al., 2013). Thus,
329
miR398b and miR398* may regulate rice pathogen responses in different manners.
TE D
M AN U
SC
RI PT
312
In addition, we also identified reversed expression changes between osa-miR827
331
and its target genes, OsSPX-MFS1 and OsSPX-MFS2 (Lin et al., 2010), after Xoo
332
infection. The OsSPX-MFS1 and OsSPX-MFS2 proteins belong to Major Facilitator
333
Superfamily (MFS) secondary transporter family and contain a domain homologous
334
to the sugar transporter domain (pfam00083 domain). Plenty of studies have shown
335
that the MFS transporters directly involve in the host-pathogen interactions in
336
Arabidopsis and Maize (Pao et al., 1998; Marger and Saier, 1993; Saier et al., 1999;
337
Sa-Correia and Tenreiro, 2002; Simmons et al., 2003; Remy et al., 2013). Moreover,
338
another group of sugar transporters, the SWEET family protein, has been shown to
339
involve in the intercellular exchange and to provide nutrition for pathogens in rice
AC C
EP
330
12
ACCEPTED MANUSCRIPT (Chen et al., 2010). Although little is known about the roles of OsSPX-MFS1 and
341
OsSPX-MFS2 in pathogen response in rice, the expression patterns of these genes
342
revealed in our study indicated that they may function like the SWEET sugar
343
transporters to involve in the nutrition support regulation of Xoo. It will be interesting
344
to generate further functional analysis on these proteins to illuminate the overlapping
345
networks between nutrition and pathogen infections.
RI PT
340
In conclusion, the present study provides the first small RNA expression analysis
347
at the early stages of bacterial blight disease progress in rice. In contrast to the
348
control, the small RNAs changes in compatible interactions between Xoo and rice
349
revealed that some small RNAs clustered together to modulate the phytohormone and
350
defense-related pathways. The expression analysis of small RNAs’ target genes at
351
different time points provided clues for their roles in responding to Xoo infection in
352
rice leaves. The findings on the Xoo-responsive small RNAs and their target genes
353
might expand our understanding of the mechanism of rice-Xoo interactions, which
354
provides a new strategy to generate disease-resistant plants.
M AN U
TE D
355
SC
346
356
4. Materials and methods
357
4.1 Sample collection, RNA isolation, and small RNA sequencing Japonica rice varieties (Oryza sativa, Nipponbare) were grown in the
359
experimental fields in Beijing. The leaves of 40-day-old rice seedling were infected
360
by Xoo PXO99 and mock-inoculated with water. Parts of the leaves, which were
361
below the infected locations 1 cm in length, were collected at 2, 6, 12, and 24 hours
362
post infection (hpi), respectively. The samples were collected from multiple plants
363
and were pooled together to avoid the individual genotype differences. Total RNAs of
364
each sample were isolated using Trizol reagent (Invitrogen), and small RNAs were
365
collected and sequenced by the Illumina’s sequencing technology. The equal amount
366
of small RNAs was used for library construction.
AC C
EP
358
367 13
ACCEPTED MANUSCRIPT 368
4.2 Bioinformatics analysis of the deep sequencing data sets The adapter sequences were trimmed. Sequences with low phred quality scores
370
or shorter than 18 nucleotides were removed. The total number of reads for each data
371
set was normalized to 10 million. Total sequences of the eight data sets were aligned
372
to the rice genomic sequences using the BLASTN (Altschul et al., 1990) program.
373
The rice genomic sequences were downloaded from Rice Genome Annotation Project
374
(RGAP) version 6.1. We also aligned these sequences to the rice miRNA precursors
375
downloaded from the miRBase database release 20 (Kozomara and Griffiths-Jones,
376
2011) and to the three rice TAS3 genes using the BLASTN program. Rice gene
377
annotations were downloaded from the RGAP version 6.1. The transposons and
378
repeat regions in rice genome were identified by RepeatMasker software. Target gene
379
prediction for miRNAs and ta-siRNA was performed as previously described (Zhao et
380
al., 2012).
M AN U
SC
RI PT
369
The statistical analyses and the data plotting were carried out in R. Expression
382
comparison of small RNAs was performed at each time point separately. Small RNAs
383
with at least 10 reads in both conditions were included in the expression comparison
384
analysis. At least 1.5 fold expression change was used as the criterion to select
385
differentially expressed small RNAs. GOEAST (Zheng and Wang, 2008) was used to
386
perform the Gene Ontology enrichment analysis. The NCBI Conserved Domain
387
Database (Marchler-Bauer et al., 2013) was used to annotate the domains of proteins.
389 390
EP
AC C
388
TE D
381
4.3 Small RNA northern-blot hybridization Small RNA northern-blot hybridization was carried out as previously described
391
(Zhao et al., 2012), using 20 µg of total RNAs in each experiment. Probes, which
392
were labeled by [γ-32P] ATP, were the complementary sequences of the corresponding
393
small RNAs. The sequences of all probes used in this study are listed in
394
Supplementary Table S5.
395 14
ACCEPTED MANUSCRIPT 396
4.4 Quantitative RT-PCR Expression levels of small RNAs were analyzed by Quantitative RT-PCR
398
experiments using All-in-One™ miRNA qRT-PCR Reagent Kits (GeneCopoeia). In
399
the quantitative RT-PCR experiments of small RNAs, 1 µg of total RNAs treated with
400
DNase I (New England Biolabs) was used in each reaction with U6 snRNA as the
401
internal control. In the quantitative RT-PCR experiments for mRNAs, 1 µg of total
402
RNAs treated with DNase I (New England Biolabs) was synthesized to cDNA by
403
M-MuLV (New England Biolabs) using poly (dT) oligonucleotides with the mRNA of
404
OsNAB (Os06g11170) as the reference gene. SYBR® Green PCR Master Mix
405
(Applied Biosystems) was used in all quantitative RT-PCR experiments. The relative
406
expression fold changes of miRNAs, ta-siRNAs, and genes were calculated using the
407
2 δ-δ Ct method (Livak and Schmittgen, 2001). Primers used in all the quantitative
408
RT-PCR experiments were listed in Supplementary Table S6.
M AN U
SC
RI PT
397
409 4.5 5′′-RLM-RACE
TE D
410
The 5′-RLM-RACE experiments were carried out using the FirstChoice
412
RLM-RACE Kit (Ambion) following the previously reported procedures (Zhao et al.,
413
2012). All primers for specific target genes used in this study are listed in
414
Supplementary Table S7.
415
4.6 Accession numbers
All sequencing data generated in this study are available in the NCBI Gene
419
AC C
416
EP
411
420
Acknowledgements
417 418
Expression Omnibus (GEO) database under the accession number GSE58385.
421
This work was supported by the National Natural Science Foundation of China
422
(grant No. 31371318 to M. W.), the National Basic Research Program of China (grant
15
ACCEPTED MANUSCRIPT 423
No. 2011CB100703 to Y.-T. J.), and the State Key Laboratory of Plant Genomics
424
(grant No. SKLPG2011B0105 to X.-J. W.).
425 426
RI PT
427 428 429 430
SC
431 432
M AN U
433 434 435 436
440 441 442 443 444 445 446
EP
439
AC C
438
TE D
437
447 448 449 450 16
ACCEPTED MANUSCRIPT
References
452
Adhikari, T.B., Mew, T.W., Teng, P.S., 1994. Progress of Bacterial-Blight on Rice
453
Cultivars Carrying Different Xa Genes for Resistance in the Field. Plant Disease 78,
454
73-77.
455
Albrecht, C., Boutrot, F., Segonzac, C., Schwessinger, B., Gimenez-Ibanez, S.,
456
Chinchilla, D., Rathjen, J.P., de Vries, S.C., Zipfel, C., 2012. Brassinosteroids inhibit
457
pathogen-associated molecular pattern-triggered immune signaling independent of the
458
receptor kinase BAK1. Proc. Natl. Acad. Sci. USA 109, 303-308.
459
Allen, E., Xie, Z., Gustafson, A.M., Carrington, J.C., 2005. microRNA-directed
460
phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207-221.
461
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local
462
alignment search tool. J. Mol. Biol. 215, 403-410.
463
Axtell, M.J., 2013. Classification and comparison of small RNAs from plants. Annu.
464
Rev. Plant Biol. 64, 137-159.
465
Bari, R., Jones, J.D., 2009. Role of plant hormones in plant defence responses. Plant
466
Mol. Biol. 69, 473-488.
467
Bart R.S., Chern M., Vega-Sanchez M.E., Canlas P., Ronald P.C., 2010. Rice Snl6, a
468
cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated
469
immunity to Xanthomonas oryzae pv. oryzae PLoS genetics. 6, e1001123.
470
Beauclair, L., Yu, A., Bouche, N., 2010. microRNA-directed cleavage and
471
translational repression of the copper chaperone for superoxide dismutase mRNA in
472
Arabidopsis. Plant J. 62, 454-462.
473
Belkhadir, Y., Jaillais, Y., Epple, P., Balsemao-Pires, E., Dangl, J.L., Chory, J., 2012.
474
Brassinosteroids
475
microbe-associated molecular patterns. Proc. Natl. Acad. Sci. USA 109, 297-302.
476
Boccara, M., Sarazin, A., Thiebeauld, O., Jay, F., Voinnet, O., Navarro, L., Colot, V.,
477
2014. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and
AC C
EP
TE D
M AN U
SC
RI PT
451
modulate
the
efficiency
of
plant
immune
responses
to
17
ACCEPTED MANUSCRIPT effector-triggered immunity through the post-transcriptional control of disease
479
resistance genes. PLoS Pathog 10, e1003883.
480
Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo,
481
W.J., Kim, J.G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White,
482
F.F., Somerville, S.C., Mudgett, M.B., Frommer, W.B., 2010. Sugar transporters for
483
intercellular exchange and nutrition of pathogens. Nature 468, 527-532.
484
Dangl, J.L., Jones, J.D., 2001. Plant pathogens and integrated defence responses to
485
infection. Nature 411, 826-833.
486
Deng, H., Liu, H., Li, X., Xiao, J., Wang, S., 2012. A CCCH-type zinc finger nucleic
487
acid-binding protein quantitatively confers resistance against rice bacterial blight
488
disease. Plant Physiol. 158, 876-889.
489
Ding, B., Bellizzi Mdel, R., Ning, Y., Meyers, B.C., Wang, G.L., 2012. HDT701, a
490
histone H4 deacetylase, negatively regulates plant innate immunity by modulating
491
histone H4 acetylation of defense-related genes in rice. Plant Cell 24, 3783-3794.
492
Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., Wang, S., 2008. Activation of
493
the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and
494
promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20,
495
228-240.
496
Dobrenel, T., Marchive, C., Azzopardi, M., Clement, G., Moreau, M., Sormani, R.,
497
Robaglia, C., Meyer, C., 2013. Sugar metabolism and the plant target of rapamycin
498
kinase: a sweet operaTOR? Front Plant Sci. 4, 93.
499
Dobrenel, T., Marchive, C., Sormani, R., Moreau, M., Mozzo, M., Montane, M.H.,
500
Menand, B., Robaglia, C., Meyer, C., 2011. Regulation of plant growth and
501
metabolism by the TOR kinase. Biochem. Soc. Trans. 39, 477-481.
502
Dodds, P.N., Rathjen, J.P., 2010. Plant immunity: towards an integrated view of
503
plant-pathogen interactions. Nat. Rev. Genet. 11, 539-548.
AC C
EP
TE D
M AN U
SC
RI PT
478
18
ACCEPTED MANUSCRIPT Domingo, C., Andres, F., Tharreau, D., Iglesias, D.J., Talon, M., 2009. Constitutive
505
expression of OsGH3.1 reduces auxin content and enhances defense response and
506
resistance to a fungal pathogen in rice. Mol. Plant Microbe Interact. 22, 201-210.
507
Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., Wei, L., Li, Y., 2011. Viral
508
infection induces expression of novel phased microRNAs from conserved cellular
509
microRNA precursors. PLoS Pathog. 7, e1002176.
510
Dugas, D.V., Bartel, B., 2008. Sucrose induction of Arabidopsis miR398 represses
511
two Cu/Zn superoxide dismutases. Plant Mol. Biol. 67, 403-417.
