Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
Contents lists available at SciVerse ScienceDirect
Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo
Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland Sebastian Voigt a,⁎, Grzegorz Niedźwiedzki b, c, Paweł Raczyński d, Krzysztof Mastalerz e, Tadeusz Ptaszyński f a
Geological Institute, TU Bergakademie Freiberg, B.-v.-Cotta-Str. 2, 09596 Freiberg, Germany Department of Paleobiology and Evolution, Faculty of Biology, Warsaw University, 2 S. Banacha 2 Street, 02-097 Warszawa, Poland c Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland d Department of Physical Geology, Institute of Geological Sciences, Wrocław University, Pl. Maksa Borna 9, 50-205 Wrocław, Poland e Bow Dr., Coquitlam, B.C., V3E 1X4, Canada f Strońska Street 1/12, 01-461 Warszawa, Poland b
a r t i c l e
i n f o
Article history: Received 22 July 2011 Received in revised form 12 October 2011 Accepted 30 October 2011 Available online 7 November 2011 Keywords: Vertebrate tracks Reptiliomorphs Early amniotes Red-beds Palaeozoic Central Europe
a b s t r a c t Tetrapod footprints from Late Palaeozoic deposits of Poland have been known for 150 years, but are poorly studied. Here we present the first comprehensive analysis of an extensive assemblage of fossil tracks from two artificial outcrops near Tłumaczów in the Polish part of the Intra-Sudetic Basin. Accompanied by conifer macrofloral remains and a few invertebrate traces, all footprints occur in reddish to greyish-brown, fluviolacustrine siltstones and sandstones of the Early Permian Słupiec Formation. Based on the study of nearly 120 slabs with tracks and trackways, we discern four distinct types of tetrapod footprints. These are assigned to the ichnotaxa Amphisauropus kablikae (Geinitz and Deichmüller, 1882), Ichniotherium cottae (Pohlig, 1885), Dimetropus leisnerianus (Geinitz, 1863), and Dromopus lacertoides (Geinitz, 1861) that can be referred to seymouriamorph, diadectomorph, “pelycosaurian”-grade synapsid and early sauropsid track makers. The Tłumaczów vertebrate track assemblage represents a typical early Early Permian (Asselian–Sakmarian) ichnofauna. Remarkable features are the dominance of footprints of terrestrially-adapted tetrapods and the relative abundance of diadectomorph tracks supporting interpretation of the fossil-bearing strata as part of an intermontane hinterland basin outside the range of semiaquatic anamniotes. © 2011 Elsevier B.V. All rights reserved.
1. Introduction The Late Palaeozoic volcano-sedimentary successions of the IntraSudetic Basin (Czech Republic and Poland) and the adjacent Krkonoše-Piedmont Basin (Czech Republic) are historically important for the study of vertebrate footprints, inasmuch as four of the five most abundant and most widespread Early Permian tetrapod ichnotaxa, i.e., Batrachichnus (= Saurichnites) salamandroides (Geinitz, 1861), Dromopus (= Saurichnites) lacertoides (Geinitz, 1861), Dimetropus (= Saurichnites) leisnerianus (Geinitz, 1863), and Amphisauropus (= Saurichnites) kablikae (Geinitz and Deichmüller, 1882), have been introduced for material from these two basins. During the past 150 years, footprints of the above morphotypes have been discovered in large numbers at many other places in Europe (Pabst, 1908; Haubold, 1973; Santi, 2005; Voigt, 2005, 2010; Gand and Durand, 2006), North America (Haubold, 1971; Haubold et al., 1995; Lucas et al., 2001; van Allen et al., 2005; Lucas, 2007), and Africa (Hmich et al., 2006; Voigt et al., 2011a, b), whereas the published record of tetrapod tracks from
⁎ Corresponding author. Tel.: + 49 3731 392038; fax: + 49 3731 393599. E-mail addresses:
[email protected] (S. Voigt),
[email protected] (G. Niedźwiedzki),
[email protected] (P. Raczyński),
[email protected] (K. Mastalerz),
[email protected] (T. Ptaszyński). 0031-0182/$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.palaeo.2011.10.018
the two Czech–Polish basins is still restricted to few and fragmentary remains mainly collected during the second half of the 19th century (Geinitz, 1861, 1863; Geinitz and Deichmüller, 1882; Fritsch, 1895, 1901; Czyżewska, 1955; Holub and Kozur, 1981; Ptaszyński and Niedźwiedzki, 2004). This kind of disparity is a particularly regrettable situation because the type material of the aforementioned track morphotypes is poorly preserved or even lost (Haubold, 1971; Voigt, 2005). Based on new material that is uniquely abundant for the study area, we present the first comprehensive analysis of Early Permian tetrapod footprints from the Polish part of the Intra-Sudetic Basin. All described trace fossils come from two artificial outcrops near Tłumaczów, which are geographically and stratigraphically closely related to the type locality of Dimetropus leisnerianus (Geinitz, 1863) near Wambierzyce (old German name Albendorf) (Göppert, 1862; Geinitz, 1863; Pabst, 1908; Czyżewska, 1955; Ptaszyński and Niedźwiedzki, 2004). The purpose of this paper, therefore, is twofold; first, to introduce the Tłumaczów footprint assemblage, and second, to extend our knowledge of the important but poorly studied Early Permian tetrapod (ichno-)fauna at the eastern margin of the central European Variscides. 2. Material and methods The studied material comprises single tracks, isolated sets of footprints, incomplete step cycles, and trackways with up to nine consecutive
