Author’s Accepted Manuscript Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states M.S. Smirnov, O.V. Buganov, E.V. ShabunyaKlyachkovskaya, S.A. Tikhomirov, O.V. Ovchinnikov, A.G. Vitukhnovsky, A.S. Perepelitsa, A.S. Matsukovich, A.V. Katsaba
PII: DOI: Reference:
www.elsevier.com/locate/physe
S1386-9477(16)30292-2 http://dx.doi.org/10.1016/j.physe.2016.07.004 PHYSE12507
To appear in: Physica E: Low-dimensional Systems and Nanostructures Received date: 25 April 2016 Revised date: 27 June 2016 Accepted date: 7 July 2016 Cite this article as: M.S. Smirnov, O.V. Buganov, E.V. ShabunyaKlyachkovskaya, S.A. Tikhomirov, O.V. Ovchinnikov, A.G. Vitukhnovsky, A.S. Perepelitsa, A.S. Matsukovich and A.V. Katsaba, Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states, Physica E: Low-dimensional Systems and Nanostructures, http://dx.doi.org/10.1016/j.physe.2016.07.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
! ∗
! ! " # $ % $ & # ' ( ))*) $ " # +, " $ ! % ' - ...
" # $ $ % & '& ( & ) & # *$÷+, ) # - & ) & & # # & !& & ! ! ! .!!! / & .0/ & & ! % & 1 ) #& & # % & & % # & ! ! % & # & ! # - & #& 0 & & & # & & 1 ) ) 2 # % & !& ! # # & ! ( & ! & e
3/2
1 & & % & & & ( & .3"/ ) # & 1 & ! # # && 0" 4$5 & 46 *5 - 4+785 ! 495 & 4:5 & ; & 4<7$65 & & 3" ) ! ! - # % # 4$* $+5 # & ! ! & ! !! # & 3" & ! & # & # . & ! # & # & ! !! / ! # ! - ! # ; & # % % 3" ( # % & & ( & #& ! # # # ! =) % % & '& ( & '& >? > & & 4$,7*@5 1 ) #& # % % & ! # ! & 4$,76*5 % # .6@@,@@ #/ 46@7685 % ∗
/ $ 0 " , /$
& ! & & ) (- A 1 # 0! 4$< 6@ 6+5 1 ! A # & % ) #& ) & # - 4$: 6@ 66 6+ 6, 69 6:5 ! # % % & ! # % # ! 4$: 6$ 6<
*@5 ! & !!! # # & % % & # % # % # ! A # & % ) ! . &/ 1 & & ! & ! 4*$ *65 & & & 4**5 & ! ) # ! & & & ! 4*+5 ! & & # .& # ! / ! # ! # # )& &! & ! 1 ( & & # % 4*, *85 1 ) #& A # ! & % # 4*95 & # ! & ! # '& 3" - & ) & & # & 1 ) ) ! # ! # % 1$ * ).
& # H!! !A ! & # H !! ) ) # +@@ ) & # !! # & '& 3" && ! ) & # # & & A # H!! ) E # I # % ) - & ! # +@@9,@ ! # & ) 88 # # # ! & ) # @8 $8@@ ! ) & # % % ! )& && # # ) - & # & '& 3" ) & & ( .0/ & ! & 4+* ++5 J ! ) ! & ! & ) & # @$ > & C % ! ! ) & & # ! - & A & ! ) ) & # @@, > % & # ! ! & ! & A % ! 1 ! & # ! ) ! &K # & & & % ! & & ! ; 4+* ++5 & ! # ! & # ! ( # ) & & # ( ) & ! # % ! # ! & ! ; B & ) & & ( # # ! # ! & & 1 4+85 ) ) & K # & # ! & !
