Applied Mathematical Modelling 35 (2011) 1765–1781
Contents lists available at ScienceDirect
Applied Mathematical Modelling journal homepage: www.elsevier.com/locate/apm
Dynamic electromechanical behavior of a triple-layer piezoelectric composite cylinder with imperfect interfaces H.M. Wang ⇑ Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
a r t i c l e
i n f o
Article history: Received 30 May 2009 Received in revised form 15 September 2010 Accepted 4 October 2010 Available online 13 October 2010 Keywords: Electromechanical behavior Composite cylinder Imperfect interface Piezoelectric layer
a b s t r a c t The dynamic electromechanical behavior of a triple-layer piezoelectric composite cylinder with imperfect interfaces is investigated. The composite cylinder is constructed by two elastic layers and an embedded piezoelectric layer. A linear spring model is adopted to describe the weakness of imperfect interface. The exact analysis is performed by the state space method and normal mode expansion method. The determining procedure for the eigenfunction and the proof of the orthogonal property of the eigenfunction is presented for an imperfectly bonded triple-layer piezoelectric composite cylinder. The obtained solution is valid for analyzing the dynamic electromechanical behavior of composite cylinder with arbitrary thickness for both elastic and piezoelectric layers. Numerical results show that the weakness of imperfect interface has significant effect on the transient electromechanical responses of piezoelectric composite cylinder. Ó 2010 Elsevier Inc. All rights reserved.
1. Introduction Due to the special electromechanical coupling effects, piezoelectric materials have been widely used in many industrial applications such as vibration control, ultrasonic motor, structural health monitoring, intelligent systems etc. With the increasing requirement in materials, more and more piezoelectric composites are explored and many new devices and systems have been designed and manufactured [1–3]. The advantage of composites is that they usually exhibit the best qualities of their constituents. In order to know the performance of the piezoelectric composites exactly, a deeper investigation for their mechanical and electric characteristics is always required. Many theoretical investigations have been reported in the analysis for piezoelectric composite structures with perfectly bonded interfaces. The topics include static analysis, free vibration, wave propagation and transient response. Heyliger [4] studied the static behavior of simply supported laminated piezoelectric cylinders. Wang and Zhong [5] analyzed the mechanical, electric and magnetic fields in a finitely long circular cylindrical shell of a piezoelectric/piezomagnetic composite under pressuring and temperature change. Chen and Shi [6] completed the exact static analysis of double-layered piezoelectric hollow cylinder under some coupled loadings. Kharouf and Heyliger [7] studied the axisymmetric free vibrations laminated piezoelectric cylinders. Hussein and Heyliger [8] investigated the three-dimensional vibrations of layered piezoelectric cylinders. Chen et al. [9] presented a perfectly bonded laminate model to study the 3D free vibration of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. Wang et al. [10] studied the SH wave propagating around a long metallic cylinder covered with a piezoelectric layer. Du et al. [11] investigated the SH wave propagation in a cylindrically layered piezoelectric structures with initial stress. Li and Lee reported the fracture analysis of a cylindrical piezoelectric
⇑ Tel.: +86 571 8795 2396; fax: +86 571 8795 2570. E-mail address:
[email protected] 0307-904X/$ - see front matter Ó 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.apm.2010.10.008
1766
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
composite [12]. Wang et al. [13,14] further studied the transient responses in two-layered elasto-piezoelectric composite hollow cylinder and multilayered piezoelectric hollow cylinder, respectively. On the other hand, for composite structures, there often have inherent disadvantages, for instance, the presence of crack or defect or delamination in the interface during the fabrication process. Recently, the investigations considering the interlaminar bonding imperfections have been increasing interested by scientist and engineers. Huang and Rohhlin [15] investigated the interface waves propagating along an anisotropic imperfect interface between anisotropic solids. Cheng et al. [16] studied the static bending behavior of multilayered anisotropic plates with weakened interfaces. Berger et al. [17] analyzed dispersion curves of torsional waves in a biomaterial elastic cylinder with an imperfect interface. Chen et al. [18] and Chen and Lee [19] obtained the exact solutions of laminated orthotropic piezoelectric rectangular plates and angle-ply piezoelectric-laminated cylindrical panels with weak interfaces, respectively. Wang et al. [20] studied the scattering of antiplane shear wave by a piezoelectric circular cylinder with an imperfect interface. Li and Lee [21–23] carried out the fracture analysis on the interfacial imperfections in piezoelectric layered structures. There are rare publications can be cited in transient analysis of piezoelectric composite structures by taking into account the effects of imperfectly bonding interface. The motivation for this study comes from the application of piezoelectric cylindrical actuators and sensors with their inner and outer layers are the electrodes. In theoretical analysis, the electrodes can be treated as elastic layers and then such actuators and sensors can be modeled as triple-layer piezoelectric composite cylinders and the effect of the electrodes on the static response has been considered [24]. Due to the difficulties, up to now, no results have been reported for the dynamic analysis for a triple-layer piezoelectric composite cylinder with imperfection interfaces. In this investigation, a general linear spring-layer model is employ to describe the weakness of the imperfect interface between the piezoelectric layer and the electrode layer. The elastodynamic solution of a triple-layer piezoelectric composite cylinder with imperfection interfaces is obtained and the dynamic electromechnical characteristics are illustrated graphically. 2. Basic equations Fig. 1 shows the cross-section of an infinite long triple-layer piezoelectric composite hollow cylinder. The radius of each interface from the inner to the outer is denoted as ri (i = 0, 1, 2, 3). The middle layer is piezoelectric and the inner and outer layers are elastic. In the following statements and equations, the quantities with superscripts ‘‘1” and ‘‘3” denote those for elastic layers and the quantities with superscript ‘‘2” denote those for piezoelectric layer. In the polar coordinate system, for radial vibration, we have
urðiÞ ¼ urðiÞ ðr; tÞ ði ¼ 1; 2; 3Þ;
ð1Þ
Uð2Þ ¼ Uð2Þ ðr; tÞ; ðiÞ
where ur is the radial displacement component in both elastic and piezoelectric layers and U(2) denotes the electric potential in piezoelectric layer. If both elastic and piezoelectric layers characterize material orthotropy and the piezoelectric layer is polarized radially, then the constitutive relations are ðiÞ
ðiÞ
ur ðiÞ @ur þ c13 ; r @r ðiÞ ðiÞ ðiÞ ur ðiÞ @ur ¼ c13 þ c33 ði ¼ 1; 3Þ; r @r
ðiÞ rðiÞ hh ¼ c 11
r
ðiÞ rr
ð2aÞ
piezoelectric layer r3
elastic layer
r2
r
θ
r1
2(t)
r0
outer interface
1(t)
inner interface
Fig. 1. Cross-section of piezoelectric composite hollow cylinder.