512
Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie,
513
J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., Carrington, J.C., 2007.
514
High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth
515
and death of MIRNA genes. PLoS One 2, e219.
516
Fei, Q., Xia, R., Meyers, B.C., 2013. Phased, secondary, small interfering RNAs in
517
posttranscriptional regulatory networks. Plant Cell 25, 2400-2415.
518
Fitzgerald, H.A., Canlas, P.E., Chern, M.S., Ronald, P.C., 2005. Alteration of TGA
519
factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae.
520
Plant J. 43, 335-347.
521
Gielen, H., Remans, T., Vangronsveld, J., Cuypers, A., 2012. MicroRNAs in metal
522
stress: specific roles or secondary responses? Int. J. Mol. Sci. 13, 15826-15847.
523
Gnanamanickam S.S., Priyadarisini V.B., Narayanan N.N., Vasudevan P., Kavitha S.,
524
1999. An overview of bacterial blight disease of rice and strategies for its
525
management. Current Science 77, 1435-1444.
526
Gomi, K., Satoh, M., Ozawa, R., Shinonaga, Y., Sanada, S., Sasaki, K., Matsumura,
527
M., Ohashi, Y., Kanno, H., Akimitsu, K., Takabayashi, J., 2010. Role of
528
hydroperoxide
529
Horvath)-induced resistance to bacterial blight in rice, Oryza sativa L. Plant J. 61,
530
46-57.
AC C
EP
TE D
M AN U
SC
RI PT
504
lyase
in
white-backed
planthopper
(Sogatella
furcifera
19
ACCEPTED MANUSCRIPT Guilfoyle, T.J., Hagen, G., 2007. Auxin response factors. Curr. Opin. Plant Biol. 10,
532
453-460.
533
Guleria P., Mahajan M., Bhardwaj J., Yadav S.K., 2011. Plant small RNAs:
534
biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics
535
Bioinformatics 9, 183-199.
536
Heller, J., Tudzynski, P., 2011. Reactive oxygen species in phytopathogenic fungi:
537
signaling, development, and disease. Annu. Rev. Phytopathol. 49, 369-390.
538
Jagadeeswaran, G., Saini, A., Sunkar, R., 2009. Biotic and abiotic stress
539
down-regulate miR398 expression in Arabidopsis. Planta 229, 1009-1014.
540
Jaillais Y., Belkhadir Y., Balsemao-Pires E., Dangl J.L., Chory J., 2011. Extracellular
541
leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc.
542
Natl. Acad. Sci. USA 108, 8503-8507.
543
Jeong, D.H., Park, S., Zhai, J., Gurazada, S.G., De Paoli, E., Meyers, B.C., Green,
544
P.J., 2011. Massive analysis of rice small RNAs: mechanistic implications of
545
regulated microRNAs and variants for differential target RNA cleavage. Plant Cell
546
23, 4185-4207.
547
Jiang Y., Chen X., Ding X., Wang Y., Chen Q., Song W.Y., 2013. The XA21 binding
548
protein XB25 is required for maintaining XA21-mediated disease resistance. Plant J.
549
73, 814-823.
550
Jones, D.A., Takemoto, D., 2004. Plant innate immunity - direct and indirect
551
recognition of general and specific pathogen-associated molecules. Curr. Opin.
552
Immunol. 16, 48-62.
553
Kallman T., Chen J., Gyllenstrand N., Lagercrantz U., 2013. A significant fraction of
554
21-nucleotide small RNA originates from phased degradation of resistance genes in
555
several perennial species. Plant Physiol. 162, 741-754.
556
Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A., Jin, H., 2007. A novel class of
557
bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21, 3123-3134.
AC C
EP
TE D
M AN U
SC
RI PT
531
20
ACCEPTED MANUSCRIPT Katiyar-Agarwal, S., Jin, H., 2010. Role of small RNAs in host-microbe interactions.
559
Annu. Rev. Phytopathol. 48, 225-246.
560
Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Jr., Zhu,
561
J.K., Staskawicz, B.J., Jin, H., 2006. A pathogen-inducible endogenous siRNA in
562
plant immunity. Proc. Natl. Acad. Sci. USA 103, 18002-18007.
563
Kazan, K., Manners, J.M., 2009. Linking development to defense: auxin in
564
plant-pathogen interactions. Trends Plant Sci. 14, 373-382.
565
Khraiwesh, B., Zhu, J.K., Zhu, J., 2012. Role of miRNAs and siRNAs in biotic and
566
abiotic stress responses of plants. Biochim. Biophys. Acta. 1819, 137-148.
567
Kobe B., Kajava A.V., 2001. The leucine-rich repeat as a protein recognition motif.
568
Curr. Opin. Struct. Biol. 11, 725-732.
569
Kozomara, A., Griffiths-Jones, S., 2011. miRBase: integrating microRNA annotation
570
and deep-sequencing data. Nucleic Acids Res. 39, D152-157.
571
Lee, S.W., Han, S.W., Sririyanum, M., Park, C.J., Seo, Y.S., Ronald, P.C., 2009. A
572
type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science
573
326, 850-853.
574
Li, F., Pignatta, D., Bendix, C., Brunkard, J.O., Cohn, M.M., Tung, J., Sun, H.,
575
Kumar, P., Baker, B., 2012. MicroRNA regulation of plant innate immune receptors.
576
Proc. Natl. Acad. Sci. USA 109, 1790-1795.
577
Li, J., Wu, Y., Qi, Y., 2014a. MicroRNAs in a multicellular green alga Volvox carteri.
578
Science China. Life sciences 57, 36-45.
579
Li, Y., Lu, Y.G., Shi, Y., Wu, L., Xu, Y.J., Huang, F., Guo, X.Y., Zhang, Y., Fan, J.,
580
Zhao, J.Q., Zhang, H.Y., Xu, P.Z., Zhou, J.M., Wu, X.J., Wang, P.R., Wang, W.M.,
581
2014b. Multiple rice microRNAs are involved in immunity against the blast fungus
582
Magnaporthe oryzae. Plant Physiol. 164, 1077-1092.
583
Li, Y., Zhang, Q., Zhang, J., Wu, L., Qi, Y., Zhou, J.M., 2010a. Identification of
584
microRNAs involved in pathogen-associated molecular pattern-triggered plant innate
585
immunity. Plant Physiol. 152, 2222-2231.
AC C
EP
TE D
M AN U
SC
RI PT
558
21
ACCEPTED MANUSCRIPT Li, Y.F., Zheng, Y., Addo-Quaye, C., Zhang, L., Saini, A., Jagadeeswaran, G., Axtell,
587
M.J., Zhang, W., Sunkar, R., 2010b. Transcriptome-wide identification of microRNA
588
targets in rice. Plant J. 62, 742-759.
589
Li, Z., Zhou, X., 2013. Small RNA biology: from fundamental studies to applications.
590
Science China. Life sciences 56, 1059-1062.
591
Li, Z.K., Arif, M., Zhong, D.B., Fu, B.Y., Xu, J.L., Domingo-Rey, J., Ali, J.,
592
Vijayakumar, C.H., Yu, S.B., Khush, G.S., 2006. Complex genetic networks
593
underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv.
594
oryzae. Proc. Natl. Acad. Sci. USA 103, 7994-7999.
595
Lin, S.I., Santi, C., Jobet, E., Lacut, E., El Kholti, N., Karlowski, W.M., Verdeil, J.L.,
596
Breitler, J.C., Perin, C., Ko, S.S., Guiderdoni, E., Chiou, T.J., Echeverria, M., 2010.
597
Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827
598
in response to phosphate starvation. Plant Cell Physiol. 51, 2119-2131.
599
Liu, J., Cheng, X., Liu, D., Xu, W., Wise, R., Shen, Q.H., 2014. The miR9863 family
600
regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease
601
resistance and cell-death signaling. PLoS genetics 10, e1004755.
602
Livak K J., Schmittgen T.D., 2001. Analysis of relative gene expression data using
603
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25,
604
402-408.
605
Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C.,
606
Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Lu, S., Marchler,
607
G.H., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Bryant, S.H., 2013. CDD:
608
conserved domains and protein three-dimensional structure. Nucleic Acids Res. 41,
609
D348-352.
610
Marger M.D., Saier M.H. Jr., 1993. A major superfamily of transmembrane
611
facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18,
612
13-20.
AC C
EP
TE D
M AN U
SC
RI PT
586
22
ACCEPTED MANUSCRIPT Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., 2004. Reactive
614
oxygen gene network of plants. Trends Plant Sci. 9, 490-498.
615
Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K.,
616
Takatsuto, S., Yamaguchi, I., Yoshida, S., 2003. Brassinosteroid functions in a broad
617
range of disease resistance in tobacco and rice. Plant J. 33, 887-898.
618
Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O.,
619
Jones, J.D., 2006. A plant miRNA contributes to antibacterial resistance by repressing
620
auxin signaling. Science 312, 436-439.
621
Navarro, L., Jay, F., Nomura, K., He, S.Y., Voinnet, O., 2008. Suppression of the
622
microRNA pathway by bacterial effector proteins. Science 321, 964-967.
623
Pao, S.S., Paulsen, I.T., Saier, M.H., Jr., 1998. Major facilitator superfamily.
624
Microbiol Mol. Biol. Rev. 62, 1-34.
625
Pumplin, N., Voinnet, O., 2013. RNA silencing suppression by plant pathogens:
626
defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11,
627
745-760.
628
Qiao, Y., Liu, L., Xiong, Q., Flores, C., Wong, J., Shi, J., Wang, X., Liu, X., Xiang,
629
Q., Jiang, S., Zhang, F., Wang, Y., Judelson, H.S., Chen, X., Ma, W., 2013. Oomycete
630
pathogens encode RNA silencing suppressors. Nature genetics 45, 330-333.
631
Remy, E., Cabrito, T.R., Baster, P., Batista, R.A., Teixeira, M.C., Friml, J.,
632
Sa-Correia, I., Duque, P., 2013. A major facilitator superfamily transporter plays a
633
dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant
634
Cell 25, 901-926.
635
Robert-Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya,
636
Y., Jones, J.D., 2011. The microRNA miR393 re-directs secondary metabolite
637
biosynthesis away from camalexin and towards glucosinolates. Plant J. 67, 218-231.
638
Rodrigues J.A., Ruan R., Nishimura T., Sharma M.K., Sharma R., Ronald P.C.,
639
Fischer R.L., Zilberman D., 2013. Imprinted expression of genes and small RNA is
AC C
EP
TE D
M AN U
SC
RI PT
613
23
ACCEPTED MANUSCRIPT associated with localized hypomethylation of the maternal genome in rice endosperm.
641
Proc. Natl. Acad. Sci. USA 110, 7934-7939.
642
Ruiz-Ferrer, V., Voinnet, O., 2009. Roles of plant small RNAs in biotic stress
643
responses. Annu. Rev. Plant Biol. 60, 485-510.
644
Sa-Correia, I., Tenreiro, S., 2002. The multidrug resistance transporters of the major
645
facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome
646
sequence. J. Biotechnol. 98, 215-226.
647
Saier, M.H., Jr., Beatty, J.T., Goffeau, A., Harley, K.T., Heijne, W.H., Huang, S.C.,
648
Jack, D.L., Jahn, P.S., Lew, K., Liu, J., Pao, S.S., Paulsen, I.T., Tseng, T.T., Virk,
649
P.S., 1999. The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1,
650
257-279.
651
Seo, J.K., Wu, J., Lii, Y., Li, Y., Jin, H., 2013. Contribution of small RNA pathway
652
components in plant immunity. Mol. Plant Microbe Interact. 26, 617-625.
653
Shen, X., Yuan, B., Liu, H., Li, X., Xu, C., Wang, S., 2010. Opposite functions of a
654
rice mitogen-activated protein kinase during the process of resistance against
655
Xanthomonas oryzae. Plant J. 64, 86-99.
656
Shivaprasad, P.V., Chen, H.M., Patel, K., Bond, D.M., Santos, B.A., Baulcombe,
657
D.C., 2012. A microRNA superfamily regulates nucleotide binding site-leucine-rich
658
repeats and other mRNAs. Plant Cell 24, 859-874.
