Spectrochimica Acta Part A 56 (2000) 681 – 702 www.elsevier.nl/locate/saa
Emission spectra of HCN/HNC in the 2–5 mm range of astrophysical interest Nathalie Picque´ *, Guy Guelachvili Laboratoire de Photophysique Mole´culaire (Associe´ a` l’Uni6ersite´ de Paris-Sud), Unite´ Propre du CNRS, Uni6ersite´ de Paris-Sud, Baˆtiment 350, 91405 Orsay-Cedex, France Received 13 April 1999; accepted 15 June 1999
Abstract Emission from H12C14N observed with a Fourier transform spectrometer from a radio-frequency excited plasma is reported in the 2400–3400 cm − 1 spectral range of astrophysical interest. The molecular constants, for 21 vibration– rotation bands are given, as well as estimates of the first-order Herman-Wallis coefficients for 11 bands. These constants are derived from about 900 observed transitions in HCN, and are used to generate a sequential linelist of about 1400 calculated line positions, within a standard deviation equal to 3 ×10 − 4 cm − 1. The relative intensities of the observed lines are also reported, as well as those for the n1 band of H14N12C, at 3650 cm − 1, simultaneously observed from the same plasma. © 2000 Elsevier Science B.V. All rights reserved. Keywords: Emission spectra; HCN; Vibration–rotation bands; HNC; Fourier transform spectroscopy
1. Introduction HCN is a well-known important interstellar molecule. Through its numerous overtone, combination and hot bands, it makes a large contribution to the opacity of carbon stars. Especially, the recent ISO (Infrared Space Observatory) spectra reveal a forest of emission lines, from the wellknown CO and from vibrationally excited HCN, which have to be modelled to detect other species of interest. The HCN vibrational and rotational temperatures in these media are reported to be * Corresponding author. Tel.: +33-1-69156649; fax: + 331-69157530. E-mail address:
[email protected] (N. Picque´)
around 700–1500 K in the carbon-rich circumstellar envelope of IRC+ 10216 [1]. An important amount of work has been accomplished already on HCN in the infrared. Up to 1994, it is compiled in [2]. Recently, exhaustive studies on line positions between 500 and 10 000 cm − 1 [3] and on intensity measurements of fundamental [4], hot bands [5] and other weak transitions [6] have been reported from absorption Fourier transform (FT) spectra by Maki and coworkers. Preliminary results of emission spectra of the bending modes of HCN in a heated cell have also been presented by the Giessen group [7]. In the present paper, an FT emission spectrum from a radio-frequency (rf) excited plasma between 2400 and 3400 cm − 1 is reported. This
1386-1425/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S 1 3 8 6 - 1 4 2 5 ( 9 9 ) 0 0 1 5 2 - 3
682
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
region corresponds in particular to the near infrared spectral range, observed thanks to the ISO short wavelength spectrometer. These measurements should provide a complementary dataset to the existing ones, which are only obtained from absorption experiments. They are performed under experimental conditions, thermodynamically closer than the laboratory absorption spectra, to the HCN formation conditions in the circumstellar envelopes. The molecular constants, for 21 vibration–rotation bands are given, as well as estimates of the first-order Herman – Wallis coefficients for 11 bands. These constants are derived from about 900 observed transitions in H12C14N, and are used to generate a sequential linelist of about 1400 calculated line positions, within a standard deviation equal to 3× 10 − 4 cm − 1. The n1 band of H14N12C is observed simultaneously with a weak signal-to-noise ratio, and its relative intensities are given. The labelling convention adopted in this paper to denote the stretching bands is that n1 designates the CH stretch and n3 the CN stretch, as recommended in [8]. In Herzberg’s book [9], n1 and n3 are interchanged in the vibrational numbering scheme.
2. Experiment The experimental setup has been described in [10]. Essentially, it is made of a 3-m-long plasma reactor connected to the step-scan Fourier interferometer of the LPPM. The plasma is excited by a 1000 W rf discharge, through a constant flow of N2 and H2. The partial pressures of N2 and H2 are 85 mTorr each. The plasma emission is about 1.5 m long. A multi-reflexion White-type optical cell is located inside the reactor. It gives a corresponding emission path length of the order of 50 m. The entire free-spectral range extends from 0 to 4200 cm − 1. The actual low wavenumber limit is 1700 cm − 1, due to the InSb detectors which were used. The apodized resolution of the spectrum, nb. 1701, is 0.009 cm − 1, and the recording time is 4.5 h. HCN was observed in the spectrum, due to carbon impurities in the plasma reactor. NH and CO were also present in the spectrum. The n1 band of HNC was observed too, but with a poor signal to noise ratio. Calibration was obtained from the 1–0 band of CO, at around 2100 cm − 1 [11]. Fig. 1 represents a portion of the high resolution spectrum, around 3300 cm − 1. The plasma
Fig. 1. Portion of the observed high resolution FTS emission spectrum in the region of the intense 1000 – 0000 band of H12C14N.
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
683
for astrophysical purposes, we decided to perform the fit with unconstrained constants. The basic formula for line frequencies nobs which were used in the fit are: nobs = E% −E¦ where % and ¦ designate the upper and lower energy levels, respectively. The energy E is given by E(6, J, l)= G6 + B6 J(J+ 1)− D6 (J(J+ 1)− l2)2 where G6 is the vibrational energy level, B6 and D6 are the harmonic and centrifugal distortion rotation constants, respectively. The band center is defined as nc = G% −G¦. For 62 \ 0 states, the l-type resonance has to be included. For 62 =1 states, the l-type doubling term is 1/2(q6 − q6JJ(J+ 1))J(J+ 1) is added to the energy expression. For 62 = 2 states, the eigen-values of the symmetrical matrix energy M, with l=2, given below are determined.
Fig. 2. Energy level diagram showing the 21 observed H12C14N bands.
M= Á E(6, J, l) Ã ÃW(l −2, l) Ã ÄW(l −4, l)
W(l, l −2) E(6, J, l −2) W(l− 4, l − 2)
W(l, l − 4) Â Ã W(l− 2, l− 4) Ã Ã E(6, J, l− 4) Å
where results in a preferential population of the CH stretching states, which is just the way that the HCN lasers operate. Actually, it may be that the bending modes relax more quickly than the CH stretching modes. Fig. 2 represents the 21 vibration–rotation H12C14N bands measured in the spectrum on a schematic energy level diagram.
W(l − 2, l)=W(l, l−2) = 1/4(q6 − q6J J(J +1)) ((62 + l)(62 − l+ 2) (J(J+ 1) −l(l−1)) (J(J +1 −(l − 1)(l− 2))1/2
and W(l − 4, l)=W(l, l−4)
3. Frequency analysis 12
14
Around 900 H C N lines from 21 vibration– rotation bands were found to be correctly measurable in the spectrum, and were fitted in a global least-squares procedure. The measurements were weighted by the inverse of their estimated squared uncertainty. Since the essential aim of this work is to provide appropriate data
= r/16((62 + l)(62 − l+ 2)(62 + l− 2) (62 − l+ 4) (J(J + 1) − l(l−1)(J(J + 1)− (l− 1)(l− 2)) (J(J + 1)− (l− 2)(l−3)) (J(J + 1)− (l− 3)(l−4))1/2
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
684
where r is the l-type resonance parameter. Explicit expressions of the eigen-values of this matrix M, with l=2, can be found in [12]. Tables 1 and 2 report, respectively, the band centers nc and the rovibrational constants B6, D6, q6, q6J and r determined from the observed H12C14N transitions, with their standard deviations. The third-order constants (H6 and q6JJ ) were set to zero, since their inclusion in the fit led to unsignificant results. The standard deviation of the fit is equal to 3 ×10 − 4 cm − 1. The results are in good agreement with those from Ref. [3], within the experimental uncertainty. Table 3 summarizes the range of observation of each band, as a function of the maximum rotational quantum number J observed and of the wavenumber. Table 4 gives the calculated wavenumbers, with the observed–calculated values and the relative intensity of the lines (explained below), when available. Most often, the lines which have not been observed were overlapped by neighbouring profiles
0
10 0–00 0 1000–0110 1001–0001 1001–0111 1002–0002 1110–0110 1111–0111 1200–0200 1220–0220 2000–1000 2000–1110 2001–1001 2002–1002 2110–1110 2111–1111 2200–1200 2220–1220 3000–2000 3001–2001 3110–2110 4000–3000
3311.477 2599.497 3296.852 2588.121 3282.353 3292.183 3277.760 3272.896 3272.679 3208.134 2515.448 3191.884 3176.023 3188.601 3172.740 3169.202 3168.857 3107.477 3088.879 3087.600 3008.809
The relative intensities of the lines are given in Table 4 in arbitrary unit, with the most intense line set to 10 000. They correspond to the elongation of the center of the observed line profile corrected from the instrumental efficiency obtained from the spectrum of a blackbody source at a known temperature. The first-order Herman–Wallis term A1 is then determined experimentally for the bands 1000– 0110, 1000–0000, 1001–0001, 1001–0111, 111e0– 111f0–011f0, 2000–1000, 2001–1001, 011e0, 0 0 0 0 0 0 20 2–10 2, 300 –20 0, 30 1–20 1, 4000– 3000 from the ratio of reduced line intensities, as explained below. The integrated intensity I of a rovibrational emission line can be written as:
B 6% M 6¦\ 2 SF(m)
Band center (cm 0
4. Relative intensity analysis
I= Kn 4N6% exp(− Erot(J%)hc/kTrot)/Qrot(Trot)
Table 1 H12C14N band centers, nc (in cm−1) a Band
from the other species present in the plasma (NH, CO…).
