Electron-optical components for E-beam testing

Electron-optical components for E-beam testing

Microeleclxonic Engineering 12 (1990) 189-204 Elsevier Science Publishers B.V. ELECTRON-OPTICAL COMPONENTS 189 FOR E - B E A M T E S T I N G Eric...

1MB Sizes 0 Downloads 77 Views

Microeleclxonic Engineering 12 (1990) 189-204 Elsevier Science Publishers B.V.

ELECTRON-OPTICAL

COMPONENTS

189

FOR E - B E A M T E S T I N G

Erich PLIES

R e s e a r c h Laboratories, Siemens AG O t t o - H a h n - R i n g 6, D-8000 M ~ n c h e n 83, Federal R e p u b l i c of G e r m a n y

The e l e c t r o n - o p t i c a l components of an e - b e a m tester comprise the e l e c t r o n gun, the beam b l a n k i n g system, the lenses and the s e c o n d a r y e l e c t r o n analyzer. For each component, a concise r e v i e w of the various e x i s t i n g types is p r e s e n t e d and a c o m p a r i s o n made. For e - b e a m testing of future VLSI ICs (with i n t e r c o n n e c t i o n s < 0.75 ~m), significant i m p r o v e m e n t s need be made m e r e l y in the analyzer.

i. I N T R O D U C T I O N

Up to the m i d d l e of the eighties, m o d i f i e d scanning e l e c t r o n m i c r o s c o p e s (SEMs) w e r e used for e l e c t r o n - b e a m (e-beam) testing of i n t e g r a t e d circuits (ICs). The e l e c t r o n - o p t i c a l m o d i f i c a t i o n s of the SEM u s u a l l y c o m p r i s e d a b e a m - b l a n k i n g system b e t w e e n the anode and the first m a g n e t i c c o n d e n s e r lens and a simple r e t a r d i n g - f i e l d spectrometer between the m a g n e t i c o b j e c t i v e lens and the IC. Today, d e d i c a t e d e - b e a m testers (EBTs) are available. The elect r o n - o p t i c a l column of such an EBT must be o p t i m i z e d with respect to p r i m a r y e l e c t r o n (PE) probe forming (small d i a m e t e r of 0.i 0.3 ~m and high current > 1 nA for low beam v o l t a g e ~ 1 kV) and PE pulse g e n e r a t i o n (I0 ps for GaAs devices and = 200 ps for MOS ICs). A d d i t i o n a l l y , the c o l l e c t i o n of the s e c o n d a r y electrons (SEs) m u s t be o p t i m i z e d to achieve precise v o l t a g e m e a s u r e m e n t s and a n e g l i g i b l e influence of the local fields of the IC. The low e n e r g y of the PEs is n e c e s s a r y to avoid damage, c h a r g i n g and loading of the IC. O p t i m i z e d l o w - v o l t a g e optics are also of interest for other applications, e.g. w a f e r inspection, surface science or b i o c h e m i s t r y . Fig. 1 i l l u s t r a t e s the e l e c t r o n - o p t i c a l column of a d e d i c a t e d EBT [32, 138-140]. Part a) shows a schematic cross section through the column. The column consists - in p r i n c i p l e like every d e d i c a t e d EBT - of the following e l e c t r o n - o p t i c a l components: e l e c t r o n gun, b e a m - b l a n k i n g system, condenser lenses and a c o m p o u n d s p e c t r o m e t e r o b j e c t i v e lens w h i c h acts as an o b j e c t i v e for the PEs and a s p e c t r o m e t e r for the SEs. Part b) shows the axial d i s t r i b u t i o n of the p o t e n t i a l ~(z) = ~(0,0,z) r e f e r r e d to the cathode and the magnetic flux d e n s i t y B(z)=Bz(0,0,z), w h i c h are among the factors a f f e c t i n g the e l e c t r o n - o p t i c a l p e r f o r m a n c e data (cardinal elements, image aberrations). The kinetic energy of the axial primary e l e c t r o n s is e~(z). The stage is, of course, grounded, and the cathode has the p o t e n t i a l - U ~ with respect to this g r o u n d connection, w h e r e Up~ is the beam voltage of the p r i m a r y electrons at

0167-9317/90/$3.50 © 1990, Elsevier Science Publishers B.V.

190

E. Plies / Electron-optical components for e-beam testing

the IC. Part c) of Fig. 1 shows the l i g h t - o p t i c a l a n a l o g of the column and the p r i n c i p l e of p r i m a r y - e l e c t r o n (PE) focusing, with the e q u i v a l e n t e l e m e n t s of e l e c t r o s t a t i c o r i g i n (concave and convex lenses and p l a n e p a r a l l e l plates) shown dark and the equivalent lenses for the m a g n e t i c lens fields shown bright. The p r i m a r y and s e c o n d a r y electron-optical performance data of this d e d i c a t e d EBT is s u m m a r i z e d in Tables 1 and 2, r e s p e c t i v e l y , t o g e t h e r with the p e r f o r m a n c e of a m o d i f i e d SEM [168]. The c l e a r l y superior performance data of the d e d i c a t e d EBT w e r e a t t a i n e d by i m p r o v i n g the i n d i v i d u a l e l e c t r o n - o p t i c a l c o m p o n e n t s and the customized low-voltage column concept. In the following, we will p r e s e n t a c o n c i s e r e v i e w of the i n d i v i d u a l e l e c t r o n - o p t i c a l components of an EBT, discuss various instrument types and b r i e f l y touch upon i m p r o v e m e n t s still r e q u i r e d in the future. In so doing, we will r e f e r b a c k to Figure 1 and Tables 1 and 2. In this paper, o n l y EBTs for ICs and not for c o n d u c t o r n e t w o r k s or c i r c u i t packages are considered. In the d e t a i l e d reviews [6,7] a s p e c t s are also discussed.

a)

of

e-beam

testing,

b)

electron-optical

c)

Triode electron gun

UEx

Beam blanking deflector

~- UL-~ Immersion condenser lens

Magnetic condenser lens

® Compound spectrometer objective lens

UpE

.-

.. -,. ".

FIGURE 1 Schematic representation of the e l e c t r o n - o p t i c a l column of a d e d i c a t e d EBT (ICT 9010); b) D i s t r i b u t i o n s of the axial (cathode related) p o t e n t i a l ~(z) and the axial m a g n e t i c flux d e n s i t y B(z) along the optical z-axis. UEx = extraction voltage for the p r i m a r y electrons in the t r i o d e gun, UL = lens v o l t a g e of the i m m e r s i o n c o n d e n s e r lens, UE = extraction voltage for the secondary electrons and UpE = final b e a m v o l t a g e of the p r i m a r y electrons; c) L i g h t - o p t i c a l counterpart of the e l e c t r o n - o p t i c a l column and p r i m a r y - e l e c t r o n ray path. E q u i v a l e n t lenses of m a g n e t i c origin are in light print, w h e r e a s e q u i v a l e n t s of e l e c t r o s t a t i c origin (concave and convex lenses and plane p a r a l l e l plates) are shown dark. a)

E. Plies / Electron-optical components for e-beam testing

Cathode Condenser system Final PE-energy

Modified SEM

Dedicated EBT

w

LaB6

purely magnetic

immersion lens

2.5

1.0

Brightness for final PE energy [A cm2 sr 1]

1.2 • 104

3.2 • 104

Minimum PE-pulse width

1

0.15

purely magnetic

combined electrostatic - magnetic

11

2

[keV]

Ins]

Objective lens

191

TABLE 1 C o m p a r i s o n of the p r i m a r y - e l e c t r o n o p t i c a l p e r f o r m a n c e of two electron-beam testers - a modif i e d S E M [168] (based on a C a m b r i d g e I n s t r u m e n t s S150) a n d a d e d i c a t e d E B T [32, 81, 1 3 5 - 1 4 0 ] (ICT 9010). TABLE 2 C o m p a r i s o n of t h e s e c o n d a r y e l e c t r o n o p t i c a l p e r f o r m a n c e of t w o t y p e s of e l e c t r o n b e a m t e s t ers - m o d i f i e d S E M a n d a d e d i c a t e d EBT.

