Effect of cold work on the surface segregation of phosphorus in AISI 321 austenitic stainless steel

Effect of cold work on the surface segregation of phosphorus in AISI 321 austenitic stainless steel

Sc~'ipta METAI, LURGICA Vol. 19, pp. 1199-1202, 1985 Printed in the U.S.A. Persimmon P ~ e s s l~td. All ri!~,ht~ reserved E F F E C T OF C O L D...

272KB Sizes 2 Downloads 87 Views

Sc~'ipta

METAI, LURGICA

Vol.

19, pp. 1199-1202, 1985 Printed in the U.S.A.

Persimmon P ~ e s s l~td. All ri!~,ht~ reserved

E F F E C T OF C O L D W O R K ON T H E S U R F A C E S E G R E G A T I O N OF P H O S P H O R U S IN A I S I 321 A U S T E N I T I C S T A I N L E S S S T E E L M.qXvrd~ + , R . S e i d l ++ , L . H y s p e c k a + , K . M a z a n e o +++ +

++ +++

V~TKOVICE Engineering and Metallurgical Research Institute, 0strava P h y s i c a l I n s t i t u t e , C z e c h o s l o v a k A c a d e m y of S c i e n c e s , Prague Technical University, 0strava, Czechoslovakia (Re¢-eived June 11, 1983) (Revised July 15, 1985) Introduct

ion

Austenitic stainless steels are known to be susceptible to stress corros i o n c r a c k i n g , c o r r o s i o n - i n d u c e d f a t i g u e , a n d h y d r o g e n embrittlement, w h i c h c a u s e p r e d o m i n a n t l y i n t e r o r y s t a l l i n e f a i l u r e . S e v e r a l p a p e r s (I-4) h a v e a s c r i b ed this t e n d e n c y to the s e g r e g a t i o n of i m p u r i t i e s , p a r t i c u l a r l y of p h o s p h o r u s , at the g r a i n b o u n d a r i e s . It has a l s o b e e n p o i n t e d out that f a c t o r s s u c h as r a d i a t i o n d a m a g e shift the d o m a i n in w h i c h this s e g r e g a t i o n o c c u r s t o w a r d s l o w e r t e m p e r a t u r e s , thus c r e a t i n g a r i s k of i n t e r c r y s t a l l i n e o m b r i t t l e m e n t during l o n g - t e r m e x p o s u r e to the s e r v i c e t e m p e r a t u r e s c o m m o n in n u c l e a r r e a c t o r s of the p r e s s u r i z e d - w a t e r or b o i l i n g w a t e r t y p e s (3). A s i m i l a r e f f e c t m a y be e x p e c t e d a f t e r c o l d w o r k i n g , w h e n the i n c r e a s e d d e n s i t y of m i c r o s t r u c t u r a l def e c t s is l i k e l y to m o d i f y the s e g r e g a t i o n p r o c e s s e s , p r o m o t i n g the d e v e l o p m e n t not o n l y of e q u i l i b r i u m , but a l s o of n o n e q u i l i b r i u m s e g r e g a t i o n p r o c e s s e s (5). A n e a r l i e r r e p o r t (6) has d e s c r i b e d h o w i n v e s t i g a t i o n s of s e g r e g a t i o n p r o u e s s e s at f r e e s u r f a c e s t b y m e a n s of A u g e r e l e c t r o n s p e c t r o s c o p y , c a n be e x p l o i t e d f o r a s s e s s i n g the s e g r e g a t i o n a c t i v i t i e s of i m p u r i t i e s , e s p e c i a l l y of p h o s p h o r u s a n d s u l p h u r , in v a r i o u s types of steel. T h e w o r k r e p o r t e d in the p r e s e n t p a p e r a p p l i e d the same e x p e r i m e n t a l t e c h n i q u e to a s c e r t a i n h o w v a r i o u s a m o u n t s of c o l d d e f o r m a t i o n a f f e c t the s e g r e g a t i o n of p h o s p h o r u s in a t i t a n i u m s t a b i l i z e d a u s t e n i t i c s t a i n l e s s s t e e l of the A I S I 321 type. Material and Experimental

