Elements and their transitions feasible for NEET

Elements and their transitions feasible for NEET

Atomic Data and Nuclear Data Tables 91 (2005) 1–7 www.elsevier.com/locate/adt Elements and their transitions feasible for NEET S. Sakabe a,*, K. Taka...

186KB Sizes 3 Downloads 88 Views

Atomic Data and Nuclear Data Tables 91 (2005) 1–7 www.elsevier.com/locate/adt

Elements and their transitions feasible for NEET S. Sakabe a,*, K. Takahashi b, M. Hashida a, S. Shimizu a, T. Iida b a

b

Institute for Chemical Research, Kyoto University, Gokasho, Uji Kyoto 611-0011, Japan Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita Osaka 565-0871, Japan

Abstract Electron and nuclear transitions in the nuclear excitation by electron transition (NEET) process have been investigated. The NEET transitions for nuclei are presented in a table in which the electron and nuclear transitions, their transition energies, transition multipoles, and nuclear spin angular momentum are given. The elements are listed for which the difference between the electron and nuclear transition energy is <5 keV, because the NEET probability will be appreciable if the electron transition energy is close to the nuclear transition one. As both the experimental and theoretical studies for NEET are at an early stage, only the elements and their parameters related to NEET are listed here. The present compilation, however, provides a useful direction for future studies of NEET and its applications to nuclear science.  2005 Elsevier Inc. All rights reserved.

*

Corresponding author. Fax: +81 774 38 3289. E-mail address: [email protected] (S. Sakabe).

0092-640X/$ - see front matter  2005 Elsevier Inc. All rights reserved. doi:10.1016/j.adt.2005.07.002

2

S. Sakabe et al. / Atomic Data and Nuclear Data Tables 91 (2005) 1–7

Contents 1.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Explanation of Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 1. Elements with electron and nuclear transitions feasible for NEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Introduction The nuclear excitation by electron transition (NEET) process was first suggested in 1973 by Morita [1], who also calculated the expected probability. The following reported experiments studied the existence of the predicted NEET process. Shinohara et al. had intensively studied the NEET process for some nuclei. The experimental data [2–21], however, are too limited to discuss the suitability of the existing theories, which have been presented more recently [22–26]. Table A shows the experimental data where large discrepancies in the probabilities obtained can be seen. Early experiments using broadband photoexcitation, such as synchrotron white radiation or electron impact excitation, observed not only nuclear decay products due to NEET but also those due to direct nuclear excitation, and therefore tended to overestimate NEET probabilities by orders of magnitude. Recent more mature experiments [19–21] using monochromatic X-rays to avoid the direct nuclear excitation observed the NEET process more reliably. For future studies and applications [27–30], it is useful to survey the elements that are feasible for the NEET pro-

cess. Some nuclei suitable for the NEET have been investigated by Okamoto [31] and are compiled here in more detail for all nuclei. An atom bombarded by electrons, ions, or photons is ionized and an electron hole is created in an inner shell. X-ray and Auger emission are well known as the subsequent relaxation processes. In heavier atoms for which inner electron orbits tend to lie closer to the nucleus, nuclear excitation can proceed via a third relaxation process, namely NEET. It is described by a nuclear excitation by a virtual photon created through the atomic de-excitation, or by inverse internal conversion. To induce the NEET, the following conditions are required. The nuclear transition energy EN must be close to an atomic transition energy EA. Second, the spin and parity changes of atomic DJ pN and nuclear DJ pA transitions must be identical to each other. In summary, the NEET conditions [1,31] are EN  EA and DJ pN ¼ DJ pA . The present authors have compiled the nuclear and electron transitions from the Nuclear Data Sheets [32] and the CRC Handbook of Chemistry and Physics [33], respectively, and listed the elements that satisfy the first conditions. In Table 1, only elements are listed

Table A Experimentally observed elements and transitions for NEET Nucleus

Ele.-tran.

Nucleus tran. (energy)

DE

Tran.

Observers

Year

Method

Probability

Ref.

181

L3 fi M1

7/2+ fi 9/2[6.218]

+0.963

E1

Shinohara et al.

1983

c-ray

<2.8 · 103

[9]

Ta

6

189

K fi M4

3/2 fi 5/2[69.52]

+2.32

E2

Otozai et al. Otozai et al. Saito et al. Lakosi et al. Shinohara et al. Lakosi et al. Ahmad et al. Aoki et al.