& # & $ ! # &! # ! .+@@9@@ #/ 1 & & # ! # ! 1 4*:5 % % & ) &
# & ! ! ! & # # % & # . 6, !/ ) & ) % ! ! & & ! & &! # ! &! # ! ) & #& ) ! # % & & & # ! 6, ! ! # ! & 6,,, ! 4*9 *<7+65 0 ) ) & # $ $ % # '& 3" & & 4$,
$9 6@ 6+5 ! & & # & # $ $ % ) !! & # # % & 4$, $9 6@ 6+5 = # & & ! ! ) & & 46$
6< *@5 ! # ) & & ! 1 ! # - & ! ) & 46$ 6<
*@5 & & & & # % % & '& ( & & # - & ! 1 !! ) ! # # &! & '& 3" # & ! ! ! & & & ! & 4+* ++5 ) A ! # %! # ! 4+,5 B ) & - & 1 & & & # % & ) ) ! & e
e
2
3/2
3/2
& ! ! # ! ! & ! ) & ! C 6@@@D .C/ ! ! ) C " & . ! C/ ! .0/ ) & ! 6@@@ 0 ! ) % & 3 "0 :@@ & ! & ) ) +@, ! 9, ! & ! # $@@ E- ! ) ! & 1 ) & ! ) ! # @$ ! # :@ *6@ & # & # % % ) # & ! ! ! & 1F ! .G!!! G &/ # 6*@ # & & # ! )
B & & & ! & # # '& 3" &! & 4*8 +* ++5 1 # ( # $* '& % 6, E & $* % = < E & & ,@ # & & ) 6@@ # * L ) # +@ ' ! & ) & & A& # 1 !! ) - % ) - & # ! ! & '& 3" <, ' # $@ $@ '& 3" ) - ) & # ! # ) $@ 6@ 8@ * & $@ & ! ) & $@ ' & ) & # !& ! # '& 3" ) & (- ! # 6%6 & & & - & ! # ! ) & & &K F0 MNF . J A
2
2
2
◦
◦
◦
2
6
2
$ % # ! & ! & ! ! # '& 3" d Eexciton EDAP lumin
10 3.1 ± 0.1 3.08 ± 0.01 1.98 ± 0.01
20 3.3 ± 0.1 2.98 ± 0.01 1.93 ± 0.01
)- &/ # # !! & ! . / 0∼<$6 .' ?
/ '& 3" - ) & & & & # M ; .$$$/ # # '& " N ( & # & # '& 3" ) *$ +, ) ! " & ! & # & & '& 3" ) - & 4+, +9 +:5 α1
60 3.5 ± 0.1 2.88 ± 0.01 1.89 ± 0.01
180 3.8 ± 0.1 2.83 ± 0.01 1.74 ± 0.01
600 4.5 ± 0.1 2.74 ± 0.01 1.68 ± 0.01
# '& 3" & & & # $<:±@@$ $9+±@@$ # *$ & +, ! A # # ! & ! ) & # '& 3" 4,$7,85 ) & ! & ! ! ."/
∼
! "" #
J $ ) C ! & ! ! # '& 3" & & ! # *@@ C ! ! # & '& 3" & & ) & # 69* *@8 .±@@$/ .J $/ ) ! ! # ! ! & # ! & % ! & & - & # ! ) &! # : 66L 4*8 +<5 & & # C ! ! # & ) ! & # '& .6*8 / 4,@5 # # ( A %
3" - & # ! ) $ ! ! # ! # & '& 3" ) & & & 4+, +97+<5 # # & & 3" & ! ! 4+<5 ) ! & J 6 ) ! ! # & '& 3" ) - # *: & & ! # !& ! 4+<5 1 % $ & & 6 % & # 3" ! % ! 3" .& +, / J 3" - & $ % & B & ) # 3" ) & # *$ & & # 3" ) & # +, & % # '& 3" ! C & .*8, / .J $ 6/ !& ! ) J $ 0 & A # )& % .JBE / @9 # - # 3" ! # & $ ) % C ! & # ) ) 3/2
3/2
3/2
*
