Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states

Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states

Author’s Accepted Manuscript Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of lo...

684KB Sizes 0 Downloads 59 Views

Author’s Accepted Manuscript Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states M.S. Smirnov, O.V. Buganov, E.V. ShabunyaKlyachkovskaya, S.A. Tikhomirov, O.V. Ovchinnikov, A.G. Vitukhnovsky, A.S. Perepelitsa, A.S. Matsukovich, A.V. Katsaba

PII: DOI: Reference:

www.elsevier.com/locate/physe

S1386-9477(16)30292-2 http://dx.doi.org/10.1016/j.physe.2016.07.004 PHYSE12507

To appear in: Physica E: Low-dimensional Systems and Nanostructures Received date: 25 April 2016 Revised date: 27 June 2016 Accepted date: 7 July 2016 Cite this article as: M.S. Smirnov, O.V. Buganov, E.V. ShabunyaKlyachkovskaya, S.A. Tikhomirov, O.V. Ovchinnikov, A.G. Vitukhnovsky, A.S. Perepelitsa, A.S. Matsukovich and A.V. Katsaba, Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states, Physica E: Low-dimensional Systems and Nanostructures, http://dx.doi.org/10.1016/j.physe.2016.07.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

                                                                !        ∗



                      !   !  "  # $ %     $ & #     ' ( ))*) $  " # +, " $ !     %     '  - ...  



" #  $ $ %  & '& ( & ) &   # *$÷+,     )     # - &   ) & &    # #  & !& & ! ! ! .!!! /    &    .0/   & &  !   % &     1 ) #&     &        # % &  &  %  #  &   !   ! % & #        &   ! #    - &   #&  0   &  &   & #       & & 1  )   ) 2  # %      &   !& ! #           #  &   ! ( & !     &    e

3/2

  

1    & &             % &   & & ( & .3"/ ) # & 1   &   ! #    #  &&  0" 4$5      & 46 *5     -       4+785 ! 495 &        4:5 &  ;     &   4<7$65  &  & 3" )     !  ! - # %   # 4$* $+5   #     &     ! ! & !  !!   # & 3"    & ! &      #  &     #   .  & ! # & #      & ! !!  / !   # !    - !     #  ;   & #   % %   3"  (  #   % &   & ( &  #&  ! # #    # ! =)  %  %  & '& ( & '& >?  >       &  &  4$,7*@5 1 ) #&      #  %  %    & ! # !  & 4$,76*5        %   # .6@@,@@ #/ 46@7685     % ∗

  

/ $ 0  "  ,   /$ 

  

  

  & ! &   &   )  (-      A 1      # 0 !    4$< 6@ 6+5 1   !    A  #       & % ) #&       )  &   #  - 4$: 6@ 66 6+ 6, 69 6:5    !  #  %  %   &  ! #  %  # !   4$: 6$ 6<

*@5  !          & !!!     #  # & %  %   &   #   % #   %  #   !     A #     & %     )  !   .   &/ 1 &  & ! &   !  4*$ *65      &   &  &  4**5   & !      )     # !     & & &    ! 4*+5   !    &   &     #  .&  # !  / !   # !     #  # )& &!   & !   1      (  &   &   # %           4*, *85 1 ) #&   A   # !     &   % #     4*95  & # !   &   !  # '& 3"  - &    ) & &  #  &   1 ) )   ! #     !   #  %   1$ * ).

&   # H!!          !A   !    &  # H !!   ) )   # +@@  )  & #  !!  # & '& 3"  && !   )  & # #  &     &   A  # H!!       ) E     # I  #  % )  - &   !    # +@@9,@   !  # &   ) 88 #   #  # !   &  ) # @8  $8@@ !  )  &   # %   % !     )&    && #    # )  - &   # & '& 3" )  &      &     ( .0/ &  ! &  4+* ++5 J   ! ) ! &   !  & )  &     # @$ > &   C %  !    !  )   & & #   !      - &    A &        ! ) )   &     # @@, > % &   #  !         ! &  !   &  A    % ! 1 ! &      #       ! )   !    &K   #       &   &    &      % ! & &   !  ;  4+* ++5  & ! # !   &     #  !  (  #    )  &   &      #   ( ) &   !  #    % ! # !   &   !   ;   B    &  )   &     &    (   # #  !  #  ! & &  1 4+85  ) )         &   K     #  & # !   & !