09 43 67 36 18 37 88 74 57 03 01 31 87 85 06 45 33 57 22 44 77
(1)
−1
)
(4) (15) (16) (89) (69) (11) (28) (25) (27) (7) (43) (37) (66) (23) (89) (38) (39) (20) (72) (50) (50)
a The numbers between parentheses are one standard deviation in units of the last digit.
where K= 64p4c× 10 − 36/3, n is the transition frequency, N6% is the number density of molecules in the upper vibrational state 6%, Erot(J%) is the energy of the upper rotational state, h, k and c are Planck’s constant, Boltzmann’s constant and the velocity of light, Trot is the rotational temperature, and Qrot the rotational partition function. B 6% M 6¦\ is the rotationless transition dipole moment expressed in Debye and S is the Ho¨ln– London factor. The vibration–rotation interaction term F, which is a function of vibrational as well as rotational quantum numbers and can be expanded for the P- and R- branch transitions of HCN in the form: F(m)= (1+ A1m+ A2m 2)2 Reduced intensities Ired are obtained from Eq. (1). They are given by Ired = I/(SKn 4)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
685
Table 2 Rovibrational constants (in cm−1) of the H12C14N energy levels a Level
B6
0000 0001 0002 0110 0111 0200 b 0220 b 1000 1001 1002 1110 1111 1200 b 1220 b 2000 2001 2002 2110 2111 2200 b 2220 b 3000 3001 3110 4000
1.478 1.468 1.457 1.481 1.471 1.485 1.484 1.467 1.457 1.448 1.471 1.461 1.475 1.474 1.457 1.447 1.437 1.461 1.451 1.465 1.464 1.446 1.436 1.450 1.434
218 153 999 767 649 822 992 795 946 007 554 699 821 985 070 442 723 043 403 669 871 029 632 224 430
9 (11) 4 (44) (21) 8 (16) 5 (58) 5 (30) 5 (28) 8 (11) 2 (44) (22) 2 (18) 6 (60) 6 (36) 2 (38) 9 (13) 1 (52) (23) 0 (23) (11) 3 (53) 3 (61) 9 (20) 4 (86) 3 (51) 0 (47)
D6×106
q6×103
q6J×108
2.904 2.924 2.917 2.967 3.050 3.056 3.037 2.879 2.903 2.903 2.947 3.061 3.043 3.022 2.855 2.885 2.887 2.930 3.046 3.026 3.007 2.831 2.869 2.911 2.908
– – – 7.487 7.528 – 7.590 – – – 7.607 7.705 – 7.729 – – – 7.691 7.840 – 7.820 – – 7.759 –
– – – 8.70 (30) 10.14 (77) – 9.29 (42) – – – 9.50 (38) 10.35 (87) – 10.2 (15) – – – 9.44 (46) 10.8 (23) – 10.4 (18) – – 10.6 (14) –
4 (13) 5 (59) (26) 7 (22) 1 (42) 0 (24) 12 (27) 4 (14) 2 (62) (30) 1 (27) 6 (47) 9 (29) 1 (35) 3 (16) 4 (77) (34) 1 (32) (16) 0 (35) 1 (36) 5 (28) (15) 4 (90) 2 (82)
1 (14) 9 (84) 5 (21)
1 (18) 8 (92) 8 (34)
9 (23) (13) 9 (39)
8 (55)
a The (l, l−4) coupling constant r results from a global fitted value involving the bands marked by an asterisk. The numbers between parentheses are one standard deviation in units of the last digit. b r=−0.109 (89) 10−7 cm−1.
The ratio of the reduced intensities IR and IP, in R- and P- branch respectively, of two lines which originate from a common upper vibrational 6% rotational J% level, is given by IR (J%)/IP (J%) = [(1+A1 J%+ A2 J%2) /(1− A1(J% + 1) +A2(J% +1)2)]2 This equation can be rearranged to obtain
IR(J%)/IP(J%) −1 = A1(J%+(J% +1) IR(J%)/IP(J%)) + A2(J%2 −(J%+ 1)2 IR(J%)/IP(J%)) In principle, this equation can be solved to obtain both A1 and A2 using only two different
values of J%. Although much more lines are included in the calculation, the A2 constant was found to be not significant, and consequently taken equal to zero. Table 5 gives the resulting values of A1 for the eleven considered bands together with the standard deviation of the results. To our knowledge, these estimates are given for the first time, except for the n1 band in Ref. [13] where A1 = − 0.226 (36)× 10 − 2, and in Ref. [4] where A1 comes from a fit for H12C15N and is equal to − 0.149 (5)×10 − 2. The inclusion of F(m) in the Arrhenius representations, giving ln(Ired/F(m)) as a function of Erot(J%), brings the P- and R- branch plot into coincidence. The rotational temperatures are obtained via the determination of the slope of these linear plots, which is equal to (−hc/kTrot). The
686
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
rotational temperature value is internally consistent for these bands, and is equal to 6709 30 K. The kinetic temperatures, determined via the Doppler-limited observed linewidths are about of the same value, showing rotational equilibrium in the plasma. The intercepts of the Arrhenius plots at Erot(J%) = 0 are equal to ln( B6% M 6¦ \ 2 N6%/Qrot(Trot)). Qrot is approximately equal to kTrot/hcB6¦. If a Boltzmann equilibrium between the vibrational levels is assumed, thanks to the Einstein coefficients calculated by Botschwina [14], vibrational
temperatures between respectively the n1 and 2n1, 2n1 and 3n1, and 3n1 and 4n1 levels are found to be T2 − 1 = 11 800 K, T3 − 2 = 12 400 K, T4 − 3 = 12 600 K. As evoked in Section 2, the n1 band of HNC is observed, but with a weak signal to noise ratio. Using the ab initio band intensity values given in [15], the ratio between the observed intensities in their n1 bands of HCN and HNC yields a density of HNC in the 61 = 1 level of about 2% of the density of HCN in the 61 =1 level. The relative intensities of the individual
Table 3 Domain of observation of the H12C14N bands in terms of assignment and spectral range a Band
Band identification
From…to… (assignment)
From…to… (cm−1)
1000–0000 1000–0110 1001–0001 1001–0111 1002–0002 111e0–011e0 111f0–011f0 111e1–011e1 111f1–011f1 1200–0200 122e0–022e0 122f0–022f0 2000–1000 2000–1110 2001–1001 2002–1002 211e0–11e0 211f0–111f0 211e1–111e1 211f1–111f1 2200–1200 222e0–122e0 222f0–122f0 3000–2000 3001–2001 311e0–211e0 311f0–211f0 4000–3000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
P(37)–R(35) P(31)–R(28) P(28)–R(28) P(26)–R(18) P(38)–R(25) P(32)–R(30) P(30)–R(29) P(32)–R(24) P(19)–R(13) P(22)–R(20) P(28)–R(18) P(28)–R(17) P(39)–R(34) P(20)–R(8) P(27)–R(24) P(33)–R(22) P(25)–R(21) P(28)–R(26) P(24)–R(13) P(25)–R(13) P(16)–R(21) P(30)–R(14) P(28)–R(15) P(32)–R(28) P(26)–R(21) P(25)–R(20) P(29)–R(22) P(27)–R(18)
3188.8–3403.5 2498.7–2676.1 3207.2–3372.8 2505.6–2640.0 3158.2–3350.9 3187.8–3373.3 3194.5–3356.2 3174.2–3359.7 3218.4–3317.0 3203.1–3330.4 3182.4–3325.5 3182.0–3322.7 3078.5–3296.9 2452.8–2540.9 3106.0–3257.8 3070.0–3236.8 3109.1–3247.7 3098.3–3260.1 3097.2–3211.3 3093.5–3211.6 3119.6–3228.7 3072.2–3211.0 3078.7–3213.3 3003.7–3182.1 3006.8–3147.0 3008.4–3143.7 2994.2–3148.9 2922.8–3059.3
a The ‘band identification’ column refers to the convention adopted in Table 4. The l = 1 and l = 2 bands are given two identification numbers due to the l-doubling.