Procedure

T h e A I S I 321 m a t e r i a l was t a k e n f r o m the c e n t r e of the c r o s s s e c t i o n of a h e a v y p l a t e r o l l e d f r o m a r o u t i n e c o m m e r c i a l ingot w i t h a h e a t a n a l y s i s of 0 ° 0 7 % C, 1 o 4 2 % Mn, 0 o 5 1 % Si, 0 ° 0 2 3 % P, 0 ° 0 1 0 % S, 1 8 ° 0 5 % Cr, I 0 ° 5 5 % Ni a n d 0 ° 4 5 % Ti° T h i s m a t e r i a l was s o l u t i o n a n n e a l e d at I020vC a n d t h e n w a t e r q u e n c h e d . S p e c i m e n s m e a s u r i n g 2 x 10 x 40 m m w e r e c o l d w o r k e d b y r o l l i n g on a t w o - h i g h l a b o r a t o r y m i l l to p r o d u c e o v e r a l l d e f o r m a t i o n s of 5 , 1 0 , 2 0 , 4 0 or 90 p e r cent. S u r f a c e s e g r e g a t i o n was e x a m i n e d , b y the AES m e t h o d , on s p e c i m e n s w i t h a n a r e a of 10 x 10 nun a n d a t h i c k n e s s d e t e r m i n e d by the r e s p e o t i v e d e g r e e of d e f o r mation. T h e s e s p e c i m e n s w e r e f i r s t i o n e t c h e d w i t h x e n o n ions, w i t h i n the AES a p p a r a t u s , to r e m o v e the s u r f a c e l a y e r a b o u t one ~un thick. T h e t e m p e r a t u r e d e p e n d e n c e of s u r f a c e s e g r e g a t i o n w a s e s t a b l i s h e d b y a m e t h o d d e s c r i b e d prev i o u s l y (6): the s p e c i m e n s w e r e a n n e a l e d , f o r f i v e m i n u t e s at a time, at t e m p e r a t u r e s i n c r e m e n t e d in steps of 50°C e a c h f r o m 400 to I000oc. E v e r y a n n e a l was f o l l o w e d b y c o o l i n g to less t h a n 3 0 0 o c a n d A u g e r e l e c t r o n s p e c t r o s c o p y ° Next, the s u r f a c e l a y e r f o r m e d by the s e g r e g a t i o n p r o c e s s e s w a s r e m o v e d b y ion e t c h i n g b e f o r e the s p e c i m e n was r e h e a t e d to the n e x t h i g h e r t e m p e r a t u r e ° The s p e c t r a thus o b t a i n e d w e r e e v a l u a t e d w i t h the a i d of d a t a p u b l i s h e d b y P a l m b e r g et al. (7). 1199 0036-9748/85 $3.00 + .00 Copyright (c) ]985 Per!lamon Press

I tel.

1200

SEGREGATION OF P IN STAINLESS STEEL

gol.

19,

No.