&   # &  $ !   # &! # !        .+@@9@@ #/ 1  &    &   # ! #     !   1 4*:5 %  % & )   &

 #  &   ! ! !   & # # %   & #    .  6, !/ )  & )    %  !      !  &   & ! &  &! #    !  &! #    !  ) &  #&   ) !  # % &   &     & #  !   6, !       !  # !  & 6,,, ! 4*9 *<7+65 0   ) )    & #  $ $ %  # '& 3"   &     & 4$,

$9 6@ 6+5    !    & & #   & #  $ $ % ) !! & #   #   % & 4$, $9 6@ 6+5 = # & &    ! !   )      & &     46$

6< *@5     ! #  )   &   &  !    1  !   # - &        ! ) & 46$ 6<

*@5    & &  & &  # %  %   & '& ( & &  # - &     !     1  !!  ) !     #   #  &! & '& 3"  #  &   ! ! ! &    &     & ! &  4+* ++5  )   A !  #    %!     #    ! 4+,5 B     ) &  - &   1  &  &   & # % &    )  )      ! &    e

e

2

3/2

3/2

  

    

 

 & ! !  # ! ! & !  )    &     ! C 6@@@D .C/ ! !   ) C " &  .   ! C/  !   .0/ )    &    !   6@@@  0 !  )  % &  3 "0 :@@   & ! &   ) )   +@,  !   9, ! &  !  # $@@ E-  ! ) ! &      1 ) &      !   ) !  # @$    !   # :@  *6@       & # & #   %  % ) #  &   !  ! !    &  1F !    .G!!! G  &/     # 6*@ #   &  & #   !       )

B  &   & & ! &   #     # '& 3" &!  &    4*8 +* ++5 1  # (   # $*  '&  % 6, E & $*  % =  < E & &  ,@  # &  & )       6@@  # * L )   #    +@ '  ! &     )  &    & A& # 1  !!   ) - %   )  - &    # ! ! & '& 3"   <, ' # $@   $@  '& 3" )  -  )   &    #      !    #   )  $@   6@    8@   *  & $@    & !  )   &  $@ ' & ) & #    !&    !         # '& 3" )   &  (- !  # 6%6  & & &  - & ! # !  )  &   &   &K   F0 MNF .  J   A

2

2

2







2

6

2

 $  %   # ! &    !   & ! ! # '& 3"         d  Eexciton   EDAP lumin  

10 3.1 ± 0.1 3.08 ± 0.01 1.98 ± 0.01

20 3.3 ± 0.1 2.98 ± 0.01 1.93 ± 0.01

)- &/ #  # !!  &    ! . / 0 ∼<$6   .' ? 

 / '& 3" -  )  &   &     &  &  # M  ;  .$$$/ #    # '&  "    N (    &   #  &    # '& 3" ) *$   +,     )  !   "  & ! &  # & & '& 3"    )   - &  4+, +9 +:5 α1

60 3.5 ± 0.1 2.88 ± 0.01 1.89 ± 0.01

180 3.8 ± 0.1 2.83 ± 0.01 1.74 ± 0.01

600 4.5 ± 0.1 2.74 ± 0.01 1.68 ± 0.01

  # '& 3" &    &  & # $<:±@@$  $9+±@@$ # *$  & +,   !    A   # #    !  & !  )   & # '& 3" 4,$7,85 )   &  !     & ! ! ."/



      !  ""   #   

J $ ) C   ! & !   !  # '& 3"  & &   !  # *@@  C   ! !  # & '& 3"  & & )    &      # 69* *@8 .±@@$/ .J $/  ) !   ! # ! !  &   #  ! & %  !    &   &   - & # !      ) &!  # :  66L 4*8 +<5   & & # C   ! !   # &    )          ! & #  '& .6*8 / 4,@5    #   #  ( A    %  