J $ C ! & ! # '& 3" ) &K - 1 $ ! # '& 3" ) - # +, &K ! 1 6 ! # # '& 3" & C % # *8, 1 ) & & ! & !! ! # '& 3" ) - ** 1 ) # 3" - J '& 3" ) & # +, ) ! # .J $/ & ! & & - & ! & # ) #& 4,85 JBE # ) & @@, & # % ! & ( @@+ & & ) % & ) ! & & 4,978@5 % ! ) & ! & ! & % & #&& ! 1 & % # & % # & # & # 1 #
A & ! & # & # 66 ! & ! & ! # % ! & ! ! J * ) & ! & # ! ! # '& 3" ) - # *, & ! & ! # & & '& 3" ! & # % & # & # % ! # 8@@ # &!! # ! ! # & ) JBE .@$8, / 1 J * ) & # # ! # % ! # # $ " "% # @ ,@ ! & @ $8@@ ! & & ! ! # &! & %! A # %! & '& 3" ) - # *$ +, & # 6*@ # ) & # %! # ) ! # 6 μO ! & J 6 & ) & # +@, +,, # 3" ) - # *$ +,
! ! # ! ! ) & ! ! ) & & & & ) & $ $ % # '& 3" F % % & # ! & % ! & ) ) # +@@ J ! ) # % & & ! & ) ! # % - & 1 !& ./ ) & & & # # & 4$, $: $< 6$ 8$
865 ) #) !! ./ !! # % # ! ) & ) J * ! # & ! & & 4$9 $: 6$ 6+ 6< # % ! # '& 3" ) - # *, 1 ) & ! # & # ) ! ) %!
& # A ( .$/ & # & & % # & & ! & % & ! # # 3" 4,< 8@5 J & & ! & ' && & 4,< 8@5 ! # & '& 3" ) - # *$ ** *, *: & +, ) & # # - & ! & & # C ! & % & & # ! ) - # *: & +,
e
3/2
ΔD(t) = −(1 − exp[−(t − t0 )/τrise )
3
ai exp[−(t − t0 )/τi ],
.$/ ) D ! & . / τ # a & τ !& & # # i! t # ! # A ! & 6 %! & # ) & 4*9 *<7+$ 8$78+5
& & & # % ! & ! & # ) ) % ) & .J + & , / J + & , ) # # & ! # ) ! # 3" ) - # ** & +, &K ) ! & !& ) # ! & & & i=1
rise
i
0
J 6 & & ! ! ) & # 66 ! # % & ! # & '& 3" ) - H 1 H ! ! # '& 3" ) - # *: & ) ! # % # 6& # H!! % & & # % # # ) & & # # & # '& 4$, $: $< 6$ 8$ 865
+
i
6 F # A # %! & # %! #
3.1 3.3 3.5 3.8 4.5
a1 0.021 0.0345 0.072 0.0158 0.0136
τ1 4500 10000 4000 4500 5500
τ2 100 100 92 95 92
a2 0.0120 0.0130 0.0250 0.0097 0.0210
τ3 3.5 4.0 4.0 4.0 4.5
a3 0.0090 0.0100 0.0080 0.0045 0.0110
'& 3" $
J& & %! & ! & # # $ $ % & ) - & !! & " # '& 3" ! ) & ! ! # 1 # F & - & ) & # 48,
885 & ! # !! ! & 1 ) ! # ) ! & # # 3" & G& G # !! ; & & ! !! # & & ! ! & # & ! B & & $ J $ ) ! # '& 3" ) - # +, ! # <@ *6@ 1 ! & & & %! ! ( 1 & 6, # & # " ) E P $8: J - # '& 3" ! & ! & E) & # ! ( & ) & # '& 3" - # '& 3" ) - # *$ # " & & 9, ) # ! # <@ *6@ J 8 ) - & ! & ! & # ! # ! & % & ! # ) & ) J 8 4+* ++5 & & % $ & % 1 ! & ! & ! 6 & % ) # ! ! ! # ! & ! & ! γ (T ) = γ (0) · exp(−ΔE /kT ) * ! & 1 ! γ & ! & ! + # # & 1 ! γ (T ) = γ (0) · exp(−ΔE /kT ) & & & & ! E ! A& ! β α = 1 − β ! A& @ 1 & ! & ! n !! # i G e