1973 1978 1981 1986 1987 1995 2000 2001

e-beam e-beam Brems. Brems. SR Brems. Monochro.SR Monochro.SR

1.0 · 10 1.7 · 107 4.3 · 108 4.0 · 108 5.7 · 109 2.0 · 108 9.0 · 1010 <4.1 · 1010

[2] [3] [7] [13] [14] [18] [20] [21]

197

K fi M1

3/2+ fi 1/2+[77.345]

0.048

M1

Fujioka et al. Shinohara et al. Kishimoto et al.

1984 1983 2000

e-beam e-beam SR

2.2 · 104 5.1 · 105 5.0 · 108

[12] [10,17] [19]

235

O4 fi P3

7/2 fi 1/2+[0.0768]

0.005

E3

Izawa et al. Shinohara et al. Bounds et al.

1979 1984 1992

Laser X-ray tube Laser

1 · 1012 <9 · 1010 4 · 105

[4,5] [11,16] [15]

237

K fi L3

5/2+ fi 7/2[102.95]

1.88

E1

Saito et al. Shinohara et al.

1980 1981

237

c-ray Pu(EC)

2.1 · 104 <4 · 103

[6] [8]

Os

Au

U

Np

Energy and DE are in keV and we use the following abbreviations: Brems. = Bremsstrahlung; R = synchrotron radiation; Monochro.SR = monochromatic synchrotron radiation.

S. Sakabe et al. / Atomic Data and Nuclear Data Tables 91 (2005) 1–7

3

References

Fig. 1. Nuclear transition energy dependence on atomic number. The transitions are from a ground state to the lowest, second, and third lowest excitation states. For the nucleus of which the lowest excitation energy is over 150 keV, the second and third lowest excitation energies are not plotted.

where the difference between the electron and nuclear transition energy is <5 keV. This energy range, 5 keV, may be too large to expect a significant NEET probability, but here we cannot exclude such low probability to supply data for future discussion. For the second condition we must know both JA values of the initial and final states of the inner shell ionized atom. Here we have compiled the transitions of n fi n + i, considering only the main quantum number, such as K1–M2. The K1shell or M2-shell ionized state has several JA values, depending on the energy. We do not treat the numerical calculation of the JA values here, and only the JN values are given in the table. Fig. 1 shows the energy of the lowest excited states (and second- and third-lowest states for some elements) and the K-shell energy as a function of atomic number. Here we consider only the transition to the ground state of the nucleus. The nuclear transition energy tends to decrease as the atomic number increases. Only nuclei for which the transition energy is close to or less than the K-shell energy of the atoms are feasible for the NEET, because the atomic electron transition energy is never larger than the K-shell energy. It can be seen that the atoms with Z > 30 are feasible for the NEET process. In Table 1, the elements of atomic number larger than 32 are listed. Acknowledgments The authors thank K. Ledingham for useful comments for the present manuscript and A. Shinohara for presenting useful information for the references.