3" - &   #    !   )   $  ! !  #   !  #  & '& 3" )  & &  &    4+, +97+<5   #     #   &    & 3" & ! !  4+<5 )     !     &      J 6 )  ! !  # & '& 3" )    - # *:  &  & ! #  !& !  4+<5 1      %    $   &  & 6  % &  #  3" !  % !    3" .&    +, / J    3"     - &   $ % &   B   &     )     # 3" ) &   # *$  &  &    # 3" ) &   # +,  &  % #   '& 3" !   C & .*8, / .J $    6/   !& !   )  J $ 0   &   A # )&   % .JBE /   @9 #  -  # 3"   !   # &   $  )         %   C   !   & #    )   )   3/2

3/2

3/2

*

J $ C   ! &    !  # '& 3" ) &K   -  1  $     !   # '& 3" ) - # +,   &K    !    1  6  ! #    # '& 3" &  C % # *8,  1  )      &     & !     &  !!       !  # '& 3" ) -     **  1      )    # 3" -  J '& 3" ) &   # +,    )   ! #    .J $/   & ! &     &  - & ! &   #     )   #&  4,85  JBE # )    &   @@,  &    #     % ! &  (  @@+       &    & ) %  &    ) ! &  &  4,978@5  % !  ) & !    &  !      &   %   &   #&&  !   1  & %       # & %       #        &        #    &  #      1    #

  A &   !  & #  &   # 66 !    & ! &    ! # % !   & ! !  J * )   & ! &   #   !  !  # '& 3" )   - # *,    & ! &    ! #  & & '& 3" !     &     # % &   #  &  #  % ! # 8@@ #    &!!            #  !  ! #   &  )    JBE .@$8, / 1   J * )  & #      #  !  # % ! #   #  $ "  "% #   @  ,@ ! & @  $8@@ !  &  &      ! !  # &! &  %!   A # %!   & '& 3" ) - # *$  +,  &   # 6*@ # )   &   #   %!  # ) !   # 6 μO  !   &  J 6    & )   &     # +@,   +,,  # 3" )   - # *$   +, 

 !    ! #   !  ! )  & ! !  )   &     & &   & )  &  $ $ % # '& 3" F   %   % &  #  !  &  %  ! &   ) )   # +@@  J        ! ) #  % &  &  !    &  )      !     #  %     - &   1  !&  ./ )    & & & # #  & 4$, $: $< 6$ 8$

865 ) #) !! ./  !! #  %  # !   )    &    ) J * !  #   & ! &    &    4$9 $: 6$ 6+ 6< #  % ! # '& 3" ) - # *,  1  )     &   !  #   & # )    ! ) %!    

 &      # A  ( .$/  &   #  & & % # &   & !  &   %   & !  # # 3" 4,< 8@5 J &  & !  &  '    && &    4,< 8@5  !  # & '& 3"    )    - # *$  **  *,  *:  & +,  )     & # #       -  & ! &  & # C   !      & %    &   & #  !  ) - # *:  & +, 

e

3/2

ΔD(t) = −(1 − exp[−(t − t0 )/τrise )

3 

ai exp[−(t − t0 )/τi ],

.$/ )  D  ! &  . / τ    #     a & τ  !& & #   # i!  t    # !     # A  !   &   6    %!  & #      )   &     4*9 *<7+$ 8$78+5

&    &  &   # % !  &    ! &     #    )  )  %   )   & .J + & ,  / J + & , )    #     #  &   ! # ) !  # 3"    )   - # **  & +,   &K   )   ! &  !&   )   #   !     &  & & i=1

rise

i

0

J 6  & &   ! !  ) &  # 66 ! #  % & ! # & '& 3" ) - H 1 H  ! !  # '& 3" ) - # *:   & )   ! # %  # 6&  # H!!    %    &  &  #  % #   # ) & & # #  &      # '&  4$, $: $< 6$ 8$ 865