J + " # &K ) # 3" ) & # **
3/2
max
J , " # &K ) # 3" ) & # +, !& ) ! & J 3" ) & # ** &! # ) ! & # ) # ,@@ 9@@ # , ! 1 # % ! ! J 3" ) - # *: & +, ) ! & ! ! ,@@9,@ . J ,/
# ! ! & # % ! & " & ! % & # & # - & % % # & '& 3" 4$9 $: 6$ 6+ 6<5 # - & # & & & # % % &
1
1
3
3
1 3
3
3
i
,
J 8 ! & ! & # ! # & ! ."/ & ! J 9 & # ! & ! & # # '& 3" ) - # +, ! # " # & '& 3" ) - H $ *$ 6 ** * *, + *:
# 3" % ( # & , +, 1 # 3" ) J 8 ⎧ ⎪ ⎨n˙ 1 = G − n1 (αγ1 + αγ1 + γ3 ) + γ3 n3 n˙ 3 = n1 γ1 + n3 (γ3 β + γ3 ) ⎪ ⎩ α = 1 − β.
) & .6/ & & ! & ( # ! ) ! ! & & @<$@ . # % $/ ) & .dn /dt ≈ 0/ J 9 ) ! & ! & # ! # " & Gαγ . I = αn γ = .*/ # 1 & & α[γ + γ ] + γ ) ! # & $*@$:@ & 68@*6@ 1 # " & ) ! # ! ! ( .6/ & !! & γ 6 & , ! & ! ) ! I = βn γ = βn γ . .+/ βγ + γ ! . J 9 / ! ! ! γ & γ & ! & ! J & '& 3" # ) ! # & ! & ! ! ( # % E & & ! E ) γ (T · exp(−ΔE /kT ) J , & A # %! & ( .*/ ) =γ (0) ( & .+/ . */ 3
1
1 1
exc
1
3 3
DAP
γ3 β 3 γ3 β+γ3
1
1 3
3
3
3
2
1
3
2
* J ! # ! & ! & # & ! ( & E E 3.1 3.3 3.5 3.8 4.5
1
0.048 0.053 0.052 0.045 0.047
3
0.123 0.120 0.118 0.115 0.115
!
E
E2 0.084 0.081 0.086 0.083 0.082
5
0.180 0.168 0.125 0.180 0.150
2
5
2
⎧ n˙ 1 = G − n1 α(γ1 + γ1 ) − n1 (γ2 + γ3 + γ5 )+ ⎪ ⎪ ⎪ ⎪ ⎪ +n2 γ2 + n3 γ3 + n5 γ5 ⎪ ⎪ ⎪ ⎨n˙ = n γ − n γ 2 1 2 2 2 ⎪ n ˙ = n γ + n 3 1 1 3 (γ3 β + γ3 ) ⎪ ⎪ ⎪ ⎪ ⎪ n˙ 5 = n1 γ5 − n5 γ5 ⎪ ⎪ ⎩ α = 1 − β.
.,/
! 6 & , & & ) A & & ! # ! & % :@ & 0 & C& ) ! ) ! # # 6 A & # & & # & & ! $$@ ! $6@ 1 & 4,*5 1 ) ! & ! ) && ( # " ! G!!G # $ & J 8
! ( &
.8/ !! &K ) & ) & & I # ! 6 # ! ! 6*@ n γ − n γ = Δ(I + I +I ), .9/ I & I %! & I .+/ I ) %! & # '& 3" ! G = Iexc + Inonrad + IDAP
2 2
exc
1 2
exc
nonrad
nonrad
DAP
DAP
DAP
Iexc = αn1 γ1 = = αγ1 n3
γ3 β + γ3 αγ1 αγ1 γ3 , = I + DAP γ3 γ3 γ3 γ3 β
Inonrad = =
γ3 β + αγ1 n3 γ3
.9/ n2 γ2
αn1 γ1
γ3
= IDAP
αγ1 αγ1 γ3 . + γ3 γ3 γ3 β
e
.
