Effect of burning conditions and minor components on the color of portland cement clinker

Effect of burning conditions and minor components on the color of portland cement clinker

CEMENT and CONCRETE RESEARCH. Vol. 23, pp. 933-938, 1993. Printed in the USA. 0008-8846D3. $6.00+00. Copyright © 1993 Pergamon Press Ltd. E F F E C T...

266KB Sizes 9 Downloads 557 Views

CEMENT and CONCRETE RESEARCH. Vol. 23, pp. 933-938, 1993. Printed in the USA. 0008-8846D3. $6.00+00. Copyright © 1993 Pergamon Press Ltd.

E F F E C T O F B U R N I N G C O N D I T I O N S A N D MINOR C O M P O N E N T S ON THE C O L O R O F P O R T L A N D C E M E N T C L I N K E R

M.ICHIKAWA and Y.KOMUKAI Cement&Concrete Research Dept. Central Research Laboratory Chichibu C e m e n t Co.,Ltd. 2-1 - 1, T s u k i m i - C h o , K u m a g a y a - S h i S a i t a m a , 360 J a p a n

(Communicatedby H.F.W. Taylor) (ReceivedAug. 20, 1992) ABSTRACT The s u b s t i t u t i o n of Me 2 ~(Mg,Zn) for AI a ~ and F e a ~ in the c a l c i u m a l u m i n o - f e r r i t e phase, which i n t r o d u c e s e x t r i n s i c o x y g e n v a c a n c i e s in t h e s t r u c t u r e , is e s s e n t i a l to t h e c h a n g e in c o l o r f r o m yellowish brown to dark g r e y . H o w e v e r , an i n c r e a s e of t h e r a t i o Me 4 ~(Si,Ti)/Me z ~ in t h e ferrite phase, which, for e x a m p l e , is e n c o u r a g e d by slow c o o l i n g in n i t r o g e n , r e d u c e s t h e n u m b e r of e x t r i n s i c o x y g e n v a c a n c i e s and p r e v e n t s the above color change. With C 6 A 2 F solid solutions t h e c o l o r c h a n g e is a c c o m p a n i e d by a d e f i n i t e i n c r e a s e in e l e c t r i c c o n d u c t i v i t y , i n d i c a t i n g the significance of electrons released by the oxidation of FeO in a d d i t i o n to t h e o c c u r r e n c e of o x y g e n v a c a n c i e s .

Introduction

Previous studies l) 2) showed that w i t h MgO in c l i n k e r the f e r r i t e phase is dark grey w h i l e i t is yellowish brown w i t h o u t MgO. However, w i t h o u t oxygen in the atmosphere the f e r r i t e phase remains yellowish brown even in the presence of MgO. In the present study laboratory clinkers and C 6 A z F solid solutions of different colors were prepared by systematically changing those factors relevant to the color and subjected to FeO analysis, EPMA and e l e c t r i c c o n d u c t i v i t y measurement. Discussions have been made concerning the mechanism of the color change. Materials

1. C l i n k e r s The c l i n k e r s w i t h and w i t h o u t m i n o r c o m p o n e n t s w e r e p r e p a r e d under d i f f e r e n t burning a t m o s p h e r e s and c o o li n g c o n d i t i o n s . The b asi c c l i n k e r was of t h e q u a r t e r n a r y s y s t e m : SiO2 23.396, Al2Oa 5.196, F e 2 0 3 3.tt96 and C a O 68.0% by w e i g h t . The r a w m i x e s , a f t e r being p e l l e t i z e d , w e r e h e a t e d a t 50Wmin up to 10001~ and t h e n at 30Wmin up to t h e m a x i m u m t e m p e r a t u r e l tt901~ with r e t e n t i o n for 20 and 5 min a t 1000 and 14901~, r e s p e c t i v e l y . Tab l e 1 shows t h e 933

934

Vol. 23, No. 4

M. Ichikawa and Y. Komukai

a t m o s p h e r e s , coo l in g r a t e s and q u e n c h i n g t e m p e r a t u r e s m a d e in air r e g a r d l e s s of t h e burning a t m o s p h e r e s .

employed.