174
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
couples of manus and pes imprints preserved in concave epirelief or convex hyporelief on roughly 120 slabs of reddish to grayish-brown sandstone ranging from a few cm to more than 1.5 m in size. The majority of samples were collected by Artur Gołasa, amateur geologist from Warsaw, during the last decade. Minor contributors to the collection are Maciej Bojanowski, Faculty of Geology at Warsaw University, Hubert Kiersnowski, Polish Geological Institute Warsaw, and Arnold Niziołek, amateur geologist from Kletno. The first footprints at Tłumaczów were discovered by some of us (PR, KM) in the early 1990s. All of the material is housed in Poland; acronyms used in the text refer to the following institutions: DPE, Department of Paleobiology and Evolution, Faculty of Biology, University of Warsaw, Warszawa; IGWU, Geological Museum of the Institute of Geological Sciences, University of Wrocław, Wrocław; JP, Jura Park Bałtów; KM, Kletno Geological Museum; MUZ PIG, Museum of the Polish Geological Institute-National Research Institute, Warszawa. Our analysis is focused on the best preserved material from the available collections. In addition to being photographed, trackways of relevant specimens were outlined on transparency film in order to record measurements of 28 different parameters of imprint morphology and trackway pattern, following standard procedural practice in tetrapod ichnology (e.g., Haubold, 1971; Leonardi, 1987; Voigt, 2005; Appendix 1). Identification of footprints was performed according to an ichnotaxonomic concept that is entirely based on anatomically-controlled characters of the imprint morphology and trackway pattern (Peabody, 1948; Haubold, 1996). Left and right are used as given by the tracks and trackways, regardless of whether their preservation is in epirelief or hyporelief. Ichnological abbreviations. A, distance between manus and pes; B, width of pace; C, apparent body length; L, left manus–pes couple; m, manus imprint; mb, width of manus imprint; ml, length of manus imprint; mI to mV, length of digit I to V of the manus imprint;
P, length of pace; p, pes imprint; pb, width of pes imprint; pl, length of pes imprint; pI to pV, length of digit I to V of the pes imprint; R, right manus–pes couple; S, length of stride; α, pace angulation; β, deviation of manus or pes from midline, plus β outward rotation, minus β inward rotation; γ, interdigital angle I–V; I–II–III–IV–V, first to fifth digit, numbered from medial to lateral side of imprint.
3. Locality and stratigraphy All tetrapod footprints described in this paper come from sedimentary sequences of Early Permian age exposed in two trachyandesitic quarries near Tłumaczów in the southeastern part of the Intra-Sudetic Basin, SW Poland (Fig. 1). The 35 by 70 km, WNW–ESE trending IntraSudetic Basin, situated at the northeastern margin of the Bohemian Massif in the Western Sudetes, belongs to a system of central European intramontane basins that formed in Early Carboniferous time during the main phase of the Variscan orogeny (Teisseyre, 1968; Dziedzic and Teisseyre, 1990; Kroner et al., 2008). The basin contains a cumulatively 12,000 m thick succession of Late Palaeozoic volcano-sedimentary rocks, but only its uppermost part – lithostratigraphically divided into the Krajanów, Słupiec, and Radków formations – is considered to be of Permian age (Kurowski, 2001; Awdankiewicz et al., 2003). The Krajanów and Słupiec formations, composed of alluvio-fluvial to lacustrine deposits with locally significant amounts of volcanic rocks, represent two fining-upward megacycles 900 m thick. Macrofloral remains, palynomorphs, conchostracans, and aquatic vertebrates found in equivalent beds in the Czech part of the Intra-Sudetic Basin allow assignment of an Early Permian age to these beds (Pešek, 2004). They are overlain with an angular unconformity by 100–400 m thick, alluvial red-beds of the Radków Formation (Nemec et al., 1982; Awdankiewicz et al., 2003).
Fig. 1. Simplified geological map of the Intra-Sudetic Basin (after Awdankiewicz et al., 2003) and lithostratigraphy in the Polish part of the basin (after Nemec et al., 1982 and Pešek, 2004) showing the position of the Tłumaczów tracksites. Vertical distances in the stratigraphic scheme not to scale; broken lines indicate uncertainty of stratigraphic range.