[1] M. Morita, Prog. Theor. Phys. 49 (1973) 1574. [2] K. Otozai, R. Arakawa, M. Morita, Prog. Theor. Phys. 50 (1973) 1771. [3] K. Otozai, R. Arakawa, T. Saito, Nucl. Phys. A 297 (1978) 97. [4] Izawa, C. Yamanaka, Phys. Lett. B 88 (1979) 59. [5] Y. Izawa, H. Ohtani, C. Yamanaka, Laser Interaction and Related Plasma Phenomena, vol. 5, Plenum, New York, 1980, p. 289. [6] T. Saito, A. Shinohara, K. Otozai, Phys. Lett. B 92 (1980) 293. [7] T. Saito, A. Shinohara, T. Miura, K. Otozai, J. Inorg. Nucl. Chem. 43 (1981) 1963. [8] A. Shinohara, T. Saito, R. Arakawa, K. Otozai, H. Baba, K. Hata, T. Suzuki, Japan Atomic Energy Research Institute report, JAERI-M No. 9362, 1981. [9] A. Shinohara, T. Saito, H. Baba, OULNS Ann. Rept. 1982 (1983) 141. [10] A. Shinohara, T. Saito, K. Otozai, H. Fujioka, T. Kadota, K. Ura, OULNS Ann. Rep. 1982 (1983) 144. [11] A. Shinohara, T. Saito, K. Taniguchi, H. Baba, S. Ikeda, K. Otozai, OULNS Ann. Rep. 1983 (1984) 132. [12] H. Fujioka, K. Ura, A. Shinohara, T. Saito, K. Otozai, Z. Phys. A 315 (1984) 121. ´ . Veres, in: R.A. Meyer, V. [13] L. Lakosi, I. Pavlicsek, Zs. Ne´meth, A Paar (Eds.), Symmetries and Nuclear Structure, Nucl. Sci. Res. Conf. Ser., vol. 13, Harwood Academic, Switzerland, 1987, p. 568, The result is revaluated in Ref. [18]. [14] A. Shinohara, T. Saito, M. Shoji, A. Yokoyama, H. Baba, M. Ando, K. Taniguchi, Nucl. Phys. A 472 (1987) 151. [15] J.A. Bounds, P. Dyer, Phys. Rev. C 46 (1992) 852. [16] A. Shinohara, T. Saito, K. Taniguchi, K. Otozai, S. Ikeda, H. Baba, Chem. Lett. 1995 (1995) 19. [17] A. Shinohara, T. Saito, K. Otozai, H. Fujioka, K. Ura, Bull. Chem. Soc. Jpn. 68 (1995) 566. [18] L. Lakosi, N.C. Tam, I. Pavlicsek, Phys. Rev. C 52 (1995) 1510. [19] S. Kishimoto, Y. Yoda, M. Seto, Y. Kobayashi, S. Kitao, R. Haruki, T. Kawauchi, K. Fukutani, T. Okano, Phys. Rev. Lett. 85 (2000) 1831. [20] I. Ahmad, R.W. Dunford, H. Esbensen, D.S. Gemmell, E.P. Kanter, U. Ruett, S.H. Southworth, Phys. Rev. C 61 (2000) 051304. [21] K. Aoki, K. Hosono, K. Tanimoto, M. Terasawa, H. Yamaoka, M. Tosaki, Y. Ito, A.M. Vlaicu, K. Taniguchi, J. Tsuji, Phys. Rev. C 64 (2001) 044609. [22] K. Pisk, Z. Kaliman, B.A. Logan, Nucl. Phys. A 504 (1989) 103. [23] Y.-K. Ho, B.-H. Zhang, Z.-S. Yuan, Phys. Rev. C 44 (1991) 1910. [24] A. Ljubicic, D. Kekez, B.A. Logan, Phys. Lett. B 272 (1991) 1. [25] E.V. Tkalya, Nucl. Phys. A 539 (1992) 209. [26] M.R. Harston, Nucl. Phys. A 690 (2001) 447. [27] V.L. Ginzburg, Phys. Today 43 (1990) 9. [28] G.C. Baldwin, J.C. Solem, V.I. GolÕdanskii, Rev. Mod. Phys. 53 (1981) 687. [29] G.C. Baldwin, R.V. Khokhlov, Phys. Today 28 (1975) 32. [30] K. Okamoto, J. Nucl. Sci. Tech. 14 (1977) 762. [31] K. Okamoto, Nucl. Phys. A 341 (1980) 75; K. Okamoto, Laser Interaction and Related Plasma Phenomena, vol. 4A, Plenum, New York, 1977, p. 283. [32] Nuclear level schemes for A = 40–226 from Nucl. Data Sheets 16 (1975)—67 (1992). [33] CRC Handbook of Chemistry and Physics, 80th edition, 1999.

4

S. Sakabe et al. / Atomic Data and Nuclear Data Tables 91 (2005) 1–7

Explanation of Table Table 1.

Elements with electron and nuclear transitions feasible for NEET A Elem. EN EA DE Electron–hole transition Transition multipole JN1, JN2 Atom excitation life Nucleus half life

Atomic mass number Isotope Transition energy to the lowest, the second-lowest, or third-lowest excitation state from the ground state in a nucleus, in keV Transition energy from the electron inner shell hole to the outer shell in an atom, in keV EN  EA Levels involved in the transition E1, E2, EL = electric dipole, quadrupole, 2L-pole, M1, M2, M3 = magnetic dipole, quadrupole, 2L-pole Spin angular momentum of initial and final states of a nuclei. ( ) denotes weak arguments Lifetime of the atomic state Half life of the nucleus

S. Sakabe et al. / Atomic Data and Nuclear Data Tables 91 (2005) 1–7

5

Table 1 Elements with electron and nuclear transitions feasible for NEET. See page 4 for Explanation of Table A

Elem.

