ATOMIC
DATA
AND
NUCLEAR
ENERGY
DATA
LEVELS
TABLES
AND
FOR NEON-LIKE
37, 1-l 5 (1987)
WEIGHTED IONS
OSCILLATOR K X THROUGH
STRENGTHS SE XXV
E. BIEMONT* Institute of Astrophysics, University of Liege B-4200 Cointe-Liege, Belgium and J. E. HANSEN Zeeman Laboratory, University of Amsterdam Plantage Muidergracht, 4 NL- 1018 TV Amsterdam, The Netherlands
Weighted oscillator strengths are presentedfor the 2p6-2p53s,2p6-2p53d,2p53s-2p53p,and 2p53p2p53dtransitions in the neon isoelectronic sequencefrom K X to Se XXV. These have been calculated by an ab initio Hartree-Fock-Relativistic (HFR) self-consistent field method with configuration-interaction effects taken mto account. 0 1987 Academic press. hc.
* Research Associate of the Belgian National Fund for Scientific Research (FNRS)
0092-640X/87 $3.00 Copyright 0 1987 by Academic Press,Inc. All rights of reproduction in any form reserved.
Atomic
Data
and
Nuclear
Data
Tables.
Vol.
37.
No.
1, July
1987
E. BIEMONT
Neon-like
and J. E. HANSEN
Ions
CONTENTS
INTRODUCTION ., ._. _, .__.,__..._.,_..._., Method of Calculation Energy Levels . ., Oscillator Strengths EXPLANATION
OF GRAPHS
EXPLANATION
OF TABLES
GRAPHS
I-V.
._., ,__.._... .,
LS Composition
of Levels for Neon-like Ions Mg III through Se XXV . ... . .. . .
TABLES I. Slater Parameter Values for K X through Se XXV II. Computed Energy Levels for K X through Se XXV III. Comparison of Theoretical and Experimental Energy Levels for Ti XIII . IV. Weighted Oscillator Strengths (gf) for 2s22pb-2s22ps31 and 2s22p531-2s22p531’Transitions in K X through Se XXV
10 11 12 13
INTRODUCTION
A considerable amount of work has been devoted recently to both theoretical and experimental studies’-’ ’ of neon-like atomic systems for intermediate- or highionization stages (Z > 18). These studies have had several motivations. Population inversion in highly ionized neonlike selenium, yttrium,‘2~‘3 and krypton’4 has been demonstrated recentIy, with the observations of amplified emission of radiation. Moreover, the 2~~31-2~~31’ transitions, which occur in the region 100-400 A for the iron group elements, are of special interest for spectroscopic diagnostics of magnetically confined plasmas (for details, see for example Ref. 15). The neon sequence is also of interest in astrophysics where the occurrence in solar flare spectra of transitions in neon-like Fe XVII and Ni XIX has been discussed frequently in the past (see for example Refs. 16-20). Our knowledge of the oscillator strengths for neonlike ions (Z > 18) is still very fragmentary,2’-23 although some new results have been published recently.1,5,15 In particular, Fawcett’ has used the Hartree-Fock-ReIativistic (HFR) method24-26 due to Cowan and Griffin27 combined with a process of optimization of Slater parameters to obtain data for the ions Al IV to Ar IX. The main purpose of the present work is to extend Fawcett’s calculations to higher values of Z using a similar method.
The process of semiempirical optimization of the calculated energy levels used by Fawcett’ has been replaced, because of the scarcity of reliable experimental data, by an ab initio calculation of the transition probabilities but using larger basis-set expansions for the wave functions. The two procedures have been found to be equivalent (see below) insofar as the accuracy of the oscillator strengths is concerned. Method of Calculation
The Hartree-Fock-Relativistic self-consistent field method24z2s has been used to calculate the radial wave functions for the ions K X to Se XXV in the neon isoelectronic sequence. An extension of the calculations to lower Z was performed to make a comparison with Fawcett’s results’ possible. Due to computer memory limitations on the matrix dimensions, we had to restrict the number of configurations in the wave function expansions. The LS basis set finally adopted, basically restricted to the complex n = 3, included explicitly all the terms of the configurations 2s22p6, 2s2p63s, 2s2p63d, 2s22p53p, 2p63s2, 2p63pz, 2p63d2, 2s22p43s2, and 2s22p43s3d for even parity and 2s22p53s, 2s22p53d, 2s2p63p, 2s22p43s3p, 2s22p43p3d, and 2s22p54d for odd parity. According to 2
Atomc
Data and Nuclear
Data Tables.