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
The sedimentary rocks exposed in the Tłumaczów quarries consist of reddish-brown to greyish-brown mudstones and sandstones referred to the upper part of the Building Sandstone Member of the Słupiec Formation (Nemec, 1981; Nemec et al., 1982; Mastalerz et al., 1995; Awdankiewicz et al., 2003). Both outcrops, an abandoned quarry N of Tłumaczów (N 50°55′80.1″ E 016°43′45.5″) and an active quarry S of Tłumaczów (N 50°54′39.6″ E 016°42′84.8″), have been installed for the mining of tens-of-metres-thick trachyandesitic rocks that formed as bedding-plane parallel, subvolcanic intrusions during the Early Permian (Awdankiewicz et al., 2003). Siliciclastic rocks below and above the volcanite are of similar composition, suggesting a primarily continuous sedimentary succession. The basal sediments in the old quarry (Fig. 2) are shallowly cross-bedded, flaser bedded, or unevenly laminated horizontally, and often show current ripples, oscillation ripples, mud-crack fillings, raindrop impressions, and microbiallyinduced sedimentary structures (e.g., “elephant skin” surface textures sensu Schieber, 2004). Imprints of conifer shoots, branches, and fructifications represent the only known body fossil remains from these beds. The record of invertebrate trace fossils includes a few indeterminate arthropod repichnia, arrow-shaped cubichnia similar to Rusophycus (=Isopodichnus) furcosus (Gand, 1994) that probably were produced by small crustaceans, and tubular tunnels with ovoid terminal chambers considered to be domichnia of possible millipede origin (Voigt, 2007; Hembree, 2009). The most common fossils below and above the volcanic rocks, however, are tetrapod footprints. The fossil-bearing lower beds of the old Tłumaczów quarry have been interpreted as floodplain deposits, including sediments of shallow, ephemeral lakes that originated under seasonal climatic conditions (Mastalerz et al., 1995). Kurowski (2001, 2004) concluded that, in general, sedimentation of the Słupiec Formation took place in a NW–SE trending, alluvial fanfringed basin with playa-like, shallow lakes in the centre.
175
4. Systematic palaeoichnology The studied material represents four distinct types of tetrapod footprints. With the exception of one sample (KM-1, Ichniotherium cottae, from the upper beds of the new quarry), all traces come from the lower beds of the old Tłumaczów quarry. 4.1. Amphisauropus kablikae (Geinitz and Deichmüller, 1882) (Fig. 3; Appendix 1) 4.1.1. Referred specimens DPE-18, JP-P23, small isolated tracks; JP-P36, -P71, trackways with up to nine manus–pes sets of small individuals; IGWU-2, -3, incomplete trackways of large individuals; MUZ PIG 1720.II.3, trampled surface with numerous large tracks. 4.1.2. Description Tracks of quadrupedal tetrapods that have pentadactyl, plantigrade imprints ranging from 15 to 70 mm in length. Pes imprint is about as long as wide with straight, distally rounded digits of the following proportions: I b V ≤ II b III b IV. Sole imprint is indistinct due to a significant decrease in relief proximo-laterally. Manus imprint is of similar width to the pes, but around one fifth shorter than the pes imprint; digit lengths increase from I to III, IV equals III, V is a little bit shorter than II; distal parts of the middle digits may be curved inward. The best preserved trackway (Fig. 3A, E) shows a slightly alternating arrangement of coupled manus–pes sets with strongly inwardly rotated manus and outwardly pointing pes imprints. 4.1.3. Discussion Imprint morphology and trackway pattern of the discussed tracks match the characteristics of Amphisauropus that were introduced by Haubold (1970) with two ichnospecies, i.e., A. imminutus for small tracks, and A. latus for large tracks. Extensive collections usually show a continuous range of track sizes, suggesting that both ichnospecies simply represent different ontogenetic stages of the same type of track makers (Voigt, 2005). Therefore, an ichnotaxonomic separation at the species level is currently baseless. We refer the material to A. kablikae (Geinitz and Deichmüller, 1882) as the first available specific name for this type of footprint. Seymouriamorphs are the most likely track makers of Amphisauropus (Haubold, 2000; Lucas et al., 2001; Voigt, 2005, 2010). 4.2. Ichniotherium cottae (Pohlig, 1885) (Fig. 4; Appendix 1) 4.2.1. Referred specimens JP-P13, -P20, -P26, -P29, -P42, -P43, -P46, -P53, -P56, -P57, -P58, -P62, -P65, -P68, large isolated tracks; KM-1, trackway with four manus–pes sets of large individual.
Fig. 2. Simplified stratigraphic section of the tetrapod track-bearing horizon in the abandoned trachyandesite quarry north of Tłumaczów, Intra-Sudetic Basin.
4.2.2. Description Trackway of a quadrupedal tetrapod that has pentadactyl, plantigrade footprints with broad and distally rounded digits. Pes imprints measure up to 138 mm in length and 130 mm in width, show a distinctly outlined, oval sole-pad that is well-separated from the digits. Digits I to IV of the pes imprint exhibit a serial increase in length; digit V is about as long as II. The straight and sturdy digit imprints have expanded terminations, and resemble a drum-stick in outline. Digit V is reduced to the imprint of the tip (Fig. 4B, C). Manus imprints up to 100 mm long and 116 mm wide with the same relative digit length as the pes imprint. Distal part of digit imprints II–IV rotated inward. An oval-shaped sole pad is present in deep imprints (Fig. 4B). The trackway pattern exhibits an alternating arrangement of manus–pes sets with forward-directed pes imprints and inwardly-rotated manus imprints.
176
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
Fig. 3. Tracks of Amphisauropus kablikae (Geinitz and Deichmüller, 1882) from Tłumaczów, Intra-Sudetic Basin: A, part of the most complete trackway; B, two manus–pes sets of the right side, note digit dragging marks; C–D, isolated manus–pes set of the right (D) and left (C) side of large individuals; and E, outline drawing of trackway shown in A. Material: A — JP-P71, B — JP-P36, C — IGWU-3, and D — IGWU-2; A and C preserved in concave epirelief, B and D in convex hyporelief.