EN (keV)

EA (keV)

DE (keV)

Electron–hole transition

Transition multipole

J pN1

J pN2

Atom excitation life

73 83 83 85 86 94 98 101 101 102 103 103 104 105 105 106 108 110 112 117 118 119 119 120 120 121 123 125 125 127 128 129 129 129 129 134 134 135 136 137 138 139 140 142 143 143 143 146 146 147 150 151 151 152 153 153 153 153 155 156 157

32Ge

13.275 9.396 5.25 19.8 5.1 4.39 21.8 13.497 15.601 20 2.81 27.54 6.9 20.610 25.472 28.6 29.75 1.113 18.5 28.6 31.20 27.01 23.870 8.40 25.1 6.30 24.6 27.50 35.499 4.7 27.362 27.79 39.578 6.545 8.42 11.2461 31.897 41.40 40.19 10.56 10.81 31.86 29.9653 3.6815 33.32 29.811 45.1 12.23 35.05 50.6 42.1 4.821 41.4 45.5994 32 7.535 35.843 41.55 39.38 49.630 54.535

11.0744 12.4046 2.0511 17.0128 1.7774 2.0511 21.0051 17.134 18.0015 20.5991 2.7948 25.5107 3.8025 21.5322 25.4514 27.9237 27.9237 0.7142 21.7082 25.5107 30.4891 26.7019 24.7354 4.6962 27.9813 4.4636 24.7354 28.3163 31.8115 4.4636 27.9813 27.9813 34.4147 5.7029 5.9742 5.7029 32.6583 41.6861 40.4796 6.2519 5.7029 33.5624 32.6583 4.4533 32.1936 32.6583 42.9963 6.8125 35.1558 50.7207 41.5421 4.9934 46.2235 46.719 37.7561 7.4894 39.0974 41.8635 44.7427 50.0282 50.2188

2.2006 3.0086 3.1989 2.7872 3.3226 2.3389 0.7949 3.637 2.4005 0.5991 0.0152 2.0293 3.0975 0.9222 0.0206 0.6763 1.8263 0.3988 3.2082 3.0893 0.7109 0.3081 0.8654 3.7038 2.8813 1.8364 0.1354 0.8163 3.6875 0.2364 0.6193 0.1913 5.1633 0.8421 2.4458 5.5432 0.7613 0.2861 0.2896 4.3081 5.1071 1.7024 2.693 0.7718 1.1264 2.8473 2.1037 5.4175 0.1058 0.1207 0.5579 0.1724 4.8235 1.1196 5.7561 0.0456 3.2544 0.3135 5.3627 0.3982 4.3162

K–M4,5 K–L1 L1–N3 K–N2,3 L1–N3 L1–N3 K–N2,3 K–L1 K–L1 K–M2 L3–N2,3 K–N4,5 L1–N4,5 K–M1 K–N2 K–N4,5 K–N4,5 M1–N4,5 K–L1 K–N4,5 K–O2,3 K–N4,5 K–L1 L1-O2,3 K–L1 L1–O2,3 K–L1 K–M1 K–O2,3 L1–O2,3 K–L1 K–L1 K–N3 L1–O3 L1–O3 L1–O3 K–L1 K–N1 K–M1 L1–O2,3 L1–O3 K–M2 K–L1 L3–M1 K–L3 K–L1 K–L3 L1–O2,3 K–L1 K–M4 K–L3 L3–M1 K–L1 K–M1 K–L1 L1–N3 K–L1 K–L1 K–L1 K–M1 K–O2,3

E2 M1+E2 M1 [M4]

9/2+ 9/2+ 5/2 (1/2) (2) 3() (6)+ 1/2+ (9/2)+ 1+ (3/2)+ 7/2+ 5+ 3/2+ 1/2 7+ 7+ 1+ 2() (1/2) 1+ (1/2+) 1/2+ 1+ 2 3/2+ 11/2 11/2 1/2+ (11/2) 1+ 7/2+ 1/2+ 1/2+ 1/2+ 4+ 1+ 3/2(+) 2+ 7/2+ 3() 3/2 3 2 5/2 (7/2)+ (1/2)+ (2) (2) (1/2+) 5() 5/2 (11/2) 3 5/2 3/2+ 3/2+ 3/2 3/2 3 3/2

5/2+ 7/2+ 3/2 9/2+ (0,1)

2.95 ls 147 ns 71.5 ns 4.86 h

36Kr 37Rb 39Y 35Br 37Rb 43Tc 42Mo 43Tc 43Tc 44Ru 47Ag 47Ag 44Ru 47Ag 49In 49In 47Ag 47Ag 47Ag 51Sb 48Cd 50Sn 51Sb 53I 50Sn 50Sn 50Sn 52Te 50Sn 53I 53I 54Xe 55Cs 56Ba 55Cs 57La 59Pr 59Pr 57La 55Cs 54Xe 57La 59Pr 56Ba 57La 64Gd 59Pr 59Pr 65Tb 63Eu 62Sm 67Ho 63Eu 61Pm 62Sm 62Sm 64Gd 66Dy 65Tb 64Gd