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
687
Table 4 Rovibrational transitions of H12C14N, between 2400 and 3400 cm−1 Calculated (cm−1)a
2452.7764 2456.1035 2459.4108 2462.6981 2465.9653 2469.2124 2472.4393 2475.6459 2478.8322 2481.9979 2485.1431 2488.2677 2491.3716 2494.4547 2497.5169 2498.7288 2500.5582 2502.2614 2503.5785 2503.6166 2504.5225 2505.3929 2505.5783 2505.7762 2506.2276 2506.5777 2507.0265 2507.7896 2508.5169 2508.9819 2509.2082 2509.2729 2509.5557 2509.8635 2510.4827 2511.0658 2511.6127 2512.1233 2512.3681 2512.5977 2512.7516 2513.0358 2513.4375 2513.8028 2514.1317 2514.4241 2514.6800 2514.8994 2515.0822 2515.2285
Observed– calculated (10−4 cm−1)
Intensity b
5
185
4 10 3 0
203 196 242 322
2
208
20
161
2
154
8
126
12 5
112 196
3
250
16 4
116 296
4
357
21 11
101 347
5 3 9
372 358 371
2
247
Band no. c
Assignment d
Calculated (cm−1)a
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 2 14 2 14 14 14 14 4 2 14 14 14 14 14 4 14 2 14 14 14 14 14 14 4 14 2 14 14 14 14 14 14 14 14 14
P(20) P(19) P(18) P(17) P(16) P(15) P(14) P(13) P(12) P(11) P(10) P(9) P(8) P(7) P(6) P(31) P(5) P(30) P(4) Q(25) Q(24) Q(23) P(26) P(29) Q(22) P(3) Q(21) Q(20) Q(19) P(25) Q(18) P(28) P(2) Q(17) Q(16) Q(15) Q(14) Q(13) P(24) Q(12) P(27) Q(11) Q(10) Q(9) Q(8) Q(7) Q(6) Q(5) Q(4) Q(3)
2515.3383 2515.4114 2515.7368 2516.2120 2518.3621 2519.0879 2519.6542 2521.2548 2522.4211 2523.0779 2524.1260 2525.7365 2526.4832 2526.9756 2529.0339 2529.8036 2529.8699 2532.3131 2532.6099 2533.2379 2535.3944 2535.5741 2536.5872 2538.1570 2538.8167 2539.9176 2540.8978 2542.0409 2543.2290 2545.2465 2546.5214 2548.4335 2549.7947 2551.6016 2553.0488 2554.7509 2556.2835 2557.8813 2559.4989 2560.9925 2562.6948 2564.0846 2565.8711 2567.1575 2569.0278 2569.8893 2570.2110 2570.9818 2572.0416 2572.1648
Observedcalculated (10−4 cm−1)
Intensity b
32
113
18
124
39 3 4
146 209 434
50 1 9 19 1 20 12 4 7 1 21 1 34 1 21 2
126 497 170 133 529 131 174 619 242 674 163 668 141 703 182 717
3 46 0 23 3 43 0 8 23
718 181 748 151 828 196 775 178 138
2
730
Band no. c
Assignment d
14 14 4 2 14 4 2 14 4 2 14 4 2 14 4 14 2 4 14 2 14 4 2 14 4 2 14 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 4 4 4 2
Q(2) Q(1) P(23) P(26) R(0) P(22) P(25) R(1) P(21) P(24) R(2) P(20) P(23) R(3) P(19) R(4) P(22) P(18) R(5) P(21) R(6) P(17) P(20) R(7) P(16) P(19) R(8) P(15) P(18) P(14) P(17) P(13) P(16) P(12) P(15) P(11) P(14) P(10) P(13) P(9) P(12) P(8) P(11) P(7) P(10) Q(32) P(6) Q(31) Q(30) P(9)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
688 Table 4 (Continued) Calculated (cm−1)a
2573.0687 2573.2451 2574.0629 2575.0241 2575.2820 2575.9521 2576.2597 2576.8469 2577.7082 2578.3793 2578.5360 2579.2547 2579.3302 2580.0906 2580.8172 2580.9306 2581.4566 2581.5098 2582.0475 2582.1684 2582.2300 2582.7929 2583.1305 2583.3831 2583.9390 2584.1796 2584.4606 2584.5139 2584.9477 2585.1945 2585.4003 2585.8183 2586.1754 2586.2016 2586.5503 2586.8643 2587.1219 2587.1435 2587.3878 2587.5511 2587.5973 2587.7720 2587.9117 2588.0165 2588.0342 2588.0864 2588.9120 2589.7554 2590.5641 2590.5682 2591.0372
Observed– calculated (10−4 cm−1)
4
Intensity b
693
1
663
27
115
7 5
198 629
6
607
33
251
21 3
229 524
26
175
5
334
5 1
399 494
Band no. c
4 4 4 4 2 4 4 4 4 2 4 4 4 4 4 2 2 4 2 4 4 4 2 4 4 2 4 2 4 2 4 4 2 4 4 4 2 4 4 2 4 4 4 4 2 4 2 2 2 2 4
Assignment d
Calculated (cm−1)a
Q(29) P(5) Q(28) Q(27) P(8) Q(26) P(4) Q(25) Q(24) P(7) Q(23) P(3) Q(22) Q(21) Q(20) Q(32) P(6) Q(19) Q(31) Q(18) P(2) Q(17) Q(30) Q(16) Q(15) Q(29) Q(14) P(5) Q(13) Q(28) Q(12) Q(11) Q(27) Q(10) Q(9) Q(8) Q(26) Q(7) Q(6) P(4) Q(5) Q(4) Q(3) Q(2) Q(25) Q(1) Q(24) Q(23) Q(22) P(3) R(0)
2591.3383 2592.0777 2592.7823 2593.4521 2593.5649 2593.9332 2594.0870 2594.6869 2595.2519 2595.7817 2596.2765 2596.7361 2596.8091 2597.1605 2597.5497 2597.9036 2598.2222 2598.5054 2598.7534 2598.9659 2599.1431 2599.2848 2599.3911 2599.4620 2599.6649 2602.4330 2602.5005 2605.3160 2605.3481 2608.1111 2608.2425 2610.8859 2611.1163 2613.6404 2613.9693 2616.3744 2616.8015 2619.0879 2619.6129 2621.7809 2622.4033 2624.4534 2625.1727 2627.1052 2627.9211 2629.7364 2630.6484 2632.3468 2633.3545 2634.9366 2636.0393
Observedcalculated (10−4 cm−1)
Intensity b
0 0 3 1
640 649 761 892
1 1 0 1 1 1
936 960 1013 1185 1172 1220
1 0 1 2 1 1 0 1 1 7
1255 1272 1200 1215 1125 1032 949 812 667 503
51
97
36
118
17
120
1 53 1
330 133 416
2 29 2 28
494 141 503 115
10 8 13
96 483 116
48
131
Band no. c
2 2 2 2 2 4 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 4 2 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Assignment d
Q(21) Q(20) Q(19) Q(18) P(2) R(1) Q(17) Q(16) Q(15) Q(14) Q(13) Q(12) R(2) Q(11) Q(10) Q(9) Q(8) Q(7) Q(6) Q(5) Q(4) Q(3) Q(2) Q(1) R(3) R(0) R(4) R(5) R(1) R(6) R(2) R(7) R(3) R(8) R(4) R(9) R(5) R(10) R(6) R(11) R(7) R(12) R(8) R(13) R(9) R(14) R(10) R(15) R(11) R(16) R(12)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
689
Table 4 (Continued) Calculated (cm−1)a
2637.5055 2638.7029 2640.0537 2641.3452 2643.9660 2646.5655 2649.1434 2651.6997 2654.2345 2656.7476 2659.2391 2661.7088 2664.1567 2666.5828 2668.9870 2671.3692 2673.7296 2676.0679 2922.7732 2926.2495 2929.7037 2933.1359 2936.5461 2939.9342 2943.3001 2946.6440 2949.9656 2953.2651 2956.5423 2959.7972 2963.0298 2966.2401 2969.4280 2972.5934 2975.7364 2978.8568 2981.9546 2985.0298 2988.0823 2991.1121 2994.1191 2994.1780 2997.1032 2997.6816 3000.0644 3001.1658 3003.0026 3003.6699 3004.6304 3005.9177 3006.7956
Observed– calculated (10−4 cm−1) 40
Intensity b
105
4 0 1
99 491 476
3
396
3 3 7 7
261 240 220 203
5 9 24 21 2 10 1 15 12 2 3 8 9 2 6 2 11 14 1 7 13 18 3
109 217 194 174 188 292 207 244 199 878 305 334 384 340 379 361 333 366 336 332 348 316 254
19 7 27 13 5
156 236 143 594 154
7 20
230 159
11
120
Band no. c
Assignment d
Calculated (cm−1)a
4 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 27 28 27 28 27 28 24 27 28 25
R(17) R(13) R(18) R(14) R(15) R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) R(24) R(25) R(26) R(27) R(28) P(27) P(26) P(25) P(24) P(23) P(22) P(21) P(20) P(19) P(18) P(17) P(16) P(15) P(14) P(13) P(12) P(11) P(10) P(9) P(8) P(7) P(6) P(5) P(29) P(4) P(28) P(3) P(27) P(2) P(32) P(26) P(1) P(26)
3007.2318 3008.0754 3008.4177 3010.2075 3010.7739 3011.5007 3011.6786 3011.8309 3013.5995 3014.2963 3014.5243 3014.9063 3015.2242 3016.9718 3017.3466 3017.7988 3018.2920 3018.5976 3020.1455 3020.3240 3021.2814 3021.6577 3021.9509 3022.9209 3023.6563 3024.7440 3025.0035 3025.2841 3025.6728 3026.9685 3028.1864 3028.3292 3028.4010 3028.5971 3030.2606 3031.1056 3031.6086 3031.6347 3031.8898 3033.5324 3033.7863 3034.9200 3035.0106 3035.1621 3036.4432 3036.7839 3038.1849 3038.3922 3038.4139 3039.0762 3040.0150
Observedcalculated (10−4 cm−1)
Intensity b
10 2 17 9 8
162 190 148 301 197
1
248
2
214
14 4
246 295
6 8 10
239 203 201
3 8 10 23 3 2 0 14 5 5 4 2 2 5 4 1 10 1 5 6 1 1
679 249 306 234 307 629 337 261 359 366 302 727 280 333 337 271 393 849 336 421 375 311