4.2.3. Discussion The oval-shaped sole pad and the broad, distally rounded digits of the described tracks are characteristic features of Ichniotherium Pohlig, 1892. Four ichnospecies have been recognised (Voigt et al., 2007; Voigt and Ganzelweski, 2010): I. cottae (Pohlig, 1885), I. sphaerodactylum (Pabst, 1895), I. hainesi (Carman, 1927) = I. willsi Haubold and Sarjeant, 1973, and I. praesidentis (Schmidt, 1956). They differ mainly in the relative length of the fifth digit of the pes imprint, and in its orientation relative to the trackway midline. Forward-directed pes imprints with a relatively short pedal digit V impression, as seen in the Tłumaczów Ichniotherium tracks, is unique for I. cottae (Pohlig, 1885). Footprints of this ichnospecies were most likely produced by diadectomorphs of the genus Diadectes Cope, 1878 (Voigt et al., 2007).
4.3. Dimetropus leisnerianus (Geinitz, 1863) (Fig. 5; Appendix 1) 4.3.1. Referred specimens IGWU-1, JP-P38, -P39, -P50, -P51, -P72, large isolated tracks; JPP70, trackway with four manus–pes sets of large individual.
4.3.2. Description Tracks of quadrupedal tetrapods that have pentadactyl, plantigrade footprints up to about 160 mm in length. Manus and pes imprints are similar in shape, but different in size, with the manus being about one fifth shorter than the pes imprint. Both imprints are longer than wide, with distally pointed, slender digits and proximally elongated heel. Digits I to IV of manus and pes imprint exhibit a serial increase in length; digit V is about as long as II in the pes imprint, and about as long as I in the manus imprint. The only known trackway (JP-P70) shows a slightly alternating arrangement of manus–pes sets, with forward-directed pes imprints and slightly inwardly rotated manus imprints. 4.3.3. Discussion The elongated heel and pointed digits of the discussed tracks justify assignation to Dimetropus Romer and Price, 1940. Tracks from Tłumaczów exhibit only a few anatomically controlled details of the imprint morphology, as is common for many records of the ichnogenus (e.g., Gand and Haubold, 1984; Haubold et al., 1995). Without well-preserved material, a separation of different ichnospecies is not reasonable at this time (Voigt, 2005). We refer the studied material
Fig. 4. Tracks of Ichniotherium cottae (Pohlig, 1885) from Tłumaczów, Intra-Sudetic Basin: A, short trackway of large individual; B, close-up view of the first manus–pes set of the trackway shown in A; C, isolated manus–pes set of the left side, note the shallow impression of pedal digit V (arrow); and D, outline drawing of the trackway shown in A. Material: A and B — KM-1, and C — JP-P26; all specimens preserved in convex hyporelief.
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
177
Fig. 5. Tracks of Dimetropus leisnerianus (Geinitz, 1863) from Tłumaczów, Intra-Sudetic Basin: material: A–B, isolated manus or pes imprints; C, isolated manus–pes set; D, outline drawing of the trackway containing the manus–pes set shown in C. Material: A — IGWU-1, B — JP-P39, and C — JP-P70; A preserved in convex hyporelief, B and C in concave epirelief. Scale bars equal 5 cm.
to D. leisnerianus (Geinitz, 1863) as the first available ichnospecies. Dimetropus is considered to be the track morphotype of many Late Carboniferous and Early Permian non-therapsid synapsids such as caseids, edaphosaurids, ophiacodontids, and sphenacodonts (Haubold, 2000; Voigt, 2005; Voigt and Ganzelweski, 2010). A potential track maker is represented by the sphenacodontia Haptodus (= Datheosaurus) macrourus (Schroeder, 1905) known from body fossils from the Late Carboniferous Ludwikowice Formation near Nowa Ruda (Dathe, 1900; Schroeder, 1905; Romer and Price, 1940; Reisz, 1986). 4.4. Dromopus lacertoides (Geinitz, 1861) (Fig. 6; Appendix 1) 4.4.1. Referred specimens DPE-4, -34, IGWU-2, -3, -4, JP-P19, -P27, -P28, -P29, -P34, -P35, -P37, -P39, -P40, -P42, -P52, -P73, MUZ PIG 1720.II.3, isolated tracks and incomplete trackways of medium- to large-sized individuals; KM-2, trackway with 12 manus–pes sets of medium-sized individual. 4.4.2. Description 20–60 mm long tracks of quadrupedal tetrapods that have pentadactyl, plantigrade to digitigrade imprints being one fourth longer than wide. Manus and pes imprints are of similar shape, but of different size, with the manus measuring about three-fourths of the length of the pes. Digits are long, slender, and distally curved; they increase in
length from I to IV, V is about as long as II. Trackways usually show distinctly alternating arrangements of manus–pes sets; manus imprint may be partially to almost completely overstepped by the pes imprint (Fig. 6B, D). 4.4.3. Discussion Overall shape and imprint proportions of the described tracks are in accordance with Dromopus Marsh, 1894. It is the most abundant and most widespread type of Late Palaeozoic tetrapod footprints (Haubold, 1971, 1996, 2000; Gand, 1988; Voigt, 2005, 2010; Lucas, 2007). A differentiation of species within the ichnogenus has never been demonstrated beyond the type species (Voigt, 2005). Therefore, we assign the Tłumaczów material to D. lacertoides (Geinitz, 1861) as the first available, valid ichnospecies of Dromopus. Its tracks are generally referred to small and medium-sized sauropsids with autopods of lacertoid type, i.e., araeoscelids and bolosaurids in particular (Haubold, 1971, 1996, 2000; Gand, 1988; Haubold and Lucas, 2003; Voigt, 2005; Gand and Durand, 2006). 5. Faunistic and stratigraphic conclusions The Tłumaczów tetrapod ichnofaunal assemblage provides indirect evidence for the presence of seymouriamorphs, diadectomorphs, ‘pelycosaurian-grade’ synapsids, and early sauropsids at the eastern margin
Fig. 6. Tracks of Dromopus lacertoides (Geinitz, 1861) from Tłumaczów, Intra-Sudetic Basin: A, well preserved imprints on a surface with shallow current ripples; B, part of trackway; C, isolated manus–pes set; and D, outline drawing of trackway shown in B. Material: A–B, KM-2; and C, JP-P29; all specimens preserved in convex hyporelief.