+

i

 6 F  # A # %!   &   #   %!  #      

3.1 3.3 3.5 3.8 4.5

a1 0.021 0.0345 0.072 0.0158 0.0136

τ1   4500 10000 4000 4500 5500

τ2   100 100 92 95 92

a2 0.0120 0.0130 0.0250 0.0097 0.0210

τ3   3.5 4.0 4.0 4.0 4.5

a3 0.0090 0.0100 0.0080 0.0045 0.0110

'& 3"   $    

J& &  %!  & ! &  #       #  $ $ %   & )  - &        !!  &   "     # '& 3"     !   )     &          !  ! #   1   #         F      &      - &   )    &   # 48,

885 &    !  #  !!    !    &       1    ) !      # ) !          &   # # 3" & G& G #     !!   ;   & & !    !! #      & & !  ! &     # & !   B   &         &        $  J $ )     !  # '& 3" ) - # +,    !  # <@ *6@  1    !  &   &    & %!      !  (  1   & 6,   #  & # "    ) E P $8:  J   -  # '& 3"       !  & ! &   E)   & #  !  (  &    )  &   # '& 3" -   # '& 3" ) - # *$      # "    &   &  9,   )    #  !  # <@  *6@  J 8 )  - &  !  & ! &  # !    # ! & %      &      !   #       )   &  )     J 8 4+* ++5  &  &   %   $  & %  1 !  & ! &    !    6  & %  )  # ! !   ! #  !  &  ! &   !   γ (T ) = γ (0) · exp(−ΔE /kT ) *    !  & 1 ! γ   & ! &    !   +     #   # & 1 ! γ (T ) = γ (0) · exp(−ΔE /kT )  &   &  & & ! E   !  A&     !  β α = 1 − β   !  A&      @ 1  & ! &    !   n  !! # i      G     e

J + " #       &K   )    # 3" ) &   # ** 

3/2

max

J , " #       &K   )    # 3" ) &   # +,   !&   )   ! & J 3" ) &   # **      &! #  ) ! & #  )   # ,@@   9@@     #    , ! 1       #        % ! !  J 3" ) - # *: & +,   ) ! &        ! !   ,@@9,@  .  J ,/

  # !   !          & # % ! & "   & ! % & #       &       # - &     %  % # & '& 3" 4$9 $: 6$ 6+ 6<5      # - &       # &   & & #   %  %  &

 1

 1

 3

 3

1  3

3

3

i

,

J 8  !  & ! &   # !    # & ! ."/   & !  J 9  &   #  !  & ! &   #    # '& 3" ) - # +,  !    # "    # & '& 3" ) - H $  *$  6  **  *  *,  +  *: 

# 3" %    ( #  &  ,  +,  1     # 3"   )     J 8  ⎧    ⎪ ⎨n˙ 1 = G − n1 (αγ1 + αγ1 + γ3 ) + γ3 n3 n˙ 3 = n1 γ1 + n3 (γ3 β + γ3 ) ⎪ ⎩ α = 1 − β.

  )   &     .6/    &   & ! & (    #     !  )    ! !    &     &  @<$@ .      # %         $/   )   & .dn /dt ≈ 0/  J 9 )  !  & ! &   # !     # "    &    Gαγ . I = αn γ =  .*/   #     1 &   &  α[γ + γ ] + γ      ) !  #        &  $*@$:@  & 68@*6@     1     # "       &  ) !  # !    !      ( .6/ &  !!   &  γ 6 & , !   &    !   )   ! I = βn γ = βn γ . .+/ βγ + γ ! .  J 9  /  !  ! !  γ & γ  & ! &    !  J    & '& 3"      #   )   ! #     & ! &    !  !  (  # % E & & ! E )   γ (T · exp(−ΔE /kT ) J   ,    &  A # %!   &  ( .*/  ) =γ (0)   (  & .+/ . */ 3