Working distance

Modified SEM

[ram]

Spherical aberration constant [ram]

70

10

Axial chromatic aberration constant

20

4

0.02

0.02

0.4

0.12

5

2.5

[mm]

Final aperture [rad] PE-probe diameter [~m]

PE-probe current [nA]

Type of spectrometer Location of spectrometer Detector Spectrometer constant

Dedicated EBT

planar retarding field

semispherical retarding field

post-lens

through-the-lens

one EverhartThornley

two EverhartThornley

5 • 10-8 V ~

"

5 • 10.9 V

Cross-talk

between 1,5 pm

< 40 %

< 3%

interconnection lines

2. C A T H O D E S

AND

ELECTRON

GUNS

For high voltage resolution and/or short measuring t i m e s of v o l tage waveforms, a m a x i m u m p o s s i b l e s p e c i m e n c u r r e n t m u s t be realized within a specified probe diameter. D u e to t h e i r l o w b r i g h t ness, e l e c t r o n g u n s w i t h t u n g s t e n c a t h o d e s are out of the q u e s tion. D u e to t h e i r l o w w o r k f u n c t i o n , L a B 6 s i n g l e - c r y s t a l cathodes s u p p l y a h i g h e r b r i g h t n e s s . T h e y h a v e b e e n i n t e n s i v e l y s t u d i e d and t e s t e d in t h e past, see [8-16], for e x a m p l e , a n d h a v e b e e n on the m a r k e t f o r a n u m b e r of years. In t h e o r y , the beam brightness is p r o p o r t i o n a l to the b e a m v o l tage. In t h e l o w - v o l t a g e r a n g e (< 2 kV), h o w e v e r , the b e a m b r i g h t n e s s d e c r e a s e s m o r e s t e e p l y if a t r i o d e e l e c t r o n g u n is used. T h i s is a s c r i b e d to s a t u r a t i o n e f f e c t s [17] a n d to t h e B o e r s c h e f f e c t [ 1 7 2 - 1 8 3 ] of the e l e c t r o n s in the gun. With a tetrode electron gun, this loss is a l r e a d y s m a l l e r [13], but an e v e n b e t t e r s o l u t i o n is the c o m b i n a t i o n , s h o w n in Fig. i, of a triode gun with a retarding immersion condenser lens [81,94,138,139]. B e f o r e the i m m e r s i o n c o n d e n s e r lens, the PEs h a v e an e n e r g y e U ~ x = 5 k e y and are t h e n r e t a r d e d b y e U = to e U p E > 500 eV. A b r i g h t n e s s of 3.2 104 A c m - 2 s r -z for U p E = 1 k V w a s t h u s o b t a i n e d for a ( 1 0 0 ) - o r i e n t e d LaB6 c a t h o d e w i t h a t e m p e r a t u r e of 1775 K [ 1 3 8 , 1 3 9 ] . The question naturally a r i s e s w h e t h e r it w o u l d n o t e m p l o y an e l e c t r o n g u n w i t h a f i e l d - e m i s s i o n cathode

be b e t t e r to f r o m the out-

192

E. Plies / Electron-optical components for e-beam testing

set. Papers [18-27] deal, inter alia, w i t h a c o m p a r i s o n of LaB6 with field emission, and papers [19,22-24,26] even treat this subject under the a d d i t i o n a l s t a n d p o i n t of e - b e a m testing. This comp a r i s o n is not simple, because, for instance, the a b e r r a t i o n s of the o b j e c t i v e lens have a very s i g n i f i c a n t influence. In brief, it can be said that for a probe d i a m e t e r of less than 0.05 to 0.i ~m, the thermal field e m i s s i o n supplies a g r e a t e r s p e c i m e n current at the same probe d i a m e t e r than the LaB6 cathode. The a u t h o r agrees with L. Reimer, who points out on p. 31 of [4] that for p r o b e d i a m e t e r s ~ 0.i ~m, more s p e c i m e n c u r r e n t is supplied by the field e m i s s i o n and for probe d i a m e t e r s > 0.I ~m by the LaB6 cathode. This is also c o n f i r m e d by a c o m p a r i s o n of e x i s t i n g d e d i c a t e d EBTs. Indeed, Hitachi Ltd. (Ti-W thermal field emission) and ICT GmbH (LAB6) g u a r a n t e e [31,32] the same probe p e r f o r m a n c e , n a m e l y 0.i ~m, 1 nA and 1 kV. For an EBT with LaB6 cathode, the c r o s s - o v e r is imaged in r e d u c e d form, so that as a rule only the a b e r r a t i o n s of the o b j e c t i v e lens c o n t r i b u t e to inf l u e n c i n g the probe diameter. This is not the case for a system w i t h a f i e l d - e m i s s i o n cathode, so that the use of e l e c t r o n guns w i t h a s u p e r p o s e d m a g n e t i c lens field [ 2 3 , 2 6 , 2 8 - 3 0 , 3 3 - 3 8 ] brings good results. The d e d i c a t e d EBT from Hitachi Ltd. a l r e a d y possesses an e l e c t r o n gun of this kind [133, 134]. But it still remains open w h e t h e r the f i e l d - e m i s s i o n cathode will p r o v i d e the only m e a n i n g f u l solution for the e - b e a m testing of ICs with i n t e r c o n n e c t i o n line widths < 0.5 ~m (i. e. probe d i a m e t e r < 0.i ~m). This is b e c a u s e very p r o m i s i n g silicon a v a l a n c h e cathodes [39-41] are being developed. Their chopping s y s t e m could be d i r e c t l y i n t e g r a t e d for g e n e r a t i n g short e l e c t r o n pulses. Also p r o m i s i n g are l a s e r - t r i g g e r e d p h o t o c a t h o d e s [42-48], w h i c h not only p o s s e s s a very high brightness, but can also supply very short e l e c t r o n pulses, e.g. 4 ps [45] and have a l r e a d y been succ e s s f u l l y used by P.May et al. [45-47] for e - b e a m testing. In the case of t r a n s m i s s i o n p h o t o c a t h o d e s , it should also be p o s s i b l e to attain effective photoelectron source d i a m e t e r s < 5 ~m, thus e a s i l y o b t a i n i n g probe d i a m e t e r s < 0.i ~m. Using l a s e r - t r i g g e r e d p h o t o e l e c t r o n s reduces f l e x i b i l i t y w i t h r e s p e c t to s y n c h r o n i z a t i o n with the e l e c t r i c a l d r i v i n g of the IC. The e m i s s i o n of thermal e l e c t r o n s by laser pulse i r r a d i a t i o n is also p o s s i b l e [49]. With r e s p e c t to further details r e g a r d i n g e m i s s i o n p r o p e r t i e s and e l e c t r o n gun design, the reader is r e f e r r e d to C h a p t e r IX of [i].

3. E L E C T R O N

BEAM P U L S I N G

As a l r e a d y m e n t i o n e d in the previous chapter, e l e c t r o n pulses can be g e n e r a t e d even w i t h o u t an e-beam chopping system in the column. However, all c o m m e r c i a l l y a v a i l a b l e d e d i c a t e d EBTs and most modified SEMs p o s s e s s such an e - b e a m chopping system. A d i s t i n c t i o n should be m a d e here b e t w e e n two methods of g e n e r a t i n g short PE pulses, namely beam intensity modulation and beam d e f l e c t i o n across a c h o p p i n g aperture.

E. Plies / Electron-optical components for e-beam testing

193

3.1 Beam i n t e n s i t y m o d u l a t i o n

W e h n e l t m o d u l a t i o n has been used by various authors [50-54]. But this m e t h o d has not found general acceptance, b e c a u s e the electrical pulse has to be p r o d u c e d at high v o l t a g e and the c a p a c i t a n c e to be c h a r g e d and d i s c h a r g e d is too high [6]. In [55], an intensity m o d u l a t i o n w i t h a filter lens (special Einzel lens) was suggested. E s t i m a t e s showed that, due to t i m e - o f - f l i g h t effects, no pulses < 300 ps can be g e n e r a t e d with a chopper of this kind, even if the filter lens is c o n f i g u r e d as a triplate strip line. M. T r o y o n [56] has taken the g r a t e d the filter lens in the systems [55,56] is that the and both have a m o n o c h r o m a t o r

s u g g e s t i o n in [55] further and intee l e c t r o n gun. The a d v a n t a g e of these probe d i a m e t e r d e g r a d a t i o n is small effect.

Using the space focusing action of a k l y s t r o n cavity lens, L.C. O l d f i e l d [57] a t t a i n e d pulse widths of several ps at a repetition rate of 9 GHz. The phase focusing action of a k l y s t r o n cav i t y b u n c h e r was used by T. H o s o k a w a et al. [58], and H. H~bner and E. R 6 h m [60] used m i c r o w a v e field e m i s s i o n to g e n e r a t e 1 ps pulses at 14 GHz.