659
Simmons C.R., Fridlender M., Navarro P.A., Yalpani N., 2003. A maize
660
defense-inducible gene is a major facilitator superfamily member related to bacterial
661
multidrug resistance efflux antiporters. Plant Mol. Biol. 52, 433-446.
662
Song, X., Li, P., Zhai, J., Zhou, M., Ma, L., Liu, B., Jeong, D.H., Nakano, M., Cao,
663
S., Liu, C., Chu, C., Wang, X.J., Green, P.J., Meyers, B.C., Cao, X., 2012a. Roles of
664
DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J. 69, 462-474.
665
Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao,
666
Y., Cao, X., 2012b. Rice RNA-dependent RNA polymerase 6 acts in small RNA
667
biogenesis and spikelet development. Plant J. 71, 378-389.
AC C
EP
TE D
M AN U
SC
RI PT
640
24
ACCEPTED MANUSCRIPT Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S., Zhang, Q., 2004. Xa26, a gene
669
conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR
670
receptor kinase-like protein. Plant J. 37, 517-527.
671
Sunkar R., Kapoor A., Zhu J.K., 2006. Posttranscriptional induction of two Cu/Zn
672
superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398
673
and important for oxidative stress tolerance. Plant Cell 18, 2051-2065.
674
Tao, Z., Liu, H., Qiu, D., Zhou, Y., Li, X., Xu, C., Wang, S., 2009. A pair of allelic
675
WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol. 151,
676
936-948.
677
Truman W.M., Bennett M.H., Turnbull C.G., Grant M.R., 2010. Arabidopsis auxin
678
mutants are compromised in systemic acquired resistance and exhibit aberrant
679
accumulation of various indolic compounds. Plant Physiol. 152, 1562-1573.
680
Tsuji H., Aya K., Ueguchi-Tanaka M., Shimada Y., Nakazono M., Watanabe R.,
681
Nishizawa N.K., Gomi K., Shimada A., Kitano H., Ashikari M., Matsuoka M., 2006.
682
GAMYB controls different sets of genes and is differentially regulated by microRNA
683
in aleurone cells and anthers. Plant J. 47, 427-444.
684
Wang D., Pajerowska-Mukhtar K., Culler A.H., Dong X., 2007. Salicylic acid inhibits
685
pathogen growth in plants through repression of the auxin signaling pathway. Curr.
686
Biol. 17, 1784-1790.
687
Wang, Z.Y., 2012. Brassinosteroids modulate plant immunity at multiple levels. Proc.
688
Natl. Acad. Sci. USA 109, 7-8.
689
Wei, L.Q., Yan, L.F., Wang, T., 2011. Deep sequencing on genome-wide scale
690
reveals the unique composition and expression patterns of microRNAs in developing
691
pollen of Oryza sativa. Genome Biol. 12, R53.
692
Weiberg, A., Wang, M., Lin, F.M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.D.,
693
Jin, H., 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA
694
interference pathways. Science 342, 118-123.
AC C
EP
TE D
M AN U
SC
RI PT
668
25
ACCEPTED MANUSCRIPT Wu, G., 2013. Plant microRNAs and development. Journal of genetics and genomics
696
40, 217-230.
697
Wu, L., Zhang, Q., Zhou, H., Ni, F., Wu, X., Qi, Y., 2009. Rice MicroRNA effector
698
complexes and targets. Plant Cell 21, 3421-3435.
699
Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., Wang, Y., Zhang, M., 2012.
700
OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more
701
tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7,
702
e30039.
703
Yamasaki, H., Abdel-Ghany, S.E., Cohu, C.M., Kobayashi, Y., Shikanai, T., Pilon,
704
M., 2007. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J. Biol.
705
Chem. 282, 16369-16378.
706
Yang D.L., Yang Y., He Z., 2013. Roles of plant hormones and their interplay in rice
707
immunity. Mol. Plant. 6, 675-685.
708
Yuan, M., Chu, Z., Li, X., Xu, C., Wang, S., 2010. The bacterial pathogen
709
Xanthomonas oryzae overcomes rice defenses by regulating host copper
710
redistribution. Plant Cell 22, 3164-3176.
711
Zhai J., Jeong D.H., De Paoli E., Park S., Rosen B.D., Li Y., Gonzalez A.J., Yan Z.,
712
Kitto S.L., Grusak M.A., Jackson S.A., Stacey G., Cook D.R., Green P.J., Sherrier
713
D.J., Meyers B.C., 2011. MicroRNAs as master regulators of the plant NB-LRR
714
defense gene family via the production of phased, trans-acting siRNAs. Genes Dev.
715
25, 2540-2553.
716
Zhai J., Zhao Y., Simon S.A., Huang S., Petsch K., Arikit S., Pillay M., Ji L., Xie M.,
717
Cao X., Yu B., Timmermans M., Yang B., Chen X., Meyers BC., 2013. Plant
718
MicroRNAs Display Differential 3' Truncation and Tailing Modifications That Are
719
ARGONAUTE1 Dependent and Conserved Across Species. Plant Cell 25,
720
2417-2428.
721
Zhang, X., Zhao, H., Gao, S., Wang, W.C., Katiyar-Agarwal, S., Huang, H.D.,
722
Raikhel, N., Jin, H., 2011. Arabidopsis Argonaute 2 regulates innate immunity via
AC C
EP
TE D
M AN U
SC
RI PT
695
26
ACCEPTED MANUSCRIPT miRNA393( *)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol.
724
Cell 42, 356-366.
725
Zhang, Y.C., Yu, Y., Wang, C.Y., Li, Z.Y., Liu, Q., Xu, J., Liao, J.Y., Wang, X.J.,
726
Qu, L.H., Chen, F., Xin, P., Yan, C., Chu, J., Li, H.Q., Chen, Y.Q., 2013.
727
Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size
728
and promoting panicle branching. Nat. Biotechnol. 31, 848-852.
729
Zhao, Y.T., Wang, M., Fu, S.X., Yang, W.C., Qi, C.K., Wang, X.J., 2012. Small
730
RNA profiling in two Brassica napus cultivars identifies microRNAs with oil
731
production- and development-correlated expression and new small RNA classes. Plant
732
Physiol. 158, 813-823.
733
Zheng, Q., Wang, X.J., 2008. GOEAST: a web-based software toolkit for Gene
734
Ontology enrichment analysis. Nucleic Acids Res. 36, W358-363.
735
Zhou, C.M., Wang, J.W., 2013. Regulation of flowering time by microRNAs. Journal
736
of genetics and genomics 40, 211-215.
737
Zhou M., Gu L., Li P., Song X., Wei L., Chen Z., Cao X., 2010. Degradome
738
sequencing reveals endogenous small RNA targets in rice. Front Biol. 5, 67-90.
741 742 743 744 745 746
SC
M AN U
TE D
EP
740
AC C
739
RI PT
723
747 748 749 750 27
ACCEPTED MANUSCRIPT
Figure legends
752
Fig. 1. Profiling of rice small RNAs after Xoo infection.
753
A: Abundance distribution of total sequenced reads in the eight libraries. B:
754
Distribution of reads with different abundance among non-redundant sequences. C:
755
Classification of total sequenced small RNAs with perfect matches on the rice
756
genome. D: Length distributions of small RNAs derived from different genomic
757
regions. nt, nucleotide.
RI PT
751
758
Fig. 2. Expression changes of the rice small RNAs after Xoo infection.
760
A: Scatter plots of small RNA read abundance in the Xoo-infected rice (Xoo) and the
761
controls (CK) at the four time points. Only small RNAs with 10 or more reads in at
762
least one library were included in these plots. B: Heatmap of small RNA expression
763
changes after Xoo infection by hierarchical clustering analysis. Only small RNAs with
764
at least 50 reads in each of the eight libraries were included in the analysis.
M AN U
SC
759
TE D
765
Fig. 3. Clustered expression of miRNAs and ta-siRNAs.
767
A: Clustering of expression changes of miRNAs and ta-siRNAs after Xoo-infection. B:
768
Quantitative RT-PCR analysis of differentially expressed miRNAs and ta-siRNAs in
769
Xoo-infected rice and the controls. Error bars indicate the standard deviation of three
770
replicates. C: Northern-blot hybridization analysis of differentially expressed
771
miRNAs in Xoo-infected rice and the controls.
AC C
772
EP
766
773
Fig. 4. Validations of selected target genes of miRNAs and ta-siRNA by
774
5′-RLM-RACE analysis of the cleavage sites.
775 776
Fig. 5. Expressions and functional analysis of selected genes targeted by
777
differentially expressed miRNAs and ta-siRNA after Xoo infection.
28
ACCEPTED MANUSCRIPT A: Quantitative RT-PCR analysis was performed on selected target genes after Xoo
779
infection. Error bars represent the standard deviation of three replicates. Expression
780
changes of the miRNAs and ta-siRNA are indicated by the heatmaps (also shown in
781
Figure 3A). B: Unbiased Gene Ontology enrichment analysis of target genes of the
782
differentially expressed miRNAs and ta-siRNAs in Xoo-infected rice.
RI PT
778
783
Fig. 6. Model of small RNA mediated pathways in response to Xoo infection.
785
The up-regulated miRNAs are shown in red, down-regulated miRNAs in green. The
786
solid lines indicate validated miRNA-target pairs and dashed lines indicate putative
787
miRNA-target pairs.
SC
784
M AN U
788 789 790 791
795 796 797 798 799 800 801
EP
794
AC C
793
TE D
792
802 803 804 805 806 807 29
ACCEPTED MANUSCRIPT
Supplementary data
809
Fig. S1. Statistics of the sequencing and mapping results and size distributions of the
810
rice small RNAs.
811
Fig. S2. Small RNAs mapped to the osa-miR397b precursor sequence.
812
Table S1. Reads of highly expressed miRNA isoforms and miRNA*s in our data sets.
813
Table S2. Reads of miRNAs and miRNA*s in the OsAGO1 associated small RNA
814
data sets.
815
Table S3. Differentially expressed miRNAs, miRNA*s, isoforms, and ta-siRNAs.
816
Table S4. Predicted target genes of the differentially expressed miRNAs and
817
ta-siRNAs in Xoo-infected rice, and the alignments between small RNAs and their
818
targeting sites.
819
Table S5. Probes used for the small RNA northern-blot hybridizations.
820
Table S6. Primers used for the quantitative RT-PCR experiments.
821
Table S7. Primers used for the 5′-RLM-RACE experiments.