1

1 1

exc

1

3 3

DAP

γ3 β  3 γ3 β+γ3

 1

1 3

 3

3

 3

 2

1

3

 2

 * J !   #  !  & ! &   #    &    !  (  &    E E 3.1 3.3 3.5 3.8 4.5

1

0.048 0.053 0.052 0.045 0.047

3

0.123 0.120 0.118 0.115 0.115

! 

E

E2 0.084 0.081 0.086 0.083 0.082

5

0.180 0.168 0.125 0.180 0.150

 2

 5

2

⎧ n˙ 1 = G − n1 α(γ1 + γ1 ) − n1 (γ2 + γ3 + γ5 )+ ⎪ ⎪ ⎪ ⎪ ⎪ +n2 γ2 + n3 γ3 + n5 γ5 ⎪ ⎪ ⎪ ⎨n˙ = n γ  − n γ  2 1 2 2 2  ⎪ n ˙ = n γ + n 3 1 1 3 (γ3 β + γ3 ) ⎪ ⎪ ⎪ ⎪ ⎪ n˙ 5 = n1 γ5 − n5 γ5 ⎪ ⎪ ⎩ α = 1 − β.

.,/

 ! 6 & ,  &  & ) A & &    ! #  ! &    %  :@  &  0 & C&   )    !        )   ! #    #   6 A    &    #    &   &  #  &   & !   $$@   !             $6@   1      &  4,*5 1  )   ! &  !    )   &&  (  # "       ! G!!G #   $  &      J  8

  !   ( & 

.8/  !! &K    )     &  )  & &    I  #  ! 6 #  !   !  6*@    n γ − n γ = Δ(I + I +I ), .9/ I & I   %!  &    I    .+/ I ) %!     & #  '& 3" !  G = Iexc + Inonrad + IDAP

 2 2

exc

 1 2

exc

nonrad

nonrad

DAP

DAP

DAP

Iexc = αn1 γ1 = = αγ1 n3

γ3 β + γ3 αγ1 αγ1 γ3 , = I + DAP γ3 γ3 γ3 γ3 β

Inonrad = =

γ3 β + αγ1 n3 γ3

 .9/  n2 γ2

αn1 γ1

γ3

= IDAP

αγ1 αγ1 γ3 . + γ3 γ3 γ3 β

e

.
1 γ3 = + γ3 γ3 βγ3

αγ1 αγ1 αγ1 γ3 αγ1 γ3 +  + +1 . + γ3 γ3 γ3 β γ3 γ3 γ3 β

IDAP γ2

− = Δ IDAP

=

.:/



e

.$@/   ! #  (   %!     & !     & & #   # !   )  # #    #  & ( .,/ 

5

n2 (t) = eF (t) ×



t   γ3 F (t ) γ2 γ1 + γ1  1+ IDAP dt , e × n2 (0) + γ1 γ1 γ3 βγ3 0

.$$/

) 

.$6/  ( )  &    ! !     !  & ! & A &    &  )   *  & )   &  ) # & #   &   #   ! F (t) =

