Effect of Cu substitution by Zn Cd and Hg upon superconductivity in YBa2Cu3O7 and La1.85Sr0.15CuO4

Effect of Cu substitution by Zn Cd and Hg upon superconductivity in YBa2Cu3O7 and La1.85Sr0.15CuO4

Physica C 153-155 (1988) 906-907 North-Holland, Amsterdam EFFECT OF YBa2Cu307 Cu SUBSTITUTION BY Zn Cd AND Lal.85Sro. 15CuO 4 K. R E M S C H N I G ...

156KB Sizes 5 Downloads 75 Views

Physica C 153-155 (1988) 906-907 North-Holland, Amsterdam

EFFECT OF YBa2Cu307

Cu SUBSTITUTION BY Zn Cd AND Lal.85Sro. 15CuO 4

K. R E M S C H N I G * a n d P. R O G L * R. EIBLER, G . H I L S C H E R , N. P I L L M A Y R ,

AND

Hg

UPON

H. K I R C H M A Y R

SUPERCONDUCTIVITY

and

IN

E. B A U E R

Xlnst.f. Physikalische C h e m i c Univ. Wien, W a h r i n s e r s t r . 4 2 Inst.f. E x p e r i m e n t a l p h y s i k T.U. Wien, W i e d n e r H a u p t s t r . 8 ,

, A-lOgO Wlen A-I040 Wien

We r e p o r t on t h e structural c h e m i s t r y , ac-susceptibilltyand s p e c i f i c heat measurements o~ doped ceramic superconductors. In b o t h s y s t e m s a s p e c i f i c h e a t linear term Z T is r e s o l v e d in t h e s u p e r c o n d u c t i n g state which increases substantially upon Cu/Zn substitution, w h i l e Tc is r e d u c e d .

i.

INTRODUCTION The discovery of hlgh-Tc superconductivity in t h e ceramic Cu-oxides ( L a B a C u O (I,2) a n d Y B a C u O (3)) g e n e r a t e d considerable effort in characterizing their physical properties. In t h i s p a p e r we b r i e f l y describe s o m e of o u r r e c e n t experiments on t h e effect of chemical substitution on the structural and superconducting properties of these materials.

r~ N ' ~" 0,379

2.

r,, ~_

METHODS AND MATERIALS Sample preparation has recently been described in detail (4,5). Lattice parameters and standard deviations were evaluated by a l e a s t s q u a r e s refinement of r o o m temperature Guinier-Huber X-ray powder photographs. Ac-susceptibility measurements were performed with a standard lock-in technique at 8 1 H z w i t h a field amplitude of 1 0 e r s t e d . The heat c a p a c i t y of s a m p l e s w i t h a m a s s of a b o u t 2g was measured over the temperature range 1.5 60K in an automated adiabatic calorimeter. 3.

RESULTS AND DISCUSSION W h i l e Z n w a s f o u n d to s t a t i s t i c a l l y r e p l a c e C u to a r a t h e r large extent in Lal. esSro, ls(Cul-xZn×)04 (0 ~ x S 0.45; IIO0°C, quenched>, solid solutions of YBaz(Cui-×Zn×)sO?-6 were observed to be limited to O~x
0921-4534/88/$03.50 ©Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

1.325

1.32-'¢ I 1.323

Loi.esSr0.15Cul-x Xz 04-6 X = Cd,Hg,Ni-Zn

o Hg

1.322

~

C

d ,.32,

Zn0.5

Q

0.378 i

LLI ~ 0.377~ h'< 3.51 .-J c/a I

3.50 J

I o;!o.t 0.025 - -

t

i 0,05

MOLE %x

FIGURE 1 Lattice parameters as a function of Cd and Hg containing samples appear be m u l t i p h a s e f o r x > 0,02.

x. to

also known for the low temperature form of LazCu04 and Lal. ssSro.imCu04. The variation of t h e u n i t c e l l d i m e n s i o n s as a function of the Cu/Zn-ratio is reflected by a corresponding chanse in the tstragonal bipyramldal oxygen coordination of t h e C u ( Z n ) - a t o r a s t o w a r d s a more regular ootahedron at higher Zn-content. Accordingly the c/a ratio decreases well below the rather high value of 3.5, which was claimed t o be indicative of a J a h n - T e l l e r effect on the c e n t r a l C u - a t o m .