3.2 Beam d e f l e c t i o n

3.2.1 Plate c a p a c i t o r s D e f l e c t i o n across a chopping aperture by plate c a p a c i t o r s was used in [61-67]. Using the blanking system described in [66], M. B r u n n e r et al. [67] have r e p o r t e d 15 ps e l e c t r o n pulses, and in the m e a n t i m e have a l r e a d y attained 7 ps pulses with this relativ e l y simple and flexible b l a n k i n g system. Since the time resolution is l i m i t e d not only by the electron pulse w i d t h but also by other effects, e.g. the t r a n s i t i o n time effect of the SEs and the t i m i n g jitter of the control electronics, there seems to be no reason for the use of more complex d e f l e c t o r designs for the ebeam t e s t i n g of ICs. Probe b l u r r i n g due to energy spread of the PEs caused by the blanking p r o c e s s in the plate capacitor [68] could not be c o n f i r m e d as a r e l e v a n t degradation.

3.2.2 T r a v e l i n g wave structures and reentrant

cavity structures

T h r o u g h - t y p e t r a v e l i n g wave deflectors have also been used for ebeam t e s t i n g [69-74] and pulses < i0 ps have been r e p o r t e d [70,71]. The t r a n s v e r s e reentrant cavity s t r u c t u r e has a still h i g h e r d e f l e c t i o n s e n s i t i v i t y than the t r a v e l i n g w a v e deflectors. T. H o s o k a w a et al. [58] used such a t r a n s v e r s e r e e n t r a n t cavity in combination with an additional longitudinal reentrant cavity (klystron c a v i t y buncher). They g e n e r a t e d pulses of 0.2 ps and detected them. In terms of PE energy or pulse r e p e t i t i o n frequency, t r a v e l i n g wave and r e e n t r a n t cavity d e f l e c t o r s are not as flexible as the plate capacitor. Y.D. C h e r n o u s o v and I.V. S h e b o l a e v [59] s p e c i f y an u l t r a - h i g h frequency r e s o n a t o r - d e f l e c t o r w h o s e resonator f r e q u e n c y can be v a r i e d m e c h a n i c a l l y to some extent.

194

3.2.3

E. Plies / Electron-optical components for e-beam testing Multiple deflector

systems

Several authors [75-78] have r e p o r t e d on c o n f i g u r a t i o n s in which one plate c a p a c i t o r is placed before and other one after a PE cross-over, and the c h o p p i n g a p e r t u r e is located in the c r o s s - o v e r plane. T i m e - o f - f l i g h t effects are c o m p e n s a t e d to a c e r t a i n extent if the signal of the second d e f l e c t o r is delayed. J.T.L. Thong et al. [79] report on a new type of b e a m p u l s i n g stem w i t h a m u l t i - e l e c t r o d e d e f l e c t i o n element, w h i c h permits g e n e r a t i o n of pulses < 15 ps at r e p e t i t i o n rates of 1-50 GHz.

sythe

For a m o r e e x t e n s i v e c o m p a r i s o n of the various c h o p p i n g systems, the r e a d e r is r e f e r r e d to the reviews [6,7,63,80]. In [7], the various d r i v i n g m e t h o d s and types of a r r a n g e m e n t s are p r e s e n t e d in detail.

4. C O N D E N S E R AND O B J E C T I V E

LENSES

The c o n d e n s e r lenses and the o b j e c t i v e lens of all m o d i f i e d SEMs and of most d e d i c a t e d EBTs are p u r e l y magnetic. The d e s i g n of purely m a g n e t i c lenses is at the state of the art and their properties, i n c l u d i n g those of single p o l e - p i e c e lenses [84], are known [3,82,83,85]. The c o m m e r c i a l EBT from Sentry S c h l u m b e r g e r [157, 158] and the l a b o r a t o r y setup by L. D u b b e l d a m and P. Kruit [159162] use a v a r i a b l e - a x i s i m m e r s i o n lens (VAIL), w h i c h has a l r e a d y been s u c c e s s f u l l y used for a number of years in e l e c t r o n beam lit h o g r a p h y [86-88] and r e p r e s e n t s a clever s u p e r p o s i t i o n of the mag n e t i c lens and d e f l e c t i o n field. A c o n d e n s e r lens of the d e d i c a t e d EBT s c h e m a t i c a l l y shown in Fig.l is a c o m b i n e d e l e c t r o s t a t i c - m a g n e t i c lens [81,138]. In the compound s p e c t r o m e t e r o b j e c t i v e lens too, the e l e c t r o s t a t i c spectrom e t e r fields ( ~ / ~ @ 0 in Fig, ib) must be taken into account when c a l c u l a t i n g the PE focusing and the a b e r r a t i o n s [94]. This also applies to a n u m b e r of other in-lens or t h r o u g h - l e n s analyzers. If a m a g n e t i c d e f l e c t i o n element is added in the o b j e c t i v e lens, as in Fig. i, then we obtain a c o m b i n e d focusing and deflection s y s t e m w i t h s p a t i a l l y s u p e r i m p o s e d fields w h i c h is no longer q u i t e so simple to calculate. However, e x i s t i n g theories and programs [89-94] a l l o w the n u m e r i c a l c a l c u l a t i o n of c o m p o u n d systems from any s u p e r p o s e d e l e c t r o s t a t i c and m a g n e t i c lens and d e f l e c t i o n fields.

5. A N A L Y Z E R S AND D E T E C T O R S

The SE e n e r g y a n a l y z e r is the key e l e c t r o n - o p t i c a l c o m p o n e n t of any EBT. All p r e v i o u s l y used analyzers are r e t a r d i n g - f i e l d energy devices, w h i c h i n t e g r a t e over the SE s p e c t r u m or parts of it. Under ideal conditions, the d e t e c t e d SE current depends only on the p o t e n t i a l d i f f e r e n c e b e t w e e n the m e a s u r i n g point in the IC and the r e t a r d i n g - f i e l d grid. To linearize the q u a n t i t a t i v e v o l t a g e m e a s u r e m e n t , the e n e r g y a n a l y z e r is u s u a l l y o p e r a t e d in a feedback loop. The f o l l o w i n g e l e c t r o n - o p t i c a l requirements are made on today's analyzers:

E. Plies / Electron-optical components for e-beam testing

-

the SEs must be detected, their angle of emission,

as

far as

possible,

independently

195

of

- the d e t e c t i o n must, as far as possible, be i n d e p e n d e n t of existing microfields (local fields) of the IC or the a n a l y z e r must reduce these m i c r o f i e l d s as far as possible, -

the a n a l y z e r must not have a n e g a t i v e effect on the p e r f o r m a n c e of the p r i m a r y e l e c t r o n probe, e.g. give rise to u n w a n t e d def l e c t i o n or astigmatism,

- b e y o n d t h i s , t h e a n a l y z e r must be d e s i g n e d and c o n f i g u r e d so that it does not,in p r i n c i p l e , l i m i t the p e r f o r m a n c e of the PE probe. Up to 1984, e x c l u s i v e use was made of p o s t - l e n s analyzers. Starting w i t h the first in-lens analyzer by E. Menzel [129], a series of in-lens and t h r o u g h - l e n s analyzers were still p r o p o s e d and constructed. In the meantime, all d e d i c a t e d EBTs are e q u i p p e d with a n a l y z e r s of this kind, because they a l l o w both s u p e r i o r PE and SE p e r f o r m a n c e data to be attained, see Tables 1 and 2. However, this d o u b l e p e r f o r m a n c e gain was traded off a g a i n s t a more complex e l e c t r o n optical system in every d e d i c a t e d EBT. In the following, let us i n i t i a l l y present an o v e r v i e w of the various p o s t - l e n s analyzers and then discuss the v a r i o u s in-lens and t h r o u g h - l e n s analyzers. In v i e w of the ongoing increase of component i n t e g r a t i o n w i t h ever smaller i n t e r c o n n e c t i o n d i m e n s i o n s and thus i n c r e a s i n g field strength of the m i c r o f i e l d s at the surface of the ICs, we will at the c o n c l u s i o n of this chapter b r i e f l y discuss the q u e s t i o n of w h e t h e r r e t a r d i n g - f i e l d a n a l y z e r s do in fact r e p r e s e n t the best solution for e l e c t r o n - b e a m m e a s u r e m e n t technology.