Q u en ch i n g

was

T a b l e 1 Burning c o n d i t i o n s o f c l i n k e r s Atmosphere

Q u en ch i n g temp.(~)

C o o li n g r a t e (~/min)

Air, N2(O2<10 4atm)

20

1350, 1200, 300

Air, N2(O~<10 4atm)

10, 100, 500

300

2. C6A2F solid solutions For s i m p l i c i t y , C6A~z x / 2 ) M x F and CoA~2 x~MxSxF with X=0~0.#5 w e r e p r e p a r e d on a s s u m p t i o n t h a t MgO and SiO~ s u b s t i t u t e for A1203, though part of MgO m ay s u b s t i t u t e for F e 2 0 ~ . The raw m i x e s w e r e burnt in n i t r o g e n on the s a m e h e a t i n g p r o g r a m as in t h e c l i n k e r burning e x c e p t t h a t t h e m a x i m u m t e m p e r a t u r e and t h e r e t e n t i o n t i m e w e r e 1#50~ and 20rain. The fired p r o d u c t s w e r e c o o l e d at 10~/min down to 300~7 in t h e f u r n a c e and then q u e n c h e d in air. C a l c i u m a l u m i n a t e , c a l c i u m s i l i c a t e and p e r i c l a s e w e r e found to c o e x i s t in small q u a n t i t i e s by XRD. Experimental The c o l o r s w e r e m e a s u r e d using a c o l o r d i f f e r e n c e m e t e r for the p r o d u c t s ground to t h e Blaine s p e c i f i c s u r f a c e a r e a of 2 9 0 0 i 1 0 0 c m 2 / g . The r e s u l t s w e r e giv en a c c o r d i n g to t h e H u n t e r ' s e q u a t i o n . F e O was a n a l y z e d by t h e c o l o r m e t r i c method with a - a' d i p y r i d y l as an i n d i c a t o r 3 ~. In slowly cooled clinkers (10~/min) the f e r r i t e c r y s t a l s have been d e v e l o p e d large. Point analysis of the f e r r i t e phase was made using an e l e c t r o n probe m i c r o a n a l y z e r ( J E O L - 8 6 0 0 M ) with a c c e l e r a t i o n v o l t a g e of 15KV and probe c u r r e n t of 2×10 8A. The number of points measured was 10 or m o r e f o r each c l i n k e r sample and the c o r r e c t i o n f o r i n t e n s i t i e s was made by Z A F . The f e r r i t e crystals in r a p i d l y cooled c l i n k e r s (500~/min) w e r e not l a r g e enough f o r EPMA, so that w e t c h e m i c a l analyses w e r e made a f t e r e x t r a c t i n g the f e r r i t e phase 4~ The C o A 2 F solid solutions w e r e pressed i n t o disks at 1000kg/cm ~, s i n t e r e d at 1200~ in a i r or in n i t r o g e n and s u b m i t t e d to e l e c t r i c c o n d u c t i v i t y m e a s u r e m e n t b e t w e e n 50 and 250~. R e s u l t s and discussion 1. C l i n k e r s Fig. 1 shows the i n f l u e n c e of MgO, burning atmospheres and quenching t e m p e r a t u r e s on t h e b va l u e in t h e H u n t e r ' s e q u a t i o n . In a c c o r d a n c e with th e previous studies i ~ 2~ the b value was remarkably lowered in the p r e s e n c e of MgO in c l i n k e r . The c o n c e n t r a t i o n of F e O was also g r e a t l y decreased w i t h the fail in b v a l u e . The effect of q u e n c h in g t e m p e r a t u r e on the b v a l u e was n o t i c e a b l e f o r the c l i n k e r s w i t h MgO and burnt in n i t r o g e n . The clinker quenched in air from 13 50~, which is apparently higher than the crystallization temperature of the ferrite

o MgO 0% 19

( ): FeO(ppm)

• MgO 1.5%

(850)

(810)

17 15

(860)

(3200)

>~ 13 (2160) 11 9

Nitrogen

Air

7 5

(1 ) I

I

135o

1200

(14o) I

(120) !

|

30(1 1350 1200 Quenching Temp. ( 0(3 )

Fig. 1 Co l o r variation of clinkers

I

3(X)