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
1767
and ð2Þ
ð2Þ
ð2Þ ur ð2Þ @ur ð2Þ @ U þ c13 þ e31 ; r @r @r ð2Þ ð2Þ ð2Þ ð2Þ ur ð2Þ @ur ð2Þ @ U ¼ c13 þ c33 þ e33 ; r @r @r ð2Þ ð2Þ ð2Þ ð2Þ ur ð2Þ @ur ð2Þ @ U ¼ e31 þ e33 e33 ; r @r @r
ð2Þ rð2Þ hh ¼ c 11
rð2Þ rr Dð2Þ rr
ð2bÞ
ðiÞ
where rjj ði ¼ 1; 2; 3; j ¼ r; hÞ are the components of stress, and Dð2Þ rr is the radial electric displacement in piezoelectric layer. ðiÞ ð2Þ ð2Þ ð2Þ cjm ði ¼ 1; 2; 3; j ¼ 1; 3; m ¼ 1; 3Þ; e31 ; e33 and e33 are the elastic, piezoelectric and dielectric constants, respectively. The equation of motion is ðiÞ
ðiÞ
ðiÞ
ðiÞ
@ rrr rrr rhh @ 2 ur ði ¼ 1; 2; 3Þ; þ ¼ qðiÞ @r r @t2
ð3Þ
where q(i) is the mass density of the ith layer. For piezoelectric layer, in the absence of free charge density, the charge equation of electrostatics is
1 @ h ð2Þ i rDrr ¼ 0: r @r
ð4Þ
Suppose the piezoelectric composite cylinder is subjected to dynamic pressure Q1(t) and Q2(t) at the inner and outer surfaces, respectively. U1(t) and U2(t) are the prescribed electric potential excitations applied on the internal and external surfaces of piezoelectric layer, respectively. Then the boundary conditions are expressed as
rrrð1Þ ðr0 ; tÞ ¼ Q 1 ðtÞ; rrrð3Þ ðr3 ; tÞ ¼ Q 2 ðtÞ; ð2Þ
U ðr1 ; tÞ ¼ U1 ðtÞ;
ð2Þ
U ðr 2 ; tÞ ¼ U2 ðtÞ:
ð5Þ ð6Þ
For piezoelectric composites under electromechanical loading, the interface might be mechanically and/or electrically imperfect. It is found that the former has more remarkable effect on the fracture behavior of the composite [21–23], that is to say, the former is more serious than the latter. In the current paper, only the more serious interfacial imperfection (i.e., mechanical imperfection) is considered. Here, the imperfect interface is modeled as linear spring layers as extensively employed in many publications [18–23]. Thus ð1Þ ð2Þ rð2Þ rð3Þ rr ðr 1 ; tÞ ¼ rrr ðr 1 ; tÞ; rr ðr 2 ; tÞ ¼ rrr ðr 2 ; tÞ; ð1Þ ðr 1 ; tÞ; urð2Þ ðr 1 ; tÞ urð1Þ ðr 1 ; tÞ ¼ v1 rrr ð3Þ ð2Þ ð2Þ ur ðr 2 ; tÞ ur ðr 2 ; tÞ ¼ v2 rrr ðr 2 ; tÞ;
ð7Þ
where v1 and v2 are the compliance constants of the inner and outer interfaces. Especially, for perfectly bonded interface, we have vi = 0 (i = 1, 2). Suppose the composite cylinder is at rest at the prior, then the initial conditions (t = 0) for each layer are expressed as
urðiÞ ðr; 0Þ ¼ 0;
u_ ðiÞ r ðr; 0Þ ¼ 0 ði ¼ 1; 2; 3Þ;
ð8Þ
where a dot over a quantity denotes partial derivative with respect to time t. 3. Governing equations for mechanical field The solution of Eq. (4) can be obtained as ð2Þ Drr ðr; tÞ ¼ yðtÞ=r;
ð9Þ
where y(t) is an unknown function with respect to time t. Then the third equation in Eq. (2b) can be rewritten as. ð2Þ
ð2Þ
ð2Þ
ð2Þ
@ Uð2Þ e31 ur e @ur 1 yðtÞ : ¼ ð2Þ þ 33 ð2Þ ð2Þ @r @r r e33 e33 e33 r
ð10Þ
The substitution of Eq. (10) into the first two equations in Eq. (2b) derives ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð2Þ
ð2Þ
~ð2Þ rð2Þ hh ¼ c 11
ur e31 yðtÞ ð2Þ @ur ; þ ~c13 ð2Þ r @r e33 r
ð2Þ ¼ ~c13
e33 yðtÞ ur ð2Þ @ur ; þ ~c33 ð2Þ r @r e33 r
r
ð2Þ rr
ð11Þ
1768
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
where ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ ~c11 ¼ c11 þ e31 e31 =e33 ;
ð2Þ ð2Þ ð2Þ ð2Þ ~cð2Þ 13 ¼ c 13 þ e31 e33 =e33 ;
ð2Þ ð2Þ ð2Þ ð2Þ ~cð2Þ 33 ¼ c 33 þ e33 e33 =e33 :
ð12Þ
For the sake of simplicity, the following non-dimensional quantities and variables are introduced as ðiÞ
uðiÞ ¼ n¼
ur ; r3
r ; r3
/1 ¼
rðiÞ j ¼
s¼
U1 ; U0
rðiÞ jj ð2Þ c33
ð2Þ
cv t; r3
/2 ¼
/ð2Þ ¼
ðj ¼ r; hÞ;
ð2Þ
ej
¼
e3j
e0
;
q ðiÞ ¼
Uð2Þ ; U0
ð1Þ cjm ¼
cjm
ð2Þ cjm ¼
; ð2Þ
c33
ð2Þ Drr ; e0
g¼
y ; r3 e0
qðiÞ Q Q ; q1 ¼ ð2Þ1 ; q2 ¼ ð2Þ2 ; qð2Þ c33 c33
ð1Þ
U2 ; U0
Dð2Þ r ¼
ð2Þ ~cjm
; ð2Þ
c33
ð3Þ
ð3Þ cjm ¼
cjm
ð2Þ
c33
ðj; m ¼ 1; 3Þ;
ð2Þ
r0 r1 r2 r3 c 1 ¼ 33 ; n1 ¼ ; n2 ¼ ; n3 ¼ ¼ 1; v r3 r3 r3 r3 r3 vffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffi u ð2Þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2Þ uc c33 ð2Þ ð2Þ ; e0 ¼ c33 e33 ; cv ¼ U0 ¼ r3 t 33 : ð2Þ ð2Þ n0 ¼
ð13Þ
ð2Þ
v1 ; v 2 ¼
c33 r3
v2 ;
q
e33
By virtue of Eq. (13), Eqs. (2a), (11) and (3) can be rewritten as ðiÞ ðiÞ ðiÞ RhðiÞ ¼ c11 u þ c13 ruðiÞ ;
ð14aÞ
ðiÞ ðiÞ ðiÞ RrðiÞ ¼ c13 u þ c33 ruðiÞ ði ¼ 1; 3Þ; ð2Þ ð2Þ ð2Þ þ c13 Rð2Þ ruð2Þ e1ð2Þ gðsÞ; h ¼ c 11 u
ð14bÞ
ð2Þ ð2Þ ð2Þ þ c33 Rð2Þ ruð2Þ e3ð2Þ gðsÞ; r ¼ c 13 u
ðiÞ rRrðiÞ RhðiÞ ¼ n2 q
@ 2 uðiÞ ði ¼ 1; 2; 3Þ; @ s2
ð15Þ
@ : @n
ð16Þ
where
RhðiÞ ¼ nrhðiÞ ;
RrðiÞ ¼ nrrðiÞ ;
r¼n
Subsequently, Eqs. (5), (7) and (8) can be rewritten as
Rrð1Þ ðn0 ; sÞ ¼ n0 q1 ðsÞ;
Rrð3Þ ð1; sÞ ¼ q2 ðsÞ;
ð1Þ Rð2Þ r ðn1 ; sÞ ¼ Rr ðn1 ; sÞ;
Rrð3Þ ðn2 ; sÞ ¼ Rð2Þ r ðn2 ; sÞ;
1 Rrð1Þ ðn1 ; sÞ=n1 ; u ðn1 ; sÞ u ðn1 ; sÞ ¼ v ð2Þ
ð1Þ
ð3Þ
ð2Þ
2R u ðn2 ; sÞ u ðn2 ; sÞ ¼ v uðiÞ ðn; 0Þ ¼ 0;
ð17Þ
ð2Þ r ðn2 ;
ð18Þ
sÞ=n2 ;
u_ ðiÞ ðn; 0Þ ¼ 0 ði ¼ 1; 2; 3Þ;
ð19Þ