AC C
EP
TE D
M AN U
SC
RI PT
808
30
ACCEPTED MANUSCRIPT
Tables Table 1. Putative target genes of miRNAs and ta-siRNAs in cluster I. Gene name
Locus ID
osa-miR160
OsARF18
Os06g47150
Auxin response factor 18
OsARF10
Os04g43910
Auxin response factor 10
OsARF8
Os02g41800
Auxin response factor 8
OsARF13
Os04g59430
Auxin response factor 13
OsARF16
Os10g33940
Auxin response factor 16
OsARF25
Os12g41950
Auxin response factor 25
OsARF17
Os06g46410
Auxin response factor 17
OsNBS-LRR1
Os07g29820
NBS-LRR disease resistance protein
OsARF2
Os01g48060
Auxin response factor 2
OsARF15
Os05g48870
Auxin response factor 15
OsARF3
Os01g54990
Auxin response factor 3
OsARF4
Os01g70270
Auxin response factor 4
OsARF14
Os05g43920
Auxin response factor 14
OsFBX32
Os01g69940
F-box domain containing protein 32
OsTIR1
Os05g05800
F-box domain and LRR containing protein
OsAFB2
Os04g32460
F-box domain and LRR containing protein
OsLRR-RI
Os03g09070
LRR domain containing protein
OsLRR-RLK1
Os03g51440
LRR receptor-like protein kinase
OsMEMB12
Os03g45260
Vesicle transport v-SNARE protein
osa-miR390
OsLRR-EXS
Os02g10100
LRR receptor protein kinase EXS precursor
osa-miR159a.2
OsAT-GTL1
Os03g02240
GT-2-like 1 transcription factor
OsAP2L1
Os03g60430
APETALA2-like transcription factor
OsAP2L2
Os05g03040
APETALA2-like transcription factor
OsAP2L3
Os07g13170
APETALA2-like transcription factor
OsAP2L4
Os04g55560
APETALA2-like transcription factor
OsAP2L5
Os06g43220
APETALA2-like transcription factor
OsMATE1
Os06g49310
MATE efflux family protein, transporter
OsSPX-MFS1
Os04g48390
SPX and major facilitator superfamily domain
osa-miR393b-3p
AC C
osa-miR172
TE D
osa-miR393
Auxin response factor 6
Auxin response factor 12
EP
osa-miR394
Os02g06910 Os04g57610
SC
TAS3 (D6+)
OsARF6 OsARF12
M AN U
osa-miR167
Gene annotation
RI PT
ID
osa-miR827
OsSPX-MFS2
containing protein, transporter Os02g45520
SPX and major facilitator superfamily domain containing protein, transporter
osa-miR395
OsST1
Os03g09930
Sulfate transporter
OsST2
Os03g09940
Sulfate transporter
ACCEPTED MANUSCRIPT
A
B
40% 20% 0%
80% 60% 40% 20% 0%
No. of reads per sequence
C
D 80%
SC
60%
% of non-redundant sequences
80%
CK-2hpi CK-6hpi CK-12hpi CK-24hpi Xoo-2hpi Xoo-6hpi Xoo-12hpi Xoo-24hpi
RI PT
100%
CK-2hpi CK-6hpi CK-12hpi CK-24hpi Xoo-2hpi Xoo-6hpi Xoo-12hpi Xoo-24hpi
M AN U
% of total reads
100%
No. of reads per sequence
miRNA
Gene
Gene antisense
Repeat
rRNA
Unclassified
2%
TE D
60%
miRNA
6%
14%
Repeat rRNA
6%
AC C
21%
20%
Gene antisense
EP
20% 31%
40%
Gene
tRNA
Unclassified
0
80% 60% 40% 20% 0 20
22
24
26 28
20
22
24
26
20
28
Length of sequence
(nt)
22
24
26
28
RI PT
ACCEPTED MANUSCRIPT
A
SC
2000
M AN U
No. of reads (Xoo)
4000
2000
0
AC C
2 hpi 6 hpi
12 hpi
24 hpi
6 hpi
12 hpi
24 hpi
2000 4000 0 No. of reads (CK)
EP
0
B
2 hpi
TE D
No. of reads (Xoo)
0 4000
2000 4000 No. of reads (CK) -3 0 3 Log2 fold change (Xoo/CK)
ACCEPTED MANUSCRIPT
A
B -1.5 0 1.5 Log2 fold change (Xoo/CK)
2 1
Ⅲ
Ⅳ 2 hpi
6 hpi 12 hpi 24 hpi
osaosa- TAS3b osamiR160a miR167 (D6+) miR827
SC
0
Relative expression (24 hpi)
TE D AC C
EP
Ⅱ
CK Xoo
RI PT
Relative expression (2 hpi)
3
M AN U
Ⅰ
osa-miR394 osa-miR160e osa-miR160a osa-miR160f osa-miR159a.2 osa-miR390 osa-miR827 osa-miR395b osa-miR393a osa-miR393b-3p osa-miR393b-isoform1 TAS3b (D6+) osa-miR167a osa-miR167d-isoform1 TAS3a (D6+) osa-miR166g osa-miR166k osa-miR172a osa-miR162a osa-miR168a osa-miR397a-isoform5 osa-miR397a-isoform1 osa-miR397a osa-miR397a-isoform2 osa-miR397a-isoform3 osa-miR397a-isoform4 osa-miR408-5p-isoform1 osa-miR408-5p osa-miR408-5p-isoform2 osa-miR169a osa-miR164a osa-miR1432-isoform4 osa-miR1432 osa-miR1432-isoform1 osa-miR1432-isoform2 osa-miR1432-isoform3 osa-miR397b* osa-miR530 osa-miR820a-isoform2 osa-miR820a osa-miR820a-isoform1 osa-miR398b* osa-miR398b*-isoform2 osa-miR398b*-isoform1 osa-miR159a.1 osa-miR159a.1-isoform1 osa-miR166a osa-miR398b
1.5
CK Xoo
1 0.5 0
osa- TAS3b miR160a (D6+)
C 12 hpi 24 hpi 2 hpi 6 hpi CK Xoo CK Xoo CK Xoo CK Xoo osa-miR393 osa-miR827 5S rRNA
7/7
2216 ACGGACCGAGGGACATACGGAC 2195 ||||||||||||||||||||o| osa-miR160 1 TGCCTGGCTCCCTGTATGCC-G 21 1/9
SC
OsARF18
RI PT
ACCEPTED MANUSCRIPT
1/9 4/9
4210 AAGAACTGGAACGTTCTGGAAA 4189 ||||||||||||||||||o||| TAS3b(D6+) 1 TTCTTGACCTTGCAAGAC-TTT 21
M AN U
OsARF15
6/6
OsTIR1
5744 AGGTTTCCCTAGCGTAAC-AG 5725 ||||||||||||||||||o|| osa-miR393b 1 TCCAAAGGGATCGCATTGATC 21 1/11
8/11
2244 AGGTTTCCCTAGCGTAAC-AG 2225 ||||||||||||||||||o|| osa-miR393b 1 TCCAAAGGGATCGCATTGATC 21
TE D
OsAFB2
1/11
9/10 1/10
OsGAMYB1
3279 AGAACCTCACTTCCCTCGAGGT 3258 |o|||||o|||||||||||||| osa-miR159a.1 1 T-TTGGATTGAAGGGAGCTCTG 21 8/8
AC C
EP
OsLRR-RLK2 3053 AAACTTAACTTCCCTC-TGAT 3034 ||||o|||||||||||oo||| osa-miR159a.1 1 TTTGGATTGAAGGGAGCTCTG 21
OsCSD1
2/9
1/9
2/9
2/9
1788 TGATACA-AAGGGTCCAGCGGGTGTACAGAAAGTAGTAG 1751 ||||||||||||||||||o|| osa-miR398b 1 TGTGTTCTCAGGTCGCCCCTG 21
Osa-miR827
OsARF15
TAS3b(D6+) 6 12 24 hpi
2 1 0 1 0
OsGAMYB1
Osa-miR159a.1
2
6 12 24 hpi
TE D
Relative expression
6 12 24 hpi
OsARF2
OsLRR-RLK2
Relative Relative expression expression
6 12 24 hpi
2 OsSPX-MFS2
B
0 2 3 2 1 0 2
Relative Relative expression expression
OsSPX-MFS1
OsARF25
2
RI PT
OsARF16
Relative expression
Relative expression
Osa-miR160
Osa-miR167
SC
OsARF18
CK Xoo
4
M AN U
Relative expression
A
Relative expression
ACCEPTED MANUSCRIPT
1 0
2 hpi
1 0 2 hpi 1 0
2 hpi
3 2 1 0 24 hpi 2 1 0
24 hpi
Enrichment FDR (log10 scale) -6
EP
-8
AC C
-10
-4
-2
0 cellular response to oxygen-containing compound cellular response to chemical stimulus positive regulation of programmed cell death positive regulation of cell death cellular response to organic substance signal transduction cellular response to stimulus cell communication cellular response to carbohydrate stimulus gibberellic acid mediated signaling pathway sugar mediated signaling pathway positive regulation of abscisic acid mediated signaling pathway cellular response to superoxide response to molecule of bacterial origin response to biotic stimulus response to other organism
ACCEPTED MANUSCRIPT
Transporters
RI PT
(SPX-MFSs, STs)
Xoo
SC
miR395
(ARFs, TIR1)
Basal defense
miR397
miR398
miR159
TE D EP
Auxin pathway
miR393b-3p
MEMB12
AC C
miR160, miR167, miR393, miR390, TAS3 (D6+)
M AN U
miR827
PR1 secretory pathway
BR pathway
ROS pathway
(LACs)
(CSDs)
Disease response
ROS levels
LRR-RLK2
GA pathway (GAMYB)
Disease response
ACCEPTED MANUSCRIPT A
CK-2hpi CK-6hpi CK-12hpi CK-24hpi Xoo-2hpi Xoo-6hpi Xoo-12hpi Xoo-24hpi
13,223,792 9,359,058 10,600,905 9,459,069 9,704,567 12,750,187 12,176,523 14,410,965
11,953,532 (0.90) 8,401,969 (0.90) 9,627,901 (0.91) 8,735,312 (0.92) 8,293,538 (0.85) 11,571,927 (0.91) 10,631,522 (0.87) 13,062,994 (0.91)
No. of nonredundant sequences
No. of non-redundant sequences with perfect matches to the rice genome
2,417,998 1,757,965 2,362,990 2,117,206 2,274,736 2,669,014 2,536,280 3,008,435
1,728,245 (0.71) 1,295,006 (0.74) 1,805,264 (0.76) 1,697,695 (0.80) 1,449,849 (0.64) 2,007,775 (0.75) 1,718,435 (0.68) 2,246,700 (0.75)
SC
2,000,000
CK-2hpi CK-6hpi CK-12hpi
M AN U
1,600,000
1,200,000
800,000
400,000
0 18
19
TE D
No. of nonredundant sequences
B
No. of reads with perfect matches to the rice genome
No. of reads generated
RI PT
Library
20
21
22
23
24
25
26
CK-24hpi Xoo-2hpi Xoo-6hpi Xoo-12hpi Xoo-24hpi
27
28
29
30
Length of small RNAs (nt) CK-2hpi CK-6hpi
EP
4,000,000
3,000,000
CK-12hpi CK-24hpi Xoo-2hpi
AC C
No. of total reads
5,000,000
Xoo-6hpi Xoo-12hpi
2,000,000
Xoo-24hpi
1,000,000
0 18
19
20
21
22
23
24
25
26
27
28
29
30
Length of small RNAs (nt)
Fig. S1. Statistics of the sequencing and mapping results and size distributions of the rice small RNAs. A, Number of total reads, nonredundant sequences, mapped reads, mapped nonredundant sequences in the eight data sets. B, Size distribution of nonredundant sequences and total reads in the eight data sets.
EP
TE D
M AN U
SC
AGGGAAGGCATTATTGAGTGCAGCGTTGATGAACCTGCCGGCCGGCTAAATTAATTAGCAAGAAAGTCTGAAACTGGCTCAAAGGTTCACCAGCACTGCACCCAATCACGCCTTTGCT ..........TTATTGAGTGCAGCGTTGAT........................................................................................ ..........TTATTGAGTGCAGCGTTGATG....................................................................................... ...........TATTGAGTGCAGCGTTGATGA...................................................................................... ...........TATTGAGTGCAGCGTTGATGAA..................................................................................... ...........TATTGAGTGCAGCGTTGATGAAC.................................................................................... ...........TATTGAGTGCAGCGTTGATGAACC................................................................................... ............ATTGAGTGCAGCGTTGAT........................................................................................ ............ATTGAGTGCAGCGTTGATG....................................................................................... ............ATTGAGTGCAGCGTTGATGA...................................................................................... ............ATTGAGTGCAGCGTTGATGAA..................................................................................... ............ATTGAGTGCAGCGTTGATGAAC.................................................................................... ............ATTGAGTGCAGCGTTGATGAACC................................................................................... ............ATTGAGTGCAGCGTTGATGAACCT.................................................................................. .............TTGAGTGCAGCGTTGATG....................................................................................... .............TTGAGTGCAGCGTTGATGA...................................................................................... .............TTGAGTGCAGCGTTGATGAA..................................................................................... .............TTGAGTGCAGCGTTGATGAAC.................................................................................... .............TTGAGTGCAGCGTTGATGAACC................................................................................... .............TTGAGTGCAGCGTTGATGAACCT.................................................................................. ..................................................................................AGGTTCACCAGCACTGCACCC............... ....................................................................................GTTCACCAGCACTGCACCCAATC........... .....................................................................................TTCACCAGCACTGCACCCAAT............ .....................................................................................TTCACCAGCACTGCACCCAATC........... .....................................................................................TTCACCAGCACTGCACCCAATCA.......... ......................................................................................TCACCAGCACTGCACCCA.............. ......................................................................................TCACCAGCACTGCACCCAA............. ......................................................................................TCACCAGCACTGCACCCAAT............ ......................................................................................TCACCAGCACTGCACCCAATC........... ........................................................................................ACCAGCACTGCACCCAAT............ ........................................................................................ACCAGCACTGCACCCAATC........... ........................................................................................ACCAGCACTGCACCCAATCA.......... ........................................................................................ACCAGCACTGCACCCAATCACGCC...... .........................................................................................CCAGCACTGCACCCAATCACGCCT.....