178
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
Fig. 7. Stratigraphic position and ichnotaxonomic composition of the most important Carboniferous–Permian tetrapod footprint localities in the Intra-Sudetic and Krkonoše-Piedmont basins. Broken lines indicate uncertainty of correlation.
of the central European Variscides during the deposition of the Słupiec Formation. It significantly extends the body fossil record of the IntraSudetic Basin that is so far restricted to remains of a single individual of sphenacodont synpasids (Schroeder, 1905; Reisz, 1986). Regarding the ichnotaxonomic composition, the studied assemblage is congruent with the ichnofauna of the closely associated Wambierzyce footprint locality (Geinitz, 1863; Pabst, 1908; Czyżewska, 1955; Ptaszyński and Niedźwiedzki, 2004; Fig. 7). Both sites are dominated by tracks of terrestrially-adapted reptiliomorphs and amniotes, thus excluding semiaquatic temnospondyls as a major faunal component. In Permian red-beds of central Germany, footprints of temnospondyl tetrapods such as Batrachichnus salamandroides (Geinitz, 1861) and Limnopus vagus Marsh, 1894 have been recorded most abundantly in sedimentary successions of ancient lake margins and floodplains with well-developed, presumably perennial ponds (Voigt, 2005). The Tłumaczów ichnofauna suggests that the sampled beds originated in an area that was outside the range of open waters with semiaquatic temnospondyls. This is in accordance with the sedimentary context inasmuch the track-bearing horizon of the old Tłumaczow quarry indicates episodically shallow flooding but lacks evidence for lacustrine deposition. The Tłumaczów trackway site is also remarkable with respect to its relative abundance of diadectomorph footprints. Various Late Palaeozoic tetrapod body and ichnofossil localities in North America and Europe (e.g., Hunt et al., 1995; Hunt and Lucas, 1998; Eberth et al., 2000; Voigt and Haubold, 2000; Voigt et al., 2005, 2007) indicate that diadectomorphs, in particular the supposedly herbivorous diadectids, have dominated the tetrapod faunas of hinterland or upland environments. Diadectomorph footprints are common ichnofaunal elements in the Intra-Sudetic Basin, as well as in the adjacent Krkonoše-Piedmont Basin (Fritsch, 1887, 1895, 1901, 1912; Fig. 7), supporting the interpretation of these areas as intermontane hinterland regions during the Late Palaeozoic. Tetrapod footprints can be a useful biostratigraphic tool in Carboniferous–Permian red-beds (e.g.; Haubold, 1996, 2000; Haubold and Lucas, 2003; Voigt, 2005, 2010; Voigt et al., 2011a, b).
Amphisauropus tracks first occur in the global tetrapod footprint record with the onset of the Permian (Haubold, 2000; van Allen et al., 2005; Voigt, 2005; Lucas, 2007). Ichniotherium and Dimetropus are typical tetrapod ichnotaxa of Late Carboniferous and Early Permian strata (Voigt and Ganzelweski, 2010), whereas Dromopus ranges from the Late Carboniferous to the Late Permian (Haubold, 1996, 2000; Gand and Durand, 2006; Lucas, 2007). Consequently, the Tłumaczów site contains a typical Early Permian tetrapod footprint assemblage. Footprints of advanced captorhinomorphs such as Hyloidichnus Gilmore, 1927 and Erpetopus Moodie, 1929, which first occur in Artinskian strata (e.g., Haubold, 2000; Haubold and Lucas, 2003; Gand and Durand, 2006), have not yet been reported from the Intra-Sudetic Basin, and this, most likely, suggests an early Early Permian (Asselian to Sakmarian) age of its tetrapod track-bearing horizons.
Acknowledgements This study started in 2002, after the authors and one collector met at fieldwork in the Holy Cross Mountains, Poland. The completion of the project was largely delayed because of the primary involvement of the second author with Triassic and Jurassic vertebrate research projects. Special thanks to Mr. Artur Gołasa (Warsaw) for full access to original material collected by him from the Tłumaczów quarry, and also for permission to possibly prepare plaster replicas of the most important specimens from his collection; Mr. Arnold Niziołek (Wrocław and Kletno) for access to his private collection from Tłumaczów deposited at Kletno; Dr. Robert Niedźwiedzki (University of Wrocław) for his hospitality during the first and second research activity in the Sudetic Mts. area; Dr. Maciej Bojanowski (University of Warsaw) for access to an unpublished specimen of Dimetropus from the Tłumaczów tracksite. We thank Spencer G. Lucas and Ricardo N. Melchor for their constructive reviews, and Robert Sproule of Plymouth, Massachusetts for his linguistic assistance.