5.1

Post-lens

analyzers

R e t a r d i n g - f i e l d analyzers have a l r e a d y been used in other sectors prior to e - b e a m testing of ICs and are still used in other a p p l i c a t i o n s today, see [95-108]. A p p l i c a t i o n sectors w e r e or are SE e m i s s i o n studies [96,106], Auger e l e c t r o n s p e c t r o s c o p y [97], e l e c t r o n s p e c t r o s c o p y for chemical analysis [98, i01] and M ~ b a u e r s p e c t r o s c o p y [108]. C o m p a r e d with d i s p e r s i v e e n e r g y analyzers, ret a r d i n g - f i e l d devices have a high l u m i n o s i t y but a low e n e r g y resolution. The latter results from the w i d t h of the cut-off curve of the r e t a r d i n g - f i e l d analyzer [95,119], w h i c h has a high-pass c h a r a c t e r i s t i c . This smeared cut-off c h a r a c t e r i s t i c of the retard i n g - f i e l d a n a l y z e r produces an effect on the form of the d e t e c t e d integral SE s p e c t r u m (S-curve). The slope of the S-curve d e c r e a s e s with increasing field strength of the r e t a r d i n g field, with g r o w i n g m e s h w i d t h of the r e t a r d i n g - f i e l d grid, and the S-curve is flatter for a planar r e t a r d i n g field than for a spherical one [95,99,100,119]. In e l e c t r o n - b e a m m e a s u r e m e n t technology, a flatter S - c u r v e means a w o r s e voltage r e s o l u t i o n (greater s p e c t r o m e t e r constant) [119]. The r e t a r d i n g - f i e l d analyzers used by A. G o p i n a t h et al. [109-111] for e - b e a m testing had h e m i s p h e r i c a l grids and were c o n s t r u c t e d s i m i l a r l y to the a n a l y z e r s used for the SE e m i s s i o n studies, e.g. [96]. They s u f f e r e d from a weak e x t r a c t i o n field, w h i c h was increased by Y. Goto et al. [112] by means of an a d d i t i o n a l control

196

E. Plies / Electron-optical components for e-beam testing

grid. J.M. H a n n a h [113] a n d L.J. B a l k et al. [114] u s e d c y l i n d r i cal d e f l e c t o r analyzers which have a band-pass characteristic and suffer from a long working distance (65 m m and 22 mm, r e s p e c t i v e l y ) . T h e a n a l y z e r d e s i g n e d by H.P. F e u e r b a u m [115] w a s o p t i m i z e d w i t h r e s p e c t to h e i g h t and e x t r a c t i o n f i e l d s t r e n g t h a n d is still w i d e l y used. T h e r e t a r d i n g field spectrometer by G.S. P l o w s [116] was t h e f i r s t c o m m e r c i a l l y available system (Lintech Instruments Ltd.). It is a t t r a c t i v e d u e to its r o t a t i o n a l symmetry and was evaluated in [117,118]. A l l p r e v i o u s l y m e n t i o n e d post-lens analyzers [ 1 0 9 - 1 1 6 ] w e r e c o m p a r e d in d e t a i l in [119] a n d / o r [120]. E. P l i e s [121] i n v e n t e d an a n a l y z e r in w h i c h a p l a n e e x t r a c t i o n field and a hemispherical r e t a r d i n g f i e l d are c o m b i n e d so t h a t the virtual source of the SEs coincides with the center of the hemispherical retarding field. A n a n a l y z e r of this t y p e w a s first constructed by K. N a k a m a e et al. [122-124]. D u e to its h i g h extraction in c o n j u n c t i o n w i t h the a n g l e - i n d e p e n d e n t detection of the SEs, a c c o r d i n g to [122-125] this a n a l y z e r p r o v i d e s a steeper S-curve, an i m p r o v e d spectrometer constant and a smaller local f i e l d e f f e c t [126] t h a n the F e u e r b a u m a n a l y z e r w i t h a p l a n e r e t a r d i n g field. In the local f i e l d e f f e c t (LFE), K. N a k a m a e et al. [126] m a k e a d i s t i n c t i o n b e t w e e n b e t w e e n two e f f e c t s or types. LFE I is c h a r a c t e r i z e d as the e f f e c t by w h i c h s l o w SEs c a n n o t o v e r c o m e a retarding local microfield a b o v e the i n t e r c o n n e c t i o n . However, the t r a j e c t o r i e s of SEs w h i c h are n o t r e f l e c t e d f r o m the m i c r o field can nevertheless still be a f f e c t e d by it, w h i c h a l s o leads to an e r r o r in the q u a n t i t a t i v e voltage measurement. This effect is d e s i g n a t e d as L F E II.

5.2

Through-lens

analyzers

The great disadvantage of a post-lens analyzer is the large working distance b e t w e e n the o b j e c t i v e lens a n d the IC. T h i s nec e s s a r i l y m a k e s the a x i a l a b e r r a t i o n s of the o b j e c t i v e lens relat i v e l y high, see T a b l e I, a n d an e l e c t r o n p r o b e w i t h small d i a m e ter and high current c a n n o t be g e n e r a t e d . This drawback can be avoided by m e a n s of i n - l e n s and t h r o u g h - l e n s analyzers. In the following, w e i n t e n d l a r g e l y to u s e the d e s i g n a t i o n through-lens a n a l y z e r q u i t e a p a r t f r o m the o r i g i n a l t e r m u s e d by the i n v e n t o r s for t h e i r a n a l y z e r . F o r in m o s t cases, the d e t e c t o r i t s e l f is pos i t i o n e d a b o v e the o b j e c t i v e lens. T h e first a n a l y z e r of this type was invented b y E. M e n z e l [129,130]. It is a t t r a c t i v e b e c a u s e of its s i m p l i c i t y , b u t has n o t b e c o m e p o p u l a r b e c a u s e it is s e n s i t i v e to L F E II.

5.2.1

Through-lens

analyzers

with

hemispherical

retarding

fields

The commercial dedicated EBTs from Hitachi [132-134], ICT [135140] a n d C a m b r i d g e I n s t r u m e n t s [141] m a k e u s e of t h r o u g h - l e n s analyzers with hemispherical grids. A c c o r d i n g to [121], in the c a s e of ICT's through-lens analyzer, the p r i n c i p l e of the p o s t - l e n s analyzer with a reduced LFE described in s e c t i o n 5.1 was m o d i f i e d so t h a t the c e n t e r of the s p h e r i c a l r e t a r d i n g f i e l d n o w c o i n c i d e s w i t h an SE i m a g e of the m e a s u r i n g p o i n t [135]. H i t a c h i a p p e a r e d to u s e the s a m e p r i n c i p l e , a l t h o u g h no d i r e c t r e f e r e n c e w a s m a d e to t h i s in [ 1 3 2 - 1 3 4 ] , a n d t h e s e 3 p a p e r s a l s o s p e c i f y v a r i o u s n u m b e r s of g r i d s and different voltage values at the grids. The m a i n difference between the two a n a l y z e r s lies in t h e i r PE f o c u s i n g .

E. Plies / Electron-optical components for e-beam testing

197

H i t a c h i uses a d o u b l e lens as the objective, so that the PE beam is t e l e c e n t r i c at the point of the h e m i s p h e r i c a l grids. This gives rise to a s o m e w h a t larger center hole in the spherical grids, so that it may h a p p e n that a higher p r o p o r t i o n of the p a r a x i a l l y e m i t t e d SEs cannot be d e t e c t e d c o r r e c t l y or even at all. In the case of the ICT analyzer, a high e x t r a c t i o n field as well as a r e l a t i v e l y high r e t a r d i n g field is used. To e l i m i n a t e lens effects of the axial r e t a r d i n g - f i e l d grid mesh with r e s p e c t to the PE beam from the outset, therefore, a PE i n t e r m e d i a t e image was placed in the hemispherical retarding field (see Fig. ic). The high e x t r a c t i o n field (ikV/mm) in the ICT analyzer g r e a t l y reduces LFE I but m a k e s the v o l t a g e m e a s u r e m e n t s on p a s s i v a t e d or buried i n t e r c o n n e c t i o n s d i f f i c u l t to perform, due to charging. D e v i a t i n g from the first d e s i g n [135,138], J. Frosien [140] therefore i n t r o d u c e d an a d d i t i o n a l electrode d i r e c t l y above the IC, w h i c h w e a k e n s the e x t r a c t i o n field there and permits good m e a s u r e m e n t s on p a s s i v a t e d ICs [140]. This a d d i t i o n a l e l e c t r o d e ensures that the f o c u s i n g p r i n c i p l e of the SEs is not changed. No further d e t a i l s are known about the t h r o u g h - l e n s a n a l y z e r from Cambridge Instruments [141], apart from the fact that it is, i n c l u d i n g the scintillator, entirely symmetrical about the PE beam. In contrast, the systems from Hitachi and ICT each have two d e t e c t o r s a r r a n g e d o p p o s i t e each other. T.T. Tang et al. [131] s p e c i f y a t h r o u g h - l e n s a n a l y z e r which is very similar to the ICT device, but can work e f f e c t i v e l y with plane grids. This is possible due to its configuration, since the PEs have a high beam v o l t a g e of i0 kV. The a s s o c i a t e d high lens e x c i t a t i o n means that the SEs ( e x t r a c t i o n v o l t a g e 820V) are i n i t i a l l y focused and then collimated.