M1+E2 [M1] E2 M1? M1 M1+E2 E3

E3 M1+E2 M1 M1+E2 E1 (M4)

M1 M1+E2 M1+E2 E2 E3

M1(+E2)? M1+E2 M1 M1 [M1,E2] M1+(E2) M3 E2 E2 [M1] M1 M1+E2

M1+E2

M1 E1 M1+E2 M1+E2 E1 M1+E2

(5)+ 3/2+ (5/2)+ (5/2)+ 9/2+ 2+ (5/2)+ 7/2+ (3)+ 2+ 2 (1+) (7/2+) (2+) (3/2+) 3/2+ 2 1+ 11/2 3/2+ 3/2+ 3/2+ (3/2+) 2+ 5/2+ 3/2+ 5/2+ (7/2)+ 5+ 5/2(+) 1+,2+ 5/2+ (2) (5/2) 2 5 (1/2) (3/2)+ (3/2+) (1,2) (1,2) (11/2) 0() 3/2 (1/2+) 0 5/2+ 5/2+ 3/2 5/2 5/2 4+ 5/2

Nucleus half life

Stable Stable 86.2 d 2.68 h 55.1 s 2.702 s 4.2 · 106 y 223 ns 14.61 m 26.8 ns 14.22 m 5.28 s 39.26 d 65.7 m 33.5 m 69.2 m 340 ns 4.44 h 7.23 m 41.29 d 5.2 m 6.2 m 39.6 m 58.0 m 660 ns 24.6 s 3.130 h 5.34 s 72.8 s 3.6 m 2.3 ns 2.69 m 18.08 ns Stable 15.89 m 13.6 ns 81.0 m 55 y 27.06 h 40.08 m 129.2 d 9.52 m 9.64 d 1.48 ns Stable 4.13 m 2.10 h 24.99 m 16.8 ns 1.57 · 107 y 1.01 ns Stable 72 ns 32.06 h 2.17 h 2.23 h 45.7 ns 2.062 y 6.45 m 24 m 9.4 ns 13.1 m 89 ns 60000 y 32.2 m 39.68 s 0.25 ns 1.6781 d 14.6 m 19.12 h 14.33 s 14.2 m 39 s 24.15 m 24.15 m 1.83 m 1.7 h 12.8 h 35.8 y 35 ns 90 y 47.2 s 35.2 s 9.274 h 13.542 y 5.4 m 46.7 h <0.1 ns 46.7 h 4.1 ns 241.6 d 3.4 ns 10.0 h 24.4 h 5.35 d 130 ps Stable (continued on next page)

6

S. Sakabe et al. / Atomic Data and Nuclear Data Tables 91 (2005) 1–7

Table 1 (continued) A

Elem.

EN (keV)

EA (keV)

DE (keV)

Electron–hole transition

Transition multipole

J pN1

J pN2

Atom excitation life

Nucleus half life

157 157 159 159 160 161 161 162 163 163 165 165 165 166 167 169 171 171 171 172 175 175 176 179 180 181 181 182 183 183 183 183 183 185 185 186 186 187 187 187 188 188 188 189 189 189 189 191 191 193 193 193 193 194 195 196 197 197 197 198 199 199

67Ho

53.05 10.30 56.63 59.18 59.98 43.8211 59.50 44.651 13.517 53.87 47.156 62.676 11.6 5.985 10.48 8.4103 5.029 66.721 76.4 65.78 51.4 68.9 69.5 65.39 74.6 68 6.238 16.263 68.57 12.3 12.9 73.3 67.4 8.9 17.18 59.010 66.4 9.746 9.27 19.47 63.582 16.0 82.7 69.537 9.89 64.3 92 74.38 11.6 73.041 80.22 1.642 14.276 80.51 61.435 84.66 71.60 77.351 84.90 95 77.18 5