AC C
osa-MIR397b CK_0_0_0_0_Xoo_0_1_0_0 CK_1_1_1_2_Xoo_1_1_2_2 CK_1_0_0_0_Xoo_0_1_0_0 CK_2_0_0_0_Xoo_1_0_0_1 CK_0_0_0_0_Xoo_0_1_0_0 CK_0_0_1_0_Xoo_0_0_0_0 CK_2_1_0_1_Xoo_11_2_4_4 CK_1_0_6_3_Xoo_7_2_4_4 CK_8_4_7_14_Xoo_18_7_6_9 CK_966_490_1514_1237_Xoo_944_831_1288_1513 CK_11_6_20_23_Xoo_6_13_11_21 CK_2_1_0_0_Xoo_0_2_0_0 CK_1_0_2_1_Xoo_0_2_2_1 CK_1199_669_1622_1249_Xoo_1160_1802_2003_1678 CK_3656_2081_5195_3997_Xoo_3525_4725_5074_4472 CK_2455_1484_3411_2655_Xoo_2201_2934_3039_2819 CK_2534_1817_5714_4926_Xoo_3397_2966_5164_4481 CK_1785_1028_2704_2343_Xoo_1662_1921_2396_1991 CK_5_1_4_5_Xoo_2_3_10_3 CK_1_0_1_0_Xoo_1_0_0_0 CK_0_0_0_0_Xoo_1_0_0_0 CK_24_25_35_15_Xoo_23_20_21_19 CK_2057_1277_2749_2223_Xoo_1712_1502_1701_1595 CK_0_2_4_4_Xoo_2_1_0_3 CK_0_2_0_0_Xoo_1_0_0_0 CK_12_5_9_6_Xoo_5_5_7_6 CK_8_5_6_7_Xoo_6_5_3_6 CK_1109_627_1355_1188_Xoo_962_838_914_956 CK_0_0_0_1_Xoo_0_0_0_0 CK_33_24_43_39_Xoo_40_27_32_29 CK_2_1_2_2_Xoo_4_2_2_2 CK_0_0_1_0_Xoo_0_0_0_0 CK_0_0_0_0_Xoo_1_0_0_0
RI PT
ACCEPTED MANUSCRIPT
Fig. S2. Small RNAs mapped to the osa-miR397b precursor sequence. Sequence labeled in red was the miRBase annotated mature osamiR397b, while the sequence labeled in green was the annotated osa-miR397b*. The four numbers after “CK" represent the abundance of that small RNAs in control samples at 2 hpi, 6 hpi, 12 hpi, and 24 hpi, while the four numbers after “Xoo" represent the abundance of that small RNAs in Xoo-infected samples at 2 hpi, 6 hpi, 12 hpi, and 24 hpi.
ACCEPTED MANUSCRIPT Table S1. Reads of highly expressed miRNA isoforms and miRNA*s in our data sets. Normalized sequencing reads small RNA sequence
CK2h
CK6h
CK12h
CK24h
Xoo2h
Xoo6h
Xoo12h
Xoo24h
0
0
0
0
0
0
1
1
AGCGCCCAAGCGGTAGTTGTC
osa-MIR1423-isoform1
AGCGCCCAAGCGGTAGTTGTCTCC
56
22
43
32
28
123
80
108
osa-MIR1423-5p
AGGCAACTACACGTTGGGCGCTCG
6
7
7
15
7
8
17
11
osa-MIR1423-5p-isoform1
AGGCAACTACACGTTGGGCGCT
23
22
53
39
25
24
36
34
osa-MIR1423-5p-isoform2
CAACTACACGTTGGGCGCTCGA
29
43
84
67
54
37
63
62
osa-MIR1432
ATCAGGAGAGATGACACCGAC
3528
1721
4095
1983
2918
3402
3967
2214
osa-MIR1432-isoform1
ATCAGGAGAGATGACACCGACA
30649
16081
34556
17709
22930
25159
31382
18333
osa-MIR1432-isoform2
TCAGGAGAGATGACACCGAC
4197
2071
4422
2889
3857
4106
4423
2583
osa-MIR1432-isoform3
TCAGGAGAGATGACACCGACA
3923
1894
4567
2879
3705
3222
3852
2261
osa-MIR1432-isoform4
AGGAGAGATGACACCGACA
915
397
osa-MIR156j
TGACAGAAGAGAGTGAGCAC
88815
osa-MIR156j-isoform1
TTGACAGAAGAGAGTGAGCAC
66407
osa-MIR159a.1
TTTGGATTGAAGGGAGCTCTG
osa-MIR159a.1-isoform1
TTTGGATTGAAGGGAGCT
osa-MIR159a.2
TTGCATGCCCCAGGAGCTGCA
osa-MIR159a.2-isoform1
TTGCATGCCCCAGGAGCTGC
osa-MIR166m
TCGGACCAGGCTTCATTCCCT
osa-MIR166m-isoform1
TCGGACCAGGCTTCATTCCC
osa-MIR166m-isoform2
TCGGACCAGGCTTCATTCC
osa-MIR166m-isoform3
TCGGACCAGGCTTCATTC
osa-MIR167d
TGAAGCTGCCAGCATGATCTG
osa-MIR167d-isoform1
SC
RI PT
osa-MIR1423
M AN U
ID
974
487
588
757
1087
622
93309
103385
94805
126357
75435
114495
115711
78482
103621
87503
91185
75413
91171
94851
2493
1471
4899
2068
2221
2860
2187
3885
5254
4129
4646
3834
3386
2939
3288
1
4
3
5
2
60
11
5
11
26
34
36
28
409
73
27
44
54
65
93
62
56
37
61
169
233
257
274
180
161
132
192
326
438
449
513
290
278
236
339
318
444
408
336
192
209
241
255
10896
11861
18160
16064
14902
12520
14149
13886
TGAAGCTGCCAGCATGATCTGA
638124
725818
1101443
1079044
978240
685959
835603
950093
osa-MIR1850
TGGAAAGTTGGGAGATTGGGG
105
111
236
244
137
125
223
228
osa-MIR1850-isoform1
TGGAAAGTTGGGAGATTGGG
120
124
279
218
134
158
246
243
osa-MIR1850-isoform2
TGGAAAGTTGGGAGATTGG
57
49
110
108
68
57
101
110
osa-MIR1862a
ACGAGGTTGGTTTATTTTGGGACG
46
54
66
94
52
59
50
78
osa-MIR1862a-isoform1
ACGAGGTTGGTTTATTTTGGGA
48
75
82
81
43
46
48
68
osa-MIR1862a-isoform2
ACGAGGTTGGTTTATTTTGGG
90
102
120
140
98
97
78
87
osa-MIR1862a-isoform3
ACGAGGTTGGTTTATTTTGG
257
330
421
458
343
340
283
306
osa-MIR1862a-isoform4
ACGAGGTTGGTTTATTTTG
1261
1450
2328
2256
1422
1689
1433
1579
osa-MIR1862a-isoform5
ACGAGGTTGGTTTATTTT
2008
2156
2160
3119
2325
2713
1772
1914
osa-MIR1862a-isoform6
GTACGAGGTTGGTTTATTTTGGGA
83
46
98
142
82
75
80
104
osa-MIR1862a-isoform7
TTGGTTTATTTTGGGACGGAG
112
116
183
187
129
111
123
117
osa-MIR1862e
CTAGATTTGTTTATTTTGGGACGG
1363
1221
1647
2199
1764
1520
1528
1849
osa-MIR1862e-isoform1
ACTAGATTTGTTTATTTTG
1295
1539
1719
1943
1663
1787
1378
1517
osa-MIR1862e-isoform2
ACTAGATTTGTTTATTTT
1317
1299
521
1274
1296
1735
792
790
osa-MIR1863b.2
AGAGACTTGGCTGATGCATTACT
147
125
175
74
84
180
159
161
osa-MIR1863b.2-isoform1
AGAGACTTGGCTGATGCATTACTT
192
166
242
103
93
215
168
207
osa-MIR1863b.2-isoform2
TAGAGACTTGGCTGATGCATTACT
303
170
403
52
53
385
302
367
osa-MIR1868
TCACGGAAAACGAGGGAGCAGCCA
13
16
42
25
21
19
16
39
AC C
EP
TE D
2381
ACCEPTED MANUSCRIPT AAGCGTGCTCACGGAAAACGA
81
78
90
151
100
111
118
103
osa-MIR1868-isoform2
AAGCGTGCTCACGGAAAACGAG
30
32
35
55
37
38
31
31
osa-MIR1868-isoform3
AAGCGTGCTCACGGAAAACGAGGG
105
78
107
129
86
96
118
134
osa-MIR1868-isoform4
GCGTGCTCACGGAAAACGAGGGAG
65
53
76
68
47
81
70
110
osa-MIR1873
TCAACATGGTATCAGAGCTGGAAG
105
78
78
85
79
116
121
160
osa-MIR1873-isoform1
TCAACATGGTATCAGAGCTGGA
43
36
91
80
66
61
68
108
miR393b
TCCAAAGGGATCGCATTGATCT
0
0
0
0
0
0
0
0
miR393b-isoform1
CTCCAAAGGGATCGCATTGAT
15
28
34
26
148
25
16
17
miR393b-isoform2
TCCAAAGGGATCGCATTGATC
48
76
91
146
109
107
76
87
miR393b-isoform3
AGGACTCCAAAGGGATCGCATTGA
158
182
191
186
178
184
203
149
osa-MIR396b
TTCCACAGCTTTCTTGAACTG
1
2
2
7
29
3
3
5
osa-MIR396b-isoform1
TTCCACAGCTTTCTTGAACT
29
31
36
53
29
30
35
28
osa-MIR396b-isoform2
TTCCACAGCTTTCTTGAAC
144
210
308
352
308
280
184
246
osa-MIR396b-isoform3
TTCCACAGCTTTCTTGAA
1110
1526
osa-MIR396c
TTCCACAGCTTTCTTGAACTT
275
362
osa-MIR396c-isoform1
TTCCACAGCTTTCTTGAAC
144
210
osa-MIR396c-isoform2
TTCCACAGCTTTCTTGAA
1110
1526
osa-MIR396c-isoform3
TTTCCACAGCTTTCTTGA
25
31
osa-MIR396c-3p
GGTCAAGAAAGCTGTGGGAAG
3
osa-MIR396c-3p-isoform1
GTCAAGAAAGCTGTGGGAAGA
osa-MIR396c-3p-isoform2
AGAAAGCTGTGGGAAGAAATGGCA
osa-MIR397a
TCATTGAGTGCAGCGTTGATG
osa-MIR397a-isoform1
ATTGAGTGCAGCGTTGATGAA
osa-MIR397a-isoform2
TTGAGTGCAGCGTTGATG
osa-MIR397a-isoform3
TTGAGTGCAGCGTTGATGA
osa-MIR397a-isoform4 osa-MIR397a-isoform5 osa-MIR397b
TTATTGAGTGCAGCGTTGATG
osa-MIR397b-isoform1
ATTGAGTGCAGCGTTGATGAA
osa-MIR397b-isoform2
SC
RI PT
osa-MIR1868-isoform1
2290
2538
2128
1679
1939
310
613
443
464
478
321
308
352
308
280
184
246
2255
2290
2538
2128
1679
1939
47
60
50
46
31
31
1
2
5
2
11
2
3
18
12
13
47
34
43
25
16
873
896
983
1412
997
1032
962
931
44
27
79
77
75
77
53
62
966
490
1514
1237
944
831
1288
1513
1199
669
1622
1249
1160
1802
2003
1678
3656
2081
5195
3997
3525
4725
5074
4472
TTGAGTGCAGCGTTGATGAA
2455
1484
3411
2655
2201
2934
3039
2819
TTGAGTGCAGCGTTGATGAAC
2534
1817
5714
4926
3397
2966
5164
4481
1
1
1
2
1
1
2
2
966
490
1514
1237
944
831
1288
1513
TTGAGTGCAGCGTTGATG
1199
669
1622
1249
1160
1802
2003
1678
osa-MIR397b-isoform3
TTGAGTGCAGCGTTGATGA
3656
2081
5195
3997
3525
4725
5074
4472
osa-MIR397b-isoform4
TTGAGTGCAGCGTTGATGAA
2455
1484
3411
2655
2201
2934
3039
2819
TTGAGTGCAGCGTTGATGAAC
2534
1817
5714
4926
3397
2966
5164
4481
TTGAGTGCAGCGTTGATGAACC
1785
1028
2704
2343
1662
1921
2396
1991
TTCACCAGCACTGCACCCAATC
2057
1277
2749
2223
1712
1502
1701
1595
TCACCAGCACTGCACCCAATC
1109
627
1355
1188
962
838
914
956
osa-MIR397b-isoform6 osa-MIR397b-isoform7 osa-MIR397b-isoform8
TE D
EP
AC C
osa-MIR397b-isoform5
M AN U
2255
36
33
67
53
20
22
43
36
osa-MIR398b*
GGGCGAGCTGGGAACACACGG
216
29
87
37
29
260
122
223
osa-MIR398b*-isoform1
GGCGAGCTGGGAACACACGGT
269
58
173
62
37
234
161
194
osa-MIR398b*-isoform2
GCGAGCTGGGAACACACGGTG
51
9
32
10
6
63
42
80
osa-MIR408-5p
CAGGGATGAGGCAGAGCATGG
1599
1302
2878
7057
1483
3882
2372
7803
osa-MIR408-5p-isoform1
CAGGGATGAGGCAGAGCATG
714
929
1705
4436
923
2314
1192
3824
osa-MIR408-5p-isoform2
ACAGGGATGAGGCAGAGCATG
789
465
1125
1219
594
1226
827
1886
osa-MIR530-5p
TGCATTTGCACCTGCACCTA
4
3
0
11
8
5
10
4
miR398b
TGTGTTCTCAGGTCGCCCCTG
ACCEPTED MANUSCRIPT 2106
1978
2116
2298
1620
3512
1361
ACGGATGATTAAAGTTGGACACGG
220
170
108
92
131
302
220
244
osa-MIR812f-isoform1
GATGATTAAAGTTGGACACGGAAA
116
96
205
228
126
146
200
226
osa-MIR820a
TCGGCCTCGTGGATGGACCAG
54
34
60
40
29
111
112
135
osa-MIR820a-isoform1
TCGGCCTCGTGGATGGACCAGGA
249
122
408
114
122
509
599
592
osa-MIR820a-isoform2
TCGGCCTCGTGGATGGACCAGGAG
2353
1385
2153
653
558
4972
4288
4601
TGCATTTGCACCTGCACCTAC
osa-MIR812f
RI PT
2588
osa-MIR530-5p-isoform1
AC C
EP
TE D
M AN U
SC
ACCEPTED MANUSCRIPT Table S2. Reads of miRNAs and miRNA*s in the OsAGO1 associated small RNA data sets.