0

t

 A & # #    & # #   # & !   &   #   &   #    # ) !      )  &   ! &   &     .J 9  / 4,85  !! & &  #     '& 3"  ) &  A&  !   ) !     !   &  &  E)    !    ! #    !! # 3" 1 )  &  46$ 6< 8, 885   !   &   &  &  # &   &  3"  - & ! &  ) &   & #   &  & '& 3"   & & #  &   ! !   ! # %    & ! !  &   &   &K   #     &   A &  #  & 1   &  $ $ %     % %   )  - & &  %!   & 1& &  !  &  #   !   %   #  !  )  6 C&  %   #  &   !     )  % & @$ #  '& 3" !     !    !  3" 4895 E)  )   !     # !        & &    #  $  46$5     # %   3"  N P@$>.@,·6/ &   %!   & 1  @@,  &  #  &  !&      - & # %    # 6 μO    &   # $*  &  &   2  # 3" ! # $@ 0> ·    @@, %  3"   ) A&  ! #  % #      &  #    # % .# < N > P @$/ 1     @@@,   ! #  % %     # 6@     ! # % % 1 &&  %   # *$     )   # & !   ! # %  #&&    ) #    #   46<5   % %      &  &  %    &  %!   48:79$5 &     & # %  %    %     )         #  % 48* 8:5   )!   A &    #  !  # #   !     .  !/ ) )  & ) % %    4895  ! % & #        &   %!    #   !  .  */ '!  ) #   #   ! & &     # ! &  ) # )  )     &    4*9 +$ 96 9*5 &   ! ! !  % & 4*97+@

9+5 &   )   )  & & 48$78+ F   )   & # #  &   !  '& 3" 4$9 $: 6$ 6+ 6<5 )    & #  $ $ %   &    &

γ2 dt .

 

      & &    # &  !    '& 3" # &  4,67 ,85 1 &&  & #   %  '& 3"  &   &  !   1  

   &  #  # %  ! #  )      &  & ! &  46$ 6< 8, 885 

9

e

3/2

3/2

# %!   &   ( .$9/  )    +   # A #  !  % & & <@L =)   ΔD ∝ N (0)/exp[< n >]   !& #  #   # 3" ) &   !   & 1/exp[< n >]  ! # 3" ) &   !     #     &      $    %      &   &   !! #     $       &     # "  &   &  - &   &   J  & & 3"    &   # %    .J $/      +@       &   # "     &  ! #  &   #  !     @*8 . +/   ) 2  # %      &  # - #        # "      )   ! # 3" )  &   &  2  # "      # ! #    !   )  &   &  '& 3"     4$: 6$5

&    &  #       &  & &   ) & #   !

)   &# &    & & 4$: 6$5    % &    ! &    J&  %!    &   &    !   ./   !  - &     & #       & !  ) )  #&  0  ( ./  %       # $ ! #   % !     - &   $    #     # - &    & &   3" &    & .3"  )     

 ) &    - &  /    N   !!   &  49,5 &  - &   #    &  4+: 985   #   !   !   k ) # n !     n · k dN 1 + nk N , .$*/ =− dt τ )  N   !  A&      $   3"  n !   τ  #  #    3"     # !    

1 N (t) = N (0)exp − + nk t , .$+/ τ J  & & !            3"   n

3/2

n

rad

n

n

n

−ΔD ∝

 + J !   # %!   &  (  .$9/   τ ! < n > k ! 1/exp(< n >) &  



rad

∞ 

Nn (t),

n=1

3.1 3.3 3.5 3.8 4.5

.$,/

   # 3"  n !    .$8/ < n >      # !      3" < n >n exp[− < n >], p(n) = n!

∞ 

N (0)

.$9/ J t ∼ 0  # !  # ΔD  &   ! #    !    !     #   !    )    # !    3" J           3" ) &   !      ( .$9/   !A &

t −ΔD ∝ N (0) − − < n > , .$:/ τ ΔD  %!  & ! &      &   !& #     # exp[< n >]    # A

:

0.58 0.352 0.398 0.486 1.03

0.042 0.062 0.017 0.028 0.0275

0.55 0.7 0.67 0.62 0.36

   )  &   &   &  &      $    &# & )&     & #   ! ) #& 1 4997:@5  ) !! &     !   &    I  # 3"  &   E)   !   K   &  % #      !   3" 4995 1    )   & #   !  '& 3"  ) )   )   ! &   &   !  - &   46<5 1  %!  