5.2.2

Magnetic-collimating

analyzers

It is k n o w n from plasma physics that a "magnetic mirror" or "magnetic bottle" can confine charged p a r t i c l e s [148, 149]. This p r i n c i p l e was first used, in an inverse sense, with the specimen in the "neck" of the bottle, by P. Kruit and F.H. Read [150] to build a m a g n e t i c field p a r a l l e l i z e r for a p h o t o e l e c t r o n spectrometer. S.C.J. G a r t h et al. [151] were the first to build an analyzer for e - b e a m testing w h i c h m a g n e t i c a l l y c o l l i m a t e s the SEs in this manner. For this purpose, they i n i t i a l l y [151-153] fitted a single p o l e - p i e c e lens as per T. M u l v e y [84] under the IC. In a later p a p e r [154], S.C.J. Garth made a critical study of the purely m a g n e t i c e x t r a c t i o n of the SEs. A s i g n i f i c a n t d i s a d v a n t a g e he m e n t i o n s is the high LFE I. An additional e l e c t r o s t a t i c e x t r a c t i o n to reduce the LFE I would prevent the a d i a b a t i c SE motion, w h i c h is p r e c i s e l y what allows this p r o c e d u r e to record a low LFE II. S.C.J. G a r t h t h e r e f o r e suggests a virtual i m m e r s i o n lens spectrom e t e r [155,156] (in w h i c h the single pole piece under the IC is obviated) in his paper [154] for the first time. In this clever technique, the SEs are i n i t i a l l y e x t r a c t e d e l e c t r o s t a t i c a l l y and then r e t a r d e d again in the field m a x i m u m of a m o d i f i e d p i n - h o l e lens. Finally, the SEs are c o l l i m a t e d in the a d i a b a t i c a l l y declining m a g n e t i c field of the second lens half. In the a n a l y z e r of the commercial EBT from S e n t r y S c h l u m b e r g e r [157,158] the SEs are also m a g n e t i c a l l y collimated. For this purpose, a V A I L [86-88] is used and the a n a l y z e r p o s s e s s e s a plane r e t a r d i n g field. P. Kruit and L. D u b b e l d a m have s u g g e s t e d and i m p l e m e n t e d a c o m b i n a t i o n of a VAIL and a t r o c h o i d a l a n a l y z e r with

E. Plies / Electron-optical components for e-beam testing

198

two e n e r g y c h a n n e l s [159,160]. Unfortunately, this p r o m i s i n g sugg e s t i o n has n o t e n t i r e l y f u l f i l l e d the e x p e c t a t i o n s , as a c c o r d i n g to [162], it has h i t h e r t o p r o v e d i m p o s s i b l e to a c h i e v e g o o d performance d a t a for the PE a n d SE o p t i c s simultaneously. A small chromatic aberration of the V A I L is c o u p l e d w i t h a r e l a t i v e l y h i g h e n e r g y e r r o r (0.5 eV) of the t r o c h o i d a l a n a l y z e r , w h e r e a s a small e n e r g y e r r o r g i v e s r i s e to a r e l a t i v e l y high aberration coeffic i e n t (i0 mm) of the a x i a l c h r o m a t i c a b e r r a t i o n . Nevertheless, the multichannel p r o c e d u r e p r o p o s e d by L. D u b b e l d a m a n d P. K r u i t [160] with a dispersive a n a l y z e r c o u l d be a s t e p in the r i g h t d i r e c t i o n . S - c u r v e s or s p e c t r o m e t e r constants can be u s e d for c o m p a r i n g the various through-lens analyzers. However, a much more rigorous comparative t e s t is the m e a s u r e m e n t of k n o w n s i g n a l s , w h i c h are i n j e c t e d i n t o a t e s t c h i p or a p a s s i v e IC w i t h i n t e r c o n n e c t i o n s of maximum fineness. It c a n t h e n be s e e n h o w w e l l the l e v e l is m e a s u r e d a n d h o w h i g h the s e n s i t i v i t y is w i t h r e s p e c t to l o c a l fields. S i n c e t h e a u t h o r was i n v o l v e d in t h e d e v e l o p m e n t of the e l e c t r o n optical column of a commercial EBT, he intends to make no comparative evaluation at t h i s point, b u t m e r e l y to r e f e r to the LFE measurements in [ 1 3 2 , 1 3 3 , 1 3 8 , 1 4 0 , 1 5 2 , 1 5 6 - 1 5 8 , 1 7 1 ] . In his own comparison, the reader should take into consideration the additional conditions of these LFE measurements such as interconnection w i d t h , s p a c i n g to the n e x t i n t e r c o n n e c t i o n a n d the d e g r e e of i n t e r f e r e n c e the s i g n a l s h a v e on t h e n e i g h b o r i n g interconnections. Signals p r e s e n t on n e i g h b o r i n g interconnections can g i v e r i s e to c r o s s t a l k b y m e a n s of L F E II.

5.3

The

detector

unit

W h e n the SEs h a v e t r a v e r s e d the r e t a r d i n g - f i e l d grid, they must s t i l l - for c e r t a i n t y p e s of a n a l y z e r s - (with a p l a n a r or s p h e r i cal r e t a r d i n g f i e l d g r i d n o r m a l to the o p t i c a l axis) be g u i d e d to o n e or two E v e r h a r t - T h o r n l e y detectors. Beam guidance s y s t e m s designed specially for this p u r p o s e w h i c h d e s e r v e m e n t i o n are the m o d i f i e d d o u b l e s t i g m a t o r by S.C.J. G a r t h et al. [ 1 5 3 , 1 5 5 ] , the 0o r d e r W i e n f i l t e r b y T. O t a k a et al. [164] a n d the i s t - o r d e r W i e n filter (crossed quadrupole fields) b y J. Zach a n d H. R o s e [165]. The l a t t e r w a s c o n s t r u c t e d a n d t e s t e d b y R. S c h m i d a n d M. B r u n n e r [166,167]. W e a l s o w i s h to d r a w the r e a d e r ' s attention to the s i m p l e b u t f a s c i n a t i n g c o a x i a l t u b e s y s t e m by N. T a m u r a [163], in w h i c h t h e PE b e a m is t o t a l l y s h i e l d e d f r o m the s c i n t i l l a t o r field. Systems with a coaxially arranged multichannel plate, e.g. [124], b y p a s s the b e a m g u i d a n c e p r o b l e m m e n t i o n e d above. In the a n a l y z e r d e s i g n e d b y G.S. P l o w s [116], w h i c h is t o t a l l y r o t a t i o n a l l y symmet r i c a l - as far as the s c i n t i l l a t o r - the t o p o l o g i c a l conversion p r o b l e m is s h i f t e d to the o p t i c a l w a v e g u i d e system. T h e s a m e is t r u e for the a n a l y z e r b y A.R. D i n n i s [ 1 4 2 - 1 4 5 ] , w h i c h u s e s a nonr o t a t i n g f i n a l lens a n d w h o s e r a d i a l m a g n e t i c f i e l d e x t r a c t i o n is i m p r e s s i v e f r o m an e l e c t r o n - o p t i c a l standpoint.