Vol. 37. No. 1, July 1987
E. BIEMONT
and J. E. HANSEN
test calculations, these expansions are expected to include the largest part of the correlation effects for the low-lying configurations. In particular, the configurations 2~2~~31 were introduced because they have been shown to affect the 2.~~2~~31’ configurations considerably.3,4 HFR values were used for the interaction integrals but the exchange and configuration interaction integrals were multiplied by 0.95. This procedure of scaling down the integrals is well established in the literature (see for example Refs. 24, 25). We report in Table I the energy parameters adopted for the 2p53s, 2p53p, and 2p53d configurations in the ions K X to Se XXV.
by the MCDF method’ as well as with the experimenta values. This is illustrated in Table III for Ti XIII.
Oscillator Strengths
The calculated weighted oscillator strengths (gf) obtained for the ions K X to Se XXV are reported in Table IV. Only gfvalues greater than 0.0001 are given. In order to assessthe reliability of these values, we have extended the calculations to Z values smaller than 19 (these results are not reproduced here) in order to allow a comparison with Fawcett’s data.’ Excellent agreement was observed for the first ions of the sequence. This is illustrated in Fig. 1 for Cl VIII. In fact, except for a few weak lines, both sets of results agree within 5%, showing that, insofar as the oscillator strengths for the 2p6-2~~31 or 2~~31-2~~31’transitions are concerned, the accuracy of the ab initio calculations reported here is similar to that reached in Fawcett’s calculation.’ Fawcett’s results are, as already mentioned, based on an optimization process of the calculated energy values but are obtained with a smaller basis set. The f values compiled by the National Bureau of Standards for SC XII and Ti XII12’ and for V XIV, Cr XV, and Mn XVI22 are based on the monoconfigurational data of Crance2’ which agree with the self-consistent-field
Energy Levels
The eigenvector
components
Neon-like Ions
of some of the
2s22p53s, 3p, and 3d levels show large departures from
LS coupling and this has given rise to some differences over the naming of the levels in the literature. Jup&n and Litzen suggested retaining, at high Z, the LS level ordering from the beginning of the sequence with the consequence that some of the designations do not correspond to the largest eigenvector component. Other authors have preferred’,5,2’-23 to label the levels according to the largest eigenvector component with the consequence that the smoothness of the curve showing the percentage composition for particular levels along the sequence is destroyed. This is illustrated in the Graphs, which show all the strongly mixed levels for which the leading components in the level composition change substantially along the sequence. It can be seen that most of the crossover points occur rather close to the lowest Z value tabulated in this work (Z = 19). We have therefore chosen to label the energy levels by the largest eigenvector component at large Z and in order to retain the smoothness in the reported oscillator strengths (fvalues) we have retained the order of the levels found at high Z down to K X even in the case of a crossover. From the Graphs it is possible to determine those cases where the name does not correspond to the largest eigenvector component; in addition, a summary is given under Explanation of Tables. The ab initio HFR energy levels are reported in Table II for the ions K X to Se XXV. Calculated energy levels in the neon isoelectronic sequence (for example Refs. 3, 28,29) have in the past been used as support for line