In Eq. (19) and hereafter, a dot over a quantity denotes its partial derivative with respect to the non-dimensional time s. 4. Solution for mechanical field The solution of elastodynamic equations can be obtained by the eigenfunction expansion method [25,26]. In solving the elastodynamic problems with inhomogeneous mechanical boundary conditions, one key step is the homogenization of the mechanical boundary conditions. Based on this homogenization procedure, then we can deduce an eigenequation, from which the natural frequencies can be determined. The homogenization of the mechanical boundary conditions can be realized by the superposition method. In this method, the complete solution is treated as the superposition of a quasi-static solution and a dynamic one [25,26]. This section will present a detailed procedure in solving the considered elastodynamic problem. 4.1. The homogenization for mechanical boundary conditions To homogenize the mechanical boundary conditions, the displacement and stresses are treated as ðiÞ
uðiÞ ¼ usðiÞ þ ud ;
ðiÞ RrðiÞ ¼ RrsðiÞ þ Rrd ;
ðiÞ ðiÞ RðiÞ h ¼ Rhs þ Rhd ði ¼ 1; 2; 3Þ;
ð20Þ
1769
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781 ðiÞ
ðiÞ
ðiÞ
ðiÞ
ðiÞ
where us ; RðiÞ rs and Rhs are known as quasi-static solution and ud ; Rrd and Rhd are dynamic solution. The governing equations for quasi-static solution are given as ðiÞ ðiÞ ðiÞ ðiÞ RðiÞ hs ¼ c 11 us þ c 13 rus ;
ð21aÞ
ðiÞ ðiÞ ðiÞ ðiÞ RðiÞ rs ¼ c 13 us þ c 33 rus ði ¼ 1; 3Þ; ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ Rð2Þ hs ¼ c 11 us þ c 13 rus e1 gðsÞ;
ð21bÞ
ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ Rð2Þ rs ¼ c 13 us þ c 33 rus e3 gðsÞ; ðiÞ rRrsðiÞ Rhs ¼ 0 ði ¼ 1; 2; 3Þ;
R
ð1Þ rs ðn0 ;
sÞ ¼ n0 q1 ðsÞ; R
ð22Þ
ð3Þ rs ð1;
ð1Þ Rð2Þ rs ðn1 ; sÞ ¼ Rrs ðn1 ; sÞ;
sÞ ¼ q2 ðsÞ;
ð23Þ
Rrsð3Þ ðn2 ; sÞ ¼ Rð2Þ rs ðn2 ; sÞ;
ð1Þ usð2Þ ðn1 ; sÞ uð1Þ s ðn1 ; sÞ ¼ v1 Rrs ðn1 ; sÞ=n1 ; usð3Þ ðn2 ;
sÞ
uð2Þ s ðn2 ;
sÞ ¼ v 2 R
ð2Þ rs ðn2 ;
ð24Þ
sÞ=n2 ;
Substituting Eq. (20) into Eqs. (14a), (14b) and (15) as well as Eqs. (17)–(19) and utilizing Eqs. (21a), (21b), (22)–(24), the ðiÞ ðiÞ ðiÞ governing equations for dynamic solution ud ; Rrd and Rhd are then constructed as ðiÞ ðiÞ ðiÞ ðiÞ RðiÞ hd ¼ c 11 ud þ c 13 rud ;
ð25Þ
ðiÞ ðiÞ ðiÞ ðiÞ RðiÞ rd ¼ c 13 ud þ c 33 rud ði ¼ 1; 2; 3Þ; ðiÞ ðiÞ ðiÞ n2 ðu € dðiÞ þ u € sðiÞ Þ ði ¼ 1; 2; 3Þ; rRrd Rhd ¼ q
ð26Þ
Rð1Þ rd ðn0 ; sÞ ¼ 0;
ð27Þ
Rð3Þ rd ð1; sÞ ¼ 0;
ð1Þ Rð2Þ rd ðn1 ; sÞ ¼ Rrd ðn1 ; sÞ; ð2Þ
ð3Þ ð2Þ Rrd ðn2 ; sÞ ¼ Rrd ðn2 ; sÞ;
ð1Þ
ð1Þ
1 Rrd ðn1 ; sÞ=n1 ; ud ðn1 ; sÞ ud ðn1 ; sÞ ¼ v ð3Þ ud ðn2 ;
sÞ
ð2Þ ud ðn2 ;
ð28Þ
sÞ ¼ v 2 Rrdð2Þ ðn2 ; sÞ=n2 ;
ðiÞ
ðiÞ u_ d ðn; 0Þ ¼ u_ ðiÞ s ðn; 0Þ ði ¼ 1; 2; 3Þ:
ud ðn; 0Þ ¼ usðiÞ ðn; 0Þ;
ð29Þ
Eq. (27) denotes that the inhomogeneous mechanical boundary conditions (17) have been transformed into homogeneous ones. 4.2. Quasi-static solution ðiÞ
State space method will be employed to develop the quasi-static solution. First, the expressions for rus ði ¼ 1; 2; 3Þ are obtained from the second equations in Eqs. (21a) and (21b) as
ðiÞ ðiÞ =cðiÞ rusðiÞ ¼ RðiÞ rs c13 us 33 ði ¼ 1; 3Þ;
ð30Þ
ð2Þ ð2Þ ð2Þ ð2Þ rusð2Þ ¼ Rrsð2Þ c13 us þ e3 gðsÞ =c33 ;
Then substituting the first equations in Eqs. (21a) and (21b) into Eq. (22) and utilizing Eq. (30), we obtain the expression for ðiÞ ðiÞ rRðiÞ rs ði ¼ 1; 2; 3Þ. Finally, expressions for rus and rRrs ði ¼ 1; 2; 3Þ can be rewritten in a matrix form as
rX ðiÞ ðn; sÞ ¼ N ðiÞ X ðiÞ ðn; sÞ ði ¼ 1; 3Þ;
ð31aÞ
rX ð2Þ ðn; sÞ ¼ N ð2Þ X ð2Þ ðn; sÞ þ Lð2Þ gðsÞ;
ð31bÞ
where
( X ðiÞ ðn; sÞ ¼
ðiÞ
us ðn; sÞ
RrsðiÞ ðn; sÞ
"
) ;
N ðiÞ ¼
ðiÞ
ðiÞ
a11
a12
ðiÞ
a22
a21
ðiÞ
#
( ði ¼ 1; 2; 3Þ;
Lð2Þ ¼
ð2Þ
a13
ð2Þ
a23
) ð32Þ
;
in which ðiÞ
ðiÞ
ðiÞ
a11 ¼ c13 =c33 ;
ðiÞ
ðiÞ
a12 ¼ 1=c33 ;
ðiÞ
ðiÞ
ðiÞ
ðiÞ
a21 ¼ c11 þ c13 a11 ;
ðiÞ
ðiÞ
ðiÞ
a22 ¼ c13 a12 ði ¼ 1; 2; 3Þ;
ð2Þ ð2Þ ð2Þ a13 ¼ e3 =c33 ;
ð2Þ
ð2Þ ð2Þ
ð2Þ
a23 ¼ c13 a13 e1 : ð33Þ
1770
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
Eqs. (31a) and (31b) are just the state equations for solving the quasi-static solution. The solutions of Eqs. (31a) and (31b) are
X ðiÞ ðn; sÞ ¼ T ðiÞ ðnÞX ðiÞ ðni1 ; sÞ ðni1 6 n 6 ni ; i ¼ 1; 3Þ;
ð34aÞ
X ð2Þ ðn; sÞ ¼ T ð2Þ ðnÞ½X ð2Þ ðn1 ; sÞ þ Gð2Þ ðnÞgðsÞ ðn1 6 n 6 n2 Þ;
ð34bÞ
where ðiÞ
T ðiÞ ðnÞ ¼ ðn=ni1 ÞN ði ¼ 1; 2; 3Þ; Z n Gð2Þ ðnÞ ¼ f1 ½T ð2Þ ðfÞ1 Lð2Þ df:
ð35Þ
n1
Utilizing the introduced state vector X(i)(n, s), Eq. (28), the transfer relations at the weakly interfaces, can be rewritten as
X ð2Þ ðn1 ; sÞ ¼ P ð1Þ X ð1Þ ðn1 ; sÞ;
ð36Þ
X ð3Þ ðn2 ; sÞ ¼ P ð2Þ X ð3Þ ðn2 ; sÞ; where
P ð1Þ ¼
1
v 1 =n1
0
1
;
P ð2Þ ¼
1
v 2 =n2
0
1
ð37Þ
:
With the aid of Eqs. (34a), (34b) and (36), we have
X ð3Þ ðn3 ; sÞ ¼ HX ð1Þ ðn0 ; sÞ þ M gðsÞ;
ð38Þ
where
H ¼ T ð3Þ ðn3 ÞP ð2Þ T ð2Þ ðn2 ÞP ð1Þ T ð1Þ ðn1 Þ;
ð39Þ
M ¼ T ð3Þ ðn3 ÞP ð2Þ T ð2Þ ðn2 ÞGð2Þ ðn2 Þ: Utilizing the boundary conditions (23), Eq. (38) can be written in specified form as
(
ð3Þ
us ð1; sÞ q2 ðsÞ
)
¼
H11
H12
H21
H22
(
ð1Þ
us ðn0 ; sÞ n 0 q 1 ð sÞ
)
þ
M1 M2
gðsÞ:
ð40Þ
From the second equation in Eq. (40), we obtain
uð1Þ s ðn0 ; sÞ ¼ ½q2 ðsÞ H 22 n0 q1 ðsÞ M 2 gðsÞ=H 21 : Substituting Eq. (41) into Eqs. (34a), (34b) and utilizing Eq. (36),
uðiÞ s ðn;
sÞ ¼
ðiÞ f1 ðnÞq1 ð
sÞ þ
ðiÞ f2 ðnÞq2 ð
sÞ þ
The detailed procedure for determining
ð41Þ ðiÞ us ðn;
sÞ ði ¼ 1; 2; 3Þ is then determined completely as
ðiÞ f3 ðnÞ
ðiÞ fj ðnÞ
gðsÞ ði ¼ 1; 2; 3Þ;
ð42Þ
ði ¼ 1; 2; 3; j ¼ 1; 2; 3Þ is presented in Appendix A.