1 γ3 = + γ3 γ3 βγ3
αγ1 αγ1 αγ1 γ3 αγ1 γ3 + + +1 . + γ3 γ3 γ3 β γ3 γ3 γ3 β
IDAP γ2
− = Δ IDAP
=
.:/
e
.$@/ ! # ( %! & ! & & # # ! ) # # # & ( .,/
5
n2 (t) = eF (t) ×
t γ3 F (t ) γ2 γ1 + γ1 1+ IDAP dt , e × n2 (0) + γ1 γ1 γ3 βγ3 0
.$$/
)
.$6/ ( ) & ! ! ! & ! & A & & ) * & ) & ) # & # & # ! F (t) =
0
t
A & # # & # # # & ! & # & # # ) ! ) & ! & & .J 9 / 4,85 !! & & # '& 3" ) & A& ! ) ! ! & & E) ! ! # !! # 3" 1 ) & 46$ 6< 8, 885 ! & & & # & & 3" - & ! & ) & & # & & '& 3" & & # & ! ! ! # % & ! ! & & &K # & A & # & 1 & $ $ % % % ) - & & %! & 1& & ! & # ! % # ! ) 6 C& % # & ! ) % & @$ # '& 3" ! ! ! 3" 4895 E) ) ! # ! & & # $ 46$5 # % 3" N P@$>.@,·6/ & %! & 1 @@, & # & !& - & # % # 6 μO & # $* & & 2 # 3" ! # $@ 0> · @@, % 3" ) A& ! # % # & # # % .# < N > P @$/ 1 @@@, ! # % % # 6@ ! # % % 1 && % # *$ ) # & ! ! # % #&& ) # # 46<5 % % & & % & %! 48:79$5 & & # % % % ) # % 48* 8:5 )! A & # ! # # ! . !/ ) ) & ) % % 4895 ! % & # & %! # ! . */ '! ) # # ! & & # ! & ) # ) ) & 4*9 +$ 96 9*5 & ! ! ! % & 4*97+@
9+5 & ) ) & & 48$78+ F ) & # # & ! '& 3" 4$9 $: 6$ 6+ 6<5 ) & # $ $ % & &
γ2 dt .
& & # & ! '& 3" # & 4,67 ,85 1 && & # % '& 3" & & ! 1
& # # % ! # ) & & ! & 46$ 6< 8, 885
9
e
3/2
3/2
# %! & ( .$9/ ) + # A # ! % & & <@L =) ΔD ∝ N (0)/exp[< n >] !& # # # 3" ) & ! & 1/exp[< n >] ! # 3" ) & ! # & $ % & & !! # $ & # " & & - & & J & & 3" & # % .J $/ +@ & # " & ! # & # ! @*8 . +/ ) 2 # % & # - # # " ) ! # 3" ) & & 2 # " # ! # ! ) & & '& 3" 4$: 6$5
& & # & & & ) & # !
) &# & & & 4$: 6$5 % & ! & J& %! & & ! ./ ! - & & # & ! ) ) #& 0 ( ./ % # $ ! # % ! - & $ # # - & & & 3" & & .3" )
) & - & / N !! & 49,5 & - & # & 4+: 985 # ! ! k ) # n ! n · k dN 1 + nk N , .$*/ =− dt τ ) N ! A& $ 3" n ! τ # # 3" # !