identifications in highly ionized systems and we hope that the values presented here will be useful in a similar way. The accuracy of the calculated wavelengths is generally very good for the resonance transitions but for the 2~~31-2~~31’ transitions which appear at longer wavelengths, the accuracy is sometimes insufficient to disentangle blends. The energy levels obtained here (Table II) compare favorably with those obtained by other theoretical methods, that is by the parametric potential technique,28 by the l/Z perturbation expansion theory,29 and
I
I
I
Log lgfi Fawcett
0.0
-1.0
-2.0 Log Igf I This war
-1.0 0.0 -2.0 Figure 1. Comparison for Cl VIII of the oscillator strengths (log gf) reported by Fawcett’ and those of the present work. 3
Atomic
Data and NuclLlar
Data Tables,
Vol. 37, No. 1. July 1997
E. BIEMONT
and J. E. HANSEN
Neon-like
Ions
7. E. Trabert, Z. Phys. A 319,25 (1984)
calculations by Kastner et al.30 The uncertainties were expected to be within 50% for the most intense lines and larger than 50% for the weakest ones. Our calculations show, in many cases, differences amounting to a factor of 2, particularly for the 2p6-2~~3s transitions. No data have been reported for the 2pS3p-2p53d transitions. More extensive results are available for Fe XVII for which scaled Thomas-Fermi’6 and relativistic random phase approximation results3’ are also available. Both sets of oscillator strengths’6,3’ agree, in general, within 15% with our results. Similar considerations hold for Co XVIII and Ni XIX,23 for which the compiled values are based upon Refs. 16, 28, and 31. Bhatia et al.,’ using the SUPERSTRUCTURE code and a modified Thomas-Fermi potential, have calculated an extensive set offvalues for a number of ions including Ti XIII, Fe XVII, and Ge XXIII. A detailed comparison, for Ti XIII, has shown that the results in Ref. 5 in general agree with the HFR values within 15%, the differences being larger for a number of weak transitions in an apparently erratic manner.
8. M. C. Buchet-Poulizac, J. Physique, in press
J. P. Buchet, and S. Martin,
9. J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. DCsesquelles, M. Druetta, and S. Martin, Phys. Scripta 31, 364 (1985) 10. C. Jupen, U. Litzin, 33, 69 (1986)
and B. Skogvall, Phys. Scripta
11. C. Jupen. U. Litzen, V. Kaufman, Rev. A 35, 116 (1987)
and J. Sugar, Phys.
12. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, Phys. Rev. 54, 110 (1985) 13. M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, and R. W. Lee, Phys. Rev. Lett. 54, 106 (1985)
In Cr XV, the observed transition probabilities & = 48.5 X lo8 and 94.3 X lo8 SC’ for the 2p53s 3P!$-2p53p 3D3 and 2p53p 3D3- 2p5 3d 3F: transitions, respectively, obtained by Buchet-Poulizac et al.* agree well with (though appearing consistently smaller than) the values Aki = 53.1 X 10s and 98.1 X lo* s-’ derived from our tabulations.
14. S. Wong, R. Dukart, L. Koppel, R. Rodenburg, B. K. F. Young, R. Former, R. Stewart, and P. Egan, Bull. Am. Phys. Sot. 29, 12 12 ( 1984) 15. M. Finkenthal, P. Mandelbaum, A. Bar-Shalom, M. Klapisch. J. L. Schwab, C. Breton, C. DeMichelis, and M. Mattioli, J. Phys. B 18, L33 1 (1985)
Acknowledgment
16. M. Loulergue and H. Nussbaumer, phys. 45, 125 (1975)
We thank Dr. V. Kaufman for discussions about the appropriate choice of the scaling factors for the HFR integrals in this region of Z.
Astro-
17. S. 0. Kastner. J. Opt. Sot. Am. 70, 1550 (1980) 18. S. 0. Kastner,
Astrophys.
J. 275, 922 (1983)
19. C. Jupen, Mon. Not. R. Astron.
Sot. 208, 1P (1985)
20. U. Feldman, G. A. Doschek, and J. F. Seely, Mon. Not. R. Astron. Sot. 212, 41P (1985)
References 1. B. C. Fawcett,
Astron.