ID
OsAGO1a
OsAGO1b
OsAGO1c
(GSM455962a)
(GSM455963a)
(GSM455964a)
3302
2768
osa-miR156a*
0
0
0
osa-miR156b*
0
0
0
osa-miR156c*
0
0
0
osa-miR156d*
9
1
0
osa-miR156e*
0
0
osa-miR156f*
0
0
osa-miR156g*
0
0
osa-miR156h*
59
95
osa-miR156i*
0
0
osa-miR156j*
59
95
osa-miR156k
41
1
osa-miR156k*
0
0
osa-miR156l
25
osa-miR156l*
0
osa-miR167a
9935
osa-miR167a*
0
osa-miR167b*
0
osa-miR167c*
0
osa-miR167d
0
0
0
16
SC
0
16 2 0
0
0
0
0
1181
8163
0
0
0
0
0
0
1883
63899
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1731
531
6068
0
0
0
31005
8483
2546
0
0
0
osa-miR172a
15
0
51
osa-miR172a*
0
0
0
osa-miR172d*
0
0
0
osa-miR172b
0
0
0
osa-miR172c
0
0
0
osa-miR172c*
0
0
0
osa-miR393b
87
148
35
5861
1329
3388
147
0
494
0
0
0
osa-miR167g* osa-miR167h* osa-miR167j* osa-miR167e osa-miR167e* osa-miR168a
AC C
osa-miR168a*
EP
osa-miR167f*
0
TE D
osa-miR167d*
22237
RI PT
16861
M AN U
osa-miR156a
osa-miR393b* osa-miR528 osa-miR528* a
NCBI GEO accession number.
Table S3. Differentially expressed miRNAs, miRNA*s, isoforms, and ta-siRNAs.
ACCEPTED MANUSCRIPT Normalized reads (CK)
Normalized reads (Xoo)
2 hpi
6 hpi
12 hpi
24 hpi
2 hpi
6 hpi
12 hpi
24 hpi
30
107
53
373
224
515
215
90
Sequences
miR394
TTGGCATTCTGTCCACCTCC
miR160e
TGCCTGGCTCCCTGTATGCCG
9
9
7
41
19
21
25
21
miR160a
TGCCTGGCTCCCTGTATGCCA
12
25
6
60
84
32
56
24
miR160f
TGCCTGGCTCCCTGAATGCCA
17
36
18
89
41
56
65
37
miR159a.2
TTGCATGCCCCAGGAGCTGC
11
26
34
36
28
409
73
27
miR390
AAGCTCAGGAGGGATAGCGCC
45
34
75
112
129
82
56
56
miR827
TTAGATGACCATCAGCAAACA
1962
1598
2640
3544
5013
2397
2679
1590
miR395b
TGAAGTGTTTGGGGGAACTC
31
34
47
miR393a
TCCAAAGGGATCGCATTGATC
48
76
91
miR393b-3p
TCAGTGCAATCCCTTTGGAAT
78
116
125
miR393b-isoform1
CTCCAAAGGGATCGCATTGAT
15
28
34
TAS3b (D6+)
TCTTGACCTTGTAAGACCCAA
1205
1260
2316
2463
3021
1367
1233
1563
miR167a
TGAAGCTGCCAGCATGATCTA
25527
29211
41840
54759
31025
29327
30122
29552
miR167d-isoform1
TGAAGCTGCCAGCATGATCTGA
638124
725818
1101443
1079044
978240
685959
835603
950093
TAS3a (D6+)
TTCTTGACCTTGCAAGACTTT
26
24
37
37
42
21
22
19
osa-MIR166g
TCGGACCAGGCTTCATTCCTC
1104
1206
1618
1609
1457
1176
816
1092
osa-MIR166k
TCGGACCAGGCTTCAATCCCT
573
671
899
925
836
667
569
637
miR172a
AGAATCTTGATGATGCTGCAT
24523
29784
44365
36480
39373
30396
26214
32927
miR162a
TCGATAAACCTCTGCATCCAG
1467
1878
2748
3437
2429
1932
2128
2315
miR168a
TCGCTTGGTGCAGATCGGGAC
160676
172489
408838
402703
295068
231431
359593
446833
miR397a-isoform5
TTGAGTGCAGCGTTGATGAAC
2534
1817
5714
4926
3397
2966
5164
4481
miR397a-isoform1
ATTGAGTGCAGCGTTGATGAA
966
490
1514
1237
944
831
1288
1513
miR397a
TCATTGAGTGCAGCGTTGATG
44
27
79
77
75
77
53
62
miR397a-isoform2
TTGAGTGCAGCGTTGATG
1199
669
1622
1249
1160
1802
2003
1678
miR397a-isoform3
TTGAGTGCAGCGTTGATGA
3656
2081
5195
3997
3525
4725
5074
4472
miR397a-isoform4
TTGAGTGCAGCGTTGATGAA
2455
1484
3411
2655
2201
2934
3039
2819
miR408-5p-isoform1
CAGGGATGAGGCAGAGCATG
714
929
1705
4436
923
2314
1192
3824
miR408-5p
CAGGGATGAGGCAGAGCATGG
1599
1302
2878
7057
1483
3882
2372
7803
miR408-5p-isoform2
ACAGGGATGAGGCAGAGCATG
789
465
1125
1219
594
1226
827
1886
miR169a
CAGCCAAGGATGACTTGCCGA
1056
215
504
541
868
531
686
720
miR164a
TGGAGAAGCAGGGCACGTGCA
7979
6396
11824
10248
7648
13209
11499
15199
miR1432-isoform4
AGGAGAGATGACACCGACA
106
50
39
57
62
146
109
107
76
87
183
159
118
111
128
26
148
25
16
17
SC
M AN U
TE D
EP
RI PT
Small RNA IDs
397
974
487
588
757
1087
622
1721
4095
1983
2918
3402
3967
2214
30649
16081
34556
17709
22930
25159
31382
18333
TCAGGAGAGATGACACCGAC
4197
2071
4422
2889
3857
4106
4423
2583
TCAGGAGAGATGACACCGACA
3923
1894
4567
2879
3705
3222
3852
2261
miR397b*
TTCACCAGCACTGCACCCAATC
2057
1277
2749
2223
1712
1502
1701
1595
miR530
AGGTGCAGAGGCAGATGCAAC
1043
682
686
221
462
790
1265
435
miR820a-isoform2
TCGGCCTCGTGGATGGACCAGGAG
2353
1385
2153
653
558
4972
4288
4601
miR820a
TCGGCCTCGTGGATGGACCAG
54
34
60
40
29
111
112
135
miR820a-isoform1
TCGGCCTCGTGGATGGACCAGGA
249
122
408
114
122
509
599
592
miR1432-isoform1 miR1432-isoform2 miR1432-isoform3
AC C
915 3528
miR1432
ATCAGGAGAGATGACACCGAC ATCAGGAGAGATGACACCGACA
ACCEPTED MANUSCRIPT GGGCGAGCTGGGAACACACGG
216
29
87
37
29
260
122
223
miR398b*-isoform2
GCGAGCTGGGAACACACGGTG
51
9
32
10
6
63
42
80
miR398b*-isoform1
GGCGAGCTGGGAACACACGGT
269
58
173
62
37
234
161
194
miR159a.1
TTTGGATTGAAGGGAGCTCTG
2381
2493
1471
4899
2068
2221
2860
2187
miR159a.1-isoform1
TTTGGATTGAAGGGAGCT
3885
5254
4129
4646
3834
3386
2939
3288
miR166a
TCGGACCAGGCTTCATTCCCC
16229
20528
22638
21922
17434
13420
12292
16123
miR398b
TGTGTTCTCAGGTCGCCCCTG
36
33
67
53
20
22
43
36
AC C
EP
TE D
M AN U
SC
RI PT
miR398b*
ACCEPTED MANUSCRIPT Table S4. Predicted target genes of the differentially expressed miRNAs and ta-siRNAs in Xoo-infected rice, and the alignments between small RNAs and their targeting sites. RNA ID
Locus ID
Gene annotation
Alignment between miRNAs and their targets
osa-miR160
Os06g47150
Auxin response
miRNA:
1 TGCCTGGCTCCCTGTATGCCA 22 ||||||||||||||||||||**
factor
gene: 2315 ACGGACCGAGGGACATACGGAC 2294 Auxin response
miRNA:
1 TGCCTGGCTCCCTGTATGCCA 22 ||||||||||||||||||||**
factor
RI PT
Os04g43910
gene: 1549 ACGGACCGAGGGACATACGGAC 1528
Os02g41800
Auxin response
miRNA:
1 TGCCTGGCTCCCTGTATGCCA 22 ||||||||||||||||||||**
factor
gene: 1683 ACGGACCGAGGGACATACGGAC 1662 Auxin response
miRNA:
1 TGCCTGGCTCCCTGTATGCCA 22
SC
Os04g59430
||||||||||||||*|||*||*
factor
gene: 2235 ACGGACCGAGGGACTTACAGTC 2214 Auxin response factor
miRNA:
1 TGCCTGGCTCCCTGTATGCCA 22
M AN U
Os10g33940
||||||||||||||||||||**
gene: 4027 ACGGACCGAGGGACATACGGAC 4006
osa-miR167
Os12g41950
Auxin response factor
miRNA:
3 AAGCTGCCAGCATGATCTGA 22 |||||||||||*||||||*|
gene: 5337 TTCGACGGTCGGACTAGAAT 5318
Os02g06910
Auxin response
TE D
factor
Os04g57610
Auxin response
miRNA:
|||||||||||*||||||
gene: 5368 TTCGACGGTCGGACTAGA 5351 miRNA:
Os06g46410
Auxin response
gene: 5629 TGTTCGACGGTCGGACTAGATA 5608 miRNA:
EP
Os07g29820
AC C
TAS3 (D6+)
Os01g48060
Os05g48870
NBS-LRR disease
3 AAGCTGCCAGCATGATCTGA 22 |||||||||||*||||||*|
factor
1 TGAAGCTGCCAGCATGATCTA 22 **|||||||||||*|||||||*
factor
3 AAGCTGCCAGCATGATCT 20
gene: 5440 TTCGACGGTCGGACTAGAGT 5421 miRNA:
1 TGAAGCTGCCAGCATGATCTA 22 |||*||||*||||||||||||*
resistance protein
gene: 4724 ACTCCGACAGTCGTACTAGATA 4703 Auxin response
miRNA:
1 TCTTGACCTTGTAAGACCCAA 22 |||||||||||:||||||****
factor
gene: 4339 AGAACTGGAACGTTCTGGAACA 4318 Auxin response
miRNA:
1 TCTTGACCTTGTAAGACCCAA 22 |||||||||||:||||||****
factor
gene: 4077 AGAACTGGAACGTTCTGGAACA 4056
Os01g54990
Auxin response
miRNA:
1 TCTTGACCTTGTAAGACCCAA 22 |||||||||||:|||||||***
factor
gene: 4785 AGAACTGGAACGTTCTGGGACC 4764
Os01g70270
Auxin response factor
miRNA:
1 TCTTGACCTTGTAAGACCCAA 22 |||||||||||:||||||**|*