4.3. Dynamic solution Substituting Eq. (25) into Eq. (26) and utilizing Eq. (42), we obtain ðiÞ
@ 2 ud @n2
þ
" # ðiÞ 2 2 2 l2 ðiÞ 1 @ 2 uðiÞ 1 @ud d q1 ðsÞ d q2 ðsÞ d gðsÞ ðiÞ ðiÞ ðiÞ d ði ¼ 1; 2; 3Þ; þ f ðnÞ þ f ðnÞ þ f ðnÞ 2i ud ¼ 2 1 2 3 n @n ds2 ds2 ds2 c i @ s2 n
ð43Þ
where
li
vffiffiffiffiffiffiffi u ðiÞ uc ; ¼ t 11 ðiÞ c33
sffiffiffiffiffiffiffi cðiÞ 33 ci ¼ ði ¼ 1; 2; 3Þ: q ðiÞ
ð44Þ
The normal mode expansion method, also named as eigenfunction expansion method, will be introduced to solve the dyðiÞ namic solution ud ðn; sÞ. We assume ðiÞ
ud ðn; sÞ ¼
1 X
ðiÞ Rm ðxm ; nÞXm ðsÞ ði ¼ 1; 2; 3Þ;
ð45Þ
m¼1
where Xm(s) is an undetermined function. xm and RðiÞ m ðxm ; nÞ are eigenfrequency and eigenfunction, respectively. The deterðiÞ mination of xm and RðiÞ m ðxm ; nÞ and the orthogonal property of Rm ðxm ; nÞ for a triple-layer piezoelectric composite cylinder with imperfect interface are presented in Appendices B and C, respectively.
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
1771
The substitution of Eq. (45) into Eq. (43) leads to 1 X
ðiÞ Rm ðxm ; nÞ
m¼1
" 2 # 2 2 2 d Xm ðsÞ d q1 ðsÞ d q2 ðsÞ d gðsÞ ðiÞ ðiÞ ðiÞ 2 þ x X ð s Þ ¼ f1 ðnÞ f2 ðnÞ f3 ðnÞ : m m 2 2 2 ds ds ds ds2
ð46Þ
With the aid of the orthogonal property of RðiÞ m ðxm ; nÞ, see Appendix C, Eq. (46) can be simplified as 2
d Xm ðsÞ þ x2m Xm ðsÞ ¼ pm ðsÞ ðm ¼ 1; 2; . . . ; 1Þ; ds2
ð47Þ
€1 ðsÞ þ I2m q €2 ðsÞ þ I3m g € ðsÞ; pm ðsÞ ¼ I1m q 3 Z ni X 1 Ijm ¼ q ðiÞ ffjðiÞ ðfÞRmðiÞ ðxm ; fÞ df ðj ¼ 1; 2; 3Þ; J m i¼1 ni1
ð48Þ
where
In which Jm is presented in Eq. (C.19) in Appendix C. The solution of Eq. (47) is
Xm ðsÞ ¼ Xm ð0Þ cos xm s þ
X_ m ð0Þ
xm
sin xm s þ
1
Z s
xm
0
pm ð1Þ sin xm ðs 1Þ d1:
ð49Þ
€1 ðsÞ; q €2 ðsÞ and g € ðsÞ are involved in pm(s) as shown in the first equation in Eq. (48). By employing the integrationNotice that q by-parts formula and further employing the initial conditions in Eq. (29), Eq. (49) can be rewritten as
Xm ðsÞ ¼ X1m ðsÞ þ I3m gðsÞ I3m xm
Z s
gð1Þ sin xm ðs 1Þ d1;
ð50Þ
0
where
X1m ðsÞ ¼ I1m q1 ðsÞ I1m xm
Z s 0
q1 ð1Þ sin xm ðs 1Þ d1 þ I2m q2 ðsÞ I2m xm
Z s 0
q2 ð1Þ sin xm ðs 1Þ d1:
ð51Þ
4.4. Determination for electric field Utilizing the introduced non-dimensional quantities and variables in Eq. (13), Eq. (10) can be rewritten as ð2Þ ð2Þ @/ð2Þ gðsÞ ð2Þ u ð2Þ @u : ¼ e1 þ e3 n @n n @n
ð52Þ
The substitution of Eqs. (42) and (45) into the first equation in Eq. (20) derives 1 X
uðiÞ ðn; sÞ ¼
ðiÞ
ðiÞ
ðiÞ
ðiÞ Rm ðxm ; nÞXm ðsÞ þ f1 ðnÞq1 ðsÞ þ f2 ðnÞq2 ðsÞ þ f3 ðnÞgðsÞ:
ð53Þ
m¼1
Integrating Eq. (52) over the spatial interval [n1, n2] and utilizing Eqs. (50) and (53), we obtain
wðsÞ ¼ A1 gðsÞ þ
1 X
A2m
m¼1
Z s
gð1Þ sin xm ðs 1Þ d1;
ð54Þ
0
where
wðsÞ ¼ /2 ðsÞ /1 ðsÞ B3 q1 ðsÞ B4 q2 ðsÞ
1 X
B2m X1m ðsÞ;
m¼1 1 X
A1 ¼ B1 þ ð2Þ
B1 ¼ e1 B2m ¼ B3 ¼
m¼1 Z n2
Z
ð2Þ e1 ð2Þ
B4 ¼ e1
Z
n2
n1 n2
n1
Z
n2
n1
ð2Þ
A2m ¼ xm B2m I3m ; ð2Þ
f1 f3 ðfÞ df þ e3
n1
ð2Þ e1
B2m I3m ;
h
i ð2Þ ð2Þ f3 ðn2 Þ f3 ðn1 Þ lnðn2 =n1 Þ; ð2Þ
ð2Þ f1 Rm ðxm ; fÞ df þ e3
h
i ð2Þ Rm ðxm ; n2 Þ Rð2Þ m ðxm ; n1 Þ ;
ð2Þ
ð2Þ
h
i ð2Þ ð2Þ f1 ðn2 Þ f1 ðn1 Þ ;
ð2Þ
ð2Þ
h
i ð2Þ ð2Þ f2 ðn2 Þ f2 ðn1 Þ :
f1 f1 ðfÞ df þ e3 f1 f2 ðfÞ df þ e3
ð55Þ
1772
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
Eq. (54) is a Volterra integral equation of the second kind [27]. By the newly developed method [28], Eq. (54) can be solved efficiently and the displacement, electric potential and stresses can be determined completely.
Table 1 Elastic, piezoelectric and dielectric constants. Material constant
BaTiO3
Aluminum
c11 (GPa) c12 (GPa) c13 (GPa) c23 (GPa) c33 (GPa) e31 (C/m2) e32 (C/m2) e33(C/m2) e33(109 F/m) q(103 kg/m3)
150.0 66.0 66.0 66.0 146.0 4.35 4.35 17.5 15.04 5.7
102.0 50.0 50.0 50.0 102.0 – – – – 2.7
Table 2 1 and v 2. The first five eigenfrequencies for different values of v
v 1
v 2
x1
x2
x3
x4
x5
0.0 0.1 0.2 0.3 0.5
0.0 0.1 0.2 0.3 0.5
1.414521 1.410613 1.406798 1.403076 1.395907
6.323589 5.378478 4.735825 4.286333 3.702749
13.39736 9.236587 7.402621 6.365203 5.195086
21.26951 15.48659 13.81301 13.07004 12.39642
28.77129 24.67354 23.70794 23.31265 22.96733
1.0
χ1 = χ2 =0
(a)
χ1 = χ2 =0.2
0.5
σr
0.0
-0.5
-1.0
-1.5
0
2
1.0
4
τ
6
8
χ1 = χ2 =0
(b)
χ1 = χ2 =0.2
0.5
10
σr
0.0
-0.5
-1.0
-1.5
0
2
4
τ
6
8
10
Fig. 2. Transient responses of radial stress rr at the interfaces for Case A (a) at the internal interface n = 0.6; (b) at the external interface n = 0.9.