53.4894 9.747 53.7843 57.4812 55.614 44.7427 57.4812 49.2739 10.1104 52.3887 47.7342 57.4812 10.1104 5.9428 10.1104 8.2312 6.3412 61.326 73.8245 63.3069 55.7349 67.3914 67.3914 68.7447 71.6358 65.3337 7.1731 11.6565 65.3337 12.1471 13.594 77.3 68.263 8.7709 14.3503 59.1497 64.8958 9.9195 9.3558 14.3503 61.1411 14.3503 80.7224 70.8223 9.713 68.263 90.5015 73.8245 11.6098 72.9373 76.0505 1.6889 13.877 80.391 66.3721 80.7224 75.0988 77.3 84.9381 90.5015 77.3 3.85

0.4394 0.553 2.8457 1.6988 4.366 0.9216 2.0188 4.6229 3.4066 1.4813 0.5782 5.1948 1.4896 0.0422 0.3696 0.1791 1.3122 5.395 2.5755 2.4731 4.3349 1.5086 2.1086 3.3547 2.9642 2.6663 0.9351 4.6065 3.2363 0.1529 0.694 4 0.863 0.1291 2.8297 0.1397 1.5042 0.1735 0.0858 5.1197 2.4409 1.6497 1.9776 1.2853 0.177 3.963 1.4985 0.5555 0.0098 0.1037 4.1695 0.0469 0.399 0.119 4.9371 3.9376 3.4988 0.051 0.0381 4.4985 0.12 1.15

K–M1 L1–N6,7 K–N6,7 K–N6,7 K–N6,7 K–L1 K–N6,7 K–L1 L1–N6,7 K–L3 K–L1 K–N6,7 L1–N6,7 L3–M1 L1–N6,7 L1–M3 L3–M1 K–N6,7 K–N6,7 K–N6,7 K–L1 K–N6,7 K–N6,7 K–M1 K–N6,7 K–N6,7 L3–M1 L1–N6,7 K–N6,7 L1–M5 L1–N1 K–M1 K–L1 L3–M2 L1–O4,5 K–L1 K–L3 L1–M1 L3–M4 L1–O4,5 K–L3 L1–O4,5 K–O4,5 K–M1 L3–M5 K–L1 K–O5 K–N6,7 L1–M3 K–M1 K–N7 M4–N3 L1–O4,5 K–N5 K–L1 K–O4,5 K–M1 K–M1 K–M3 K–O5 K–M1 M1–P3

(E1)

7/2 3/2 3/2 3/2 5+ 5/2+ 3/2 1 1/2+ 3/2 5/2 5/2 1/2+ 0 1/2+ 1/2+ 1/2+ 1/2

5/2+ 5/2 5/2 2 7/2+ 5/2 2 3/2+ 5/2 5/2+ 7/2+ 3/2+ (7) 3/2+ 3/2+ 3/2+ 3/2

20 ns 6.8 ns 0.21 ns <300 ps 5.02 h 0.83 ns 60.15 ns 1.44 ns <0.9 ns 3.8 ns 4.0 ns

4 7/2+ 7/2+ (1) (5/2+) (1) 1/2 7/2+ 3 (3/2) (5/2) (5/2) (5/2) 1/2 5/2 5/2 1 5+ 1/2 3/2 1/2+ 1 1() 1() 3/2 1/2+ 3/2 (9/2) 9/2 3/2+ 3/2+ 3/2+ 1/2 1/2 1 3/2+ 2 1/2 3/2+ 3/2 (7+) 3/2+ 3/2

(0)+ (5/2) (1/2) (1-,2-,3) (5/2) (2)+ (9/2,7/2)+ 9/2 5+ (5/2) (9/2) (3/2) (1/2+) (1/2,3/2,5/2) (9/2) (3/2) 2 (6) 3/2 (3/2) 3/2+ (2) (2) 1+ 5/2 3/2+ (5/2) (1/2+) 3/2 (1/2+) 1/2+ 11/2 3/2 5/2 (3) 1/2+ 5+ 3/2 1/2+ 5/2 (5+) 1/2+ 5/2

12.6 m 18.65 m 144.4 d 36 m 25.6 m Stable 3.21 h 21.70 m 1.810 h 11.05 m 10.36 h 10.36 h 30.06 h 26.83 h 9.25 d Stable 1.92 y Stable 8.0 s 6.70 d 10.5 h 10.5 h 8.09 h 19.5 m 2.44 m 42.39 d Stable 114.43 d 1.067 h 42.0 s 42.0 s 42.0 s 8.8 s 4.3 m 4.3 m 90.64 h 16.64 h Stable 2.35 h 8.4 m 16.98 h 8.84 m 8.84 m Stable 28.7 m 7.6 m 680 ms 15.4 d 3.18 h Stable Stable 50 y 50 y 38.02 h 186.09 d 6.183 d 18.3 h Stable 8m 11.85 m 3.139 d 90 m

