Effect of magnetic transformation on creep behavior of a nickel-cobalt alloy

Effect of magnetic transformation on creep behavior of a nickel-cobalt alloy

Scripta METALLURGICA Vol. 5~ pp. 8 2 5 - 8 2 8 , 1971 P r i n t e d in the U n i t e d S t a t e s Pergamon Press, Inc EFFECT OF MAGNETIC TRANSF...

151KB Sizes 0 Downloads 19 Views

Scripta

METALLURGICA

Vol. 5~ pp. 8 2 5 - 8 2 8 , 1971 P r i n t e d in the U n i t e d S t a t e s

Pergamon

Press,

Inc

EFFECT OF MAGNETIC TRANSFORMATION ON CREEP BEHAVIOR OF A NICKEL-COBALT ALLOY

H. 0ikawa, K. Oguchi and S. Karashima Department of Materials Science Tohoku University Sendai, Japan

(Received

June

28,

1971)

Influence of magnetic transformation on diffusion has been observed in bcc iron and iron-base solid solutions and in fcc nickel-cobalt alloys(l).

Similar influence of

magnetic transformation on creep behavior was suggested by Garofalo(2) and was found by Karashima et al.(3) on the steady-state creep rates in alpha-iron.

Many investigators

have reported the same effect on iron(4,5) and iron-base solid solutions such as Fe-Si(6~8)~ Fe-Cr(9), Fe-Co(7), and Fe-Mo(7,10) systems.

Direct comparison of the magnetic effect

between diffusion and creep has been done only on pure iron(4,5,11,12)

and Fe-Cr alloys(9,13).

In fcc metals and alloys, similar magnetic effect on creep has been suggested in a few investigations on nickel(14,15) and Ni-Fe alloys(16).

No diffusion data, however, on

these fcc metal and alloys are available in the ferromagnetic temperature region. In this paper creep behavior of a fcc alloy, in which diffusion data have been reported, near the magnetic Curie temperature is reported.

The material used was a nickel-cobalt alloy containing 50 at.% cobalt made by vacuummelting of pure nickel(99.95+ %) and pure cobalt(99.8+ %).

Specimens, the gage length and

the width of which were 50 mm and 5 mm respectively, were machined from a sheet of 1 mm in thickness. greep tests were carried out in argon atmosphere under constant tensile stress in the temperature range 730 ° to I030°C.

Testing apparatus and test procedure were reported in

detail elsewhere(7).

Temperature dependence of the steady-state is clearly

seen that

the alloy,

that

creep,

~ , i s shown i n F i g . 1. It s the slope of curves changes in the vicinity of the Curie temperature of

is about 850°C(17).

T h i s phenomenon, t h e s o - c a l l e d

can be compared w i t h t h e s e l f - d i f f u s i o n

cobalt alloy(18).

creep rate,

data of nickel

Both c u r v e s c h a n g e t h e i r

magnetic effect

and c o b a l t

in nickei-49

s l o p e s a t a b o u t t h e same t e m p e r a t u r e .

825

on at.%

826

MAGNETIC

TRANSFORMATION

The ratio, A~f/~ p s s = (~p - ~f)/

AND CREEP OF Ni-Co A L L O Y

Vol.

5, No.

I0

~p' where ~fs is the observed value at a temperature in

the ferromagnetic region and ~P the value at that temperature estimated by the extrapolation s of the observed values in the parama~netic region, is 0.25 for o = 2.5 kg/mm 2 and 0.35 for o = 4 kg/mm 2.

1000 10~'1 ' i

],

I":',. 10"~

Temp. ('C) 900 800 700 ~ i ' , ' 10"10 \ ~ Ni-50Co o.~_ a g~ 0.27ram \'~o. • as 045mm \%~0" N.~\?~g.s.O.4Omm 10" .

,~

The r a t i o

is only a half

of the corresponding ratios for selff p f p d i f f u s i o n , ~DNi/DNi and ADco/Dco , which are about 0.55.

On t h e o t h e r hand, i t

was found t h a t t h e s e r a t i o s

were a l m o s t

t h e same w i t h each o t h e r i n a l p h a - i r o n ( 7 ) . The t e m p e r a t u r e a t which t h e changes in the slope of curves f o r creep occur is close to that for diffusion, though t h e f o r m e r t e n d s t o s h i f t

slightly

t o lower t e m p e r a t u r e as t h e a p p l i e d s t r e s s increases.

In a l p h a - i r o n t h e c r i t i c a l

E

U

t e m p e r a t u r e f o r c r e e p a p p a r e n t l y lower

o

than that for diffusion(7). Whether t h e d i s c r e p a n c y i n t h e

T¢ l

16

I 8

magnetic effects

\

t h e p r e s e n t a l l o y comes from t h e n a t u r e o f

%•

i

I ,"'h 9 lIT (10"4K °l )

b e t w e e n a l p h a - i r o n and

the crystal

I 10

s y s t e m s o r from t h e i r

characteristics

own

i s one o f t h e most

i m p o r t a n t p r o b l e m s t o be s o l v e d .

To

discuss the discrepancy in detail,

FIG. 1 T e m p e r a t u r e Dependence o f t h e S t e a d y - S t a t e Creep R a t e , ~ , o f Ni-50Co A l l o y . Diffusion S Data a r e t a k e n from Those g i v e n by Hirano et a1.(18).

it

n e c e s s a r y t o make c l e a r many f a c t o r s , as t h e e l a s t i c fault

is such

modulus and t h e s t a c k i n g

energy of this

alloy at high

temperature.