21. W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data 4, 263 (1975)
Phys. Scripta 30, 326 ( 1984)
2. C. Jupen and U. Litzen, Phys. Scripta 30, 112 (1984)
22. S. M. Younger, J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 7,495 (1978)
3. J. A. Cogordan, S. Lunell, C. Jupen, and U. Litzln, Phys. Scripta 31, 545 (1985)
23. J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, J. Phys. Chem. Ref. Data 10, 305 (198 1)
4. J. A. Cogordan, S. Lunell, C. JupCn, and U. Litzin, Phys. Rev. A 32, 1885 (1985)
24. R. D. Cowan, The Theory of Atomic Structure and Spectra (Univ. of California Press, Berkeley, 198 1)
5. A. K. Bhatia, U. Feldman, and J. F. Seely, ATOMIC DATAANDNUCLEARDATATABLES 32,435(1985) 6. M. C. Buchet-Poulizac 27,99(1983)
25. G. E. Bromage, “The Cowan-Zealot Suite of Computer Programs for Atomic Structure,” Report ALR3, Appleton Laboratory (1978)
and J. P. Buchet, Phys. Scripta
4
Atomrc Data and Nuclear
Data Tables,
VoI 37, NO. 1. July 1907
E.BIEMONT andJ. E. HANSEN
26. B. C. Fawcett, “The Atomic Structure Hartree-FockRelativistic and Hartree-XR Program-Package Translated for the IBM from the Cowan-CDC Version plus the Zeeman Parameter Optimisation Routines,” Report RL-83-030, Rutherford Laboratory (1984) 27. R. D. Cowan and D. C. Griffin, J. Opt. Sot. Am. 66, 1010 (1976)
Neon-like
Ions
28. M. Crance, ATOMIC DATA 5, 186 (1973) 29. L. A. Bureeva and V. I. Safronova, Phys. Scripta 20, 81 (1979) 30. S. 0. Kastner, K. Omidvar, and J. H. Underwood, Astrophys. J. 148, 269 (1967) 3 1. P. Shorer, Phys. Rev. A 20, 642 ( 1979)
Atomc
Data
and
Nuclear
Data
TaMes.
Vol.
37,
NO.
1, July
1987
E. BIEMONT
and J. E. HANSEN
EXPLANATION GRAPHS
I-V.
LS Composition
Neon-like
Ions
OF GRAPHS
of Levels for Neon-like
Ions Mg III through Se XXV
Shown are levels for which the same LS basis state does not give the dominant contribution to the eigenvector over the range of Z studied. The heavy lines correspond to the components which normally are used to give names to the levels at the neutral end of the sequence, while a thin line shows a small component at the neutral end which becomes the main component at large 2. Components belonging to the same level are indicated by the same symbol (circles or triangles). The LS designation of each component is given on the left. Graph I can also be used for the 3P, level if the LS designations of the components are interchanged. Although the tabulations presented here are for the ions K X through Se XXV, the eigenvector compositions have been calculated for Mg III to Ar IX as well. The level designation used in the tables is that of the largest LS component at high Z (thin line).
6
Atomic Data and Nuclear
Data Tables,
Vol. 37, No. 1, July 1987
E. BIEMONT
and J. E. HANSEN
EXPLANATION
Neon-like Ions
OF TABLES
The nth level of a given parity and J value is labeled by the largest eigenvector component at high Z (Z >, 32) which hasnot been already assigned to another level. The same designation is then retained for the nth level for all values of Z. This means that in some Z regions the name given to a level does not correspond to the largest eigenvector component. These casesare shown in the Graphs and are summarized here for Z values > 19: 2~~3s3P7 for Z < 23 (V XIV): 2p53s‘Pp for Z < 23 (V XIV): 2p53p ‘PI for Z < 21 (SC XII): 2p53d ‘04 for Z < 25 (Mn XVI): 2p53d ‘F3 for Z > 3 1 (Ga XXII) and for Z < 22 (Ti XIII): TABLE I.
The main component in this region is Ipp. The main component in this region is 3PY. The main component in this region is 30,. The main component in this region is 3Fi. The main components are 3F3for Z > 3 1 and 3D3 for Z < 22.
Slater Parameter Values (in cm-‘) for K X through Se XXV Conf E F’(n1, n’l’) Gk (nl, n’l’) r nl
Configuration, with ls22s2omitted Average energy of configuration Electrostatic direct integral Electrostatic exchange integral Spin-orbit parameter
The adopted values of Fk, Gk, and l”, listed here are 1.O, 0.95, and 1.O times the tzb initio HFR values. TABLE
II.
Computed Energy Levels (in cm-‘) for K X through Se XXV Level
TABLE III.