2 2
272 367
Band no. c
Assignment d
24 27 26 25 24 27 28 26 25 24 28 27 26 25 28 24 27 26 28 25 24 27 26 28 25 24 27 26 28 25 24 27 28 26 25 28 24 27 26 25 28 27 24 26 28 25 27 24 26 28 25
P(31) P(25) P(25) P(25) P(30) P(24) R(0) P(24) P(24) P(29) R(1) P(23) P(23) P(23) R(2) P(28) P(22) P(22) R(3) P(22) P(27) P(21) P(21) R(4) P(21) P(26) P(20) P(20) R(5) P(20) P(25) P(19) R(6) P(19) P(19) R(7) P(24) P(18) P(18) P(18) R(8) P(17) P(23) P(17) R(9) P(17) P(16) P(22) P(16) R(10) P(16)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
690 Table 4 (Continued) Calculated (cm−1)a
3041.4295 3041.6453 3041.6850 3041.7533 3043.2256 3044.2698 3044.6536 3044.8560 3045.0939 3046.4157 3046.8303 3047.8572 3048.0461 3048.4140 3049.3665 3049.5852 3051.0402 3051.2154 3051.7133 3051.8782 3052.7340 3054.2024 3054.3638 3054.3655 3054.9919 3055.8620 3056.8281 3057.3439 3057.4914 3058.2496 3058.9692 3059.2660 3060.4646 3060.5979 3061.4864 3062.0555 3063.5643 3063.6834 3064.7022 3065.1208 3066.6431 3066.7478 3067.8970 3068.1650 3069.7007 3069.7909 3070.0293 3071.0706 3071.1881 3072.1609 3072.7373
Observed– calculated (10−4 cm−1)
Intensity b
5 5 11 1 4 7 3 6
327 368 293 1002 396 220 341 392
4 12 14 2 2 12 7 3 2 1 9 5 1
387 304 408 369 1211 276 383 333 451 1267 273 440 386
0 7 12 7 8 3
1355 385 226 367 329 1385
4 7 6 2 8 15 7 1
269 341 277 1446 456 291 389 1449
12 7 4 10 8 13 4 1
291 327 1454 374 277 281 198 1538
1 8
153 237
Band no. c
Assignment d
Calculated (cm−1)a
27 26 28 24 25 28 27 26 24 25 28 27 26 24 28 25 27 26 24 28 25 27 26 28 24 25 28 27 26 24 25 28 27 26 24 25 27 26 24 25 27 26 24 25 27 26 16 24 25 22 27
P(15) P(15) R(11) P(21) P(15) R(12) P(14) P(14) P(20) P(14) R(13) P(13) P(13) P(19) R(14) P(13) P(12) P(12) P(18) R(15) P(12) P(11) P(11) R(16) P(17) P(11) R(17) P(10) P(10) P(16) P(10) R(18) P(9) P(9) P(15) P(9) P(8) P(8) P(14) P(8) P(7) P(7) P(13) P(7) P(6) P(6) P(33) P(12) P(6) P(30) P(5)
3072.8128 3073.5447 3074.1901 3074.2230 3075.6679 3075.7526 3075.8133 3077.0419 3077.1707 3077.3541 3078.4879 3078.6873 3078.7467 3078.7924 3079.1570 3080.1300 3080.4638 3080.5210 3081.7194 3081.7500 3082.1682 3082.1821 3082.6279 3083.0679 3083.5521 3083.9817 3085.6310 3085.8578 3085.9844 3086.0807 3086.6188 3087.4240 3089.0755 3089.5151 3089.5152 3089.6640 3090.8478 3091.7525 3092.5016 3092.6875 3092.9313 3093.1537 3093.3640 3093.3952 3093.5236 3094.2531 3094.6040 3095.6892 3095.9092 3096.2131 3096.2601
Observedcalculated (10−4 cm−1)
Intensity b
8
291
2 3 4 6 1 8 5 1 3 1 8 13
184 1438 165 236 205 184 267 1476 200 121 240 161
10 0 17
196 1450 169
1
173
1 19 1
1340 144 143
1 0
177 1164
4
133
7
171
3 1 0 8
140 928 127 382
17 10
168 201
2 1 14 16
759 128 146 170
Band no. b
Assignment d
26 16 25 24 22 27 26 16 25 24 13 23 27 26 22 25 24 16 27 26 23 13 22 25 24 16 23 13 25 22 24 16 23 13 22 24 16 25 23 24 22 13 26 27 20 16 25 24 23 26 27
P(5) P(32) P(5) P(11) P(29) P(4) P(4) P(31) P(4) P(10) P(39) P(28) P(3) P(3) P(28) P(3) P(9) P(30) P(2) P(2) P(27) P(38) P(27) P(2) P(8) P(29) P(26) P(37) P(1) P(26) P(7) P(28) P(25) P(36) P(25) P(6) P(27) R(0) P(24) P(5) P(24) P(35) R(1) R(1) P(25) P(26) R(1) P(4) P(23) R(2) R(2)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
691
Table 4 (Continued) Calculated (cm−1)a
3096.3290 3096.7737 3096.9226 3097.2140 3097.4339 3097.6397 3098.3399 3098.6692 3099.0403 3099.1031 3099.2980 3099.7082 3100.2418 3100.3030 3100.3749 3100.5856 3101.0076 3101.6273 3101.8274 3101.8455 3101.9244 3102.6679 3103.0279 3103.0688 3103.6648 3103.9383 3103.9572 3104.3567 3104.5634 3104.6286 3104.7237 3105.2961 3105.7921 3106.0186 3106.0187 3106.4107 3107.0078 3107.2720 3107.3896 3107.5010 3107.5205 3107.6870 3108.5342 3108.7458 3109.0691 3109.3501 3109.4551 3109.7338 3110.1285 3110.2562 3110.3320
Observed– calculated (10−4 cm−1)
Intensity b
37 23 6 11 1 1
153 215 272 284 297 578
1 3 5 20 1 22
215 230 210 279 603 190
2 1 3 2
200 207 328
3 1 2 13
275 193 275 289
3 0 2
267 181 1822
33 6 4
225 179 253
0 2 1 11 1 15 3 12 5 9
415 279 432 510 268 409 155 301 359 277
Band no. c
Assignment d
Calculated (cm−1)a
22 13 20 19 25 16 18 24 26 27 23 22 25 20 13 19 16 24 18 26 27 23 25 22 20 19 13 16 24 26 27 18 25 23 15 22 20 19 26 27 13 16 25 18 17 23 15 22 26 27 20
P(23) P(34) P(24) P(24) R(2) P(25) P(28) P(3) R(3) R(3) P(22) P(22) R(3) P(23) P(33) P(23) P(24) P(2) P(27) R(4) R(4) P(21) R(4) P(21) P(22) P(22) P(32) P(23) P(1) R(5) R(5) P(26) R(5) P(20) P(27) P(20) P(21) P(21) R(6) R(6) P(31) P(22) R(6) P(25) P(25) P(19) P(26) P(19) R(7) R(7) P(20)
3110.3696 3110.5865 3110.9983 3111.0649 3111.2542 3112.1765 3112.4894 3112.6622 3112.8451 3112.8724 3112.9893 3113.0381 3113.2395 3113.6372 3113.8818 3113.9520 3114.2905 3114.5901 3115.5395 3115.5881 3115.7002 3115.8903 3115.9547 3116.0872 3116.2706 3116.3234 3116.6277 3116.9235 3117.1578 3117.5637 3118.0961 3118.2114 3118.3889 3118.9126 3118.9805 3119.2275 3119.2719 3119.2810 3119.5898 3119.6434 3119.6496 3120.1908 3120.4145 3120.8177 3120.8610 3121.0552 3121.5828 3121.7156 3121.9120 3122.3537 3122.4805
Observedcalculated (10−4 cm−1)
Intensity b
1 1 5 3 8 9 3 10
253 303 981 331 380 576 343 334
21 3
254 226
10 8 8 7 0 4 2 7
188 373 347 300 1234 261 475 334
1
608
3 7 5 6 19 5 6 19 3 0
240 322 308 215 309 1239 272 343 731 645
5
256
24 9
245 450
16 7 1 6 1
306 399 1583 800 323
3
339
Band no. c
Assignment d
24 19 16 13 25 18 17 23 26 15 27 22 24 20 19 25 16 13 26 18 27 17 23 24 15 22 25 20 19 16 13 26 27 24 18 23 17 25 22 21 15 20 19 16 26 27 13 24 25 18 23
R(0) P(20) P(21) P(30) R(7) P(24) P(24) P(18) R(8) P(25) R(8) P(18) R(1) P(19) P(19) R(8) P(20) P(29) R(9) P(23) R(9) P(23) P(17) R(2) P(24) P(17) R(9) P(18) P(18) P(19) P(28) R(10) R(10) R(3) P(22) P(16) P(22) R(10) P(16) P(16) P(23) P(17) P(17) P(18) R(11) R(11) P(27) R(4) R(11) P(21) P(15)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
692 Table 4 (Continued) Calculated (cm−1)a
3122.6339 3122.8370 3122.8820 3123.0092 3123.4388 3123.4880 3123.6517 3123.6991 3124.0524 3124.4963 3124.5205 3125.0501 3125.7075 3125.7136 3125.9764 3126.0651 3126.0925 3126.1024 3126.3206 3126.3495 3126.6677 3126.8695 3127.1066 3127.2544 3127.2678 3128.4980 3128.6744 3128.9195 3128.9267 3129.0419 3129.2740 3129.2993 3129.3043 3129.6701 3129.6704 3129.8772 3129.9900 3130.0676 3130.4637 3131.2336 3131.4957 3131.9263 3132.1197 3132.2111 3132.3568 3132.4635 3132.4877 3132.6024 3132.7030 3132.9717 3133.0674
Observed– calculated (10−4 cm−1)
Intensity b
1 8 4 9 0 3
305 738 317 299 305 343
0 8
1726 879
1
305
0
779
9 8
270 370
1
2077
2
1145
10 6 11 0
431 313 327 2354
3 0 2 0 5 0 1
292 936 277 375 871 1180 940
Band no. c
Assignment d
Calculated (cm−1)a
17 22 21 15 20 26 19 27 16 24 25 13 18 23 17 22 26 21 27 15 20 19 25 24 16 13 26 27 23 18 22 17 21 25 15 20 24 19 16 26 27 13 23 25 18 22 21 17 24 15 20
P(21) P(15) P(15) P(22) P(16) R(12) P(16) R(12) P(17) R(5) R(12) P(26) P(20) P(14) P(20) P(14) R(13) P(14) R(13) P(21) P(15) P(15) R(13) R(6) P(16) P(25) R(14) R(14) P(13) P(19) P(13) P(19) P(13) R(14) P(20) P(14) R(7) P(14) P(15) R(15) R(15) P(24) P(12) R(15) P(18) P(12) P(12) P(18) R(8) P(19) P(13)