Vol. 23, No. 4

BURNINGCONDITIONS,COLOR,FERRITEPHASE

935

phase, was dark g r e y in c o l o r and g a v e t h e s a m e b v a l u e as those burnt in air. By c o n t r a s t , th e c l i n k e r s q u e n c h e d a f t e r t h e c r y s t a l l i z a t i o n of t h e f e r r i t e phase w e r e yellowish brown with t h e b v a l u e s as high as t h o se of t h e c l i n k e r s w i t h o u t MgO. Fig.2 g i v e s t h e e f f e c t of c o o l in g r a t e s on the c o l o r of c l i n k e r s w i t h MgO. The c l i n k e r s w e r e all q u e n c h e d in a ir at 300~. The b v a l u e s r e m a i n e d v i r t u a l l y un ch an g ed with c o o l i n g r a t e s for e a c h burning a t m o s p h e r e . A f t e r r e h e a t i n g in air a t 950g for 15 m i n u t e s , the F e O c o n c e n t r a t i o n in t h e c l i n k e r s burnt in nitrogen decreased to the same l e v e l as in the clinkers burnt in air i r r e s p e c t i v e of th e c o o l i n g r a t e s w h il e t he b v a l u e s did not with slow co o l i n g (100g/rain and 10g/rain). Fig.3 shows t h e e f f e c t of minor a d d i t i o n of TiOz(1.0%) and ZnO(1.0%) on t h e b value. The q u e n c h in g t e m p e r a t u r e and c o o l i n g r a t e w e r e f i x ed at 300g and 10~/min, respectively. TiO2 and ZnO are opposite in effect; i.e., TiO2 i n c r e a s e d t h e b v a l u e while ZnO d e c r e a s e d it. A f t e r r e h e a t i n g in ai r a t 950~, the c l i n k e r s burnt in n i t r o g e n showed t h e s a m e c h a n g e in t h e b v a l u e as t h e slowly c o o l e d c l i n k e r s in Fig.2 and t h e r e v e r s i o n r e m a i n e d i n c o m p l e t e .

21

MgO 1.5% ( ): FeO(ppm)

19

(2600)

17

I I

MgO 1.5% Cooling rate 10 °C/min

21

I (2740) I ~°)Nitrogen

19

A" ~

i

A Nitrogen

17

15

15

~> 13

>

" 11

,

9

(190).

i ,,,~Affer reheating

.o II

reh ating

7

13



O

9 7

Air

0 ~

0

Air

5 500 100 10 Cooling rate (°C/rain)

ZnO I ~

No

TiO2 1

Additive Fig.3 Effecl of minor components on clinker color

Fig.2 Effect of cooling rates on clinker color

Fig.4 g i v e s t h e r e l a t i o n b e t w e e n t h e m o l a r r a t i o Me 4*(Si,Ti)/Me 2 ~(Mg,Zn) in t he f e r r i t e phase and t h e b v a l u e . The b values of t h e c l i n k e r s burnt in nitrogen are those a f t e r reheating. The b v a l u e rises in p r o p o r t i o n to Me 4 ~ / Me 2 . , which was i n c r e a s e d by slow co o l i n g in n i t r o g e n or in t h e p r e s e n c e of TiO2. E x t r i n s i c o x y g e n v a c a n c i e s a r e f o r m e d with t h e s u b s t i t u t i o n of Me z~ for AI 3+ and F e 3. to c o m p e n s a t e for t h e d e f i c i e n c y of p o s i t i v e c h a r g e . This p r o c e s s is e x p r e s s e d as follows using t h e KrOger-Vink n o t a t i o n 5> .

gMe

O=2Me

( A , ,

F o

'

+200

+Vo ( V o : Oxygen vacancy)

The c o u p l e d s u b s t i t u t i o n Me 2 ++Me 4 ~ 2 ( A I 3 ~,Fe a ,)6) 7) is e x p e c t e d to d e c r e a s e the n u m b e r of o x y g e n v a c a n c i e s with i n c r e a s i n g Me 4 +/Me ~ ~ r a t i o . Thus, t h e M e4 ~ / Me 2~ r a t i o e x e r t s i n f l u e n c e on t h e b v a l u e through o x y g e n v a c a n c i e s in the f e r r i t e phase.

Vol. 23, No. 4

M. Ichikawa mad Y. Komukai

936

1.4 .0

1.2 '6

E

+

1.0

m

/

No Additive Burning Cooling atmosphere rate(*C/min) 10 1 TiO21o/, Nitrogen 10 2 TiO'21"/, Air 10 3 No Nitrogen 10 4 No Air 10 5 Zn01:~ Nitrogen 10 6 ZnO1'/o Air 500 7 NO. Nitrogen 500 8 No. Air

+

~o

0.8 --

0.6

/ 4 / C~/ O g(~ 5

/'~

-

/O /

" ,

5

i

I0 b value

I

15

Fig.4 Me4+/M~ + molar ratio and b value

2. C 6 A ~ F solid s o l u t io n s Fig.5 shows the influence of c o e x i s t i n g MgO and SiO2 on t h e b values for the C6A2F solid solutions. The specimens were burnt in nitrogen and subsequently reheated in air at 950~. The b value was lowered w i t h the increase in MgO content. But the coexistence of SiO2 considerably depressed this change due probably to the decrease in the number of oxygen vacancies. The C~A~F solid solutions, when unreheated in air, gave almost the same b value as C6A2F.