1773
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
5. Numerical results and remarks Transient responses of a triple-layer piezoelectric composite infinite hollow cylinder will be considered in this subsection. Suppose the composite cylinder is made of Aluminum/BaTiO3/Aluminum. The non-dimensional radius of each interface from the inner to outer are n0 = 0.5, n1 = 0.6, n2 = 0.9 and n3 = 1.0, respectively. The material constants are listed in Table 1 [7]. Table 2 gives the first five eigenfrequencies xm(m = 1, 2, . . . , 5) of a triple-layer piezoelectric composite cylinder for differ 1 and v 2 . The results show that the eigenfrequencies decrease with the increase of v 1 and v 2 . That is to say, ent values of v similar with that having been reported investigations for imperfectly bonded laminated piezoelectric rectangular plate [18], the defect of the interface will also lead to the decrease of the natural frequency for the piezoelectric composite cylinder. The 1 ¼ v 2 ¼ 0:5 is only 98.68% of that for v 1 ¼ v 2 ¼ 0 (perfectly bonded interfaces). lowest eigenfrequency for v
3.0
χ1 = χ2 =0 χ1 = χ2 =0.2
σθ
2.0
(a)
1.0
0.0
-1.0
0
2
4
τ
6
8
10
3.0
χ1 = χ2 =0
σθ
(b)
χ1 = χ2 =0.2
2.0
1.0
0.0
-1.0
0
2
4
τ
6
8
10
3.0
χ1 = χ2 =0
σθ
2.0
(c)
χ1 = χ2 =0.2
1.0
0.0
-1.0
0
2
4
τ
6
8
10
Fig. 3. Transient rsponses of hoop stress rh at the three positions in the piezoelectric layer for Case A (a) at the internal surface n = 0.6; (b) at the middle surface n = 0.75; (c) at the external surface n = 0.9.
1774
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
In the following, the transient responses of the piezoelectric composite cylinder under two kinds of excitation will be considered. Case A: mechanical excitation. That is, the composite cylinder is subjected to a sudden constant pressure at the inner surface and both the inner and outer surfaces of the piezoelectric layer are electrically shorted. The boundary conditions are then expressed as
q1 ðsÞ ¼ HðsÞ; /1 ðsÞ ¼ 0;
q2 ðsÞ ¼ 0;
ð56Þ
/2 ðsÞ ¼ 0:
where H() denotes the Heaviside step function. Fig. 2 depicts the transient responses of radial stress rr at the two interfaces of piezoelectric composite cylinders subjected to mechanical excitation (Case A). It is found that at each interface, the responses of radial stress for imperfectly 1 ¼ v 2 ¼ 0:2Þ have significant difference with those for perfectly bonded interface ðv 1 ¼ v 2 ¼ 0Þ. We also bonded interface ðv observed that, for a piezoelectric composite cylinder subjected to a sudden constant pressure at the inner surface, the curves of radial stress response at the perfectly bonded interfaces vary more dramatically than those at the imperfectly bonded interfaces. For Case A, the responses of hoop stress rh at the three points (n = 0.6, 0.75 and 0.9) in the piezoelectric layer are shown in Fig. 3. The differences between the responses for the cylinder with perfectly bonded interfaces and those with the imperfectly bonded interfaces are also clearly presented. It is founded that the responses of hoop stress is almost quasi-periodic and the maximum hoop stress is tensile. Case B: electric potential excitation. That is, the outer surface of the piezoelectric layer is subjected to a sudden constant electric potential excitation while the inner surface of the piezoelectric layer is electrically shorted and both the inner and outer surfaces of composite cylinder are traction free. Thus
q1 ðsÞ ¼ 0;
q2 ðsÞ ¼ 0;
/1 ðsÞ ¼ 0;
/2 ðsÞ ¼ HðsÞ:
ð57Þ
For the electric potential excited piezoelectric composite cylinder, the elastic and electric fields are illustrated in Figs. 4–6. It is noticed that the weakness of the interface has notable effect on the transient responses of the radial and hoop stresses when the piezoelectric composite cylinder is excited by the external imposed electric potential. Unlike the behavior of the 2.0
χ1 = χ2 =0 χ1 = χ2 =0.2
( )
σr
1.0
0.0
-1.0
0
2
2.0
4
τ
6
8
χ1 = χ2 =0
( )
χ1 = χ2 =0.2
1.0
10
σr
0.0
-1.0
-2.0
0
2
4
τ
6
8
10
Fig. 4. Transient responses of radial stress rr at the interfaces for Case B. (a) at the internal interface n = 0.6; (b) at the external interface n = 0.9.
1775
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
1.0
χ1 = χ2 =0 χ1 = χ2 =0.2
( )
σθ
0.0
-1.0
-2.0
0
2
1.0
4
τ
6
8
χ1 = χ2 =0 χ1 = χ2 =0.2
10
( )
σθ
0.0
-1.0
-2.0
0
2
4
τ
6
8
10
1.0
χ1 = χ2 =0
( )
χ1 = χ2 =0.2
σθ
0.0
-1.0
-2.0
0
2
4
τ
6
8
10
Fig. 5. Transient responses of hoop stress rh at the three positions in the piezoelectric layer for Case B (a) at the internal surface n = 0.6; (b) at the middle surface n = 0.75; (c) at the external surface n = 0.9.
disturbed elastic field, in the piezoelectric layer, the distributions of the electric potential at the times s = 1.0 and 3.0, shown in Fig. 6, illustrate that the weakness of the interface have little effect on the electric field. We also noticed that the distribution of the electric potential in the piezoelectric layer is a weak nonlinear curve.
6. Conclusions An exact elastodynamic solution is developed by means of the state space method and normal mode expansion method for a triple-layer piezoelectric composite cylinder with imperfect interfaces which are modeled by a linear spring layers. The detailed procedure for determining the eigenfrequency and eigenfunction as well as the orthogonal properties of the eigenfunction for the piezoelectric composite cylinder with mechanical imperfect interfaces is presented. It should also be pointed
1776
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
1.0
χ1 = χ2 =0
0.8
χ1 = χ2 =0.2
φ
0.6
( )
0.4 0.2 0.0
0.6
0.7
ξ
0.8
0.9
1.0
χ1 = χ2 =0
0.8
χ1 = χ2 =0.2
φ
0.6
( )
0.4 0.2 0.0
0.6
0.7
ξ
0.8
0.9
Fig. 6. Distributions of electric potential / at the different times for case B (a) at the time s = 1.0; (b) at the time s = 3.0.
out that besides mechanical imperfection, there might also be electrical imperfection. Because the effect of the electrical imperfection is less serious than that of the mechanical one [21–23], the present work only model the interface to be mechanically imperfect. Numerical results show that the transient electromechanical responses are sensitive to the weakness of the mechanically imperfect interface. The present solution is an important foundation in the inversion analysis engineering for evaluating the interfacial properties, such as nondestructive testing, structural health monitoring etc. Acknowledgments The work was supported by the National Natural Science Foundation of China (Nos. 10872179 and 10725210), the Zhejiang Provincial Natural Science Foundation of China (No. Y7080298) and the Zijin and Xinxing Plan of Zhejiang University. Appendix A With the aid of Eq. (36), Eqs. (34a) and (34b) can be written as