3133.2460 3133.6402 3133.7701 3134.0494 3134.7293 3135.2926 3135.3349 3135.3933 3135.6336 3135.6521 3135.6526 3135.8858 3136.2381 3136.2534 3136.2837 3136.4047 3136.5803 3136.7972 3137.2248 3138.0609 3138.4453 3138.7239 3138.7746 3138.7843 3138.7987 3138.9278 3139.0883 3139.1492 3139.3892 3139.5154 3139.5435 3139.6975 3139.9344 3140.7057 3141.2425 3141.5735 3141.5778 3141.9154 3141.9260 3142.0931 3142.1474 3142.1837 3142.3928 3142.5208 3142.6624 3142.7576 3143.0520 3143.3276 3143.6875 3144.0358 3144.5743
Observedcalculated (10−4 cm−1)
Intensity b
9 0 0 2 15
325 389 296 270 323
0 1 1
2651 1245 194
3
996
12 4 5 12 2
311 262 366 325 1204
1
2835
1 2 1 9 3 14
285 377 1008 234 936 306
9 6 6 14 12
331 453 1267 214 543
2 8 1 15 3 1 18 17 1 15 2 18
543 322 3230 183 1071 1046 358 302 1109 376 1192 241
7
291
Band no. c
Assignment d
19 16 26 27 25 23 13 24 22 18 21 17 20 15 26 19 27 16 25 24 23 13 26 22 21 18 27 17 20 15 19 25 16 24 26 27 23 22 21 13 25 18 17 20 19 15 16 24 26 27 25
P(13) P(14) R(16) R(16) R(16) P(11) P(23) R(9) P(11) P(17) P(11) P(17) P(12) P(18) R(17) P(12) R(17) P(13) R(17) R(10) P(10) P(22) R(18) P(10) P(10) P(16) R(18) P(16) P(11) P(17) P(11) R(18) P(12) R(11) R(19) R(19) P(9) P(9) P(9) P(21) R(19) P(15) P(15) P(10) P(10) P(16) P(11) R(12) R(20) R(20) R(20)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
693
Table 4 (Continued) Calculated (cm−1)a
3144.6900 3145.0268 3145.0344 3145.4198 3145.4424 3145.6163 3145.6326 3145.7614 3145.9266 3145.9800 3146.1498 3146.4751 3146.9782 3147.7819 3148.1186 3148.1237 3148.5027 3148.6360 3148.7247 3148.7717 3148.8197 3148.8403 3148.8913 3149.1825 3149.2278 3150.8536 3151.0557 3151.1906 3151.1938 3151.7969 3151.8322 3151.8990 3152.0029 3152.0810 3152.2858 3152.3650 3153.5855 3153.9050 3154.2427 3154.2445 3154.8492 3154.9375 3155.0084 3155.1659 3155.3238 3155.3702 3155.5274 3156.0923 3156.9360 3157.2748 3157.2758
Observed– calculated (10−4 cm−1) 2 1 3
Intensity b
389 389 316
20 0 2 3 10 0 1 2 1 1 1 2 1
320 1140 1215 381 216 214 354 354 216 1188 1107 293 3791
13
189
11 1 2 2 5 9 3 5 1 1 3 1 2 2 1 2 18 17 0 2 7 1 2 3 1 0 5
436 305 1221 305 208 197 1062 242 1105 4029 427 1217 988 267 267 167 327 221 1134 1078 315 4314 1255 837 267 267 233
Band no. c
Assignment d
Calculated (cm−1)a
23 22 21 18 13 17 20 19 24 15 16 27 25 23 22 21 24 18 20 13 17 19 27 15 16 23 24 22 21 20 18 19 17 13 16 15 24 23 22 21 20 19 18 17 16 13 15 24 23 22 21
P(8) P(8) P(8) P(14) P(20) P(14) P(9) P(9) R(13) P(15) P(10) R(21) R(21) P(7) P(7) P(7) R(14) P(13) P(8) P(19) P(13) P(8) R(22) P(14) P(9) P(6) R(15) P(6) P(6) P(7) P(12) P(7) P(12) P(18) P(8) P(13) R(16) P(5) P(5) P(5) P(6) P(6) P(11) P(11) P(7) P(17) P(12) R(17) P(4) P(4) P(4)
3157.8814 3157.9558 3158.1645 3158.1649 3158.3086 3158.3418 3158.5758 3158.6392 3158.6697 3159.9468 3160.2870 3160.2874 3160.8936 3160.9536 3161.0360 3161.3004 3161.3396 3161.4309 3161.7682 3161.7918 3161.8879 3163.4729 3163.8857 3163.9311 3164.3171 3164.4160 3164.5327 3164.8935 3165.1162 3165.3544 3165.8864 3166.8575 3166.8880 3167.2744 3167.5112 3167.6140 3167.9749 3168.2764 3168.3241 3168.9233 3170.2114 3170.5860 3170.6430 3170.6747 3171.0359 3171.5116 3172.4748 3172.9860 3173.1279 3173.6403 3173.7147
Observedcalculated (10−4 cm−1)
Intensity b
7
241
4 0
1064 1064
10 2
271 853
1
144
13 3 2 1 0
342 853 839 1148 4812
1
649
1 8 3
306 905 844
2
4991
4
193
15
858
5 0 31 1
982 5018 169 442
2 0
744 697
Band no. c
Assignment d
20 19 18 5 17 16 24 13 15 23 22 21 20 19 24 18 16 17 5 15 13 24 20 19 16 18 17 15 13 5 24 20 19 16 18 17 15 24 13 5 16 18 24 17 15 13 5 24 16 18 17
P(5) P(5) P(10) P(38) P(10) P(6) R(18) P(16) P(11) P(3) P(3) P(3) P(4) P(4) R(19) P(9) P(5) P(9) P(37) P(10) P(15) R(20) P(3) P(3) P(4) P(8) P(8) P(9) P(14) P(36) R(21) P(2) P(2) P(3) P(7) P(7) P(8) R(22) P(13) P(35) P(2) P(6) R(23) P(6) P(7) P(12) P(34) R(24) P(1) P(5) P(5)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
694 Table 4 (Continued) Calculated (cm−1)a
Observed– calculated (10−4 cm−1)
3174.0764 3174.2406 3174.6784 3175.3054 3176.0089 3176.6741 3176.7339 3177.0962 3177.5860 3177.6011 3177.7643 3177.8246 3177.9351 3177.9356 3178.5092 3178.5408 3178.8993 3179.5256 3179.6872 3179.7323 3179.8731 3180.0954 3180.4553 3180.8045 3180.8056 3180.9500 3181.2700 3181.3625 3181.4103 3181.7541 3182.0476 3182.1214 3182.4034 3182.6795 3182.7098 3183.0247 3183.0739 3183.3044 3183.6529 3183.6550 3184.0547 3184.1948 3184.2591 3184.5882 3184.7577 3185.5411 3185.8865 3186.0316 3186.1336 3186.4801 3186.4838
1 115 0
Intensity b
917 271 4846
41 0
408 4720
12
207
18 3 1 2 1 0
336 707 236 190 236 4639
37
192
2 6 1
223 203 270
0 0 1 3 1
578 314 227 314 4275
1 2
282 305
1 3 2
260 234 260
Band no. c
Assignment d
Calculated (cm−1)a
15 8 13 24 5 18 17 15 23 24 8 13 21 22 19 20 16 5 18 17 24 15 23 21 22 13 8 19 20 16 12 24 11 18 17 5 15 23 21 22 13 19 20 16 8 12 11 15 23 21 22
P(6) P(32) P(11) R(25) P(33) P(4) P(4) P(5) R(2) R(26) P(31) P(10) R(2) R(2) R(1) R(1) R(0) P(32) P(3) P(3) R(27) P(4) R(3) R(3) R(3) P(9) P(30) R(2) R(2) R(1) P(28) R(28) P(28) P(2) P(2) P(31) P(3) R(4) R(4) R(4) P(8) R(3) R(3) R(2) P(29) P(27) P(27) P(2) R(5) R(5) R(5)
3186.5061 3187.0062 3187.0872 3187.1384 3187.4015 3187.8054 3188.2274 3188.8381 3188.9427 3188.9684 3189.0168 3189.2858 3189.2918 3189.3517 3189.7964 3189.8944 3189.9698 3190.1940 3190.2012 3191.3607 3191.6788 3191.7319 3192.0700 3192.0791 3192.4745 3192.4939 3192.5655 3192.6808 3192.7989 3192.9655 3193.2430 3193.4156 3194.4095 3194.4404 3194.5013 3194.5565 3194.7792 3194.8323 3194.8454 3194.8979 3195.1120 3195.3134 3195.4462 3195.7161 3195.9142 3196.1317 3196.2279 3196.2637 3196.8436 3197.2508 3197.2814
Observedcalculated (10−4 cm−1)
Intensity b
26 1
223 3961
8
436
5 1
649 336
1 1 2 1 28 10
609 178 336 305 240 273
3 4
3565 478
1 2 3
247 182 247
0 2 32 1
288 268 440 3172
3 1 12
254 558 241
3 4
254 535
14 24 1 5 3 3 0
206 304 327 383 980 347 2548
2
300
Band no. c
Assignment d
5 19 20 13 16 6 8 1 23 15 12 21 22 11 19 20 5 16 13 6 8 23 21 22 12 1 19 20 11 16 13 5 17 18 23 7 15 21 22 6 8 19 20 16 12 1 11 13 5 23 17
P(30) R(4) R(4) P(7) R(3) P(32) P(28) P(37) R(6) P(1) P(26) R(6) R(6) P(26) R(5) R(5) P(29) R(4) P(6) P(31) P(27) R(7) R(7) R(7) P(25) P(36) R(6) R(6) P(25) R(5) P(5) P(28) R(1) R(1) R(8) P(30) R(0) R(8) R(8) P(30) P(26) R(7) R(7) R(6) P(24) P(35) P(24) P(4) P(27) R(9) R(2)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
695
Table 4 (Continued) Calculated (cm−1)a
3197.3281 3197.5727 3197.5908 3197.6530 3198.0400 3198.0834 3198.1905 3198.4169 3198.4456 3198.5270 3199.2632 3199.3355 3199.6389 3199.7515 3199.9806 3200.1321 3200.1946 3200.2536 3200.2908 3200.3153 3200.5056 3200.7453 3200.9137 3201.1541 3201.5922 3201.9176 3201.9236 3202.2415 3202.6907 3202.7384 3202.9614 3202.9866 3203.0186 3203.0316 3203.0399 3203.1427 3203.3371 3203.3532 3203.4291 3203.6157 3203.6455 3203.8413 3205.0829 3205.1985 3205.3018 3205.3812 3205.4000 3205.6597 3205.7008 3205.7692 3205.8640