68Er 66Dy 68Er 67Ho 66Dy 68Er 69Tm 69Tm 70Yb 68Er 68Er 69Tm 67Ho 69Tm 69Tm 69Tm 70Yb 76Os 71Lu 73Ta 73Ta 73Ta 75Re 75Re 72Hf 73Ta 73Ta 72Hf 79Au 79Au 79Au 80Hg 79Au 79Au 75Re 77Ir 76Os 78Pt 79Au 75Re 79Au 79Au 76Os 79Au 80Hg 83Bi 76Os 79Au 77Ir 77Ir 78Pt 78Pt 79Au 79Au 79Au 78Pt 79Au 82Pb 83Bi 79Au 82Pb

M1+E2 M1+E2 E3 M1+E2 M1+E2 M1+E2 M1+E2 M1+E2 E1+(M2) E1 M1+(E2) M1+E2 M1+E2 M1+E2 M1+E2

(M1) [E1] E1 E1 (M2) E2 M1 E1 E2 (E2) M1+E2

M1(+E2) M1 M1,E2

M1+E2 [M1] M1+E2 M3+M4 [M1]? M1+E2 M4 M1 M1+E2 M1+E2 [M1,E2] M1+E2 M1 [E2] M1+E2

0.75 ns 1200 y 0.95 ns 4.08 ns 4.77 ns 0.81 ns 0.332 ls

95 ls

6.05 ls 283 ms

>1 ls 4.8 ns 7 ns

2.38 ns 61 ns 6.5 ns 56 ps 0.67 ns 1.4 ns 1.62 ns 30 ns 0.40 ns 5 ms 13.10 h 15.5 ns 6.09 ns 10.53d 9.7 ns 2.52 ns 3.0 ns 8.1 s 1.91 ns

1.3 ns

S. Sakabe et al. / Atomic Data and Nuclear Data Tables 91 (2005) 1–7

7

Table 1 (continued) A

Elem.

EN (keV)

EA (keV)

DE (keV)

Electron–hole transition

199 201 201 201 201 202 202 204 204 205 210 212 214 217 217 219 219 221 221 223 224 224 224 225 227 228 229 229 229 229 231 231 232 233 235 235 235 237 237 237 237 237 239 239 239 241 241 243 243 246 248 248 249 249 249 251 251 251 252 253 254 255 258

84Po

72 1.561 88.5 6.5 100 7 72 15 78.188 2.329 72.65 79 95 99.5 93.1 4.46 14.38 99.6 103.5 79.722 84.373 14.1 98.0 102 24.5 6.67 5 21 0.16 15 96.135 9.21 105.2 86.477 19 0.0768 13.040 90 105 11.39 102.96 106 98.63 117.84 7.861 95.69 103 105 124.6 16.23 135.06 137.81 26.234 8.78 136.2 24.825 105.73 8.3 120 136.60 129 117 142

76.1657 1.5846 87.9853 4.118 98.17 9.4195 74.1384 15.4493 77.1073 2.3025 78.2369 82.498 90.5015 95.5259 93.922 4.248 14.3854 99.984 103.623 84.6852 84.6852 14.0812 93.3506 104.4686 20.4291 4.69 4.69 20.4291 0.1483 15.3996 93.3506 11.8868 105.4863 91.4968 19.7175 0.0727 12.8629 91.4968 107.2345 11.6183 101.068 103.7612 98.4398 117.8621 8.8275 98.7208 103.76 103.7612 121.7126 16.8235 131.192 135.541 24.075 6.158 135.541 24.831 109.85 6.542 119.08 135.541 132.02 118.25 146.48

4.1657 0.0236 0.5147 2.382 1.83 2.4195 2.1384 0.4493 1.0807 0.0265 5.5869 3.498 4.4985 3.9741 0.822 0.212 0.0054 0.384 0.123 4.9632 0.3122 0.0188 4.6494 2.4686 4.0709 1.98 0.31 0.5709 0.0117 0.3996 2.7844 2.6768 0.2863 5.0198 0.7175 0.0041 0.1771 1.4968 2.2345 0.2283 1.892 2.2388 0.1902 0.0221 0.9665 3.0308 0.76 1.2388 2.8874 0.5935 3.868 2.269 2.159 2.622 0.659 0.006 4.12 1.758 0.92 1.059 3.02 1.25 4.48