10

R e s u l t s and D i s c u s s i o n The t e m p e r a t u r e d e p e n d e n c e of the surface c o n c e n t r a t i o n of phosphorus is summarized in Figs. |a to If, w h i c h a p p l y to m a t e r i a l s s u b j e c t e d to various amounts of p r i o r c o l d w o r k i ~ . Fig. |a indicates that in the n o n - d e f o r m e d specimens the sur£aoe s e g r e g a t i o n of p h o s p h o r u s attains a p r o n o u n c e d p e a k at about 750°C, w h i c h c o r r o b o r a t e s e a r l i e r findings on the surface s e g r e g a t i o n of this element in types 304 a n d 321 a u s t e n i t i o stainless steels (6). W h i l e this p e a k p r o d u c e d b y a n n e a l i n g at 750°C a n d m a r k e d "A" in the diagram, was most prominent in the n o n - w o r k e d material, it also a p p e a r e d in less distinct forms in specimens that h a d u n d e r g o n e cold working. Fig. |b shows that a p r i o r deformation of 5~ shifted the m a x i m u m of phosphorus s e g r e g a t i o n to the d o m a i n m a r k e d "B", w h i c h covers the range b e t w e e n 500 a n d 650°C. B o t h this m a x i m u m and the one m a r k e d "C" in Fig° Ic, w h i c h arises a f t e r a p r i o r d e f o r m a t i o n of I0~, were d i s p l a c e d towards lower temperature intervals as the amount of d e f o r m a t i o n increased° Concurrently, more intense d e f o r m a t i o n tended to d i m i n i s h p e a k "B" but to a c c e n t u a t e p e a k "C". B o t h these phenomena, the f o r m a t i o n and gradual decline of peaks as w e l l as their shift towards lower temperatures, are a t t r i b u t a b l e to the modes in w h i c h phosphorus atoms are t r a n s p o r t e d to the free surface in the structure of c o l d - w o r k e d m e t a s t a b l e austenite. This structure is not only m a r k e d by a n i n c r e a s e d defect d e n s i t y but also contains some products of the m a r t e n s i t i c transformation. E v e n u n d e r these circumstances, p h o s p h o r u s s e g r e g a t i o n retains its c h a r a c t e r o£ a p u r e l y surface process, and the s e g r e g a t i o n layer is q u i c k l y r e m o v e d b y ion etching. This type of p h o s p h o r u s s e g r e g a t i o n dif£ers f r o m the surface s e g r e g a t i o n of p h o s p h o r u s in the ferritio structure of the F e - 3 ~ Si system, where c o l d w o r k i n g m e r e l y shi£ts the s e g r e g a t i o n maxima towards lower t e m p e r a t u r e s (8). Fig. If shows that the greatest a p p l i e d d e f o r m a t i o n o£ 90~ largely supp r e s s e d the surface s e g r e g a t i o n of phosphorus in the 650 to 750°C interval. As a first approximation, we may infer that the d e £ o r m e d austenitic structure is capable of r e t a r d i n g the p h o s p h o r u s s e ~ T e ~ a t i o n k i n e t i c s w i t h i n this temperature range° However, we must also take into account the p o s s i b i l i t y that this s t a b i l i z e d A I S I 321 steel may well d i s p l a y a p h o s p h o r u s s c a v e n g i n g effect similar to that o b s e r v e d in a F e - 3 . 5 ~ N i - 1 . 7 ~ C r system doped w i t h 600 p.p.m, of p h o s p h o r u s and 100 p.p.mo of titanium (9). Plastic d e f o r m a t i o n of this steel c o u l d c o n c e i v a b l y m o d i f y this s c a v e n g i n g effect a n d thereby contribute to the p a t t e r n of our e x p e r i m e n t a l findings° S u r f a c e s e g r e g a t i o n studies c a n also offer clues to the p r o c e s s e s by w h i c h the m a t r i x recovers a f t e r cold working. By w a y of an example, Fig. 2 presents the t e m p e r a t u r e d e p e n d e n c e s of the surface s e g r e g a t i o n o£ p h o s p h o r u s in the n o n - d e f o r m e d material~ in m a t e r i a l s u b j e c t e d to a 90~ de£ormation; and after the first and second repetition of the entire e x p e r i m e n t a l cycle c o m p r i s i n ~ successive reheating, to temperatures i n c r e a s i n g in steps of 50oc e a c h from 400 to 900 or I000°C° The d i a g T a m suggests that the r e p e a t e d r e h e a t i n ~ to a final 900 or I000oc induces a p a r t i a l r e c o v e r y of the d e f o r m e d austenitic structure, w h i c h thero£ore ~ d ~ a l l y reverts to the s e g r e g a t i o n p a t t e r n detected in the n o n - d e £ o r m e d material. If we compare these findings w i t h those o£ e a r l i e r r e s e a r c h into the surface s e g r e g a t i o n of phosphorus in v a r i o u s types of steel, we m u s t c o n c l u d e that the c h a r a c t e r of the temperature d e p e n d e n c e s of the surface c o n c e n t r a t i o n of p h o s p h o r u s is m o r e s t r o n g l y a f f e c t e d by cold w o r k i n g than b y chan~es in the c h e m i s t r y or a l l o y i n ~ of the steel (6). A p a r t i c u l a r l y important o b s e r v a t i o n is the shift in the s e ~ T e ~ a t i o n a c t i v i t y o£ p h o s p h o r u s towards lower temperatures. T h i s shift casts doubts on the s t a b i l i t y o£ the properties of austenitic stainless steels a £ t e r l o n e - t e r m exposure to temperatures w h i c h are generally b e l i e v e d to involve next to no r i s k o£ p h o s p h o r u s s e g T e ~ a t i o n in a non-def o r m e d matrix° Furthermore, it c a n not be r u l e d out that e v e n the rough m a c h i n e d surfaces of austenitic steel products, w h i c h are d e £ o r m e d to r e l a t i v e l y substantial depths, may a £ t e r p r o t r a c t e d exposure to c o m m o n service temperatures be

Vol .