Configuration, with ls22s2 omitted, and term designation. 3P0 means 3Po.
Comparison of Theoretical and Experimental Energy Levels (in cm-‘) for Ti XIII Level HFR MCDF l/Z PPT EXP Dl D2 D3 D4
Configuration, and term designation Hartree-Fock-Relativistic, this work Multiconfiguration Dirac-Fock, Ref. 3 l/Z expansion, Ref. 29 Parametric Potential Theory, Ref. 28 Experimental data from Ref. 7 (e), Ref. 2 (f), and Ref. 2 1 (lid HFR -- EXP MCDF - EXP l/Z - EXP PPT - EXP
TABLE IV. Weighted Oscillator Strengths (gf) for 2s22p6-2s22p531 and 2s22p531-2s22p531’ Transitions in K X through Se XXV Configurations Trans J-J’
Configuration labels for the initial and final levels. ls22s2 has been omitted. LS designations of initial and final states. 1s means ‘S. Total angular momenta of initial and final states
7
Atomic
Data
and
Nuclear
Data
Tables,
WI.
37.
No.
1, July
1997
GRAPHS I-V, LS Composition of Levels for Neon-like Ions Mg III through Se XXV Seepage6 for Explanation of Graphs
8
2 = A
I
I
Ti
Cr
Fe
Ni
Zn
Ge
Se
Ca
Ti
Cr
Fe
Ni
Zn
Ge
Se
Ca
Ti
Cr
Fe
Ni
Zn
Ge
Se
20
I
Mg
Si
S
Ar
Ca
Mg
Si
s
Ar
Mg
Si
S
Ar
22
I
28
30
34
26
16
18
32
24
14 I
12
1
I
1
if? B 0
-<
100
0 -
zi F
0
100
0
GRAPHS
I-V.
LS Composition
of Levels for Neon-like
See page 6 for Explanation
2 = 12
14
16
18
I
w
20
Ca
22
I Ti
Ions Mg III through Se XXV
9
of Graphs
24
I Cr
26
I Fe
28
I
1 Ni
30
I Zn
32
I
I Ge
I-
31
m
I Se
-
50
’ 5 01 ’ Mg
I
I
I
Si
S
Ar
Ca
Ti
Cr
Fe
Ni
Zn
Ge
Se
E.
BIEMONT
Neon-iike Ions
and J. E. HANSEN
TABLE I. Slater Parameter Values for K X through Se XXV See page 7 for Explanation
of Tables
_________-_-_-_____-____________________-------------------------------------------------Pac‘wwter K x ca XI Conf ____--__-__-_____-__---------------------------------------------------------------------2g535
2806732
?A"
2a122eo
371 u970
32ua367
v
xrv
u212092
CK
xv
u7397uo
url
XVI
5297922
Fe
XVII
5886686
262Ul
28309
30379
32U26
3uoa5
36564
t 2P
15541
19900
25122
31317
38601
U7098
569UO
68264
3444502
2991504
44u3312
3928522
u989022
58020
63967
69831
75112
e1574
a7422
5565706
6173428
93260
99c91
22OJU
24265
26022
28591
3C7E2
32903
35ou7
371au
23377
25879
28327
30784
33235
35680
38120
40555
155u9
19909
25132
31326
38610
U7107
569U7
68271
12050
14721
273OU63
EAV
3664
322U122
4793
3699568
6165
8203@98
7810
47UC206
9759
53075e6
74207
a2704
91169
99602
r;‘(2~,311
51353
59194
67061
7a919
a2818
90693
9.3561
29378
33910
JR060
u1022
47587
52153
56986
6127A
15573
19935
25161
31358
386UU
47143
56717
68313
31)
213
l3d
308
________--____--____---------------------------------------------------------------------Pardrretsr co XVIII Ni XIX COtIf _____________-______---------------------------------------------------------------------EA" ;'(
6505918 2F.35)
C2P
YAV
38593
40670
81220
95962
6912231
?2(2p,lp)
7155750
lOU914
7482192 110733
431
cu
xx
7836150 U2707 112655
8183373 116549
779
596
Zn
XXI
e547130 U'U767 131U69
e915aul 122361
;a
xx1r
3288699 U6851
152587
9679672 128221
116383
6535551
65679
2p.