Observed– calculated (10−4 cm−1)
Intensity b
2
286
40
206
30
330
0
378
0 0 2
1919 411 309
8 22 27 17 2 10 70 1 3 1 2
395 259 249 363 764 891 891 1364 291 418 794
1 1 1 5
323 346 628 397
6 12 5 14 1 7
312 247 314 393 784 732
3 2 0
360 866 322
Band no. c
Assignment d
Calculated (cm−1)a
18 21 22 15 19 7 20 6 16 8 13 12 11 1 23 17 18 5 21 22 15 19 20 16 7 6 8 13 23 12 17 21 22 11 18 10 15 1 19 20 5 16 7 13 8 23 6 21 22 17 18
R(2) R(9) R(9) R(1) R(8) P(29) R(8) P(29) R(7) P(25) P(3) P(23) P(23) P(34) R(10) R(3) R(3) P(26) R(10) R(10) R(2) R(9) R(9) R(8) P(28) P(28) P(24) P(2) R(11) P(22) R(4) R(11) R(11) P(22) R(4) P(22) R(3) P(33) R(10) R(10) P(25) R(9) P(27) P(1) P(23) R(12) P(27) R(12) R(12) R(5) R(5)
3206.0914 3206.1227 3206.1472 3206.2964 3206.4059 3206.5056 3206.5073 3206.9366 3207.0193 3207.1884 3208.0520 3208.3102 3208.3617 3208.5553 3208.5555 3208.6614 3208.6666 3208.7321 3208.8639 3208.9360 3208.9559 3209.1520 3209.4881 3209.7619 3209.8505 3210.3749 3210.5017 3210.6476 3210.7033 3210.9377 3211.0014 3211.0482 3211.3202 3211.3512 3211.4479 3211.5939 3211.7034 3211.7753 3212.0026 3212.0095 3212.3093 3212.8346 3213.0993 3213.1775 3213.3350 3213.5422 3213.7123 3213.9408 3214.0484 3214.0633 3214.0886
Observedcalculated (10−4 cm−1)
Intensity b
48
351
1 1
374 678
2 5 9 1
1795 464 798 329
4 2 0
325 1654 1654
11 3
249 1024
12 1 3 2 5 0
386 452 435 348 2083
1 4
224 264
1 21
766 208
40
237
1 1 5 1 1 1
1010 467 404 471 201 297
5
1498
Band no. c
Assignment d
19 12 15 20 11 10 16 1 5 3 23 21 22 7 17 8 18 19 6 15 20 16 12 11 10
R(11) P(21) R(4) R(11) P(21) P(21) R(10) P(32) P(24) P(28) R(13) R(13) R(13) P(26) R(6) P(22) R(6) R(12) P(26) R(5) R(12) R(11) P(20) P(20) P(20) P(23) P(31) P(27) R(14) R(14) R(14) R(0) R(7) R(13) R(7) R(13) R(6) R(12) P(21) P(25) P(25) P(19) P(19) P(19) R(15) R(15) P(22) R(1) P(30) R(8) P(26)
1 3 23 21 22 13 17 19 18 20 15 16 8 7 6 12 11 10 23 21 5 13 1 17 3
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
696 Table 4 (Continued) Calculated (cm−1)a
3214.2076 3214.3771 3214.4493 3215.3251 3215.4453 3215.7360 3216.1235 3216.1620 3216.4183 3216.4864 3216.7847 3216.8118 3216.9458 3216.9575 3217.0312 3217.1736 3217.5111 3217.5766 3218.4059 3218.6289 3218.6816 3218.8627 3219.1441 3219.4701 3219.4843 3219.5163 3219.6612 3219.6623 3219.7185 3219.7773 3219.8764 3220.3317 3220.9151 3221.0862 3221.2163 3221.6993 3221.9140 3222.0534 3222.1620 3222.2614 3222.3572 3222.4888 3222.5334 3222.5574 3222.7588 3223.0001 3223.0502 3223.6137 3223.7278 3224.3005 3224.5689
Observed– calculated (10−4 cm−1)
Intensity b
7 17
998 306
4 1 3 2 0 4
1321 1228 256 364 404 505
7 6 1 17 37
969 1302 2989 433 576
3 3
1323 1591
6 6 1 2 7
3220 3220 547 637 1002
0 1 2
1450 3442 265
18 1
314 956
1 1
744 2780
3 1 0
601 472 530
0
1433
Band no. c
Assignment d
Calculated (cm−1)a
18 16 15 8 7 6 21 12 11 10 17 13 18 16 5 15 3 1 9 8 21 7 6 12 17 16 13 18 11 10 15 5 3 1 21 9 8 16 17 7 18 13 6 15 12 11 10 5 21 3 16
R(8) R(13) R(7) P(20) P(24) P(24) R(16) P(18) P(18) P(18) R(9) R(2) R(9) R(14) P(21) R(8) P(25) P(29) P(19) P(19) R(17) P(23) P(23) P(17) R(10) R(15) R(3) R(10) P(17) P(17) R(9) P(20) P(24) P(28) R(18) P(18) P(18) R(16) R(11) P(22) R(11) R(4) P(22) R(10) P(16) P(16) P(16) P(19) R(19) P(23) R(17)
3224.5772 3224.8178 3224.9743 3225.0302 3225.1803 3225.2167 3225.2947 3225.6416 3225.9038 3226.0279 3226.2158 3226.2628 3226.3050 3226.8771 3227.0626 3227.4517 3227.6673 3227.6815 3227.8542 3228.0494 3228.0787 3228.2308 3228.4277 3228.6806 3229.0031 3229.2553 3229.2775 3229.5067 3229.5344 3229.5417 3230.0635 3230.1218 3230.3108 3230.4699 3230.8408 3231.0153 3231.4687 3231.5028 3231.6561 3231.9844 3232.3457 3232.5073 3232.5877 3232.6532 3232.7317 3232.7601 3232.9182 3233.0635 3233.3478 3233.5809 3234.3444
Observedcalculated (10−4 cm−1)
Intensity b
0 3
3971 783
2
900
6 0 4 1 1
1055 3158 1693 1634 620
1 1
398 620
6 4
314 667
21 13 1 1
615 660 272 1868
1
561
3
638
5 1 3
1001 3723 1902
0 1 25 1 2 4
5220 590 308 2127 580 1947
2 4
474 662
3 2 0
951 695 3866
Band no. c
Assignment d
1 17 9 18 8 15 13 7 6 12 21 11 10 5 16 17 3 18 15 1 13 9 8 21 7 6 12 11 16 10 17 5 18 15 13 3 9 1 8 16 7 12 6 17 11 10 18 15 5 13 3
P(27) R(12) P(17) R(12) P(17) R(11) R(5) P(21) P(21) P(15) R(20) P(15) P(15) P(18) R(18) R(13) P(22) R(13) R(12) P(26) R(6) P(16) P(16) R(21) P(20) P(20) P(14) P(14) R(19) P(14) R(14) P(17) R(14) R(13) R(7) P(21) P(15) P(25) P(15) R(20) P(19) P(13) P(19) R(15) P(13) P(13) R(15) R(14) P(16) R(8) P(20)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
697
Table 4 (Continued) Calculated (cm−1)a
3234.4125 3234.6879 3234.8655 3234.9372 3235.2207 3235.5035 3235.6352 3235.6695 3235.7174 3235.9011 3235.9376 3235.9603 3236.2990 3236.5549 3236.8185 3237.6547 3237.7661 3237.8885 3238.0558 3238.0668 3238.1848 3238.3527 3238.9075 3238.9744 3238.9949 3239.1244 3239.1422 3239.1952 3239.7432 3240.2891 3240.6079 3240.7123 3240.9459 3241.0703 3241.2270 3241.6687 3241.7490 3242.0778 3242.2602 3242.2920 3242.3056 3242.4700 3242.7898 3242.9125 3243.1267 3243.2176 3244.2181 3244.2332 3244.3203 3244.3789 3245.1262
Observed– calculated (10−4 cm−1)
Intensity b
6
186
13 1 3 3
647 5935 692 780
2 5 1 8 3 1
2115 607 2082 597 655 3999
6 2
288 2036
78
915
2 2 1
819 6492 356
3 2 1
356 666 2224
3
714
52
801
1 0 4 3 0 1 3 0
4039 7153 582 2438 582 536 2344 618
9 4
618 707
1
3880
0
7818
Band no. c
Assignment d
Calculated (cm−1)a
16 9 8 1 17 18 15 7 12 6 11 10 13 5 16 3 17 9 8 18 15 1 12 7 13 11 10 6 5 17 18 15 3 9 8 13 1 12 7 11 10 6 17 5 18 15 3 9 13 8 1
R(21) P(14) P(14) P(24) R(16) R(16) R(15) P(18) P(12) P(18) P(12) P(12) R(9) P(15) R(22) P(19) R(17) P(13) P(13) R(17) R(16) P(23) P(11) P(17) R(10) P(11) P(11) P(17) P(14) R(18) R(18) R(17) P(18) P(12) P(12) R(11) P(22) P(10) P(16) P(10) P(10) P(16) R(19) P(13) R(19) R(18) P(17) P(11) R(12) P(11) P(21)
3245.2281 3245.2680 3245.4404 3245.4504 3245.5270 3245.6233 3245.7007 3245.7256 3246.0627 3246.9495 3247.3772 3247.4712 3247.5115 3247.7238 3248.0975 3248.1614 3248.3585 3248.4841 3248.5694 3248.5765 3248.7745 3248.9616 3249.1938 3249.5564 3250.5023 3250.5493 3250.5998 3250.6248 3250.7050 3251.4688 3251.6790 3251.6839 3251.8227 3252.0028 3252.1409 3252.1782 3252.3057 3252.9787 3253.0157 3253.6082 3253.7186 3253.9195 3254.5590 3254.7029 3254.7692 3254.7722 3255.1418 3255.2118 3255.3752 3255.3855 3255.3984
Observedcalculated (10−4 cm−1)
Intensity b
2 6 5 3 0
693 449 693 634 2468
2 0 60 3
725 3777 593 2565
6 13 2 1 2 1 1 1 1 4 0 56
485 449 511 817 8359 817 616 2560 2609 701 3628 532
4 3 6 1 0 2 1 1
2695 864 864 496 8946 2703 3313 2564
62 38 2 1 1 2 0 0 2
720 566 2765 655 3313 655 511 9410 2671
Band no. c
Assignment d
12 17 11 10 7 18 15 6 5 13 9 3 8 17 18 15 12 1 11 10 7 6 5 13 9 18 15 8 3 12 11 10 1 7 13 6 5 18 15 9 8 3 12 13 11 10 1 7 6 18 5