      #   !     # ,@@9@@     # @, ! 1   )  # !  #      % &  # !  )  & )  !  #    !     ! &  ,@@9@@    &  ! # - &   &    %   ) ! # #     46$ 6<5 E)   &  &   #   #  &# & & #   !  '& 3"          & !  !&    - &   # # '& 3" & !  #    )  - &  # '& e



< n >n − 1 e + nk t = exp − n! τ n=1

t = N (0)exp − − < n > [1 − exp(−kt)] . τ

− ΔD ∝

2800 3670 5080 2590 3280

3" & # &K   -       )  0 & !! !    #   )   # # !!!  & !      ) ) !    & 0  ( !    &  &  & # %  % & & #   4$,7$: 6$ 66

6< *@ 8, 885   %  ! # & !  #    !   &   #  # ! &       & & E)    #  !  )  (   # !       

)  .@   8  1 , G ! >    + '(% (+3(+( % " / @   ! "#   % '( ''(&+ ? 2 H  << # " / @    "# 2

 +) '((+ ')3? 4 2 H  << # /$5  $ -  -   " / @   !  "# '+ '((& (&)4( & " / @      < )) '( *3 + . /     # -8      2      H  "#   ? '((( <33)+* <33%' '( . /  ! "#   () '((( ?'*?'3 ' " / @    "# ))? '(% +' '' << # 2 H  /$5  $ -  " / @*    "# < 2

 +& '((4 44)(3 '3  7     # ! 5  H  . /  "# <  ?% '((' ()%3+ ') 2 H  << # /$5  $ -  " / @*    "# <  4) '((? '3%3'& '% << # 2 H  $ -  -   /$5 *  " / @   "# <  4% '((? ')%3 '? $ 5#  /@  C 8   5 6      - I -   @    "# < 2

 +? '((? (%4)(& '4 0 "=    < )' '((+ '((% '& -! >  2 $G  <    H  "# <  %3 ++? ?3)4 '+ " 1#  " / @   !  "# 3) '( (+)4(? 3( !.    $ -  - < G#  /  < 8     # " / @   ! "#   4 '(3 ))' 3    1    ! 5  H   . /   "# 2

 &' '((3 '4+3*'4+% 3'   G   C   

  6   >  2

 % '((% '3?(*'3?) 33 C 8  !6 6   < / </    "# 2

 33( '((( '34*')' 3) " -    C  " 1   < 5 =  5J  .  ! "#K  

 ( ++& '((4*'(+ 3% 0, < #  ,  =#   -=  02  #  ,  /  # C "#   "    ,     ! "#   ) '(( '')4&*'')&? 3? 0 0       .    0 -   1    0    # + '(% 4))*4%3 34 . /  " 5      5 / = "# <  %3 ++? )?3*)?4 3&  2  1        $* # ! "#   (' ++& %?%'*%?%& 3+ . /  " 5   *   5 / =  /      * 

     '( ++? 3+%*)() )(  5   1 -# . /  5 / =  "#  ?' ++? 3*( ) . /  !  H = -8      2     H  "# <  ?( +++ <'44*<'&( )'      2  1     $* # ! "#   (3 +++ (44% )3  /  @   C#    @=    *

# > 2@   #  <     .    ">      )4 '(3 3'&*33' ))  /  @   @=    #  C#   > 2@   / @ <     .  *  !  "# 3 '(3 &)3(? )%    -.  ; 0 0    > 2 # 0    1    "   0   *

 # % '(3 ?%*?%+ )? !!  <      ) '((4 )% )4 0 0       1    ,  / .      #  @=  ! >    < ? '() ''&? )&    0 0    1      *

#  @=   "   ! 2   %? '() ''*'&

  

1  !!  & #   !  & '& ( & ) &   # *$÷+,  )     # - &      & &    # #  &   ! ! !    &    .0/  & ! &     1 ) #&     &       # % &   &  %  #  &   !   ! % &  #        &    !  !    & ! #  ! % & #       ! )  )   &     & # !    3"  ! # !& #  ) !         )   &   # % & !      &         !& ! #        # "        