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
179
Appendix 1
Trackway and imprint parameters of selected trackways from the Early Permian Tłumaczów fossil site (in mm and degrees). Trackway
Sp
Sm
Pp
Pm
A
Bp
Bm
C
D
E
αp
αm
βp
βm
pI
JP-P71 Amphisauropus kablikae KM-1 Ichniotherium cottae JP-P70 Dimetropus leisnerianus KM-2 Dromopus lacertoides
66.4 485.0 525.0 77.0
66.9 467.0 510.0 70.5
55.4 302.0 374.5 47.0
51.8 331.3 363.5 42.0
21.6 125.3 111.0 10.8
43.9 183.3 260.5 25.3
40.3 236.3 259.0 22.3
54.3 365.0 373.0 49.0
11.9 111.7 143.0 26.0
1.8 −25.8 1.0 1.8
73.3 106.0 88.0 112.0
79.1 90.0 87.0 116.5
37.7 3.7 1.5 20.0
− 9.0 − 28.0 − 4.7 − 10.3
3.9 28.7 33.0 4.0
Trackway
pII
pIII
pIV
pV
mI
mII
mIII
mIV
mV
pl
pb
ml
mb
γp
γm
JP-P71 Amphisauropus kablikae KM-1 Ichniotherium cottae JP-P70 Dimetropus leisnerianus KM-2 Dromopus lacertoides
7.1 41.3 51.0 6.8
10.0 59.3 65.0 8.8
12.8 71.3 72.0 13.3
– 42.0 – 5.0
3.2 21.3 29.0 3.0
5.7 38.7 47.0 4.8
7.8 48.7 54.0 7.5
7.8 61.0 62.0 10.0
3.4 35.7 43.0 4.0
17.8 137.7 117.5 15.0
– 129.7 87.0 11.0
13.5 99.7 98.0 13.0
15.0 116.3 83.5 13.0
– 76.3 57.5 135.0
103.4 106.0 67.0 123.0
References Awdankiewicz, M., Kurowski, L., Mastalerz, K., Raczyński, P., 2003. The Intra-Sudetic Basin—a record of sedimentary and volcanic processes in late- to post-orogenic tectonic setting. Geolines 16, 165–183. Carman, E., 1927. Fossil footprints from the Pennsylvanian System in Ohio. Geological Society of America Bulletin 38, 385–396. Cope, E., 1878. Descriptions of extinct Batrachia and Reptilia from the Permian formation of Texas. American Philosophical Society 17, 505–530. Czyżewska, T., 1955. Reptile trackways from the Permian of Wambierzyce in Lower Silesia (Poland). Acta Geologica Polonica 5, 131–160 [in Polish]. Dathe, E., 1900. Saurierfund im Rothliegenden bei Neurode und die Gliederung des Rothliegenden in der Grafschaft Glatz. Zeitschrift der Deutschen Geologischen Gesellschaft 52, 75–78. Dziedzic, K., Teisseyre, A.K., 1990. The Hercynian molasse and younger deposits of the Intra-Sudetic Depression, SW Poland. Neues Jahrbuch für Geologie und Paläontologie 179, 285–305. Eberth, D.A., Berman, D.S., Sumida, S.S., Hopf, H., 2000. Lower Permian terrestrial paleoenvironments and vertebrate paleoecology of the Tambach Basin (Thuringia, central Germany): the upland holy grail. Palaios 15, 293–313. Fritsch, A., 1887. Large imprints from the Permian. Vesmir 16, 121–122 [in Czech]. Fritsch, A., 1895. Über neue Wirbeltiere aus der Permformation Böhmens nebst einer Übersicht der aus derselben bekannt gewordenen Arten. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften, MathematischNaturwissenschaftliche Klasse, 52, pp. 1–17. Fritsch, A., 1901. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens, IV. Selbstverlag, Prag. 98 pp. Fritsch, A., 1912. Studien im Gebiete der Permformation Böhmens. Archiv für die Naturwissenschaftliche Landesdurchforschung von Böhmen 15, 1–52. Gand, G., 1988. Les traces de vertébrés tétrapodes du Permien français. PhD Thesis, Université de Bourgogne Edition Centre des Sciences de la Terre, Dijon. 341 pp. Gand, G., 1994. Ichnocoenoses à Isopodichnus furcosus nov. ichnosp. dans le Permien du bassin de Lodève (Massif Central, France). Geobios 27, 73–86. Gand, G., Durand, M., 2006. Tetrapod footprint ichno-associations from French Permian basins. Comparisons with other Euramerican ichnofaunas. Geological Society London, Special Publications 265, 157–177. Gand, G., Haubold, H., 1984. Traces de vertébrés tétrapodes du Permien du bassin de Saint-Affrique (Description, datation, comparaison avec celles du bassin de Lodève). Revue Géologie Méditerranéenne 11, 321–348. Geinitz, H.B., 1861. Dyas oder die Zechsteinformation und das Rothliegende (Permische Formation zum Theil). W. Engelmann, Leipzig. 130 pp. Geinitz, H.B., 1863. Beiträge zur Kenntnis der organischen Überreste in der Dyas (oder permischen Formation zum Theil) und über den Namen Dyas. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1863, 385–398. Geinitz, H.B., Deichmüller, J.V., 1882. Die Saurier der unteren Dyas von Sachsen. Palaeontographica 29, 1–46. Gilmore, G.W., 1927. Fossil footprints from the Grand Canyon II. Smithsonian Miscellaneous Collections 80, 1–78. Göppert, H.R., 1862. Thierfährten im Gebiet des Rothliegenden zwischen Albendorf und Nieder-Rathen in der Grafschaft Glatz. Jahresbericht der Schlesischen Gesellschaft für Vaterländische Kultur 39, 53. Haubold, H., 1970. Versuch der Revision der Amphibien-Fährten des Karbon und Perm. Freiberger Forschungshefte C 260, 83–117. Haubold, H., 1971. Ichnia Amphibiorum et Reptiliorum fossilium. Encyclopedia of Palaeoherpetology 18, 1–124. Haubold, H., 1973. Die Tetrapodenfährten aus dem Perm Europas. Freiberger Forschungshefte C 285, 5–55. Haubold, H., 1996. Ichnotaxonomie und Klassifikation von Tetrapodenfährten aus dem Perm. Hallesches Jahrbuch für Geowissenschaften B 18, 23–88. Haubold, H., 2000. Tetrapodenfährten aus dem Perm - Kenntnisstand und Progress 2000. Hallesches Jahrbuch für Geowissenschaften B 22, 1–16. Haubold, H., Lucas, S.G., 2003. Tetrapod footprints of the Lower Permian Choza Formation. Paläontologische Zeitschrift 77, 247–261.