P(9) R(20) P(9) P(9) P(15) R(20) R(19) P(15) P(12) R(13) P(10) P(16) P(10) R(21) R(21) R(20) P(8) P(20) P(8) P(8) P(14) P(14) P(11) R(14) P(9) R(22) R(21) P(9) P(15) P(7) P(7) P(7) P(19) P(13) R(15) P(13) P(10) R(23) R(22) P(8) P(8) P(14) P(6) R(16) P(6) P(6) P(18) P(12) P(12) R(24) P(9)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
698 Table 4 (Continued) Calculated (cm−1)a
3255.4091 3256.6950 3256.7929 3257.1146 3257.2424 3257.6293 3257.7697 3257.7800 3257.8398 3257.8415 3258.4013 3258.4415 3258.4717 3258.5525 3259.7593 3259.7627 3259.8476 3260.1312 3260.2902 3260.6794 3260.8907 3260.8916 3261.5256 3261.5714 3261.7100 3261.7215 3262.2535 3262.8110 3262.8827 3263.4463 3263.7095 3263.9220 3263.9223 3264.5600 3264.7219 3264.7250 3264.8478 3264.9820 3265.8400 3265.8981 3266.5828 3267.1738 3267.5748 3267.8527 3267.9656 3268.2227 3268.8495 3268.8936 3269.5997 3269.6996 3270.5700
Observed– calculated (10−4 cm−1)
Intensity b
1 8 2
2882 2589 530
2 4 7 5 0
404 530 488 2494 9529
2 5 28
2563 2874 2874
3 2 1 2 2 3
525 2779 435 435 298 575
1 65
2363 385
3 1 2 2 6 12
2833 293 293 205 612 4312
1 1
2346 10000
3 3 1 3 3 0
2708 1947 343 2182 2312 9979
58 2 1 2
317 1668 2737 373
Band no. c
Assignment d
Calculated (cm−1)a
15 9 8 3 13 12 18 15 11 10 7 1 5 6 13 9 8 18 3 12 11 10 5 7 6 1 13 9 8 3 12 11 10 5 7 13 6 1 9 8 3 13 5 7 6 1 9 8 13 3 5
R(23) P(7) P(7) P(13) R(17) P(5) R(25) R(24) P(5) P(5) P(11) P(17) P(8) P(11) R(18) P(6) P(6) R(26) P(12) P(4) P(4) P(4) P(7) P(10) P(10) P(16) R(19) P(5) P(5) P(11) P(3) P(3) P(3) P(6) P(9) R(20) P(9) P(15) P(4) P(4) P(10) R(21) P(5) P(8) P(8) P(14) P(3) P(3) R(22) P(9) P(4)
3270.9638 3271.0635 3271.4435 3271.8396 3271.8693 3272.0028 3272.7967 3273.5455 3274.0552 3274.1413 3274.3829 3274.6445 3275.8739 3276.5013 3276.7400 3277.1266 3277.1991 3277.8255 3278.9312 3279.0741 3279.4372 3280.1782 3280.2366 3280.9864 3281.3851 3281.4695 3281.6911 3281.6915 3281.9685 3283.2097 3283.2539 3283.5721 3283.6033 3283.6729 3284.1273 3284.3596 3284.5817 3284.5827 3284.9857 3285.2492 3285.9375 3286.2211 3286.2508 3286.4474 3286.4947 3287.2298 3287.2479 3287.4517 3287.4537 3287.9828 3288.1251
Observedcalculated (10−4 cm−1)
Intensity b
3 0 1
2127 2205 9929
1 0
1509 2419
6 1 0 1 2
1880 1888 1345 9532 2476
1 6 1 1 3 0
1162 1714 1695 9285 2100 1103
5 0 0
1295 1325 9083
3 4 3 4 3 3
403 322 403 1865 932 899
2 0 0 3 1 1
734 8670 359 315 359 1426
6
519
0 4
8246 326
0
1217
Band no. c
Assignment d
7 6 1 9 8 13 3 5 7 6 13 1 3 5 13 7 6 1 3 13 5 7 6 1 13 12 10 11 3 7 6 8 9 13 1 12 10 11 3 5 13 7 6 8 9 12 1 10 11 3 5
P(7) P(7) P(13) P(2) P(2) R(23) P(8) P(3) P(6) P(6) R(24) P(12) P(7) P(2) R(25) P(5) P(5) P(11) P(6) R(26) P(1) P(4) P(4) P(10) R(27) R(2) R(2) R(2) P(5) P(3) P(3) R(1) R(1) R(28) P(9) R(3) R(3) R(3) P(4) R(0) R(29) P(2) P(2) R(2) R(2) R(4) P(8) R(4) R(4) P(3) R(1)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
699
Table 4 (Continued) Calculated (cm−1)a
3288.1789 3289.3025 3289.3662 3290.0801 3290.3007 3290.3042 3290.3483 3290.3970 3290.9597 3290.9810 3292.1371 3292.2177 3292.5917 3292.9107 3293.1286 3293.1344 3293.4283 3293.8166 3293.9164 3294.7630 3294.9513 3295.0490 3295.7215 3295.9353 3295.9440 3296.4879 3296.6320 3296.9109 3297.7451 3297.8602 3298.0338 3298.0644 3298.5126 3298.7205 3298.7331 3299.4270 3299.5270 3299.7686 3300.5182 3300.6512 3300.9280 3300.9743 3301.2841 3301.4840 3301.5015 3302.2017 3302.5456 3302.6639 3303.2706 3303.4218 3303.8014
Observed– calculated (10−4 cm−1)
1 0 1 1
Intensity b
639 426 639 7680
10 0
358 694
1 0
694 7186
36 2 3 4 0 11 1
492 748 422 748 6714 416 312
9
567
3
641
0
641
0
5704
2 13 3 4
852 953 726 427
0
4848
3
1281
Band no. c
Assignment d
Calculated (cm−1)a
13 8 9 12 10 11 1 13 3 5 8 9 13 12 10 11 1 5 3 13 8 9 12 10 11 1 5 13 8 9 6 7 12 10 11 5 1 3 8 9 6 7 12 10 11 5 1 3 8 9 6
R(30) R(3) R(3) R(5) R(5) R(5) P(7) R(31) P(2) R(2) R(4) R(4) R(32) R(6) R(6) R(6) P(6) R(3) P(1) R(33) R(5) R(5) R(7) R(7) R(7) P(5) R(4) R(34) R(6) R(6) R(1) R(1) R(8) R(8) R(8) R(5) P(4) R(0) R(7) R(7) R(2) R(2) R(9) R(9) R(9) R(6) P(3) R(1) R(8) R(8) R(3)
3303.8637 3304.0360 3304.2257 3304.2492 3304.9559 3305.5388 3305.5435 3306.0024 3306.1720 3306.6540 3306.7324 3306.7684 3306.9453 3306.9761 3307.6895 3308.3930 3308.5207 3308.7133 3308.9017 3309.4814 3309.4858 3309.5806 3309.6426 3309.6822 3310.4026 3311.2265 3311.4033 3311.6108 3312.1749 3312.2965 3312.3175 3312.3673 3312.4079 3313.0950 3314.0393 3314.0724 3314.2993 3314.4127 3314.8490 3314.9698 3315.0314 3315.0863 3315.2145 3315.7666 3316.7204 3316.8313 3316.9671 3317.3273 3317.5037 3317.5993 3317.6745
Observedcalculated (10−4 cm−1)
Intensity b
0 1 2 1
1105 489 377 478
0 6 3 4
1575 1674 451 253
5 2 1
640 1460 2130
6
632
6 2 0 2 5 0
2053 1786 548 507 598 1777
3
457
3 1 1 0
480 1827 626 1841
0 1 2 3 2 2
2141 400 606 521 1992 1992
22 1 4 1 0 1 0
430 2102 463 3485 438 444 477
Band no. c
Assignment d
7 12 10 11 5 3 1 8 9 6 7 12 10 11 5 3 1 8 9 12 6 7 10 11 5 3 8 9 12 6 10 11 7 5 3 8 9 1 12 10 11 6 7 5 8 3 9 1 12 10 11
R(3) R(10) R(10) R(10) R(7) R(2) P(2) R(9) R(9) R(4) R(4) R(11) R(11) R(11) R(8) R(3) P(1) R(10) R(10) R(12) R(5) R(5) R(12) R(12) R(9) R(4) R(11) R(11) R(13) R(6) R(13) R(13) R(6) R(10) R(5) R(12) R(12) R(0) R(14) R(14) R(14) R(7) R(7) R(11) R(13) R(6) R(13) R(1) R(15) R(15) R(15)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
700 Table 4 (Continued) Calculated (cm−1)a
3317.8550 3318.0002 3318.4175 3319.3473 3319.6023 3320.1390 3320.2060 3320.2210 3320.2964 3320.6025 3320.7650 3321.0475 3321.9530 3322.3524 3322.7549 3322.7897 3322.8972 3323.0936 3323.3288 3323.5087 3323.6566 3324.5375 3325.0815 3325.3503 3325.4766 3325.9452 3326.0338 3326.2314 3326.2446 3327.1006 3327.7895 3327.8878 3328.7175 3328.7755 3328.8117 3328.9329 3329.6424 3330.4022 3330.4763 3331.3576 3331.3797 3331.5846 3331.6133 3332.1626 3333.1419 3333.8823 3334.0205 3334.2723 3334.3723 3334.6612 3335.7863
Observed– calculated (10−4 cm−1)
Intensity b
1 3
2110 1928
15 8 2
449 2292 394
0 3 0 1 4
4579 485 2083 1986 587
3 3 0 2 0 3 1
2212 328 400 356 5221 2049 2016
67 1 1 3 0 4
309 2405 695 419 5886 1895
5 4 0 1
2535 303 1973 6258
1
1981
5 2
243 2395
0
6680
5
2224
6 1 1 47 1
1838 1945 6865 290 2154
Band no. c
Assignment d
Calculated (cm−1)a
6 7 5 8 3 12 10 1 11 6 7 5 8 3 12 10 11 1 6 7 5 8 3 10 11 1 6 7 5 8 3 10 6 1 5 7 8 10 3 5 6 1 7 8 3 5 6 7 1 8 3
R(8) R(8) R(12) R(14) R(7) R(16) R(16) R(2) R(16) R(9) R(9) R(13) R(15) R(8) R(17) R(17) R(17) R(3) R(10) R(10) R(14) R(16) R(9) R(18) R(18) R(4) R(11) R(11) R(15) R(17) R(10) R(19) R(12) R(5) R(16) R(12) R(18) R(20) R(11) R(17) R(13) R(6) R(13) R(19) R(12) R(18) R(14) R(14) R(7) R(20) R(13)
3336.3857 3336.6398 3336.9100 3337.1382 3337.1387 3338.4093 3338.8679 3339.2375 3339.5263 3339.5935 3339.8836 3341.0109 3341.3287 3341.8135 3342.0270 3342.1211 3342.6070 3343.5910 3343.7680 3344.3678 3344.4386 3344.6944 3345.3089 3346.1496 3346.1859 3346.8283 3346.9004 3347.2461 3347.9891 3348.5821 3348.6866 3349.1959 3349.4111 3349.7761 3350.6476 3350.9568 3351.2019 3351.5414 3351.9000 3352.2844 3353.2843 3353.6956 3353.8647 3354.3669 3354.7709 3355.8993 3356.1657 3356.1674 3356.8118 3357.2355