103006
5906128
F2(2F,31)
r2P
2$3d
XIII
2u170
;3(
2~~3~:
Ti
22091
2736
2F53s
XII
G't2F.3~)
2569179
2p53a
SC
1014
Se
XXIII
10063870
176199
lOU79939
7s
XXIV
1637
se
xxv
11691069
50961 202505
11301722
134001
106420
129R
10863660
48993
12U73U
53033 231715
1216ClCU
139804
145632
0'(2~,3~)
39316
UlU43
U3566
U5685
47856
49935
52038
54167
9(
U2987
USU16
47942
50267
52732
55130
57547
59984
c*P
31226
95961
C3P
17812
21367
2p.39)
-::Av
7197130
7809777
112658 25830
8613998
131470 30050
9369902
152586 35318
101576C3
176197
41182
10977220
202501 47783
11928876
231708 55184
12712696
F*(2p,31)
133063
191372
149660
157931
1661.36
174U25
182650
190862
-?'(2p,,lj
11~268
122104
129928
1377110
1a5suo
153327
161103
168867
G3(2~,33)
C2P
65933
703eu
81270
96010
(3d 2037 2505 --___--_-_--_____-------------------------------------------------------------------------
74928 112707 3oua
79Uh6 131522 3675
a3998 152641 4395
39523 1762511 5209
93041 202561 6135
97553 231771 7177
E. BIEMONT
and J. E. HANSEN
Neon-like Ions
TABLE II. Computed Energy Levels for K X through Se XXV Seepage7 for Explanation of Tables
Lt?Vt?l
K x
Cf
XI
SC
XEI
Ti XIII
v XIV cr xv _--__--______--------------------------
Nil
3PO lP1 3P1 3P2
2017349 2401597 2424619 2394097
2826793 2805580 2834.340 2797017
3267604 32396v4 3275432 3230013
3739921 3703736 3748039 3693050
4243ev4 4197791 v252266 4186079
4779516 4721757 4786247 47090
5347066 5275579 5356123 5261852
5946639 5959199 5956039 58vVV72
2F53p
3PO 1so 1Pl 3Pl 351 301 3P2 302 102 303
2533J16 2617625 2560560 2588754 2534938 2580817 2570166 2557409 2587632 2556739
3007609 3110782 2935059 3015304 2952589 3005875 2991364 2976495 3014526 2976517
3462814 3574472 3V35.854 3473490 3000660 3462384 3442390 3425731 3473152 3426750
394R993 4069271 3916946 3963514 3879065 3950460 3925072 3905068 3963599 3907445
4466162 45951 e7 4428337 VV85568 4387760 VU70232 4437612 vvlvv62 44R63VV 4Vl8606
501433v 5152343 'A970036 5039862 4926685 5021837 4980616 4953868 5ou12ej U960239
5593513 5740906 5542060 5626614 5495775 5605423 5554091 5523237 5628713 5532350
62036e9 6361052 6144026 62v6049 6094955 6221146 61SaOU6 6122516 6248856 6134946
2p53-J
3PO 301 3Pl lP1 132 302 JP2 3F2 3F3 3;) 1 lF3 3?U
2753676 2791854 2755284 2932231 27749v0 2777927 2761537 2734683 2768690 2779326 2797334 27SSZOd
3192422 3236885 3195632 32Y4847 3216897 3245475 3202027 3241790 3209578 3221764 3245770 3205587
3661490 3712623 3665361 3768720 3689200 3724562 3672999 3720053 3680738 369&566 3725377 3676336
4160911 v219134 U165529 9284053 4191991 U235Uv6 v1745o2 u23091v 4182932 U197800 U236e55 U177526
4690730 S756v29 v6961v7 4831cvo 4724979 47103u9 4706540 4713375 v714397 4731u93 4780443 4709186
5250968 5324529 52572vv 5409914 5239487 5351518 5269134 5348057 5276810 5295689 5356341 5271357
58U1637 5923429 SeUee28 602091U Se82434 5961200 5962290 5955176 5e69651 se90417 5Y64790 5864069
6462777 65531U5 6U70935 6664325 6506860 6601670 6496043 6599981 6092956 6515730 6606055 6497376
___-_________-__-_______________________------------2~~33
32
XVI
Fe
XVII
--- .--- ----- ----- --- ---- - ---.