K. Remschnig et at / Effect of Cu substitution by Zn, Cd and Hg

Irrespective of s a m p l e t r e a t m e n t O.02. In o r d e r to s t u d y t h e i n f l u e n c e of s i z e e f f e c t s a n d / o r v a l e n c e electron concentration the Isoelectronic substitution of C u by p s e u d o e l e m e n t a l Cu i.e. (Nio.sZno. s) w a s i n v e s t i g a t e d . The degradation of s u p e r c o n d u c t i v i t y upon Cd and Hg substitution is f o u n d t o be f a i r l y s m a l l f o r b o t h the Y- a n d L a system (on a v e r a g e 1,5 K / m o l t C d or Hg) in c o m p a r i s o n with Cu/Zn substitution: t h e i n i t i a l s l o p e is 8 . 5 K / m o l t a n d 11,5 K/molt Zn for YBaCuO and LaSrCuO respectively, The onset of the superconducting transition Tco r e m a i n s within 0.3K unchanged whilst the m i d p o i n t of t h e t r a n s i t i o n (Tom t a k e n at 50%) shifts to lower temperatures and the transition width (ATe i0%-g0%) increases upon Hg substitution in t h e Y - s y s t e m f r o m 2 , 3 K to 16K for x = O . O a n d x=O.05 respectively, The same tendency is observed in the La-system, even t h o u g h o n l y f o r 1% C d or Hg, b e c a u s e of the limited solid solution range mentioned above. In c o n t r a s t to Cd and Hg substitution Cu/Zn and isoelectronic C u / ( N i o . ~ Z n o , 5) r e p l a c e m e n t shifts both Teo a n d Tom w i t h a m u c h l a r g e r v a r i a t i o n to lower temperatures. Cu/Zn-substitution appears to have a much larger effect than other 3d-metals <6,7). The high-Tc ceramic Cu-oxide superconductors s e e m to be c h a r a c t e r i z e d by a finite Z T contribution to the s p e c i f i c h e a t in the s u p e r c o n d u c t i n g state. This 2 t e r m in u n i t s of m J / C u - m o l K increases dramatically upon Cu/Zn substitution in both high-To systems: ~ rises from 2,5 at x=O.O to 10.4 at x=0.025 in Lai. ssSro, ls(Cui-×Z~×)04, and the variation of Z in YBa2
907

l lO0

x

Too

rcm

Zn

o



Cd

O.



Hg

o



~. 80 a,

e~jNizn

2[Cul. x Xx]307_ 6

60 E 40

20

Lc11.gsSr0.1sCu1.xXxO~. 5 ~, ~, = (NiZn)

0.62

- -

j~

a~,.

o.b6

Mole %x

%% j~

0;8

~o

FIGURE 2 Supercond, trans, temp. Tc a s a f u n c t i o n of Cu/X substitution as labeled, and isoelectronic (Nio,sZno.s) substitution (*). Tco= Tc onset, Tom= Tc m i d p o i n t . these materials, and may arise from unpaired carriers far below Tc d u e to r e g i o n s on t h e F e r m i s u r f a c e over which the energy gap vanishes. In t e r m s of this speculative view the dramatic increase of ~ upon Cu/~n substitution in both systems can reasonably be explained by a growing extent of non-superconducting carriers whereby Tc a n d ACp/Tc (5) d e c r e a s e s . REFERENCES and K,A, M u l l e r , Z, (I) J.G, B e d n o r z Phys. B 6 4 (1986) 189 R , J . C a v a , R . B . v a n D o v e r et al. <2) Phys. Rev, Lett. 5 8 (1987) 4 0 8 M.K.Wu, J.R.Ashburn et al, (3) Phys. Rev. Left. 5 8 <1987) 9 0 8 K. R e m s o h n i g , P , R o g l , E, B a u e r et al. (4) Proc. Int. D i s c u s s i o n Meeting Mauterndorf Feb. 1988, P l e n u m P r e s s G. H i l s c h e r , N.Pillmayr, R.Eibler (5) et al, , s u b m i t t e d to Z. Phys, G,Xiao, F.H. S t r e i t z , A , G a r v i n et (6) al, ,Phys. Rev. B 3 5 (1987) 8 7 7 2 <7) S.B.Oseroff, D,C. Vier, et al. Sol.grate Comm. 8 4 (198?) 2 4 1 A, Junod, A. B e n z i g e et al, ,Jap. J. <8) Appl, Phys. ~ 6 <1987) 1 1 1 g M.B, M a p l e Proc. [nt D i s c u s s , M e e t l n g <9) Mauterndorf Feb. 1 9 8 8 , P l e n u m Press