X ð1Þ ðn; sÞ ¼ T ð1Þ ðnÞX ð1Þ ðn0 ; sÞ ðn0 6 n 6 n1 Þ; ð2Þ
ð2Þ
ð1Þ
ð1Þ
ð2Þ
X ðn; sÞ ¼ T ðnÞ½P X ðn0 ; sÞ þ G ðnÞgðsÞ ðn1 6 n 6 n2 Þ; h i X ð3Þ ðn; sÞ ¼ T ð3Þ ðnÞ P ð2Þ X ð1Þ ðn0 ; sÞ þ Gð2Þ gðsÞ ðn2 6 n 6 n3 Þ;
ðA:1Þ ðA:2Þ ðA:3Þ
where
P ð1Þ ¼ P ð1Þ T ð1Þ ðn1 Þ; G
ð2Þ
ð2Þ
¼P T
ð2Þ
P ð2Þ ¼ P ð2Þ T ð2Þ ðn2 ÞP ð1Þ T ð1Þ ðn1 Þ; ð2Þ
ðn2 ÞG ðn2 Þ:
ðA:4Þ
n oT ð1Þ ðiÞ Noticing that X ð1Þ ðn0 ; sÞ ¼ us ðn0 ; sÞ; n0 q1 ðsÞ , then by utilizing Eq. (41), us ðn; sÞ ði ¼ 1; 2; 3Þ is then determined as preðiÞ
sented in Eq. (42) and fj ðnÞ ði ¼ 1; 2; 3; j ¼ 1; 2; 3Þ is presented here as
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
1777
H22 ð1Þ ð1Þ ð1Þ f1 ðnÞ ¼ n0 T 12 ðnÞ T 11 ðnÞ ; H21 1 M2 ð1Þ ð1Þ ð1Þ ð1Þ T ðnÞ; f3 ðnÞ ¼ T ðnÞ; f2 ðnÞ ¼ H21 11 H21 11
ðA:5Þ
H22 ð1Þ H22 ð1Þ ð2Þ ð2Þ ð1Þ ð2Þ ð1Þ P11 þ T 12 ðnÞ P22 P21 ; f1 ðnÞ ¼ n0 T 11 ðnÞ P12 H21 H21 i 1 h ð2Þ ð2Þ ð1Þ ð2Þ ð1Þ T ðnÞP 11 þ T 12 ðnÞP21 ; f2 ðnÞ ¼ H21 11 M2 ð1Þ M 2 ð1Þ ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ P11 þ T 12 ðnÞ G2 ðnÞ P21 ; f3 ðnÞ ¼ T 11 ðnÞ G1 ðnÞ H21 H21
ðA:6Þ
H22 ð2Þ H22 ð2Þ ð3Þ ð3Þ ð2Þ ð3Þ ð2Þ P11 þ T 12 ðnÞ P22 P21 ; f1 ðnÞ ¼ n0 T 11 ðnÞ P12 H21 H21 h i 1 ð3Þ ð3Þ ð2Þ ð3Þ ð2Þ T ðnÞP 11 þ T 12 ðnÞP21 ; f2 ðnÞ ¼ H21 11 M 2 ð2Þ M2 ð2Þ ð3Þ ð3Þ ð2Þ ð2Þ ð2Þ f3 ðnÞ ¼ T 11 ðnÞ G1 P 11 þ T 12 ðnÞ G2 P21 : H21 H21
ðA:7Þ
Appendix B The detailed procedure for determining the eigenfrequency xm and eignfunction RðiÞ m ðxm ; nÞ for a triple-layer piezoelectric composite cylinder with imperfect interfaces is shown in this Appendix. Inspecting the differential form at the left-hand side of Eq. (43), we have the hint that RðiÞ m ðxm ; nÞ can be assumed as ðiÞ
ðiÞ Rm ðxm ; nÞ ¼ E1 J li ðiÞ
xm ðiÞ n þ E2 Y li n ði ¼ 1; 2; 3Þ; ci ci
xm
ðB:1Þ
ðiÞ
where E1 and E2 are undetermined constants, J li ðÞ and Y li ðÞ are Bessel functions of the first and second kinds of order li, and xm is eigenfrequency. From the first equation in Eq. (16) and the second equation in Eq. (20), we know
rrdðiÞ ¼ RðiÞ rd =n:
ðB:2Þ
Substituting Eq. (45) into the second equation in Eq. (25) and utilizing Eq. (B.2), we obtain
rrdðiÞ ðn; sÞ ¼
1 X
rðiÞ m ðxm ; nÞXm ðsÞ;
ðB:3Þ
m¼1
where
h
i
rmðiÞ ðxm ; nÞ ¼ @ðiÞ RðiÞ m ðxm ; nÞ ði ¼ 1; 2; 3Þ:
ðB:4Þ
The operator @ðiÞ ðÞ is ðiÞ @ðiÞ ðÞ ¼ c33
@ ðiÞ 1 þ c13 ði ¼ 1; 2; 3Þ: @n n
ðB:5Þ
Substituting Eq. (B.1) into Eq. (B.4), we obtain
ðiÞ rmðiÞ ðxm ; nÞ ¼ EðiÞ J li 1 @
xm ðiÞ n þ E2 @ðiÞ Y li n ði ¼ 1; 2; 3Þ: ci ci
xm
ðB:6Þ
Setting n = ni1 (i = 1, 2, 3) in Eqs. (B.1) and (B.6), we obtain
xm ðiÞ ni1 þ E2 Y li ni1 ; ci ci
x x rmðiÞ ðxm ; ni1 Þ ¼ E1ðiÞ @ðiÞ Jli m ni1 þ E2ðiÞ @ðiÞ Y li m ni1 : ci ci ðiÞ
ðiÞ Rm ðxm ; ni1 Þ ¼ E1 Jli
ðiÞ
xm
ðiÞ
ðB:7Þ
ðiÞ
ðiÞ
Then E1 and E2 can be determined from Eq. (B.7). Substituting the obtained E1 and E2 into (B.1) and (B.5), the expressions ðiÞ for rm ðxm ; nÞ and RðiÞ m ðxm ; nÞ can be written in a matrix form as ðiÞ ðiÞ ðiÞ Zm ðxm ; nÞ ¼ S m ðxm ; nÞZ m ðxm ; ni1 Þ ðni1 6 n 6 ni ; i ¼ 1; 2; 3Þ;
ðB:8Þ
1778
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
where
( ðiÞ Zm ð
xm ; nÞ ¼
ðiÞ ðxm ; nÞ Rm
)
rmðiÞ ðxm ; nÞ
" ðiÞ Sm ð
xm ; nÞ ¼
;
ðiÞ
ðiÞ
ðiÞ
ðiÞ
Sm;11 ðxm ; nÞ Sm;12 ðxm ; nÞ Sm;21 ðxm ; nÞ Sm;22 ðxm ; nÞ
# ;
ðB:9Þ
in which
xm xm i i ðiÞ Sm;11 ðxm ; nÞ ¼ @ðiÞ Y li ni1 J li km n @ðiÞ J li ni1 Y li km n =KðiÞ ; ci ci
x x x m m m i ðiÞ ni1 Y li n Y li ni1 J li km n =KðiÞ ; Sm;12 ðnÞ ¼ J li ci ci ci
x x xm xm m m ðiÞ ni1 @ðiÞ J li n @ðiÞ J li ni1 @ðiÞ Y li n =KðiÞ ; Sm;21 ðnÞ ¼ @ðiÞ Y li ci ci ci ci
xm xm xm xm ðiÞ ni1 @ðiÞ Y li n Y li ni1 @ðiÞ J li n =KðiÞ ; Sm;22 ðnÞ ¼ J li ci ci ci ci
xm xm xm xm J li @ðiÞ J li Y li ði ¼ 1; 2; 3Þ: KðiÞ ¼ @ðiÞ Y li n n n n ci i1 ci i1 ci i1 ci i1
ðB:10Þ
Setting n = ni (i = 1, 2, 3) in Eq. (B.8), we derive ðiÞ ðiÞ Zm ðxm ; ni Þ ¼ S ðiÞ m ðxm ; ni ÞZ m ðxm ; ni1 Þ ði ¼ 1; 2; 3Þ:
ðB:11Þ
With the aid of Eq. (B.2), Eq. (28) can be written in a matrix form as ð2Þ Zm ðxm ; n1 Þ ¼ Y
ð1Þ
Z ð1Þ m ðxm ; n1 Þ;
ð3Þ Zm ð
ð2Þ
Z ð2Þ m ðxm ; n2 Þ;
xm ; n2 Þ ¼ Y
ðB:12Þ
where
Y
ð1Þ
¼
1
v 1
0
1
;
Y
ð2Þ
¼
1
v 2
0
1
:
ðB:13Þ
By means of Eqs. (B.11) and (B.12), the relationship between the state vector at the external surface and that at the internal surface is then derived as ð1Þ Z ð3Þ m ðxm ; 1Þ ¼ S m ðxm ÞZ m ðxm ; n0 Þ;
ðB:14Þ
where
S m ðxm Þ ¼ S ð3Þ m ðxm ; n3 ÞY
ð2Þ ð2Þ Sm ð
xm ; n2 ÞY
ð1Þ ð1Þ Sm ð
xm ; n1 Þ:
ðB:15Þ
With the aid of Eqs. (45) and (B.3), the following equations can be derived from Eq. (27) as
rmð1Þ ðxm ; n0 Þ ¼ 0; rð3Þ m ðxm ; 1Þ ¼ 0:
ðB:16Þ
The substitution of Eq. (B.16) into Eq. (B.14) derives
(
ð3Þ Rm ðxm ; 1Þ
"
) ¼
0
Sm;11 ðxm Þ Sm;12 ðxm Þ Sm;21 ðxm Þ Sm;22 ðxm Þ
#(
Rð1Þ m ðxm ; n0 Þ 0
) :
ðB:17Þ
The existence of nontrivial solution in Eq. (B.17) leads to
Sm;21 ðxm Þ ¼ 0:
ðB:18Þ
Eq. (B.18), a transcendental equation, is the eigenequation from which a series of positive real roots, named as eigenfrequency xm (m = 1, 2, . . . , 1), can be obtained. Utilizing Eqs. (B.11) and (B.12), the eigenfunction RðiÞ m ðxm ; nÞ, can be obtained from the Eq. (B.8) as ð1Þ e Rð1Þ m ðxm ; nÞ ¼ S m;11 ðxm ; nÞRm ðxm ; n0 Þ; ð1Þ
ð1Þ e Rð2Þ m ðxm ; nÞ ¼ S m;11 ðxm ; nÞRm ðxm ; n0 Þ; ð2Þ
Rð3Þ m ð
xm ; nÞ ¼
ð3Þ e S m;11 ð
x
ð1Þ m ; nÞRm ð
xm ; n0 Þ;
ðB:19Þ
1779
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
where ð1Þ e S ð1Þ m ðxm ; nÞ ¼ S m ðxm ; nÞ; e S ð2Þ ðxm ; nÞ ¼ S ð2Þ ðxm ; nÞY ð1Þ S ð1Þ ðxm ; n1 Þ; m
m
e S ð3Þ m ð
S ð3Þ m ð
xm ; nÞ ¼
ðB:20Þ
m
x
ð2Þ ð2Þ Sm ð m ; nÞY
xm ; n2 ÞY
ð1Þ ð1Þ Sm ð
xm ; n1 Þ:
It is noted that Rð1Þ m ðxm ; n0 Þ in Eq. (B.19) is a common coefficient in each layer. In the calculation, we can adopt ðiÞ ðiÞ Rð1Þ m ðxm ; n0 Þ ¼ 1. Thus Rm ðxm ; nÞ is determined completely. The proof for the orthogonal property of Rm ðxm ; nÞ is presented in Appendix C. Appendix C The proof of the orthogonal property of RðiÞ m ðxm ; nÞ is presented in this Appendix. Suppose xm and xj are two different eigenfrequencies. Then we have
ðiÞ ðiÞ r2 l2i Rm ðxm ; nÞ þ ðkim nÞ2 Rm ðxm ; nÞ ¼ 0;
ðC:1Þ
r l2i RjðiÞ ðxj ; nÞ þ ðkij nÞ2 RðiÞ j ðxj ; nÞ ¼ 0; 2
ðC:2Þ
where
kim ¼ xm =ci ; Eq.