21, 53s
3PO 1Pl 3Pl 3P2
6578406 6472541 65H914V 6456344
7242Slo 7115552 7252608 7098977
79391v2 77.39149 7949579 7770517
8663471 8490265 8679299 8071676
7430694 9221830 9441904 9202219
10226015 9982732 10237601 9962242
11051893 10770162 11063966 10708726
11916eOl 11592269 11929165 11569890
2p53p
3PO 1so lP1 3Pl 351 331 3PL 3C2 132 303
6844838 7312981 6777157 693RVOO 67LVlVl 6369163 6792483 6751650 6701915 6768029
7516924 7696915 7440280 7593915 7393251 75v9667 7457412 7410579 7588190 7431608
8219903 8V13039 8133826 9302351 8072196 0262028 8152841 80992U6 e307e75 8125690
8953715 9161795 @a57921 905sv74 e790979 9008942 a573773 e5175ao 9061252 ee502ao
9710362 9943rt95 96123C3 98v2033 9539165 9787074 9635245 9565V90 3849620 9605397
10513637 1075786C 10397297 10652934 10317070 10600245 10422198 10342966 10670225 10391021
11336841 116C2955 11210053 11515610 11121657 11443340 11236937 1114713u 11523656 11204926
12196199 i 24e729e i 2058883 12409696 11961080 12325544 12087733 119R615U 12417499 12053882
2$33
3P3 321 3Pl lP1 1c2 3,2 JP2 3F2 3F3 333 3F3 3F4
7114383 72136V7 7123553 7340333 7161769 7275173 7140396 7267630 7146719 7171643 7250368 71U1289
7796475 7904933 7806714 8OV9437 7847190 7991989 7a25338 7973556 7930954 7a5819i 798dOOV 78258V6
8509068 8626995 8520416 8791733 8563150 8722433 a540915 8712838 8545hac 8575410 0729239 R541080
9252171 9379829 9264671 956759V 930367V 9V9673.5 5287125 9485307 9290904 9323329 9504364 9297013
10025@04 10163Uv2 10039u37 10377333 10086eOO 10305213 lOC63S84 lo292751 10066641 10101985 10313688 10063702
10829962 10977824 1084488e 11221275 10894550 11168229 ioe71484 11133953 10872892 10911398 11157515 108711V7
11661912 11920247 11678112 12096993 11730221 12023345 11706881 12006981 11706920 11780857 12033436 11706643
12529922 12698980 12547434 13013087 12602116 12939165 1257R429 12920415 12576992 12622650 12950051 12578478
11
Atoms
Data and Nuclear
Data Tables.
Vol. 37. NO. 1. July 1987
E. BIEMONT
and J. E. HANSEN
Neon-like Ions
TABLE III. Comparison of Theoretical and Experimental Energy Levels for Ti XIII Seepage7 for Explanation of Tables
IF?
