Superlattices
and Microstructures,
ELECTRONIC
493
Vol. 3, No. 5, 1987
RAMAN
SCATTERING IN TILTED R.
Department Ann
IN QUANTUM WELLS: MAGNETIC FIELDS
Borroff
Research
University of Physics, Louisiana 70148, Orleans,
Laboratory,
of
S.
Michigan,
A.
Greene
J. Naval
LEVELS
Merlin
The University of Physics, Arbor, MI 48109-1120, U. R.L.
Department New
R.
and
COUPLED
of New U. S.
Orleans, A.
Comas Washington,
(Received
29 June
D.C.
20375,
U.
S.
A.
1987)
We report on a magneto-Raman scattering investigation of free and donor-bound electrons in GaAs-AlxGal_ As quantum wells. For fields perpendicular to the layers, tie spectra show ls*ls’ intersubband transitions of photoexcited electrons and donor excifations. Tilted fields lead to subband-Landau level and ls’-2p coupling. Experimental results for the latter case agree very well with variational calculations. Data on combined intersubband-cyclotron resonances at arbitrary tilt angles are accurately described by expressions valid for parabolic wells. The parabolic approach is shown to provide a good approximation in situations where coupling to higher subbands can be neglected.
In quasi two-dimensional (2D) electron systems the motions in the confinement plane (x,y) and perpendicular to it are coupled for magnetic fieldsle2at angles 0 + 0 with respect to z. 9 This leads to excitations of mixed character, such as combined intersubband-cyclotron resonances, exhibiting the well-known 2-7 anticrossing behavior near degeneracy. Subband-Landau level coupling has been extensively studied for 20 systegs7formed at semiconductor heter junctions Si-accumulation layers ’ using the tetE:ique of cyclotron resonance. For small 6’s these measurements provide a determination of the energies of intersubband ns which are forbidden at Small tilt angles were also used in the far infrare g (FIR) experiments of Jarotik et al. to study crossing of donor levels in quantum-well structures (QWS’s). In this work, we report on a Raman scattering (RS) investigation of tilted-field-induced mixing in GaAs-AlxGa _xAs QWS for both free and donor-boun d electron states. Our results
0749-6036/87/050493+04$02.00/0
complement t ose obtained from FIR-ex3-b periments; transitions that are weak or forbidden in FIR dominate the Raman spectra. For donor excitations, we find good agreement between the experimental results and those of calcu ations based B on a variational approach. The data on free electrons reveal coupling between the cyclotron mode and a, + E, transitions associated with the ground and first excited subband states. This coupling has been investigated in the range of parameters where perturbation theory applies, and beyond that range. Analytical ex ressions derived for parabolic wellsl’ were found to describe extremely well the latter results, for arbitrary 8. This unlikely situation is explained by the close similarity between the coupledmode equations for parrbolic and square wells under conditions where the coupling to higher subbands can be ignored. A QWS grown by molecular beam expi taxy on (001) GaAs was studied. It consisted of thirty uncoupled GaAs-wells of thickness L w 460 A, with 125-A-thick
0 1987
Academic
Press Limited
494
Superlattices
and Microstructures,
Vol 3, No. 5, 1987
A'0
dop6
;;“=“;~;,fA”;;-Y*ithThea
concentration width of the
donor
spike was 1: L/3. Free electron excitations were investigated on the same QWS. either by photoCarriers w re generated fl excitation or by thermal ionization of donors. The laser beam used to obtain RS data also served to photopump the sample. Power densities were in the range P = 2 - 10 Wcme2, giving an vt RS cm‘“9W. free electron density P - 10 experiments were performed at fields 8 C 7 T (the maximum field provided by our split-coil superconducting magnet) and at angles G between O" and 80°. The laser energy hwL was tuned to resonate with the gap derived from the Eo+AO gap of GaAs. At this resonance, the scatconductering involving states from th f3 Data tion band is strongly enhanced. were recorded in the z(x',x')? and )i backscattering configurations, z(x',y' with x' and y' denoting the [llO] and [lTO] directions and with z normal to the The former geometry allows scatlayers. tering by charge-density fluctuations while spin-density f~yc;~a;;;;:,;:;,;llowed in the latter. differences were found between spectra in the two configurations, indicating that depolarization effects are negligible. This is consistent with our estimate for a small value of P. In Fig. 1, we show Raman spectra of the QWS for different values of T, 8, and B. Features labeled D are donor-related, which is clear from their rapid quenching with increasing temperature due to impurity-ionization (data-for G = 300). The In the spectra strongest line at 88 cm for 0 = 30° is mostly due to the transidenotes the lowest donor tion Is+ls' (1s' state associated with the first-excited subband while the weaker structures at respec132 cm -1, and 137 cm-' are due 't transito the ls+2s and Is+2p tively, The latter excitations shift to tions. higher energies with increasing 0 (constant 8) while ls+ls’ moves in the opposite direction. The assignment of these transitions is based on the comparison with calculations considered below (for As opposed to see also Ref. 12). ls+ls’, the ls+ls' and the RS-allowed ls+Zs transitions, the ls+2p+ transition cannot be seen for fields perpendicular to the layers (G = 0). The 2p+-level transforms like {x,y) and its Raman activity at 0 $: 0 is derived from the coupling with which transforms like Is', j2;I.r";:;;;;" speaking, neither the ls+Zp transitions are allowed at 4 = 0 because the states have different parities ($ is the scattering wavevector). However, it
40
0
80
160
120
RAMAN SHIFT (cm-l) Fig.