5.4

Future

trends

E. W o l f g a n g et al. [171] h a v e s h o w n t h a t e - b e a m t e s t i n g can be p e r f o r m e d on 0.75 ~m i n t e r c o n n e c t i o n lines u s i n g ICT's c o m m e r c i a l e-beam tester. B u t the s t r u c t u r a l reduction in m i c r o e l e c t r o n i c s has c o n t i n u e d u n a b a t e d , so t h a t the i n f l u e n c e of the local fields

E. Plies / Electron-optical components for e-beam testing

199

has increased. B. Wolf et al. [146] d e s c r i b e a c o m p e n s a t i o n m e t h o d for the LFE by c o m b i n i n g a w e a k e l e c t r o s t a t i c e x t r a c t i o n field with a s u i t a b l e o b j e c t i v e lens field, through w h i c h a part of the h i g h - e n e r g y SEs can pass only under the i n f l u e n c e of the local field. The c o m p e n s a t i o n is u n f o r t u n a t e l y p e r f o r m e d at the cost of m e a s u r i n g time. In addition, the model taken as a basis for the local field was not very realistic, as the authors t h e m s e l v e s admit, so their c a l c u l a t i o n s did not agree well with existing m e a s u r e m e n t s on 1 ~m interconnections. N e v e r t h e l e s s , this a p p r o a c h is w o r t h i n v e s t i g a t i n g further. In v i e w of the problems a s s o c i a t e d with the LFEs, the use of a l t e r n a t i v e analyzers, i.e. n o n - r e t a r d i n g - f i e l d analyzers, should be more e n e r g e t i c a l l y looked at. An example of an a l t e r n a t i v e of this kind is the time-dispersive detector suggested by A. K h u r s h e e d and A.R. Dinnis [147]. The use of e n e r g y - d i s p e r s i v e multichannel analyzers, as suggested by P. Kruit and L.D. D u b b e l d a m [159, 160], for example, should also be further pursued. The evaluations of energy-dispersive analyzers by E. M e n z e l and E. K u b a l e k [119] on the one hand and those in [159,160] on the other hand are contradictory. The author feels that the e v a l u a t i o n of the e n e r g y - d i s p e r s i v e a n a l y z e r in [119] led to results w h i c h w e r e too poor (due to the d e r i v a t i o n of the measuring error from the energy d i s t r i b u t i o n m a x i m u m and i n t e g r a t i o n over all e m i s s i o n angles) and those in [159,160] w e r e too good (because the local fields were ignored). In principle, m o r e inform a t i o n is o b t a i n e d by d e t e c t i n g the SE s p e c t r u m than by det e r m i n i n g its integral alone, which is what the r e t a r d i n g - f i e l d s p e c t r o m e t e r does. This also applies to the d e g r a d e d spectrum. In an a n a l y z e r w i t h several energy channels, the u n f a l s i f i e d SE spectrum can c e r t a i n l y be c o r r e l a t e d w i t h respect to a d e g r a d e d and shifted s p e c t r u m and thus a q u a n t i t a t i v e v o l t a g e m e a s u r e m e n t can be performed. However, such an analyzer must be r e q u i r e d to operate d i s p e r s i v e l y in an o p e n - l o o p technique [169] and in integrating mode in a feedback loop. Analyzers w h i c h could do this after some m o d i f i c a t i o n are in p r i n c i p l e a l r e a d y known [113, 114, 127, 128, 170]. But they have other drawbacks, so there is still work to be done here.

6. C O N C L U S I O N S

The a n a l y z e r for q u a n t i t a t i v e voltage m e a s u r e m e n t is the only electron-optical component for w h i c h real e l e c t r o n - o p t i c a l research w o r k must still be done to permit chip v e r i f i c a t i o n with the aid of e - b e a m testing for future ICs (from the 64 MB DRAM and beyond). A n o t h e r i m p o r t a n t e l e c t r o n - o p t i c a l p r o b l e m is the Boersch effect [172-183], w h i c h in the future must be taken even more s t r o n g l y into a c c o u n t in defining the overall beam path of the l o w - v o l t a g e column.

ACKNOWLEDGEMENTS

The a u t h o r wishes to thank Dr.M. Guntersdorfer, Prof. H.-J. Pfleiderer and Dr.E. W o l f g a n g for their general support, R. M i c h e l l for the t r a n s l a t i o n and Mrs. U. K r i e b i t z s c h for typing the final m a n u s c r i p t .

E. Plies / Electron-optical componenL9 for e-beam testing

200

REFERENCES

Abbreviation used: SEM = Scanning Electron Microscopy, SEM Inc., AMF O'Hare (Chicago), IL 60666, USA General

[i] [2]

[3] [4] [5]

[6] [7]

topics

P.W. Hawkes and E.Kasper, Principles of Electron Optics, Volume 1 (1989), Volume 2 (1989), Academic Press A. Septier (editor), Applied Charged Particle Optics, Part A (1980), Part B (1980), Part C (1983), Academic Press; Supplements 13 A, 13 B and 13 C to Advances in Electronics and Electron Physics P.W. Hawkes (editor), Magnetic Electron Lenses, Springer-Verlag (1982) L. Reimer, Scanning Electron Microscopy, Physics of Image Formation and Microanalysis, Springer-Verlag (1985) JoJ. Hren, F.A. Lenz, E. Munro and P.B. Sewell (editors), Electron Optical Systems for Microscopy, Microanalysis & Microlithography, Scanning Electron Microscopy Inc., AMF O'Hare, IL, USA A. Gopinath in Advances in Electronics and Electron Physics (P.W. Hawkes, editor), Vol. 6_~9 (1987) pp. 1-53, Academic Press K. Ura and H. Fujioka in Advances in Electronics and Electron Physics (P.W. Hawkes, editor), Vol. 7_~3(1989) pp. 233-317, Academic Press

Cathodes and electron Euns

[8] [9] [i0] [ii] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]

A.N. Broers, J. Appl. Phys. 38 (1967), 1991 and 3040 R. Shimizu, T. Shinike, S. Ichimura, S. Kawai and T. Tanaka, J. Vac. Sci, Technol. 15 (1978) 922 F.J. Hohn, T.H.P. Chang and A.N. Broers, Proc. Microcircuit Engineering 79 (Aachen, 1979) 31 C.Oshima,M.Aono, T.Tanaka, S.Kawai, R.Shimizu and H.Hagiwara, J. Appl. Phys. 5__!I(1980) 1201 Y.Furukawa,M.Yamabe,A.Itoh and T.Inagaki,J°Vac. Sci. Technol. 20 (1982)199 S.Yamazaki,H.Kawamoto, K.Saburi,H.Nakatiu and R.Buchanan, S E M I (1984) 23 J. Frosien, B. Lischke and R. Kerner, Proc. Microcircuit Engineering 84 (Berlin, 1984) 125 F.J. Hohn, SEM IV (1985) 1327 M. Gesley and F. Hohn, J. Appl. Phys. 6_~4(1988) 3380 A. Del~ge and P.W. Sewell in [5] p. 171 A.N. Broers, Proc° 5th Int. Conf. on Electron and Ion Beam Science and Technol. (Houston, 1972) 3 L.W. Swanson, D. Tuggle and J.-z° Li, Thin Solid Films 106 (1983) 241 M. Troyon, Proc. EUREM (Budapest, 1984) ii J. Orloff in [5] p. 149 J. Orloff, SEM IV (1984) 1585 J. Orloff, L.W. Swanson and J.-z. Li, J. Vac. Sci. Technol. B3 (1985) 224 R. Speidel and P. Brauchle, Optik 77 (1987) 46 R.A.Burghard,L.W. Swanson and J.Orloff, J.Vac. Sci. Technol. A5(1987) 364 M. Troyon, N. Hoan, F. Costa de Beauregard and P. Monsallut, Proc. EUREM 88 (York, 1988) i01 J. Orloff, Ultramicroscopy 2-8 (1989) 88 M. Troyon and A. Laberrigue, J. Microsc. Spectrosc. Electron. ~ (1977) 7 J.R.A. Cleaver, Optik 5__22(1978/79) 293 M. Troyon, Optik 5-7 (1980) 401 Specification of Electron-Beam Tester Model S-8000, Hitachi Ltd., Tokyo, Japan Specification of E-Beam Testing System 9000, Integrated Circuit Testing GmbH, D-8011 Heimstetten, F.R. Germany M. Eupper, Numerische Berechnung elektronenoptischer Eigenschaften yon Strahlerzeugern mit Spitzenkathode, Diplomarbeit Univers. T~bingen (1980)