1~}, No.

lO

SEGREGATION OF P IN STAINLESS

STEEL

enriched w i t h segregates likely to alter the kinetics of corrosion and contribute to the nucleation of surface cracks (3).

]?,Ol

processes

What has so far been discovered about the short-term kinetics of phosphorus segregation to the free surfaces of cold-worked AISI 321 steel confirms that this segregation has to be taken seriously, not only w i t h regard to surface corrosion prooesses~ but, in view of the qualitative or semi-q~antitative relationship between segregation at the free surfaces and at high-angle grain boundaries (I0,11), also as a factor liable to accelerate interorystalline crack p r o p a g a t i o n b y such mechanisms as interorystalline stress oorTosion cracking, corrosion-induced fatigue, or hydrogen embrittlement (3,4,12). Cone lus ion The study reported in this paper examined h o w 5 to 90% of prior cold deformation affected the surface segregation activity of phosphorus in AISI 321 steel after annealing at successively higher temperatures in the 400 to |O00°C range, as detected by Auger electron spectroscopy. Increasing amounts of deformation were found to cause a pronounced surface segregation of phosphorua in the 400 to 600°C interval, a phenomen not encountered in the non-deformed material. Repeated reheating to successively higher temperatures up to the solution annealing temperature induces a gradual reversion to the segregation pattern observed in the non-deformed material. This type of phosphorus segregation may hold serious implications for the gradual deterioration of the properties of austenitio stainless steel components durin~ their long-term exposure to temperatures in the range in which these processes occur. References I. A.Joshi, E.F.Stein: Corrosion, 28, 321, (1972). 2. R.L.Cowan, G.M.Gordon: Interg~raJanuLar stress corrosion crackir~E and hydrogen embrittlement of Fe-Ni-Cr alloys; Stress corrosion cracking and hydrogen embrittlement of iron base aLLoys, ed. R.W.Staehle, NACE, Houston, (19Z7).

3. H.Hanninen: Int.MetaLs Rev., 24, 85, (1979). 4. M.Habashi, J.Galland: M~m. Sci.Rev.Mgtallurg., 79, 311, (1982). 5. K.T.Aust, R.E.Hannea~ann, P.Niessen, J.H.Westbrook: Acta Metall.,

16, 291,

(1968). 6.

M.Tvrd~, R.Seidl, L.Hyspeek~, K.Mazanee: Scripta Metall., 19, 51, (1985). 7. P.W.Palmberg, E.G.Riach, R.E.Weber, N.C.MoDonald: Handbook of Auger electron spectroscopy, Phys. Electronics Industries, Ed~r~, MA, (1972). 8. R.Seidl: U n p u b L i s h e d Findings of the Physical Institute of the Czechoslovak Academy of Sciences in Prague, (1984). 9. H.Ohtani, H.C.Feng, C.J.McMahon,Jr.: MetaLl. Trans., 7a, 1123, (1976). 10. E.D.Hondros, M.P.Seah: Int.Metals Rev., 22, 262, (1977). 11. P.Dumoulin, M.Guttmann: Mat.Sol.Eng., 42, 249, (1980). 12. C.L.Briant: Corrosion, 36, 497, (1980).

1202

SEGREGATION OF P IN STAINLESS STEEL

Vol.

19, No. i0

5O

a)

4O

15 ~60 r'r" O "T

3O

o-50

2O

m 40

Ix. CI Z

10 -

B

0-3O

b) UJ (D

20

C~

10 o~

I

4~

°

t

v

I

-

I

600 8~ ~MPER~URE,°C

I

10~

'~ 0

Fig. 2 --r

~2o I

c)C~~(>.o 1(7/def. o B

LL

o10 Z 0 C~

T e m p e r a t u r e dependences of the surface s e g r e g a t i o n of phosphorus after 9 0 % of c o l d d e f o r m a t i o n ( 0 ) and after the first ( A ) and second ( D ) r e p e t i t i o n of the successive h e a t i n g cycle. The b r o k e n line represents the as received condition.

z 3o (_3 Z

82o LXl

< 1o n--

m

0

C

B

3O 20 10

40% def. 0

--

C

30 2O

Fig. 10 0

I

400

I

I

I

I

600 800 TEMPERATURE. °C

I

Effects of 5 to 90% cold d e f o r m a t i o n on the temperature dependences of the surface s e g r e g a t i o n of phosphorus.

I

1000