The a c t i v a t i o n

e n e r g y f o r c r e e p c o m p e n s a t e d f o r e l a s t i c - m o d u l u s c h a n g e , Q~, was

e s t i m a t e d by t h e e q u a t i o n ( 1 9 ) , n ~s

(+T)

exp(-

where o i s t h e a p p l i e d s t r e s s direct

Q' c and ET t h e Youngs modulus a t t e s t i n g

temperature.

S i n c e no

measurement has b e e n done on ET a t h i g h t e m p e r a t u r e , a v e r a g e v a l u e o f t h o s e f o r p u r e

n i c k e l and p u r e c o b a l t a t each t e m p e r a t u r e ( 2 0 ) was u s e d as ET f o r t h i s magnetic effect

on ET f o r t h i s a l l o y i s t a k e n i n t o a c c o u n t ( 2 1 ) .

was S.5 i n b o t h t e m p e r a t u r e r e g i o n s . with the activation

The v a l u e s o f Q~ a r e l i s t e d

energies for self-diffusion

of nickel,

1:1 a l l o y .

The s t r e s s

No

e x p o n e n t , ~,

i n T a b l e 1, t o g e t h o r

q N i ' and c o b a l t ,

QEo' o b t a i n e d on

Vol.

5, No.

I0

MAGNETIC

TRANSFORMATION

a nickel-49 at.% cobalt alloy(18).

AND

CREEP

OF N i - C o

Alloy

827

As seen in the table, the values of Qc are almost the

same in both temperature regions and are in good agreement with QNi and Qco"

TABLE 1 Modulus-Compensated Activation Energy for Creep and Activation Energies(18) for Self-Diffusion of the Constituent Elements Creep of Ni-50Co alloy o/E T

0.94x10 -4

1.61xlO -4

2.51xi0-4

Self-diffusion in Ni-49Co alloy(18)

Temperature

Q~

Temperature

QNi

Qco

(°c)

(kcal/mol)

(°C)

(kcal/mol)

(kcal/mol)

870~i030

62.9±6.4*

730 ~850

53.6±3.6

701 ~819

63.7±8.3*

61.6±5.5"

870 ~930

57.4±4.4

730 ~800

58.8±8.2

899~I192

61.3±5.5

60.0±0.7

830 ~870

59.8±3.0

* The limit refers to 95% confidence limit.

From the results mentioned above it is concluded that the magnetic effect on creep, which originates from the magnetic effect on diffusion, is a general feature in both fcc and bcc metals and alloys.

References (i)

R.J.

Borg; "Diffusion in Body-Centered Cubic Metals", p. 225. A. S. M., 0hio(1965).

(2)

F. Garofalo; "Fundamentals of Creep and Creep Rupture in Metals", p. 99. MacMillan, New York (1965).

(3)

S. Karashima, H. Oikawa and T. Watanabe; Acta Met., 14, 791(1966).

(4)

Y. Ishida, C. Y. Cheng and J. E. Dorn; Trans. Met. Soc. AIME, 236, 964(1966).

(S)

J. Cadek, M. Pahutov~, K. Ciha and T. Hostinsky; Acta Met., 17, 803(1969).

(6)

C . Y . Cheng, A. Karim, T. G. Langdon and J. E. Dorn; Trans. Met. Soc. AIME, 242, 890(1968).

(7)

S. Karashima, H. Oikawa and T. Watanabe; T r a n s . Met. Soe. AIME, 242, 1 7 0 3 ( 1 9 6 8 ) .

(8)

A. Karim; Canad. d. P h y s . , 4 6 , 2 4 2 5 ( 1 9 6 8 ) .

(9)

Y. Imai and T. M u r a t a ; d. J a p a n I n s t .

(10)

A. Fuchs and B. I l s c h n e r ;

(11)

F. S. B u f f i n g t o n ,

(12)

D. W. dames and G. M. Leak; P h i l .

M e t a l s , 29, 1 0 5 3 ( 1 9 6 5 ) .

A c t a M e t . , 17, 7 0 1 ( 1 9 6 9 ) .

K. H i r a n o and M. Cohen; Acta M e t . , 9 , 4 3 4 ( 1 9 6 1 ) . Mag., 1 4 , 7 0 1 ( 1 9 6 6 ) .

828

MAGNETIC

TRANSFORMATION

AND

CREEP

OF N i - C o A L L O Y

Vol.

5, No.

(13)

S. P. Ray and B. D. Sharma; Acta Met., 16, 981(1968).

(14)

P. R. Landon, J. L. Lytton, L. A. Shepard and J. E. Dorn; Trans. ASM, 51, 900(1959).

(15)

E. C. Norman and S. A. Duran; Acta Met., 18, 723(1970).

(16)

S. Karashima, T. Motomiya and H. Oikawa; Tech. Repts., Tohoku Univ., 33, 193(1968).

(17)

M. Hansen and K. Anderko; "Constitution of Binary Alloys", p. 485. McGraw-Hill, New York(1958).

(18)

K. Hirano, R. P. Agarwala, B. L. Averbach and M. Cohen; J. Appl. Phys., 33, 3049(1962).

(19)

O. D. Sherby; Acta Met., iO, 135(1962).

(20)

W. KOster; Z. Metallk., 89, I(1948).

(21)

K. T. Kamber; Dissertation, Stanford Univ. (1963).

i0