E. Plies / Electron-optical components for e-beam testing [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49]

201

M. Troyon, J. Microsc. Spectrosc. Electron. ~ (1984) 9 R. Speidel and G. Benner, Optik 7__33(1986) 138 Ch. Kinaldis and J.C. Wolfe, J. Vac. Sci. Technol. B_~5(1987) 150 J.A. Venables and G. Cox, Ultramicroscopy 2__!i(1987) 33 • v. o A.Delong,J.Chmelak,V.Kolarlk,J.Komurka and J.O@adlik, Optik 8__!i(1989)103 A.M.E.Hoeberechts and G.G.P.van Gorkom, J.Vac. Sci. Technol. B__~4(1986) 105 G.G.P.van Gorkom and A.M.E.Hoeberechts, J.Vac. Sci. Technol. B4(1986) 108 G.G.P.van Gorkom and A.M.E. Hoeberechts, Philips Technical Review 4_~3 (1987) 49 Ch. Lee and P.E. Oettinger, Rev. Sci. Instrum 566 (1985) 560 S. W. Downey, L. A. Builta, D. C. Moir, T. J. Ringler and J.D. Saunders, Appl. Phys. Left. 4_~9 (1986) 911 P.E. Oettinger,I. Bursuc,R.E. Shefer and E. Pugh, Appl. Phys. Lett. 5__O0 (1987) 1867 P. May, J.-M. Halbout and G. Chiu, Appl. Phys. Lett. 5_~i (1987) 145 P.May,J.-M°Halbout and G.Chiu,IEEE J. of Quantum Electronics 24(1988) 234 P. May, J.-M. Halbout and G. Chiu, Proc. of SPIE, vol. 795 (1987) 201 C.A. Sanford and N.C. MacDonald, J. Vac.Sci. Technol. B6 (1988) 2005 O. Bostanjoglo and F. Heinricht, J. Phys. E: Sci. Instrum. 2__O0(1987) 1491

Electron beam pulsing [50] E. Lukianov and G.V. Spivak, Proc. Vlth Int. Cong. on Electron Microscopy (Kyoto, 1966) 611 [51] 0.I. Szentesi, J. Phys. E: Sci. Instrum. ~ (1972) 563 [52] M. Weinfeld and A. Bouchoule, Rev. Sci. Instrum. 47 (1976) 412 [53] L. Kotorman, SEM IV (1980) 77 [54] S.M• Davidson, Proc. EMAG (Cambridge, 1981), Inst. Phys. Conf. Set. No. 61 (1982) 39 [55] E. Plies, Proc. Xth Int. Cong. on Electron Microscopy (Hamburg, 1982) 319 [56] M. Troyon, Microelectronic Engineering ~ (1987) 105 [57] L.C. Oldfield, J. Phys. E: Sci. Instrum. ~ (1976) 455 [58] T• Hosokawa, H. Fujioka and K. Ura, Rev. Sci. Instrum. 4__99(1978) 624 [59] Y.D. Chernousov and I.V. Shebolaev, Instrum. & Exp. Tech. 2-7 (1984) 526 [60] H. H~bner and E. R~hm, Optik 7_88 (1988) 173 [61] E. Hieke, G. Meusburger and H. Alter, S E M I (1977) 219 [62] H. Fujioka, T. Hosokawa, Y. Kanda and K. Ura, S E M I (1978) 755 [63] E. Menzel and E. Kubalek, S E M I (1979) 305 [64] H. Sadorf and H.A. Kratz, Rev. Sci. Instrum. 56 (1985) 567 [65] H. Ueda, K. Nakamae, H. Fujioka, K. Ura and S. Takashima, Proc. Xlth Int. Cong. on Electron Mircroscopy (Kyoto, 1986) 639 [66] D. Winkler, R. Schmitt, M. Brunner and B. Lischke, Optik 7_88 (1988) 165 [67] M. Brunner, D. Winkler, R. Schmitt and B. Lischke, Scanning ~ (1987) 201 [68] B. Lischke, E. Plies and R. Schmitt, SEM III (1983) 1177 [69] I. Yamada and T. Takagi, IEEE Trans. Electron Devices ED-19 (1972) 204 [70] P.J.Fentem and A.Gopinath, IEEE Trans. Electron Devices ED-23 (1976) 1159 [71] A. Gopinath and M.S. Hill, J. Phys. E: Sci. Instrum. i__O (1977) 229 [72] A. Gopinath and K.G. Gopinathan, IEEE Trans. Electron Devices ED-25 (1978) 431 [73] H.P. Feuerbaum and J. Otto, J. Phys. E:Sci. Instrum. i~i (1978) 529 [74] K. Ozaki,A. Ito,Y. Goto,Y. Furukawa and T.Inagaki, J.Vac. Sci. Technol. B5 (1987) 84 [75] J.C. Eidson and R.K. Scudder, J. Vac. Sci. Technol.l__~9 (1981) 932 [76] H.P. Kuo, J. Foster, W. Haase, J. Kelly and B.M. Oliver, Proc. 10th Int. Conf. on Electron and Ion Beam Science and Technology (1983)Voi. i, p. 78 [77] H. Todokoro, S. Fukuhara and T. Komoda, SEM %I (1983) 561 [78] H. Rose and J. Zach in [5] p. 127 [79] J.T.L. Thong, S.C.J. Garth and B.C. Breton, Microelectronic Engineering (1987) 683 [80] H. Fujioka and K. Ura, Scanning ~ (1983) 3

202

E. Plies / Electron-optical components fi)r e-beam testing

Lenses and compound focusinE-deflection [81]

[82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94]

systems

J. Frosien and E. Plies, Electrostatic-Magnetic Lens for Particle Apparatus, US Patent Number 4,785,176, Nov. 15 (1988); priority date April 24 (1986) J. Dugas, P. Durandeau and C. Fert, Rev. d'Optique 4-8 (1961) 277 W.D. Riecke in [5] p. 1 T. Mulvey, Magnetic Lenses, US Patent Number 3,870,891, Mar. ii (1975): priority date Sept. 4 (1972) T. Mulvey in [5] p. 15 M.A. Sturans and H.C. Pfeiffer, Proc. Microcircuit Engineering 83 (Cambridge, 1983) 107 H.C. Pfeiffer and M.A. Sturans in [5] 109 M.A. Sturans, H.C. Pfeiffer, W. Stickel and T.R. Groves, J. Vac. Sci. Technol. B 6 (1988) 1995 T. Soma, Optik 4_~9 (1977) 255 Y. Li, Optik 63 (1983) 213 H.C. Ghu and E. Munro, Optik 61 (1982) 121 E. Plies, Siemens Forsch.- u. Entwickl.-Ber. 1-1(1982)38 and 83 E. Plies and R. Elstner Optik 8-3 (1989) 57 E. Plies and R. Elstner Optik 8-3 (1989) ii

Analyzers and detectors [95] [96] [97] [98] [99] [i00] [i01] [102] [103] [104] [105] [106] [107] [108] [109] [ii0] [iii] [112] [113] [114] [115] [116]

[117] [118] [119] [120] [121] [122] [123] [124] [125] [126]

J.A. Simpson, Rev. Sci. Instrum. 3__22(1961) 1283 P.W. Palmberg, J. Appl. Phys. 38 (1967) 2137 N.J. Taylor, Rev. Sci. Instrum. 4_~0 (1969) 792 J.D. Lee, Rev. Sci. Instrum. 4__3 (1972) 1291 D.A. Huchital and J.D. Rigden, J. Appl. Phys. 43 (1972) 2291 P. Staib, J. Phys. E: Sci. Instrum. ~ (1972) 484 J.D. Lee, Rev. Sci. Instrum. 44 (1973) 893 B.Wannberg,U.Gelius and K.Siegbahn, J.Phys. E: Sci. Instrum. ~(1974) 149 P. Staib and U. Dinklage, J. Phys. E: Sci. Instrum. I__O0(1977) 914 C.J. Workowski, J. Phys. E: Sci. Instrum. 1-3 (1980) 67 J.E. Dabbs, J. Phys. E: Sci. Instrum. 16 (1983) 57 H. Seller, J. Appl. Phys. 5-4 (1983) R1 D.W.Turner, I.R. Plummer and H.Q. Porter, Rev. Sci. Instrum. 5__99(1988) 45 H.M.van Noort and A.A. van Gorkum, J.Phys. E: Sci. Instrum. 2--1(1988) 587 P.J. Fentem and A. Gopinath, J. Phys. E.: Sci. Instrum. ~ (1974) 930 W.J. Tee and A. Gopinath, SEM IV (1976) 595 W.J. Tee and A. Gopinath, Rev. Sci. Instrum. 48 (1977) 350 Y.Goto,A.Ito,Y.Furukawa and T.Inagaki,J.Vac. Sci. Technol. i__99(1981) 1030 J.M. Hannah, P h . D . thesis, University Edinburgh (1974) L.J. Balk, H.P. Feuerbaum, E. Kubalek and E. Menzel, SEM IV (1976) 615 H.P. Feuerbaum, S E M I (1979) 285 G.S. Plows, An Electrode System of a Retarding Field Spectrometer for a Voltage Measuring Electron Beam Apparatus, European Patent Application Number 83902278.7, Jan. 7 (1988); priority date July 16 (1982) M. Cocito and D. Soldani, S E M I (1983) 45 D.W. Ranasinghe and A. Khursheed, Proc. 3rd Oxford Conf. on Microscopy of Semiconducting Materials (1983), Institute of Physics, p. 433 E. Menzel and E. Kubalek, Scanning ~ (1983) 151 A. Khursheed and A.R. Dinnis, Scanning 6 (1984) 85 E.Plies,Opposing Field Spectrometer for Electron Beam Mensuration Technology, US Patent Nr. 4,464,571,Aug.7(1984);priority date Sept.30 (1981) K. Ura, H. Fujioka and K. Nakamae, SEM III (1984) 1075 K.Nakamae,H. Fujioka and K. Ura, J. Phys. E: Sci. Instrum. 1-6 (1985) 437 K.Nakamae, H. Fujioka, K. Ura, T. Takagi and S. Takashima, J. Phys. E: Sci. Instrum. 19 (1986) 847 S.GOrlich,P.KeBler and E.Plies, Microelectronic Engineering ~ (1987) 147 K.Nakamae, H. Fujioka and K. Ura, J. Phys. D: Appl. Phys. 14 (1981) 1939