 ) ) !! &   # FJ F !I  $, ,6@+@9:  QQ & FJJF   J$,F @89            ! "  "# $ %& '() ')*'+ ' ,   #  -  . /  -/ 0 !$1" 2

 %) ++ ))'*))% ++ 3  -  . /  -/ 0 ,   #       & ++' ''4*'3(  ) 5*  6   7*8 -  ,*9 8   :*   ,*   , *  !*# 6   "# $ )+ '(3 *) %  0;<    = >  3%3 ++ 434*4)( ? 5   " /   ! "#  2

 ) '(3 3+&3*3++ 4 > : @  " =   / A  0  B      @  "# $ 4) '(% 4)*&? &           ! < =*C =  -D@   C !E   2 <  ! C   "# 2

 +4 '(( (+3(& +   = !   "    8   "        '& ++& '(3*'(? ( 8 8    >     '& ++& '(?*'(&  "/    5 5  1 !F  !    < <   8  ! >    ' '((& ('+'( ' 2 0  =  !     ) '(( ()'%(3 3  B <      >    8 /  5    5 > 9      33 '(' %4%3*%4?4

<

)+ > /    0 0    1    "# $ ?& '(% %+*?3 %( ,* ,  /* /  */ 2 ,-  ", ,  !  "# +' '((' ?'*?) % C 8     B  !    ('*(3 '((3 33&*3)3 %' >  # 1- 5   < 5  2$   ! #  +( +&? 33+3 %3  5E@    $# F 5 8  "# 2

 '(3 ++3 '4*'4? %)  0;>  !     2 ! "#  +) ++( )3%?*)3?3 %%  $#    5E@   2 /    5 8 !    )&*)+ ++ 4)%*4)+ %? . $  . / #    .  2 $G !    )? ++( &3*+% %4  >   -! >   /    H  2 $G  < "# < 2

 4% ++% 34'&*343 %& ! 2  !* 7  "# <  ?' '((( '?3*'?? %+ C <@  C   

  6    "# 2

 4% +++ '+4'*'+4) ?( C <@  C   

  6   "# <  ? '((( 3(43*3(&4 ? !6 6   <5 0;>  18 <@  ! "#  +& ++) 3&%+*3&?) ?' 18 <@  >! # !6 6   !  "# (& ++& ')3 ?3 C 8  !5 ,  ! ! 1 5# !6 6   0    '+ '((4 &%&*&?? ?) - 8 !6 6      '% '(3 '&4& ?% ! #  /  !.    " / @   "# <  &4 '(3 (&'(<**(&'(<*% ??  /  " / @    "# "#  4 '(% &&&'*&&+) ?4 , 8       !  5  $C 5    " 2  <- ! !  "# +' ++( ?+'4*?+3+ ?& , /@ #   1 >     5 ,    > 1   ! "#  2

 ' '( (%*(%% ?+ . /     # -8      2     H     '&4 '((( (*(3 4( 5 5  ! 5  H  < -  . /  "# < 2

 + '((3 ''4)( 4 -.   2 $G . $   .   /   2 /    1 , =  ! 2   )4 ++( 3*'4 4'  0;>  !     2  "# 2

 ?& ++( '(&*'( 43 1  #  "  # C 1B  ! 2   ('*(3 '((3 3&*)3 4) 1 A     5 /  $  #  ! "   " @  K  & '((? &?*+3 4%      1  #   "   ! "#   3 '((+ +)&& 4?    0 0    0 -   .      # 1    ! 2   4? '(? 44*&% 44 1 >    5 .  C   < A9    5     -> C     G K "#*  $   )? +++ '?%*'4' 4& 1 A     1 A    1 /  #  , 1        / B 5 0   / B ! "   " @  K *  # & ++& 3*3? 4+  5  5 8  5   ! "#  +' +&& )4(?*)4' &( -$   -" @ ! !!    < H  ! "#  ++ ++% 4&%3*4&%?

$@