Haubold, H., Sarjeant, W.A.S., 1973. Tetrapodenfährten aus den Keele und Enville Groups (Permokarbon: Stefan und Autun) von Shropshire und South Staffordshire, Großbritannien. Zeitschrift für Geologische Wissenschaften 1, 895–933. Haubold, H., Hunt, A.P., Lucas, S.G., Lockley, M.G., 1995. Wolfcampian (Early Permian) vertebrate tracks from Arizona and New Mexico. New Mexico Museum of Natural History and Science Bulletin 6, 135–165. Hembree, D.I., 2009. Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios 24, 425–439. Hmich, D., Schneider, J.W., Saber, H., Voigt, S., El Wartiti, M., 2006. New continental Carboniferous and Permian faunas of Morocco — implications for biostratigraphy, palaeobiogeography and palaeoclimate. Geological Society London, Special Publications 265, 297–324. Holub, V., Kozur, H., 1981. Revision einiger Tetrapodenfährten des Rotliegenden und biostratigraphische Auswertung der Tetrapodenfährten des obersten Karbon und Perm. Geologisch-Paläontologische Mitteilungen Innsbruck 11, 149–193. Hunt, A.P., Lucas, S.G., 1998. Vertebrate ichnofaunas of New Mexico and their bearing on Early Permian tetrapod ichnofacies. New Mexico Museum of Natural History and Science Bulletin 12, 63–65. Hunt, A.P., Lucas, S.G., Lockley, M.G., Haubold, H., Braddy, S., 1995. Tetrapod ichnofacies in Early Permian red beds of the American Southwest. New Mexico Museum of Natural History and Science Bulletin 6, 295–301. Kroner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Hann, H.P., Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T.C., Zulauf, G., 2008. Variscan tectonics. In: McCann, T. (Ed.), Geology of Central Europe: Precambrian and Palaeozoic: The Geological Society, London, Volume 1, pp. 599–664. Kurowski, L., 2001. Fluvial sedimentation of the Słupiec Formation (Middle Lower Permian) in the Nowa Ruda Area (Intra-Sudetic Basin, Sudetes, SW Poland). Geolines 13, 86–87. Kurowski, L., 2004. Fluvial sedimentation of sandy deposits near Nowa Ruda (IntraSudetic Basin, SW Poland). Geologia Sudetica 36, 21–38. Leonardi, G., 1987. Glossary and Manual of Tetrapod Footprint Palaeoichnology. Ministerio Minas Energie. Departemento Nacional da Produçao Mineral, Brasilia. 117 pp. Lucas, S.G., 2007. Tetrapod footprint biostratigraphy and biochronology. Ichnos 14, 5–38. Lucas, S.G., Lerner, A.J., Haubold, H., 2001. First record of Amphisauropus and Varanopus in the Lower Permian Abo Formation, central New Mexico. Hallesches Jahrbuch für Geowissenschaften B 23, 69–78. Marsh, O.C., 1894. Footprints of vertebrates in the Coal Measures of Kansas. American Journal of Science 48, 81–84. Mastalerz, K., Prouza, V., Kurowski, L., Bossowski, A., Ihnatowicz, A., Nowak, G., 1995. Sedimentary record of the Variscian orogeny and climate — Intra-Sudetic Basin, Poland and Czech Republic. Guide to Excursion B1, XIII International Congress on Carboniferous–Permian, August 28–September 2, 1995. Państwowy Instytut Geologiczny, Kraków, pp. 5–38. Moodie, R.L., 1929. Vertebrate footprints from the red beds of Texas. American Journal of Science 97, 352–368. Nemec, W., 1981. Tectonically controlled alluvial sedimentation in the Słupiec Formation (Lower Permian) of Intrasudetic Basin. International Symposium on Central European Permian, Jabłonna, April 27–29, 1978. Państwowy Instytut Geologiczny, Kraków, pp. 294–311. Nemec, W., Porębski, S.J., Teisseyre, A.K., 1982. Explanatory notes to the lithotectonic molasse profile of the Intra-Sudetic Basin, Polish part. Veröffentlichungen des Zentralinstitutes für Physik der Erde, Akademie der Wissenschaften der DDR 66, 267–278. Pabst, W., 1895. Thierfährten aus dem Rothliegenden von Friedrichroda, Tambach und Kabarz in Thüringen. Zeitschrift der Deutschen Geologischen Gesellschaft 47, 570–576. Pabst, W., 1908. Die Tierfährten in dem Rotliegenden ‚Deutschlands. Nova Acta Leopoldina 89, 316–481. Peabody, F.E., 1948. Reptile and amphibian trackways from the Moenkopi Formation of Arizona and Utah. University of California Publications Bulletin of the Department of Geological Sciences 27, 295–468. Pešek, J., 2004. Late Palaeozoic limnic basins and coal deposits of the Czech Republic. Folia Musei Rerum Naturalium Bohemiae Occidentalis Geologica 1, 1–188.