K–L1 M4–N1 K–O5 M1–O5 K–O2 L3–M1 K–L1 L1–N1 K–L3 M3–N2 K–L1 K–L1 K–O5 K–O2 K–M1 M1–O2 L3–O2 K–N1 K–N6,7 K–L1 K–L1 L2–M1 K–L3 K–M1 L1–P3 M1–O2 M1–O2 L1–P3 N6–O2,3 L2–M1 K–L3 L3–M1 K-N1 K–L1 L1-N1 O4-P3 L3-M3 K–L1 K–M1 L3–M1 K–L3 K–L3 K–L3 K–N4 M1–O5 K–L1 K–L1 K–L3 K–O5 L2–M1 K–O1 K–O1 L1–O1 M1–O1 K–O1 L1–N3 K–L1 M1–O1 K–L3 K–O1 K–L3 K–L1 K–M1

80Hg 82Pb 84Po 86Rn 83Bi 83Bi 83Bi 83Bi 82Pb 85At 87Fr 83Bi 85At 86Rn 86Rn 86Rn 87Fr 88Ra 88Ra 88Ra 89Ac 90Th 90Th 90Th 89Ac 89Ac 90Th 91Pa 92U 90Th 91Pa 89Ac 91Pa 91Pa 92U 92U 91Pa 91Pa 92U 93Np 94Pu 92U 93Np 94Pu 94Pu 96Cm 93Np 94Pu 95Am 97Bk 98Cf 96Cm 97Bk 98Cf 98Cf 98Cf 99Es 99Es 98Cf 103Lr 101Md 103Lr

Transition multipole

M1?

E2 M1

M1(+E2) E2(+M1) M1+E2 M1+E2 E1 E1 E2

M1+E2

E2

E1 E3 M1+E2?

M1+E2

[M2] [E2] M1+E2 M1

[E2],M1?

J pN1

J pN2

3/2 3/2 5/2 3/2 (3/2) 5+ 5+ 6+ 6+ 5/2 (5)+ 5+ 1 9/2 9/2+ 5/2+ 5/2+ 5/2 5/2+ 3/2+ 0+ 0 0+ (3/2)+ (1/2+) 3(+) (3/2+) 5/2+ (5/2+) (3/2+) 5/2(+) 3/2 (1+) 3/2 (3/2) 7/2 7/2 (1/2+) (1/2+) 1/2+ 5/2+ 7/2 5/2+ 5/2+ 1/2+ 5/2+ 1/2+ (5/2) 7/2+ (7) (6+) 0+ 1/2(+) 7/2+ 9/2 1/2+ 1/2+ (3/2) (5) (7/2+)

5/2 1/2 3/2 5/2 (5/2) (7+) 5+ (4)+ (3)+ 1/2 (4)+ (4+)

(7/2)

7/2 5/2+,7/2+ 3/2+,5/2+,7/2+ (3/2,5/2)+ (5/2,7/2) (5/2) (5/2) 2+

Atom excitation life

<0.5 ns 15.4 ns 875 ps 80 ps 0.24 ns 0.746 ns

2+ (3/2+) 1(+) (5/2+) (5/2) 9/2(+) 1/2 (0-,1) 5/2+ (1/2+) 1/2+ 3/2+ (3/2) (9/2+) 3/2+ 7/2 11/2 9/2+ 7/2 3/2+ 9/2+

11/2+ (0,1,2) (8) 4+ 3/2(+) (3/2) (13/2) 3/2+ 7/2+ (7/2+) (0-,1-,2) (11/2+)

0.42 ls

35.7 ns 25 m 0.50 ns

80 ps

640 ps 36 ps

0.3 ms

Nucleus half life 5.2 m Stable 9.33 h 15.3 m 7.0 s 1.72 h 1.72 h 11.22 h 11.22 h 1.52 · 107 y 8.1 h 20.0 m 19.9 m 32.3 ms 0.54 ms 3.98 s 3.98 s 4.9 m 28 s 11.435 d 3.66 d 2.9 h 1.05 s 8.72 m 18.72 d 6.15 h 62.7 m 7340 y 1.50 d 58 m 25.52 h 32760 y 119 s 28.967 d 24.1 m 703.8 · 106 y 703.8 · 106 y 8.7 m 8.7 m 6.75 d 2.14 · 106 y 45.2 d 23.50 m 2.3565 d 24110 y 14.35 y 32.8 d 1.8 m 4.958 h 39 m >9 y 333.5 d 64.15 m 320 d 351 y 898 y 898 y 33 h 471.7 d 17.81 d 13 s 27 m 4.3 s