E. Plies / Electron-optical components for e-beam testing

203

[127] E. Plies, Abbildendes Spektrometer fur die Elektronenstrahl-Me~technik und Elektronenstrahl-Me6ger~t, German F.R. Patent Application Number DE 3138927AI, April 14 (1983); priority date Sept. 30 (1981) [128] P.Kesa, Vergleichende Untersuchung zweier planarer Gegenfeldspektrometer fur Sekund~relektronen, Diplomarbeit University MUnster 1984) [129] E. Menzel and R. Buchanan, Electron. Lett. 20 (1984) 408 [130] E. Menzel and R. Buchanan, J. Microsc. 140, pt. 3 (1985) 331 [131] T.T.Tang and S.C.Li and H. Wang,Microelectronic Engineerlng ~ (1989) 415 [132] H. Todokoro, S. Yoneda, K° Yamaguchi, S. Fukuhara and T. Komoda, J.Microsc. 140, pt. 3 (1985) 313 [133] H. Todokoro, S. Yoneda, S. Seitou and S. Hosoki, Proc. XIth Int. Cong. on Electron Microscopy (Kyoto, 1986) 621 [134] H. Todokoro, S. Yoneda, S. Seitou and S. Hosoki, Proc. IEEE Int. Test Conf. (Washington D.C., 1986) 600 [135] E. Plies, Low-Aberration Spectrometer Objective with High Secondary Electron Acceptance, US Patent Number 4,728,790, March 1 (1988); priority date June 14 (1985) [136] E. Plies and J. KOlzer, Proc. XIth Int. Cong. on Electron Microscopy (Kyoto, 1986) 625 [137] E.Plies and M.Schweizer, Siemens Forsch.- u. Entwickl.-Ber. i_66(1987) 30 [138] J. Frosien and E. Plies, Microelectronic Engineering ! (1987) 163 [139] J. Frosien, E. Kehrberg, M. Sturm and H.P. Feuerbaum, J. Electrochem. Soc. 135 (1988) 2038 [140] J. Frosien and Y. Tokunaga, Proc. Symp. on Electron Beam Testing (Osaka, 1988) i00 [141] D.J. HalI,A.W. Sloman and G.S. Plows,Proc. IEEE Int. Test Conf. (1989)928 [142] A.R. Dinnis, Microelectronic Engineering ~ (1987) 139 [143] A.R. Dinnis, Scanning Microscopy ~ (1988) 1407 [144] A.R. Dinnis and A. Khursheed, J. Vac. Sci. Technol. B6 (1988) 2003 [145] A.R. Dinnis and A. Khursheed, Mieroelectronic Engineering ~ (1989) 445 [146] B. Wolf, J. Zach and H. Rose, J. Phys. E: Sci. Instrum. 2_~2 (1989) 720 [147] A. Khursheed and A.R. Dinnis, Microelectronic Engineering, this volume [148] O. Klemperer, Electron Physics, The Physics of the Free Electron, 2nd edition, Butterworths, London (1972) p. 35 [149] J.D. Jackson, Classical Electrodynamics, 2nd edition, Wiley, New York (1975) p. 588 [150] P. Kruit and F.H. Read, J.Phys. E: Sci. Instrum. 1--6(1983) 313 [151] S.C.J.Garth, W.C.Nixon and D.F.Spicer,J.Vac. Sci. Technol. B4 (1986) 217 [152] S.C.J.Garth, Microelectronic Engineering ~ (1986) 121 [153] S.C.J.Garth and D.F. Spicer, SEM II (1986) 465 [154] S.C.J.Garth, Microelectronic Engineering 6 (1987) 667 [155] S.C.J.Garth, J.N. Sackett and D.F. Spicer, Microelectronic Engineering (1987) 155 [156] T. Aton, S.C. Garth, J.N. Sackett and D.F. Spicer, J. Vac. Sci. Technol. B_~6 (1988) 1953 [157] A. Muray and N. Richardson, Proc. Symp. on Electron Beam Testing (Osaka, 1987) i01 [158] N. Richardson and A. Muray, J. Vac. Sci. Technol. B6 (1988) 417 [159] P. Kruit and L. Dubbeldam, Scanning Microscopy ! (1987) 1641 [160] L. Dubbeldam and P. Kruit, Scanning Microscopy ! (1987) 1647 [161] L. Dubbeldam and P. Kruit, Microelectronic Engineering ! (1987) 231 [162] L. Dubbeldam and P. Kruit, Microelectronic Engineering, this volume [163] N. Tamura, Vorrichtung zur Erfassung der Sekund~relektronen in einem Rasterelektronenmikroskop, Patent DE 3126575 C2 of F.R. Germany, July 26 (1984); priority date July 31 (1980) [164] T. Otaka, Y. Nakaizumi and K. Kuroda, Secondary Electron Detector, Int. Patent Application Number PCT/JP85/O0170, Oct. 24 (1985); priority date April 6 (1984) [165] J. Zach and H. Rose, Scanning ~ (1986) 285 [166] R. Schmid and M. Brunner, Scanning ~ (1986) 294 [167] M. Brunner and R. Schmid, Scanning Microscopy ! (1987) 1501

204

E. Plies / Electron-optical components for e-beam testing

Other topics [168] D.KOllensperger, A.Krupp, M.Sturm, R.Weyl, F.Widulla und E.Wolfgang, Proc. IEEE Int. Test Conf. (Washington D.C.,1984) 550 [169] H0 Fujioka and K. Ura, J. Phys. E: Sci. Instrum. 18 (1985) 284 [170] P. Kruit, A.J. Bleeker and F.J. Pijper, Proc. EUREM 88 (York, 1988) 249 [171] E.Wolfgang,S.GOrlich and J.KOlzer,Proc. Oxford Conf. on Microscopy of Semiconducting Materials (1989),Institute of Physics Conf. Ser.,in print [172] H. Rose and R. Spehr, Optik 57 (1980) 339 [173] H. Rose and R. Spehr in [2] Part C, pp. 475-530 [174] J . M . J . van Leeuwen und G.H. Jansen, Optik 65 (1983) 179 [175] R. Spehr, Microelectronic Engineering ~ (1985) 61 [176] A. Weidenhausen, R. Spehr and H. Rose, Optik 6--9(1985) 126 [177] R. Spehr, Optik 70 (1985) 109 [178] G.H.Jansen,T.R.Groves and W.Stickel, J. Vac. Sci. Technol. B-5 (1985) 190 [179] G.H.Jansen, J. Vac. Sci. Technol. B-5 (1987) 146 [180] U. Schwab and R. Speidel, Optik 7-7 (1987) 141 [181] M.Troyon and M.Zinzindohoue,J.Microsc. Spectrosc. Electron. i_22(1987) 431 [182] M. Troyon, J. Microsc. Spectrosc. Electron. 1-5 (1988) 49 [183] G.H. Jansen, J. Vac. Sci. Technol. B6 (1988) 1977