180
S. Voigt et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 313-314 (2012) 173–180
Pohlig, H., 1885. Fossile Thierfährten in dem unteren Rothliegenden von Friedrichroda. Verhandlungen des Naturhistorischen Vereins der Preußischen Rheinlande und Westfalens 42, 285–286. Pohlig, H., 1892. Altpermische Saurierfährten, Fische und Medusen der Gegend von Friedrichroda i. Thüringen. In: Anonymous (Ed.), Festschrift 70. Geburtstag von Rudolf Leuckardt. Engelmann, Leipzig, pp. 59–64. Ptaszyński, T., Niedźwiedzki, G., 2004. New finds of vertebrate footprints from the Lower Permian of Wambierzyce, Poland. Geological Quarterly 48, 199–202. Reisz, R.R., 1986. Pelycosauria. Handbuch der Paläoherpetologie 17, 1–102. Romer, A.S., Price, L.I., 1940. Review of the Pelycosauria. Geological Society of America Special Papers 28, 1–538. Santi, G., 2005. Lower Permian palaeoichnology from the Orobic Basin (northern Italy). Geo. Alp 2, 77–90. Schieber, J., 2004. Microbial mats in the siliciclastic rock record: a summary of the diagnostic features. Developments in Precambrian Geology 12, 663–672. Schmidt, H., 1956. Die große Bochumer Oberkarbon-Fährte. Paläontologische Zeitschrift 30, 199–206. Schroeder, H., 1905. Datheosaurus macrourus nov. gen. nov. sp. aus dem Rotliegenden von Neurode. Jahrbuch der Königlich Preussischen Geologischen Landesanstalt und Bergakademie 25, 282–294. Teisseyre, A.K., 1968. The Lower Carboniferous of the Intra-Sudetic Basin; sedimentary petrology and basin analysis. Geologia Sudetica 4, 221–298. Van Allen, H.E.K., Calder, J.H., Hunt, A.P., 2005. The trackway record of a tetrapod community in a walchian conifer forest from the Permo-Carboniferous of Nova Scotia. New Mexico Museum of Natural History and Science Bulletin 30, 322–332. Voigt, S., 2005. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im Thüringer Wald - Ichnotaxonomie. Paläoökologie und Biostratigraphie. Cuvillier Verlag, Göttingen. 305 pp.
Voigt, S., 2007. Tunnel-and-chamber burrows: evidence for fossorial behavior of insects in Permo-Carboniferous alluvial plain deposits? Society for Sedimentary Geology Special Publication 88, 359–369. Voigt, S., 2010. Tetrapodenfährten. In: Deutsche Stratigraphische Kommission (Ed.), Stratigraphie von Deutschland X, Rotliegend. Teil I: Innervariscische Becken: Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61, 92–106. Voigt, S., Ganzelweski, M., 2010. Toward the origin of amniotes: diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontologica Polonica 55, 57–72. Voigt, S., Haubold, H., 2000. Analyse zur Variabilität der Tetrapodenfährte Ichniotherium cottae aus dem Tambacher Sandstein (Rotliegend, Unterperm, Thüringen). Hallesches Jahrbuch für Geowissenschaften B 22, 17–58. Voigt, S., Small, B.J., Sanders, F., 2005. A diverse terrestrial ichnofauna from the Maroon Formation (Pennsylvanian–Permian), Colorado: biostratigraphic and paleoecological significance. New Mexico Museum of Natural History and Science Bulletin 30, 342–351. Voigt, S., Berman, D.S., Henrici, A.C., 2007. First well-established track–trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. Journal of Vertebrate Paleontology 27, 553–570. Voigt, S., Lagnaoui, A., Hminna, A., Saber, H., Schneider, J.W., 2011a. Revisional notes on the Permian tetrapod ichnofauna from the Tiddas Basin, central Morocco. Palaeogeography Palaeoclimatology Palaeoecology 302, 474–483. Voigt, S., Saber, H., Schneider, J.W., Hmich, D., Hminna, A., 2011b. Late Carboniferous– Early Permian tetrapod ichnofauna from the Khenifra Basin, central Morocco. Geobios 44, 399–407.