kij ¼ xj =ci :
ðiÞ (C.1)Rj ð
xj ; nÞ–Eq.
h
i
(C.2)RðiÞ mð
ðC:3Þ
xm ; nÞ derives
ðiÞ ðiÞ n2 ðkim Þ2 ðkij Þ2 Rm ðxm ; nÞRj ðxj ; nÞ ¼ Rm ðxm ; nÞr2 Rj ðxj ; nÞ Rj ðxj ; nÞr2 RðiÞ m ðxm ; nÞ: ðiÞ
ðiÞ
ðiÞ
ðC:4Þ
With the aid of Eq. (44), Eq. (C.4) can be rewritten as
q ðiÞ 2 d d ðiÞ ðiÞ 2 nRðiÞ x x rRjðiÞ ðxj ; nÞ RðiÞ rRðiÞ m ðxm ; nÞRj ðxj ; nÞ ¼ Rm ðxm ; nÞ m ðxm ; nÞ; m j j ðxj ; nÞ ðiÞ dn
c33
ðC:5Þ
dn
Integrating Eq. (C.5) at the spatial interval [ni1, ni] derives
q ðiÞ x2m x2j
Z
ni
ni1
h in i ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ nRm ðxm ; nÞRj ðxj ; nÞ dn ¼ c33 Rm ðxm ; nÞrRj ðxj ; nÞ Rj ðxj ; nÞrRm ðxm ; nÞ
ni1
ðC:6Þ
Eq. (B.4) can be rewritten as ðiÞ ðiÞ ðiÞ ðiÞ c33 rRðiÞ m ðxm ; nÞ ¼ nrm ðxm ; nÞ c13 Rm ðxm ; nÞ;
ðC:7Þ
ðiÞ ðiÞ ðiÞ ðiÞ c33 rRðiÞ j ðxj ; nÞ ¼ nrj ðxj ; nÞ c 13 Rj ðxj ; nÞ:
The substitution of Eq. (C.7) into Eq. (C.6) derives
q ðiÞ x2m x2j
Z
ni
ni1
h in i ðiÞ ðiÞ ðiÞ ðiÞ ðiÞ nRm ðxm ; nÞRj ðxj ; nÞ dn ¼ n RðiÞ : m ðxm ; nÞrj ðxj ; nÞ Rj ðxj ; nÞrm ðxm ; nÞ ni1
ðC:8Þ
Considering the homogeneous boundary conditions in Eq. (27), then we have
rð3Þ rð3Þ m ðxm ; 1Þ ¼ 0; j ðxj ; 1Þ ¼ 0; ð1Þ rm ðxm ; n0 Þ ¼ 0; rjð1Þ ðxj ; n0 Þ ¼ 0:
ðC:9Þ
Eq. (C.8) contains three equations when we set i = 1, 2 and 3, respectively. The summation of the three equations derives 3 X i¼1
q ðiÞ x2m x2j
Z
ni
ni1
ðiÞ
ð3Þ
ð3Þ
ðiÞ ð3Þ nRm ðxm ; nÞRj ðxj ; nÞ dn ¼ Rð3Þ m ðxm ; 1Þrj ðxj ; 1Þ Rj ðxj ; 1Þrm ðxm ; 1Þ
n h i h io ð3Þ ð3Þ ð2Þ ð2Þ ð2Þ ð3Þ ð2Þ þ n2 Rð3Þ m ðxm ; n2 Þrj ðxj ; n2 Þ Rj ðxj ; n2 Þrm ðxm ; n2 Þ þ Rm ðxm ; n2 Þrj ðxj ; n2 Þ Rj ðxj ; n2 Þrm ðxm ; n2 Þ n h i h io ð2Þ ð2Þ ð1Þ ð1Þ ð1Þ ð2Þ ð1Þ þ n1 Rð2Þ m ðxm ; n1 Þrj ðxj ; n1 Þ Rj ðxj ; n1 Þrm ðxm ; n1 Þ þ Rm ðxm ; n1 Þrj ðxj ; n1 Þ Rj ðxj ; n1 Þrm ðxm ; n1 Þ h i ð1Þ ð1Þ ð1Þ ð1Þ Rm ðxm ; n0 Þrj ðxj ; n0 Þ þ Rj ðxj ; n0 Þrm ð xm ; n 0 Þ : ðC:10Þ
1780
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
The following equations can be derived from Eq. (28) as ð1Þ ð1Þ Rð2Þ m ðxm ; n1 Þ ¼ Rm ðxm ; n1 Þ þ v1 rm ðxm ; n1 Þ;
ð2Þ ð1Þ m ð m ; n1 Þ ¼ m ð m ; n1 Þ; ð2Þ ð1Þ j ð j ; n1 Þ ¼ j ð j ; n1 Þ;
r x x ð3Þ ð2Þ ð2Þ ð3Þ ð2Þ 2 rm ðxm ; n2 Þ; rm ðxm ; n2 Þ ¼ rm ðxm ; n2 Þ; Rm ðxm ; n2 Þ ¼ Rm ðxm ; n2 Þ þ v ð3Þ ð2Þ ð2Þ ð3Þ ð2Þ 2 rj ðxj ; n2 Þ; rj ðxj ; n2 Þ ¼ rj ðxj ; n2 Þ: Rj ðxj ; n2 Þ ¼ Rj ðxj ; n2 Þ þ v ð2Þ Rj ð
ð1Þ Rj ð
xj ; n1 Þ ¼
ð1Þ j ð
xj ; n1 Þ þ v 1 r
r
xj ; n1 Þ; r
x
x
r
ðC:11Þ
With the aid of Eq. (C.11), we learn
h i h i ð3Þ ð3Þ ð2Þ ð2Þ ð2Þ ð3Þ ð2Þ Rð3Þ m ðxm ; n2 Þrj ðxj ; n2 Þ Rj ðxj ; n2 Þrm ðxm ; n2 Þ þ Rm ðxm ; n2 Þrj ðxj ; n2 Þ Rj ðxj ; n2 Þrm ðxm ; n2 Þ h i h i ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ ¼ Rð2Þ m ðxm ; n2 Þ þ v2 rm ðxm ; n2 Þ rj ðxj ; n2 Þ þ Rj ðxj ; n2 Þ þ v2 rj ðxj ; n2 Þ rm ðxm ; n2 Þ ð2Þ
ð2Þ
ð2Þ ðxm ; n2 Þrj ðxj ; n2 Þ Rj ðxj ; n2 Þrð2Þ þ Rm m ðxm ; n2 Þ ¼ 0:
ðC:12Þ
and
h i h i ð2Þ ð2Þ ð1Þ ð1Þ ð1Þ ð2Þ ð1Þ Rð2Þ m ðxm ; n1 Þrj ðxj ; n1 Þ Rj ðxj ; n1 Þrm ðxm ; n1 Þ þ Rm ðxm ; n1 Þrj ðxj ; n1 Þ Rj ðxj ; n1 Þrm ðxm ; n1 Þ h i h i ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ ¼ Rð1Þ m ðxm ; n1 Þ þ v1 rm ðxm ; n1 Þ rj ðxj ; n1 Þ þ Rj ðxm ; n1 Þ þ v1 rj ðxj ; n1 Þ rm ðxm ; n1 Þ ð1Þ
ð1Þ
ð1Þ ðxm ; n1 Þrj ðxj ; n1 Þ Rj ðxj ; n1 Þrð1Þ þ Rm m ðxm ; n1 Þ ¼ 0:
ðC:13Þ
With the aid of Eqs. (C.9), (C.12) and (C.13), Eq. (C.10) is then simplified as 3 X
q ðiÞ x2m x2j
Z
ni
ni1
i¼1
ðiÞ
ðiÞ nRm ðxm ; nÞRj ðxj ; nÞ dn ¼ 0:
ðC:14Þ
With the pre-assumption xm – xj, then we have 3 X
q ðiÞ
Z
ni ni1
i¼1
ðiÞ
ðiÞ nRm ðxm ; nÞRj ðxj ; nÞ dn ¼ 0:
d For the case xm = xj, we multiply Eq. (C.1) by 2 dn
ðC:15Þ h
i RðiÞ m ðxm ; nÞ and then obtain
2 i2 i d d ðiÞ d h ðiÞ d h ðiÞ n Rm Rm ðxm ; nÞ þ ðkim nÞ2 RðiÞ Rm ðxm ; nÞ ¼ 0: ðxm ; nÞ l2i m ðxm ; nÞ dn dn dn dn
ðC:16Þ
Integrating Eq. (C.16) at the spatial interval [ni1, ni] and utilizing Eqs. (C.3) and (44), we have
Z
ni
ðiÞ
q n
ni1
h
( ) 2 ðiÞ i2 n i 2 ðiÞ h l c33 ðiÞ 1 c33 d ðiÞ 2 ðiÞ i n xm ; nÞ dn ¼ n R ðxm ; nÞ þ q R ðx ; nÞ : 2 x2m dn m x2m m m
RðiÞ mð
i2
ðC:17Þ
ni1
Then the summation of Eq. (C.17) derives 3 Z X i¼1
ni
h
i2
q ðiÞ n RðiÞ dn ¼ J m ; m ðxm ; nÞ
ðC:18Þ
ni1
where
( ) 2 ðiÞ h ðiÞ 3 i2 n i X l2i c33 1 c33 d ðiÞ ðiÞ ðiÞ 2 Jm ¼ n Rm ðxm ; nÞ þ q n Rm ðxm ; nÞ : 2 2 2 dn x x m m i¼1
ðC:19Þ
ni1
The orthogonal property of the eigenfunction RðiÞ m ðxm ; nÞ is synthesized as 3 Z X i¼1
ni
ni1
q ðiÞ nRmðiÞ ðxm ; nÞRjðiÞ ðxj ; nÞdn ¼ Jm dmj ;
ðC:20Þ