20 Ig 16 ® >

~

Formula of raw materials A CsA(2-x)MxSxF ~ ~I'i C6A(2-xt2)MxF k

C6A.2F

14 12 I0 8 6 4

SiO2

~

SJO2

E l e c t r i c c o n d u c t i v i t y measurement was i • I i i f made f o r the C6A2F solid solutions 0 0.1 0.2 0.3 0.4 0.5 burnt in nitrogen. The specimens X sintered in a i r at 1200~ also gave the same b values as those reheated in a i r Fig.5 at 950~, while those sintered in Effect of MgO and coexistent of Si02_ nitrogen showed almost as high b v a l u e s as C 6 A 2 F . It is c o n s i d e r e d t h a t this d i f f e r e n c e in color comes f r o m the degree of FeO o x i d a t i o n during sintering as in the clinkers. Fig.6 shows the l o g a r i t h m i c plot o f the specific c o n d u c t i v i t y at 200~ against the b value. The specific c o n d u c t i v i t y f or the specimens sintered in air increases w i t h decreasing b value along a straight line, Whereas the specific c o n d u c t i v i t y f o r the specimens sintered in nitrogen lies widely o f f below the line as that of C6A2F. Between 50 and 250~ the logarithmic plots of the specific conductivity against reciprocal absolute

Vol. 23, No. 4

BURNINGCONDITIONS,COLOR,FERRITEPHASE

937

temperatures gave a straight line fo r each specimen, indicating that the t yp i c a l semi-conduction prevails at these temperatures. Furthermore, the specific c o n d u c t i v i t y rapidly became constant in spite of the d i r e c t i o n of current f l o w, meaning that the c a r r i e r w i l l be electron.

10_3 -

1

2

10 4 -~

10-5 No. Formula of

~0 10_6 0

O

0 ¢,0

10-7 10 -8

Sintering

raw materials

1 2 3 4 5 6 7 8 9

atmosphere

CeA1rtsMo,~F C,sA~5sMo4sSo4d= C,~ 9sM0~F CsAIeMolSolF C~1 ~7~MoosF C~I~Mo o'~Soo~ CoAl77sMI0,~F C~1~sMo~.qo C~F

Air

x,

70 8 (339

Nitrogen Air

I

I

I

5

l0

15

b value Fig.6 Relation between specific conductivity and b value

These results suggest that the presence of electrons released by the o x i d a t i o n of FeO, in association w i t h the occurrence of ex t r in s ic oxygen vacancies, is essential to the darkening of the color of the f e r r i t e phase.

Conclusions I) The f o r m a t i o n of extrinsic oxygen vacancies w i t h the substitution of Me2~(Mg,Zn) f or AI a+ and Fe 3., when coupled w i t h the o x i d a t i o n of FeO during cooling, produces the color change of the f e r r i t e phase from yellowish blown to dark grey. 2) The ferrite phase w i t h yellowish brown even i f FeO r a t i o influences the number phase.

a high Me 4 +(Si,Ti)/Me 2 +(Mg,Zn) ratio remains is oxidized. This indicates that the Me 4 ÷/Me 2 of e x tr i ns ic oxygen vacancies in the f e r r i t e

3) With Co A2 F solid solutions the electric conductivity has a close relationship w i t h the number of oxygen vacancies and electrons released by the o x i d a t i o n o f FeO.

938

M. Ichikawa and Y. Komukai

Vol. 23, No. 4

Acknowledgments The authors thank Professor h Maki of the Nagoya Institute of Technology for his helpful discussions. References 1) F.W.Locher; World Cement Technology, 11,[ 2),67 (1980) 2) K.Miyazawa,K,Tomita; Proc. 5th.lnt.Congr~Chem.Cement,Tokyo, 1,252 (1968) 3) H.Ishii,H.Einaga,T.Watanuki; CA3 Review of the 19th General-Meeting, Tokyo,87 (1965) 4) S.Sato,T.Tamura; CA3 Review of the 23rd General Meeting,Tokyo,Lt2 (1969) 5) F.A.KrOger,H.3.Vink; Solid State Physics,3,F.Seitz and O.Turnbull,ED. Academic Press Inc.,New York,307 (1956] 6) A.Katoh; CA3 Review of the 13th General Meeting,Tokyo, 1 (1959) 7) A.Palomo, F.P.Glasser; Advances in Cement Research,2,16~,55 (1989)