1:
Raman spectra of the structure with L = 460 A as a function of T,G, and B. Features labeled D are donor-related. Dashed lines indicate the positions of the combined intersubband-cyclotron resonances. The scattering ge"j metry is z(x',y')i, P a 5 Wcm and hwL = 1.875 eV. 0 is the angle between the magnetic field and the z-axis of the QWS.
is a matter of fact that (z)-symmetry excitations (e.g., e,+e, intersubband transitions) can be obs rved in Raman 15 spectra for 4 along z. Mechanisms I"volving ;-dependent RS are requred to 13 account for these observations. The
dashed
combined nances.
lines
in
Fig.
1
intersubband-cyclotron At
2
K,
the
Intensity
lndlcate reso-
of
the
two
,
Superlattices
and Microstructures,
Vol. 3, No. 5, 1987
7-
E
-
0
>
i2
s W
c
01234567
4
1 0 EXPERIMENT
1
. THEORY
151(T) 3:
Fig.
The
energy
as
a
Q
is
2-4
6
8
2:
Comparison
between
calculated
values
function
of
angle.
25,
1s'
at
field measured
the
center
P60
A
GaAs-AlO
The
solid
tne
eye.
are
of
for
donor
a
of
the
a
QWS. guide
to
nearly due
with to
= 300, -1 cm IS
while the
An
=
cotip!
posltlon
not
tion
rusrng
at
=
=
slrghtly
It not
53
level
transition. by
?he
line
ascrlbed
c-loiely w!th
m
f requency aair.).
The
iarger
tr,e
ma55
f,>?r eie-t;r,ns
thr
GaAc
conouctlor,
to
=
O.G7 mj
tnsn
m at
band.
=
0
which
at
a
cor-
Eol.
explain
near
are as
is
the
the
free
,:alue
of
O.C,665
We
as
a
of
results
these
m
mQ,
the
bottom
of
The
Raman
sh:ft
is
very
In
FIR
edges
15
In
= of 9,
reason
which
our 1s Of
between
to
what
has
show
in
shown
feature
srmilar
for
plotted
transltions
coupling
we
any
calculations upon
trlted
3,
scat-
Al so
($1.
the
Fig.
of
are
8"
by
8
show at
rnterestrng
wells.
8
unlike
donor-related
0
Induced
the
is
that
for
drfference.
donor
the
out h0,
do
know
Ref.
measurements of
at
mode
this
the
most
data
point
varlational
of
2p '
reasonably
which
of
III
The
in
experimental
This
function
::1cLXt
al.
peak
not
at
described
and
do
rjansi-
ontinuities 14 predicts
to a
posrtions
assignment
the
the
cyclotron
measured 2
is
layers.
that
e,+e,
peI;.":
et
QWS
might
the
dis
important
he
Fig.
where
m,(nc
measured
shows
vs.
E
on
which
observe the
The
to
Miller
,
terlng by 0 _ ,.15,:k
based.
3s
inset T,
=
is
with
is
to
peaks,
our
fo,ilnws and
b -r
modulation-doped
For
from
:C"),
did
normal
transltions
!;
4.8
band-gap
agreement
value.
supported
angles
from
parabolic
The
hn,
much
the cm
we
at
derives
56
li-
'"2 cAn ue neglected except i,4 Fljr small angles, the
eiiB;mc,
eli=ctrcn
c,+ts, '1
cm 1s
5mai;
ms:de
cyciotron
1 -
component
to 98
=
G's,
depend
of
forL~c~;tering
Inter-Landau
.lf
cyclotron
1;
due
peak
roughly
carriers.
mostly I
intensity
expected
;ow-energy
i0r
degeneracy.
h$;,
as
rdentlflcatlon
results the
P
the
the
the
increases
pnotrexclted
G
This
to
phononsj
(81
assigned
determined
(normairzed
optical
10).
to
small
does
FOI good peaks
line at
tion,
are
obtained
The a
24GaQ.76As
lines
of
theore-
2pt
energies.
data
field.