ACCEPTED MANUSCRIPT gene: 2912 AGAACTGGAACGTTCTGGCATG 2891
Os05g43920
Auxin response
miRNA:
1 TCTTGACCTTGTAAGACCCAA 22 |||||||||||:|||||||***
factor
gene: 4809 AGAACTGGAACGTTCTGGGACA 4788
osa-miR393
Os05g05800
miRNA:
OsTIR1
1 TCCAAAGGGATCGCATTGATC 22 ||||||||||||||||||*||*
gene: 5845 AGGTTTCCCTAGCGTAAC-AGA 5825 miRNA:
OsAFB2
1 TCCAAAGGGATCGCATTGATC 22
RI PT
Os04g32460
||||||||||||||||||*||*
gene: 3193 AGGTTTCCCTAGCGTAAC-AGA 3173
Os03g09070
b-3p
miRNA:
1 TCAGTGCAATCCCTTTGG-AA 21 |*|||||||||||||*||*|||
repeat domain
Os03g51440
Leucine rich
containing protein
gene: 2081 ACTCACGTTAGGGAATCCGTTA 2059
LRR receptor-like
miRNA:
SC
osa-miR393
1 TCAGTGCAATCCCTTTGG--AAT 21 |||*||||||||*|||||**|||
protein kinase
gene: 1937 AGT-ACGTTAGG-AAACCGTTTA 1917 Dynein light chain
miRNA: 1 TCAGTGCAATCCCTTT-GGAAT 22
M AN U
Os01g37490
||||||||||||||||*:||||*
type 1 domain
Os03g45260
containing protein
gene: 937 AGTCACGTTAGGGAAAGTCTTAT 915
MEMB12
miRNA: 1 TCAGTGCAATCCCTTTGGAAT 22 :|||*|*||*|||||*|*||:
gene: 987 GGTCTCTTTCGGGAA-CATTG 968
osa-miR390
Os02g10100
Leucine-rich
miRNA:
*|||||||:||||||||||||*
TE D
repeat receptor protein kinase
1 AAGCTCAGGAGGGATAGCGCC 22
gene: 4610 ATCGAGTCTTCCCTATCGCGGA 4589
EXS precursor
Os04g42050
Hypothetical
miRNA:
|||||||||||||||||*:|**
EP
protein
osa-miR827
Os04g48390
Membrane protein
gene: 533 TTCGAGTCCTCCCTATC-TGTC 513 miRNA: 1 TTAGATGACCATCAGCAAACA 22 ||||||||*|||||||||||**
AC C
(OsSPX-MFS1)
Os02g45520
Os06g04600
Membrane protein
1 AAGCTCAGGAGGGATAGCGCC 22
gene: 453 AATCTACTTGTAGTCGTTTGAG 432 miRNA: 1 TTAGATGACCATCAGCAAA--CA 22 ||||||||||||||:||||**||*
(OsSPX-MFS2)
gene: 643 AATCTACTGGTAGTTGTTTAGGTG 620 Brix domain
miRNA:
1 TTAGATGACCATCAGCAAACA 22 :||||||||||||||||*|||*
containing protein
gene: 3870 GATCTACTGGTAGTCGT-TGTA 3850
Os08g01570
Retrotransposon
miRNA:
1 TTAGATGACCATCAGCAAACA 22 |:|:|||||||||||||||||*
protein
gene: 1554 AGTTTACTGGTAGTCGTTTGTT 1533
osa-miR159 a.1
Os01g59660
MYB family transcription factor
miRNA:
1 TTTGGATTGAAGGGAGCT 19 :|||||*|||||||||||*
gene: 3377 GAACCTCACTTCCCTCGAG 3359
ACCEPTED MANUSCRIPT Os06g40330
MYB family
miRNA:
1 TTTGGATTGAAGGGAGCT 19 *|||||*|||||||||||*
transcription factor
gene: 6273 TAACCTCACTTCCCTCGAG 6255
Os01g12700
MYB family
miRNA:
1 TTTGGATTGAAGGGAGCT 19 *|||||||:|||||||||*
transcription factor
gene: 3094 TAACCTAATTTCCCTCGAG 3076
Os05g41166
MYB family
miRNA:
1 TTTGGATTGAAGGGAGCT 19 *|||||||:|||||||||*
transcription factor
RI PT
gene: 3255 TAACCTAATTTCCCTCGAG 3237
Os03g38210
MYB family
miRNA:
1 TTTGGATTGAAGGGAGCT 19 *||||*||||||||||||*
transcription factor
gene: 1168 TAACCGAACTTCCCTCGAG 1150
Os04g46384
MYB family
miRNA: 1 TTTGGATTGAAGGGAGCT 19
SC
|||||||:|||*||||||*
transcription factor
gene: 279 AAACCTAGCTTACCTCGAG 261
Os12g10740
Leucine-rich
miRNA:
||||:|||||||||||*||*
Os10g05230
Zinc finger,
M AN U
repeat family protein
gene: 3053 AAACTTAACTTCCCTCTGAT 3034 miRNA: 1 TTTGGATTGAAGGGAGCT 19 :||||||||||||||||**
C3HC4 type
domain containing protein
Os01g12240
Hypothetical
osa-miR159
TE D
protein
Os03g02240
a.2
Os03g11960
AC C
osa-miR398
AT-GTL1
Expressed protein
EP
Os10g37240
Copper/zinc
gene: 654 GAACCTAACTTCCCTCGTT 636
miRNA:
1 TTTGGATTGAAGGGAGCT 19 *||||||:||||||||||*
gene: 3533 TAACCTAGCTTCCCTCGAG 3515 miRNA:
1 TTGCATGCCCCAGGAGCTGC 21 |||||||||||*||||||||*
gene: 2940 AACGTACGGGGGCCTCGACGA 2920 miRNA:
1 TTGCATGCCCCAGGAGCTGC 21 |||||||||||*|||||:||*
gene: 4295 AACGTACGGGGGCCTCGGCGG 4275 miRNA:
1 TGTGTTCTCAGGTCGCCC-C-TG 21 |||*|||*||||||||||*|*||
superoxide dismutase (CSD1)
gene: 1784 ACA-AAGGGTCCAGCGGGTGTAC 1763
Os08g44770
Copper/zinc
miRNA:
superoxide
Os01g42650
Os12g01922
1 TGTGTTCTCAGGTCGCCC-C-TG 21 |||*|||*||||||*|||*|*||
dismutase (CSD2)
gene: 1917 ACA-AAGGGTCCAGTGGGCGTAC 1896
cytochrome c
miRNA:
1 TGTGTTCTCAGGTCGCCCCTG 22 ||||:|||||||||||**|*|*
oxidase subunit
osa-miR398*
1 TTTGGATTGAAGGGAG-CT 19
5B (OsCOX5b.1)
gene: 245 ACACGAGAGTCCAGCGCCG-CG 225
WD domain and
miRNA:
HEAT domain containing protein (RAPTOR1)
1 GGGCGAGCTGGGAACACA-CGG 21 :|||:|||||*|||||||*|:|
gene: 902 TCCGTTCGACACTTGTGTAGTC 881
ACCEPTED MANUSCRIPT Osa‐miR395 Os03g09930
Sulfate transporter
miRNA:
1 TGAAGTGTTTGGGGGAACTC 21 |||||||||||||*||||||*
gene: 3240 ACTTCACAAACCCACTTGAGG 3220
Os03g09940
Sulfate transporter
miRNA:
1 TGAAGTGTTTGGGGGAACTC 21 ||||||||||||||||||||*
gene: 438 ACTTCACAAACCCCCTTGAGG 418
Bifunctional
miRNA:
|||||||:||||:|||||||*
3-phosphoadenosi
gene: 715 ACTTCACGAACCTCCTTGAGC 695
ne 5-phosphosulfate synthetase
Osa‐miR166 Os02g49670
1 TGAAGTGTTTGGGGGAACTC 21
RI PT
Os03g53230
Zinc knuckle
miRNA:
1 TCGGACCAGGCTTCATTCCCC 22
SC
||||||||||||||*||||||*
family protein
gene: 3125 AGCCTGGTCCGAAG-AAGGGGC 3105
Os03g10290
Hypothetical protein
miRNA:
1 TCGGACCAGGCTTCATTCCCC 22 **|||||||||||||||||||*
M AN U
gene: 1664 TACCTGGTCCGAAGTAAGGGGA 1643
Os03g44835
Expressed protein
miRNA:
1 TCGGACCAGGCTTCATTCCCC 22 |||||*|||||||||||||*|*
gene: 1366 AGCCTAGTCCGAAGTAAGGAGT 1345
Os04g48290
MATE efflux family protein
miRNA: 1 TCGGACCAGGCTTCATTCCCC 22 *|||||||||||||*|||*||*
TE D
gene: 519 TGCCTGGTCCGAAGCAAGTGGC 498
Osa‐miR172 Os03g60430
AP2 domain
miRNA:
||||||:|||||||||||||**
containing protein
Os05g03040
AP2 domain
gene: 3893 TCTTAGGACTACTACGACGTCG 3872 miRNA:
EP
AC C
Os07g13170
Os04g55560
Os06g43220
AP2 domain
1 AGAATCTTGATGATGCTGCAT 22 ||||||:|||||||||||||**
containing protein
1 AGAATCTTGATGATGCTGCAT 22
gene: 3962 TCTTAGGACTACTACGACGTCG 3941 miRNA:
1 AGAATCTTGATGATGCTGCA 21 ||||||:|||||||||||||
containing protein
gene: 3950 TCTTAGGACTACTACGACGT 3925 AP2 domain
miRNA:
1 AGAATCTTGATGATGCTGCAT 22 *|||||*|||||||||||||**
containing protein
gene: 3002 CCTTAGCACTACTACGACGTCG 2981 AP2 domain
miRNA:
1 AGAATCTTGATGATGCTGCAT 22 *|||||:|||||||||||||**
containing protein
gene: 3414 CCTTAGGACTACTACGACGTCG 3393
Os06g49310
MATE efflux family protein
miRNA:
1 AGAATCTTGATGATGCTGCAT 22 *|*|||||||||||||||*||*
gene: 7705 CCCTAGAACTACTACGAC-TAC 7685
ACCEPTED MANUSCRIPT Osa‐miR397 Os05g38410
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||||||||||||||||*
gene: 1126 AACTCACGTCGCAACTACTC 1107
Os05g38420
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||||||||||||||||*
gene: 1124 AACTCACGTCGCAACTACTC 1105
Os01g44330
Laccase precursor
miRNA: 1 TTGAGTGCAGCGTTGATGA 20
RI PT
||||*||||||||||||||*
gene: 998 AACTGACGTCGCAACTACTA 979
Os01g61160
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 ||||||||*||||||||||*
gene: 1381 AACTCACGGCGCAACTACTT 1362
Os01g62480
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20
SC
|||||:||*||||||||||*
gene: 1750 AACTCGCGCCGCAACTACTC 1731
Os01g62490
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20
M AN U
|||||:|||||||||||||*
gene: 1356 AACTCGCGTCGCAACTACTC 1337
Os01g63180