1 N (t) = N (0)exp − + nk t , .$+/ τ J & & ! 3" n
3/2
n
rad
n
n
n
−ΔD ∝
+ J ! # %! & ( .$9/ τ ! < n > k ! 1/exp(< n >) &
rad
∞
Nn (t),
n=1
3.1 3.3 3.5 3.8 4.5
.$,/
# 3" n ! .$8/ < n > # ! 3" < n >n exp[− < n >], p(n) = n!
∞
N (0)
.$9/ J t ∼ 0 # ! # ΔD & ! # ! ! # ! ) # ! 3" J 3" ) & ! ( .$9/ !A &
t −ΔD ∝ N (0) − − < n > , .$:/ τ ΔD %! & ! & & !& # # exp[< n >] # A
:
0.58 0.352 0.398 0.486 1.03
0.042 0.062 0.017 0.028 0.0275
0.55 0.7 0.67 0.62 0.36
) & & & & $ &# & )& & # ! ) #& 1 4997:@5 ) !! & ! & I # 3" & E) ! K & % # ! 3" 4995 1 ) & # ! '& 3" ) ) ) ! & & ! - & 46<5 1 %!
# ! # ,@@9@@ # @, ! 1 ) # ! # % & # ! ) & ) ! # ! ! & ,@@9@@ & ! # - & & % ) ! # # 46$ 6<5 E) & & # # &# & & # ! '& 3" & ! !& - & # # '& 3" & ! # ) - & # '& e
< n >n − 1 e + nk t = exp − n! τ n=1
t = N (0)exp − − < n > [1 − exp(−kt)] . τ
− ΔD ∝
2800 3670 5080 2590 3280
3" & # &K - ) 0 & !! ! # ) # # !!! & ! ) ) ! & 0 ( ! & & & # % % & & # 4$,7$: 6$ 66
6< *@ 8, 885 % ! # & ! # ! & # # ! & & & E) # ! ) ( # !
) .@ 8 1 , G ! > + '(% (+3(+( % " /@ ! "# % '( ''(&+ ? 2 H << # " /@ "# 2
+) '((+ ')3? 4 2 H << # /$5 $ - - " /@ ! "# '+ '((& (&)4( & " /@ < )) '( *3 + . / # -8 2 H "# ? '((( <33)+* <33%' '( . / ! "# () '((( ?'*?'3 ' " /@ "# ))? '(% +' '' << # 2 H /$5 $ - " /@* "# < 2
+& '((4 44)(3 '3 7 # ! 5 H . / "# < ?% '((' ()%3+ ') 2 H << # /$5 $ - " /@* "# < 4) '((? '3%3'& '% << # 2 H $ - - /$5 * " /@ "# < 4% '((? ')%3 '? $ 5# /@ C 8 5 6 - I - @ "# < 2
+? '((? (%4)(& '4 0 "= < )' '((+ '((% '& -! > 2 $G < H "# < %3 ++? ?3)4 '+ " 1# " /@ ! "# 3) '( (+)4(? 3( !. $ - - < G# / < 8 # " /@ ! "# 4 '(3 ))' 3 1 ! 5 H . / "# 2
&' '((3 '4+3*'4+% 3' G C
6 > 2
% '((% '3?(*'3?) 33 C 8 !6 6 < / </ "# 2
33( '((( '34*')' 3) " - C " 1 < 5 = 5J . ! "#K
( ++& '((4*'(+ 3% 0, <# , =# -= 02 # , / # C "# " , ! "# ) '(( '')4&*'')&? 3? 0 0 . 0 - 1 0 # + '(% 4))*4%3 34 . / " 5 5 / = "# < %3 ++? )?3*)?4 3& 2 1 $*# ! "# (' ++& %?%'*%?%& 3+ . / " 5 * 5 / = / *
'( ++? 3+%*)() )( 5 1 -# . / 5 / = "# ?' ++? 3*( ) . / ! H= -8 2 H "# < ?( +++ <'44*<'&( )' 2 1 $*# ! "# (3 +++ (44% )3 / @ C# @= *