Observedcalculated (10−4 cm−1)
Intensity b
2 2 4 0 4 2 1 1
1694 1672 7302 7302 2030 461 1710 1600
2 2
7188 1906
3
1546
0 1 1
1610 7257 1814
1
1491
1 0 3
1356 7348 1678
0 0 0
1331 1243 7342
1
1524
0 0 34 3
1105 7117 245 1452
7 4 1 1
967 1144 7205 1333
0
995
60
1154
Band no. c
5 6 8 7 1 3 5 6 8 7 1 3 5 6 7 8 1 3 5 6 7 8 1 3 5 7 6 8 1 5 3 7 6 8 1 5 3 7 6 8 1 3 7 6 8 1 7 3 6 8
Assignment d
R(19) R(15) R(15) R(21) R(8) R(14) R(20) R(16) R(16) R(22) R(9) R(15) R(21) R(17) R(23) R(17) R(10) R(16) R(22) R(18) R(24) R(18) R(11) R(17) R(23) R(25) R(19) R(19) R(12) R(24) R(18) R(26) R(20) R(20) R(13) R(25) R(19) R(27) R(21) R(21) R(14) R(20) R(28) R(22) R(22) R(15) R(29) R(21) R(23) R(23)
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
701
Table 4 (Continued). Calculated (cm−1)a
3358.4923 3358.6175 3359.2346 3359.6782 3361.0456 3361.0634 3361.6354 3363.4518 3363.6125 3364.0139 3365.8360 3366.1396 3366.3703 3368.1982 3368.6445 3368.7044 3370.5382 3371.0161
Observed– calculated (10−4 cm−1)
Intensity b
1
6719
1 0
755 760
2
6430
0 0
726 6059
1 10
5631 593
13 17
527 368
Band no. c
1 3 6 8 3 1 6 3 1 6 3 1 6 3 1 6 3 6
Assignment d
Calculated (cm−1)a
R(16) R(22) R(24) R(24) R(23) R(17) R(25) R(24) R(18) R(26) R(25) R(19) R(27) R(26) R(20) R(28) R(27) R(29)
3371.1273 3372.8561 3373.3055 3373.5878 3376.0261 3378.4420 3380.8355 3383.2066 3385.5552 3387.8812 3390.1846 3392.4654 3394.7234 3396.9587 3399.1712 3401.3608 3403.5275
Observedcalculated (10−4 cm−1)
Intensity b
2 2 10 1 1 1 1 1 2 4 1 2
4699 414 316 4128 3664 2874 2730 2454 2036 1715 1489 1192
2
458
Band no. c
1 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Assignment d
R(21) R(28) R(30) R(22) R(23) R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31) R(32) R(33) R(34) R(35)
a
Calculated using the constants from Tables 2 and 3. Relative intensity of the observed line, in arbitrary units (most intense line = 10 000) c The band no. identifies of the vibrational band according to the convention below and in Table 3. Band identification: 1, 1000–0000; 2, 1000–0110; 3, 1001–0001; 4, 1001–0111; 5, 1002–0002; 6, 111e0–011e0; 7, 111f0–011f0; 8, 111e1–011e1; 9, 111f1–011f1; 10, 1200–0200; 11, 122e0–022e0; 12, 122f0–022f0; 13, 2000–1000; 14,2000–1110; 15, 2001–1001; 16, 2002–1002; 17, 211e0–11e0; 18, 211f0–111f0; 19, 211e1–111e1; 20, 211f1–111f1; 21, 2200–1200; 22, 222e0–122e0; 23, 222f0–122f0; 24, 3000–2000; 25, 3001–2001; 26, 311e0–211e0; 27, 311f0–211f0; 28, 4000–3000. d Represents the rotational assignment. b
Table 5 H12C14N Herman–Wallis term A1 a Band
Herman–Wallis term A1
1000–0110 1000–0000 1001–0001 1001–0111 111f0–011f0 111e0–011e0 2000–1000 2001–1001 2002–1002 3000–2000 3001–2001 4000–3000
−0.010 −0.005 −0.004 −0.011 −0.005 −0.004 −0.005 −0.004 −0.006 −0.004 −0.005 −0.003
a
(6) (0.8) (0.7) (6) (0.3) (1) (0.5) (0.8) (3) (1) (1) (1)
As the Herman–Wallis factor is expected to affect the e and f levels differently, the e–e and f–f bands of the 1110–0110 transition have been considered separately. The numbers between parentheses are one standard deviation in units of the last digit.
lines are given in Table 6, in the same arbitrary units as the HCN intensities given in Table 4. The wavenumbers in Table 6 are calculated from the rovibrational constants reported in the recent work by Northrup et al. [16]. Recently, Nezu et al. [17] determined experimentally the transition dipole moments of the n1 and n3 fundamentals bands of HNC from the Herman–Wallis effect, thanks to FTS emission spectra.
Acknowledgements This research was financially supported by the Programme National de Physique et Chimie du Milieu Interstellaire (PCMI) du Centre National de la Recherche Scientifique (CNRS). A.G. Maki is warmly acknowledged for useful discussions.
702
N. Picque´, G. Guelach6ili / Spectrochimica Acta Part A 56 (2000) 681–702
Table 6 Relative intensities of the 1000–0000 band of H14N12C, in the same arbitrary units as for the HCN intensities in Table 4 Wavenumber (cm−1)a
Intensity
Assignment
3557.188 0 3560.737 1 3567.782 6 3571.278 8 3578.217 6 3581.660 0 3585.084 4 3588.490 5 3591.878 4 3595.247 9 3608.540 4 3618.312 7 3627.913 4 3631.075 1 3637.340 3 3640.443 6 3643.527 2 3664.555 8 3667.479 4 3670.382 6 3673.2654 3678.9694 3690.1287 3692.8663 3698.2783 3706.2373 3711.4364
175 215 260 252 295 337 340 338 372 383 427 471 429 416 329 339 319 207 276 315 352 425 401 401 317 239 217
P(29) P(28) P(26) P(25) P(23) P(22) P(21) P(20) P(19) P(18) P(14) P(11) P(8) P(7) P(5) P(4) P(3) R(4) R(5) R(6) R(7) R(9) R(13) R(14) R(16) R(19) R(21)
[2]
[3] [4] [5] [6] [7]
[8] [9] [10] [11]
a The wavenumbers are calculated using the rovibrational constants given in Ref. [16].
[12] [13]
References
[14] [15] [16]
[1] J. Cernicharo, M.J. Barlow, E. Gonza´lez-Alfonso, P. Cox, P.E. Clegg, N.-Q. Rieu, A. Omont, M. Gue´lin, X.-W. Liu, R.J. Sylvester, T. Lim, M.J. Griffin, B.M.
.
[17]
Swinyard, S.J. Unger, P.A.R. Ade, J.-P. Baluteau, E. Caux, M. Cohen, R.J. Emery, J. Fischer, I. Furniss, W.M. Glencross, M.A. Greenhouse, C. Gry, M. Joubert, D. Lorenzetti, B. Nisini, R. Orfei, D. Pe´quignot, P. Saraceno, G. Serra, C.J. Skinner, H.A. Smith, W.A. Towlson, H.J. Walker, C. Armand, M. Burgdorf, D. Ewart, A. Di Giorgio, S. Molinari, M. Price, S. Sidher, D. Texier, N. Trams, Astron. Astrophys. 315 (1996) L201. G. Guelachvili, K.N. Rao, in: G. Guelachvili (Ed.), Molecular Constants mostly from Infrared Spectroscopy. Linear Triatomic Molecules., Landolt-Bo¨rnstein, Numerical Data and Functional Relationships in Science and Technology, vol. II/20, Subvolume B1, Springer Verlag, Berlin, 1995, pp. 1 – 474. A. Maki, W. Quapp, S. Klee, G.C. Mellau, S. Albert, J. Mol. Spectrosc. 180 (1996) 323. A. Maki, W. Quapp, S. Klee, G.C. Mellau, S. Albert, J. Mol. Spectrosc. 174 (1995) 365. A. Maki, W. Quapp, S. Klee, J. Mol. Spectrosc. 171 (1995) 420. A. Maki, W. Quapp, S. Klee, G.C. Mellau, S. Albert, J. Mol. Spectrosc. 185 (1997) 356. G. Ch. Mellau, M. Winnewisser, B.P. Winnewisser, Poster J21, 15th International Conference on High Resolution Spectroscopy, Prague, Czech Republic, 30 August– 3 September, 1998. R.S. Mulliken, J. Chem. Phys. 23 (1955) 1997. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York, 1945. P. Chollet, G. Guelachvili, M. Morillon-Chapey, P. Gressier, J.P.M. Schmitt, J. Opt. Soc. Am. B 3 (1986) 687. G. Guelachvili, D. de Villeneuve, R. Farrenq, W. Urban, J. Verge`s, J. Mol. Spectrosc. 98 (1983) 64. A.G. Maki, D.R. Lide, J. Chem. Phys. 47 (1967) 3206. M.A.H. Smith, G.A. Harvey, G.L. Pellet, A. Goldman, D.J. Richardson, J. Mol. Spectrosc. 105 (1984) 105. P. Botschwina, Chem. Phys. 81 (1983) 73. J.D. Rogers, J.J. Hilman, J. Chem. Phys. 77 (1982) 3615. F.J. Northrup, G.A. Bethardy, R. Glen Macdonald, J. Mol. Spectrosc. 186 (1997) 349. M. Nezu, T. Amano, K. Kawaguchi, J. Mol. Spectrosc. 192 (1998) 41.