Laccase-6 precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||:|||||||||||||*
gene: 2706 AACTCGCGTCGCAACTACTA 2687
Os01g63190
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 ||||||*||||||||||||*
Os02g51440
Laccase precursor
Laccase precursor
EP
Os01g63200
Os03g16610
AC C
TE D
gene: 3549 AACTCAGGTCGCAACTACTG 3530
Os11g01730
Os12g15680
Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 ||||*||||||||||||||*
gene: 1379 AACTGACGTCGCAACTACTA 1360 miRNA:
1 TTGAGTGCAGCGTTGATGA 20 *|||||*||||||||||||*
gene: 1236 CACTCAGGTCGCAACTACTA 1217 miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||:|||||||||||*|*
gene: 1313 AACTCGCGTCGCAACTAGTC 1294 Laccase-23
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||:||*||||||||||*
precursor
gene: 3594 AACTCGCGCCGCAACTACTT 3575 Laccase precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||:|||||||||||||*
gene: 1513 AACTCGCGTCGCAACTACTA 1494
Os11g48060
Laccase-22 precursor
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 ||*||||||||||||||||*
gene: 1941 AAGTCACGTCGCAACTACTA 1922
ACCEPTED MANUSCRIPT
Os12g01730
Laccase-23
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 |||||:||*||||||||||*
precursor
gene: 3482 AACTCGCGCCGCAACTACTT 3463
Os02g34600
Calcium/calmoduli
miRNA:
|||||||||||:*||||||*
n depedent protein
Os01g02180
1 TTGAGTGCAGCGTTGATGA 20
kinases
gene: 1652 AACTCACGTCGTCACTACTG 1633
Expressed protein
miRNA:
1 TTGAGTGCAGCGTTGATGA 20
RI PT
|||||||||||||||*|||* gene: 2065 AACTCACGTCGCAACGACTT 2046
Os04g54610
Hypothetical
miRNA:
1 TTGAGTGCAGCGTTGATGA 20 ||*||||||||||||||*|*
protein
gene: 413 AAGTCACGTCGCAACTAATC 394
Os07g04020
Expressed protein
miRNA: 1 TTGAGTGCAGCGTTGATGA 20
SC
*||||||||||:|||||:|*
gene: 74 CACTCACGTCGTAACTATTT 55
Osa‐miR408 Os02g49850
Plastocyanin-like
miRNA:
*||||||||||||||||:|*||*
Os03g15340
M AN U
domain containing protein
Plastocyanin-like
gene: 249 TACGTGACGGAGAAGGGGCTCGG 227 miRNA:
Os03g50140
Plastocyanin-like
gene: 204 GACGTGACGGAGAAGGGACCCGG 182 miRNA:
TE D
Os06g15600
Plastocyanin-like
gene: 373 AACGTGACGGAGAAGGGGCTCGG 351 miRNA:
Os01g03530
protein
gene: 175 AACGTGACGGAGAAGGGGCCGC 154
Multicopper
miRNA:
EP
containing protein
gene: 2503 GACGTGACGGAGAAGGAGCCGC 2482
Nuclear
miRNA:
AC C
Os12g42400
Os03g44540
Y subunit
gene: 3014 GTCGGTTCCTACTTAACGG-TG 2994
Nuclear
miRNA:
1 TAGCCAAGAATGACTTGCCTA 22 :||||||||||||*|||||||*
transcription factor Y subunit
gene: 4053 GTCGGTTCTTACTCAACGGATG 4032
Nuclear
miRNA:
1 TAGCCAAGAATGACTTGCCTA 22 *||||||||||||*|||||||*
transcription factor
Osa‐miR164 Os02g36880
1 CAGCCAAGGATGACTTGCCGA 22 |||||||||||||*|||||*|*
transcription factor
1 CTGCACTGCCTCTTCCCTGGC 22 ||||||||||||||||*:|||*
oxidase domain
Osa‐miR169 Os07g06470
1 CTGCACTGCCTCTTCCCTGGC 22 *||||||||||||||||:|||*
domain containing
1 CTGCACTGCCTCTTCCCTG-GC 22 *||||||||||||||||:|*||*
domain containing protein
1 CTGCACTGCCTCTTCCCT-GGC 22 ||||||||||||||||||*|||*
domain containing protein
1 CTGCACTGCCTCTTCCCTG-GC 22
Y subunit
gene: 5295 CTCGGTTCTTACTAAACGGATG 5274
No apical
miRNA:
meristem protein
1 TGGAGAAGCAGGGCACGTGCA 22 ||||||||||||*|||||||**
gene: 1378 ACCTCTTCGTCCAGTGCACGCG 1357
ACCEPTED MANUSCRIPT
Os06g23650
miRNA:
No apical
1 TGGAGAAGCAGGGCACGTGCA 22 |||||||||||||||||*||**
meristem protein
gene: 1590 ACCTCTTCGTCCCGTGCTCGAG 1569
Os06g46270
miRNA:
No apical
1 TGGAGAAGCAGGGCACGTGCA 22 ||||||||||||||||*|||**
meristem protein
gene: 3944 ACCTCTTCGTCCCGTGAACGAG 3923
Os12g41680
miRNA:
No apical
1 TGGAGAAGCAGGGCACGTGCA 22 ||||||||||||||||*|||**
meristem protein
RI PT
gene: 5108 ACCTCTTCGTCCCGTGAACGAG 5087
Os04g38720
miRNA:
No apical
1 TGGAGAAGCAGGGCACGTGCA 22 ||||||||||||*|||||||**
meristem protein
gene: 1558 ACCTCTTCGTCCAGTGCACGCG 1537 Calcium-transporti
miRNA: 1 ATCAGGAGAGATGACACCGACA 23 *||||||||||||||||*||||*
ng ATPase 9
Os03g59770
EF hand family protein
SC
Os02g08018
gene:
96 GAGTCCTCTCTACTGTGCCTGTG 74
miRNA:
1 ATCAGGAGAGATGACACCGACA 23 |||||||||||:||||||||||*
M AN U
Osa‐miR143 2
gene: 236 TAGTCCTCTCTGCTGTGGCTGTG 214
Os03g59790
EF hand family protein
miRNA:
1 ATCAGGAGAGATGACACCGACA 23 |||||||||||:||||||||||*
gene: 164 TAGTCCTCTCTGCTGTGGCTGTT 142
Os03g59870
EF hand family protein
miRNA:
1 ATCAGGAGAGATGACACCGACA 23 |||||||||||:||||||||||*
TE D
gene: 149 TAGTCCTCTCTGCTGTGGCTGTG 127
Osa‐miR530 Os01g56780
Plus-3 domain
miRNA:
|||||||:|||||||||||*|*
containing protein
Os02g14990
Zinc finger,
gene: 1315 ACGTAAATGTGGACGTGGACTT 1292 miRNA:
EP
1 TGCATTTGCACCTGCACCTAC 22 ||||:|||||||||||||:*|*
C3HC4 type
domain containing
1 TGCATTTGCACCTGCACCT-A 21
gene: 709 ACGTGAACGTGGACGTGGGCGC 688
protein
Os12g02540
AC C
Osa‐miR820 Os03g02010
Os11g03310
Bric-a-Brac, Tramtrack,
miRNA:
1 TGCATTTGCACCTGCACCTAC 22 ||||:|||||||||||||*|*
gene: 572 ACGTGGACGTGGACGTGGACGT 551 DNA methyltransferase
miRNA: 1 TCGGCCTCGTGGATGGACCAGGAG 25 *|:||||||||||:||||||||||*
protein
gene: 983 CGTCGGAGCACCTGCCTGGTCCTCG 959
No apical
miRNA: 1 TCGGCCTCGTGGATGGACCAGGAG 25
meristem protein
|||:||||||||||||*|*|||||* gene: 1363 AGCTGGAGCACCTACCCGTTCCTCC 1339
ACCEPTED MANUSCRIPT
Table S5. Probes used for the small RNA northern-blot hybridizations.
Probe sequences (5’→3’)
miR393
GATCAATGCGATCCCTTTGGA
miR827
TGTTTGCTGATGGTCATCTAA
AC C
EP
TE D
M AN U
SC
RI PT
Probe name
ACCEPTED MANUSCRIPT Primer Sequences (5’→3’)
miR160s
TGCCTGGCTCCCTGTATGCCA
miR167s
TGAAGCTGCCAGCATGATCT
TAS3as
TTCTTGACCTTGCAAGACTT
miR827s
TTAGATGACCATCAGCAAAC
U6s
TACAGATAAGATTAGCATGGCCCC
OsARF18s
TGTTACAGAATGTGAAGAGGGTG
OsARF18a
ATATACCAAATTGAGCATGCCTGG
OsARF16s
GGTAGTTGCCAGTTTTGCCTAT
OsARF16a
ACCCTCAAATGGGAAGTCAG
OsSPX-MFS2s
GACATTAGCCGTTGCAGCACTC
OsSPX-MFS2a
CGTTCTTCGGTGATTCCCTGATT
OsSPX-MFS1s
TAAATACATCACCCTCCCCAT
OsSPX-MFS1a
GATCCGAAGTTCGATCCACT CAAGGCCATTGTCAGAACAC
OsARF25a
TTTGAGGCTTCCTGGTTAGA
OsARF2s
TGTCCACTCCCCATTCAAAACG
OsARF2a
CCAAAGCCTGAGCAATGGTAGG
OsARF15s
CATTTACAGTACATCGATGA
OsARF15a
CCCATAGACGCATCAACCAA
OsGAMYB1s
CTCAAGCAGGCTGTGGGTTTT
OsGAMYB1a
AAGGGGTTGCTGCTGGAGACT
OsLRR-RLK2s
CCCTCCTGGATAACCACTTT
OsLRR-RLK2a
GCCCCGAAGCCTCAGTGTTT
AC C
EP
TE D
M AN U
OsARF25s
SC
Primer Name
RI PT
Table S6. Primers used for the quantitative RT-PCR experiments.
ACCEPTED MANUSCRIPT
OsARF18in
CTTCTTGCCATCTGATTTCT
OsARF18out
TTCTCGGGCTTGAAACATCG
OsARF15in
GCCTGCCATTTATTCACCAC
OsARF15out
CGCCTATCATTCTCGTGCTT
OsTIR1in
ATACCGATACCGCACATACT
OsTIR1out
AAGTCTATCCAACCATCAGC
OsGAMYB1in
AAGGGGTTGCTGCTGGAGAC
OsGAMYB1out
GGAATGGACCAGGATGTTGT
OsLRR-RLK2in
GGATGAAACCAATGCCAGAA
OsLRR-RLK2out
CGATAAGCGGGATGTGGTT
OsAFB2in
TTCCTCCATTTCATTGCT
OsAFB2out
ATCCCTCGCCCCAGCAGTTGT
OsCSD1in
CATCCAATTCTTGCTCCTG
OsCSD1out
GCAGTGATAACACGTCAAAAGC
SC
Primer Sequences (5’→3’)
M AN U
Primer Name
RI PT
Table S7. Primers used for the 5-RLM-RACE experiments.
AC C
EP
TE D