# > 2@ # < . "> )4 '(3 3'&*33' )) / @ @= # C# > 2@ / @ < . * ! "# 3 '(3 &)3(? )% -. ; 0 0 > 2 # 0 1 " 0 *
# % '(3 ?%*?%+ )? !! < ) '((4 )% )4 0 0 1 , / . # @= ! > < ? '() ''&? )& 0 0 1 *
# @= " ! 2 %? '() ''*'&
1 !! & # ! & '& ( & ) & # *$÷+, ) # - & & & # # & ! ! ! & .0/ & ! & 1 ) #& & # % & & % # & ! ! % & # & ! ! & ! # ! % & # ! ) ) & & # ! 3" ! # !& # ) ! ) & # % & ! & !& ! # # "
) ) !! & # FJ F !I $, ,6@+@9: QQ & FJJF J$,F @89 ! " "# $ %& '() ')*'+ ' , # - . / -/ 0 !$1" 2
%) ++ ))'*))% ++ 3 - . / -/ 0 , # & ++' ''4*'3( ) 5* 6 7*8 - ,*9 8 :* ,* , * !*# 6 "# $ )+ '(3 *) % 0;< = > 3%3 ++ 434*4)( ? 5 " / ! "# 2
) '(3 3+&3*3++ 4 > : @ " = / A 0 B @ "# $ 4) '(% 4)*&? & ! < =*C= -D@ C !E 2 < ! C "# 2
+4 '(( (+3(& + = ! " 8 " '& ++& '(3*'(? ( 8 8 > '& ++& '(?*'(& "/ 5 5 1 !F ! < < 8 ! > ' '((& ('+'( ' 2 0 = ! ) '(( ()'%(3 3 B < > 8 / 5 5 >9 33 '(' %4%3*%4?4
<
)+ > / 0 0 1 "# $ ?& '(% %+*?3 %( ,* , /* / */ 2 ,- ", , ! "# +' '((' ?'*?) % C 8 B ! ('*(3 '((3 33&*3)3 %' > # 1- 5 < 5 2$ ! # +( +&? 33+3 %3 5E@ $# F 5 8 "# 2
'(3 ++3 '4*'4? %) 0;> ! 2 ! "# +) ++( )3%?*)3?3 %% $# 5E@ 2 / 5 8 ! )&*)+ ++ 4)%*4)+ %? . $ . / # . 2 $G ! )? ++( &3*+% %4 > -! > / H 2 $G < "# < 2
4% ++% 34'&*343 %& ! 2 !* 7 "# < ?' '((( '?3*'?? %+ C <@ C
6 "# 2
4% +++ '+4'*'+4) ?( C <@ C
6 "# < ? '((( 3(43*3(&4 ? !6 6 <5 0;> 18 <@ ! "# +& ++) 3&%+*3&?) ?' 18 <@ >! # !6 6 ! "# (& ++& ')3 ?3 C 8 !5 , ! ! 1 5# !6 6 0 '+ '((4 &%&*&?? ?) - 8 !6 6 '% '(3 '&4& ?% ! # / !. " /@ "# < &4 '(3 (&'(<**(&'(<*% ?? / " /@ "# "# 4 '(% &&&'*&&+) ?4 , 8 ! 5 $C 5 " 2 <- ! ! "# +' ++( ?+'4*?+3+ ?& , /@# 1 > 5 , > 1 ! "# 2
' '( (%*(%% ?+ . / # -8 2 H '&4 '((( (*(3 4( 5 5 ! 5 H < - . / "# < 2
+ '((3 ''4)( 4 -. 2 $G . $ . / 2 / 1 ,= ! 2 )4 ++( 3*'4 4' 0;> ! 2 "# 2
?& ++( '(&*'( 43 1 # " # C 1B ! 2 ('*(3 '((3 3&*)3 4) 1 A 5 / $ # ! " " @ K & '((? &?*+3 4% 1 # " ! "# 3 '((+ +)&& 4? 0 0 0 - . # 1 ! 2 4? '(? 44*&% 44 1 > 5 . C < A9 5 -> C G K "#* $ )? +++ '?%*'4' 4& 1 A 1 A 1 / # , 1 / B 5 0 / B ! " " @ K * # & ++& 3*3? 4+ 5 5 8 5 ! "# +' +&& )4(?*)4' &( -$ -" @ ! !! < H ! "# ++ ++% 4&%3*4&%?
$@