where dmj is the Kronecker delta (dmj = 0 for m – j and dmj = 1 for m = j). References [1] J.F. Tressler, S. Alkoy, A. Dogan, R.E. Newnham, Functional composites for sensors, actuators and transducer, Composites: Part A 30 (1999) 477–482. [2] W. Zhu, K. Yao, Z. Zhang, Design and fabrication of a novel piezoelectric multilayer actuator by thick-film screen printing technology, Sens. Actuators 86 (2000) 149–153. [3] D.J. Cappelleri, M.I. Frecker, T.W. Simpson, A. Snyder, Design of a PZT bimorph actuator using a metamodel-based approach, ASME J. Appl. Mech. 124 (2002) 354–357.
H.M. Wang / Applied Mathematical Modelling 35 (2011) 1765–1781
1781
[4] P.R. Heyliger, A note on the static behavior of simply supported laminated piezoelectric cylinders, Int. J. Solids Struct. 34 (1997) 3781–3794. [5] X. Wang, Z. Zhong, A finitely long circular cylindrical shell of a piezoelectric/piezomagnetic composite under pressuring and temperature change, Int. J. Eng. Sci. 20 (2003) 2429–2445. [6] Y. Chen, Z.F. Shi, Double-layered piezo-thermoelastic hollow cylinder under some coupled loadings, Arch. Appl. Mech. 75 (2006) 326–337. [7] N. Kharouf, P.R. Heyliger, Axisymmetric free vibrations of homogeneous and laminated piezoelectric cylinders, J. Sound Vib. 174 (1994) 539–561. [8] M. Hussein, P. Heyliger, Three-dimensional vibrations of layered piezoelectric cylinders, J. Eng. Mech. 124 (1998) 1294–1298. [9] W.Q. Chen, Z.G. Bian, C.F. Lv, H.J. Ding, 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid, Int. J. Solids Struct. 41 (2004) 947–964. [10] Q. Wang, J. Jin, S.T. Quek, Propagation of a shear direction acoustical wave in piezoelectric coupled cylinders, ASME J. Appl. Mech. 69 (2002) 391–394. [11] J. Du, X. Jin, J. Wang, Y. Zhou, SH wave propagation in a cylindrically layered piezoelectric structures with initial stress, Acta Mech. 191 (2007) 59–74. [12] Y.D. Li, K.Y. Lee, Fracture analysis on the arc-shaped interface in a layered cylindrical piezoelectric sensor polarized along its axis, Engng. Fract. Mech. 76 (2009) 2065–2073. [13] H.M. Wang, H.J. Ding, Y.M. Chen, Dynamic solution of a multilayered orthotropic piezoelectric hollow cylinder for axisymmetric plane strain problems, Int. J. Solids Struct. 42 (2005) 85–102. [14] H.M. Wang, H.J. Ding, W. Ge, Transient responses in a two-layered elasto-piezoelectric composite hollow cylinder, Compos. Struct. 79 (2007) 192–201. [15] W. Huang, S.I. Rohhlin, Interface waves along an anisotropic imperfect interface between anisotropic solids, J. Nondestr. Eval. 11 (1992) 185–197. [16] Z.Q. Cheng, A.K. Jemah, F.W. Williams, Theory for multilayered anisotropic plates with weakened interfaces, ASME J. Appli. Mech. 63 (1996) 1019– 1026. [17] J.R. Berger, P.A. Martin, S.J. McCaffery, Time-harmonic torsional waves in a composite cylinder with an imperfect interface, J. Acoust. Soc. Am. 107 (2000) 1161–1167. [18] W.Q. Chen, J.B. Cai, G.R. Ye, Y.F. Wang, Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer, Int. J. Solids Struct. 41 (2004) 5247–5263. [19] W.Q. Chen, K.Y. Lee, Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces, Arch. Appl. Mech. 74 (2005) 466–476. [20] X. Wang, E. Pan, A.K. Roy, Scattering of antiplane shear wave by a piezoelectric circular cylinder with an imperfect interface, Acta Mech. 193 (2007) 177–195. [21] Y.D. Li, K.Y. Lee, The shielding effect of the imperfect interface on a mode III permeable crack in a layered piezoelectric sensor, Engng. Fract. Mech. 76 (2009) 876–883. [22] Y.D. Li, K.Y. Lee, Crack tip shielding and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor, Int. J. Solids Struct. 46 (2009) 1736–1742. [23] Y.D. Li, K.Y. Lee, Interaction between an electrically permeable crack and the imperfect interface in a functionally graded piezoelectric sensor, Int. J. Engng. Sci. 47 (2009) 363–371. [24] N. Bugdayci, D.B. Bogy, F.E. Talke, Axisymmetric motion of radially polarized piezoelectric cylinder used in ink jet printing, IBM J. Res. Develop. 27 (1983) 171–180. [25] A.C. Eringen, E.S. Suhubi, Elastodynamics (Volume II Linear Theory), Academic Press, New York, 1975. [26] O.Y. Zharii, Normal mode expansions in dynamic electroelasticity and their application to electromechanical energy conversion, J. Acoust. Soc. Am. 92 (1992) 57–68. [27] R. Kress, Linear Integral Equations, Springer-Verlag World Publishing Corp., Berlin, 1989. [28] H.J. Ding, H.M. Wang, W.Q. Chen, New numerical method for Volterra integral equation of the second kind in piezoelectric dynamic problems, Appl. Math. Mech. 25 (2004) 16–23.