The
splitting
responds
and
ls+2p-,
magnetic
for
(Ref.
inter-
excitations
where
coupled-mode
transition
theoretical
tilt
expressions
wells
of
coupled
level
curves
the
ISI (T) Fig.
the
the
tical
0
of
subband-Landau
donors the
1s'
field. been
This
reported at
imeasured
the
496
Superlattices
energies of the coupled intersubbandcf.clotron modes for two different tilt Level-repulsion is evident in the angles. figure. 8 = 80 is within the range where perturbati n theory can be applied. The q,4 of a splitting prediction proportional to 8 for hgc = E Ihas been confirmed by inset). Deparour experiments ? see the tures from results of perturbative calculations can be seen in the data of the inset at large angles and in the results for 8 = 60°. In particular, we find that the lower branch of the coupled modes for large B's, but does not approach E considerab 9'y from that value. deviates The theoretical curves in Fig. 3 were valid for paraexpressions obtained fro TO The agreement between bolic wells. theory and experiment is quite remarkabis also the case for the asymple. This of the lower branch which :;t;;,;e;;:vns to tend to EOtcos8 at high fields. The reason why a square well can be approximated by a parabolic one is basically due to the fact that the corresponding ground and first-excited subband states are very similar. The matrix elements involved in the coupled-mode problem for the two cases differ by less one can expect that parathan 2%. Hence, bolic solutions will apply to square wells if the coupling to higher subbands A detailed analysis of is not important. the coupled equations indicates that this condition is well-fullfilled for the range of parameters in our experiments.
2.
3. 4.
5.
6.
7.
8.
9. 10. 11.
12.
13.
14.
This work was supported by the U.S. Army Research Office under Contract No. DAAG29-85-K-0175 and the U.S. Office of Naval Research.
15.
16. REFERENCES 1.
F. Stern 163, 816
and W.E. (1967).
Howard,
Phys.
Rev.
and Microstructures,
Vol. 3, No. 5, 7987
T. Ando, Phys. Rev. B I9, 2106 (1979). See also: T. Ando, A.B. Fowler, and F. Stern, Revs. Mod. Phys. 54, 437 (1982). W. Beinvogl and J.F. Koch, Phys. Rev. Lett. 4C, 1736 (1978). 2. Schlesinger, J.C.M. Hwang,and S.J. Allen, Phys. Rev. Lett. 5-Q-2098 (1983). M.A. Brummell, M.A. Hopkins, R.J. Nicholas, J.C. Portal, K.Y. Chenq. and A.Y..Cho, J. Phys: C I9, L 107 (1986). G.L.J.A. Rikken, Ii. Sigg, C.J.G.M. H.W. Myron, J.A.A.J. Langerak, Perenboom, and G. Weimann, Phys. Rev. B 34, 5590 (1986). A.D. Wieck, J.C. Maan, U. Merkt, J P. Kotthaus, K. Ploog, and G. Weimann Phys. Rev. B 35, 4145 (1987). N.C. Jarosik, E. Castano, B.D. McCombe, Y.C. Lee, J. Ralston, and G. Wicks, Surface Sci. 170, 459 (1986 R.L. Greene and K.K. Bajaj, Phys. Rev. 913 (1985). 8 31, R. Merlin, Solid State Commun., in press. See: A. Pinczuk, J.Shah, A.C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 46, 1341 (1981). T.A. Perry, R. Merlin, B.V. Shanabrook, and J. Comas, Phys. Rev. Lett. z, 2623 ( 1985). See, e.g., G. Abstreiter, R. Merlin, and A. Pinczuk, IEEE J. Quantum Elec;r;noMw, ;';I ;;;8;;,, . . . . , and A.C. Gossard, Ph;s. Rev. B 29, 7085 (1984). J.M. Warlock, A. Pinczuk, 2.J. Tien, C.H. Perry, H. Stormer, R. Dingle, Gossard, A.C. W. Wiegmann, and R.L. Aggarwal, Solid State Commun. 40, 867 (1981). A. Pinczuk, D. Heiman, A.C. Gossard, and J.H. English, in Proceedinqs of the 18th International Conference on the Physics of Semiconductors, ed. by 0. Engstrom (World Scientific, Singapore, 1987), p. 557.