Level
I’ 1
HClF
02
l/Z
I> I
04
PPT
FXP
_________--_____---_----------------------------------------------------------2p53s
2F53P
2p531
3PJ 3Pl 1Pl 3P2
3739921 3703736 3748039 3673059
-5817 -5414 -5561 -5124
3736575 3701503 3745941 3689736
-3663 -7647 -7659 -8446
3743891 3708220 3753200 3496300
-1347 -930 -400 -1992
3745300 3709200 3753600 3693300
62 so 0 -4882
3745738f 3709isoe 3753600e 3698182f
3Pa lS0 1Pl 3Pl 3;1 331 3P2 3C2 102 1113
3949793 UO69211 3916946 3963514 3979065 3950460 3925072 3305068 3563699 1907446
-367 6071 -1144 -1333 -239 -699 -1833 -1114 -1726 -1435
3942567 4072417 3910588 3957013 3971329 3943395 3919211 3898U54 3957451 3901012
-7293 9217 -7532 -7834 -7975 -7764 -7694 -7728 -7968 -7969
3950425 UO62100 3917295 3966349 3879400 3952900 3925900 3906691 3965900 3907900
55s -1100 -975 1501 -904 1701 -1005 419 47s -1711
3947303 40@7300 3912900 3964800 3980003 3950200 3921900 3900700 3965800 3904000
-2560 24100 -5190 -47 696 -9.5s -5005 -5402 375 -4361
3949960e 4063200~ 39180902 3964847f 3879304f 39511592 3926905f 3906182f 3965425f 3909881
3PO 331 3Pl lP1 1x2 302 3P2 3F2 3f3 3Cl lF3 3t.4
4160911 4219134 U165529 4284053 4191891 4235446 4174502 4230914 UlY2402 u197300 U236365 4177526
-2809 -666 -2711 2453 -2047 -1943 -2396 -2103 -2091 -1955 -1971 -1968
u15551tl 4214855 4159994 U283479 4187119 4230167 416R93e 4225905 4177632 4193129 4231938 4172179
-8292 -U94S -82U6 1979 -6819 -7227 -7960 -7112 -6161 -6576 -6998 -7315
41s9uoo 4218300 U163532 U2e6700 41139674 4234348 11172080 4229900 4177517 4195200 4237879 4i7u7oa
-4uoo -1530 -4708 5100 -4254 -3046 -4918 3117 -6976 -4505 -957 -5394
4164600 4219800 416tJ200 42al600 420710'3 4226800 4169900 4242900 4183200 4197900 4242000 417e400
f
ROO 4163FJOOe 0 P2198OOq -40 4168240e c 42a1600'~ 13162 4133938f -10594 U237394f -6698 4176R98f 9783 u233017f -1293 4184093f -1805 4199705f 3164 423'3836f -1094 4179494f
_______---_____----_____________________----------------------------------------
12
AtomicDataandNuclearDataTables,Vol
37.M
l,July
1987
E. BIEMONT
TABLE
IV. Weighted Oscillator
Neon-iike
and J. E. HANSEN
Ions
Strengths (gf) for 2s22p6-2s22p531 and 2s22p531-2~~2~~31’ Transitions in K X through Se XXV See page 7 for Explanation of Tables
------__-_--_____--------------------------------------------------------------------------------------Confi.duration; TCdllS J-J’ K Y -----__-_________--------------------------------------------------------------------------------------15-l P zp62p51i o-1 0.1300 1 .i-IP O-l 0.1321 lS-30 o-1 0.1775 2p62p53.l 1:;-JP o-1 0.3361 lS-1P 2.1)371 o-1 2p 5 1s - 2~~32 3P-13 2-3 1.1303 JP- J!l 0.1346 2-2 3P-IP 2-1 0.0541 lP-l:! l-2 C.4550 lP-1P l-l 0.1711 IP-1P o-1 0.0287 JP-lL> 0.0424 2-2 lP-10 l-2 0.0463 IP-JP 0.5715 2-l l P-.3P l-l 0.0726 IP-3P o-1 0.2JlY lP-JP 1-o 0.1371 ZIP-35 2-l 0.2385 l?-3; 1-l 0.0607 JP-JS o-1 0.0143 ZIP-1 2 l-2 0.7394 3P-32 1-l 0.2333 3P-IP 1-o 0.0407 lP-32 2-2 0.4361 lP-3P l-2 0.3374 IP-1’3 2-l 0.0045 lP-3L) l-l O.OlOH JP-IU o-1 0.24oa IP-1s 1-o a.odcs 3P-3P l-2 0.!3652 O.OC12 IP-3c l-2 3P-1P l-l 0.0001 3P-35 l-l 0.5111 3P-IL1 l-l 0.2198 3?-1s 1-o 0.2090
ca
XI
SC
XII
0.1106 0.1761 0.2202 0.0059 2.5833 1.0655 0.1200 0.3544 0.422J 0.3907 O.Cl7J 0.0299 0.0314 0.0628 0.0310 0.2042 0.1261 0.2931 0.0500 3.0117 0.7193 0.214C o.o'r20 0.4637 0.1363 0.0013 0.0071) 0.2246 0.08Ub 0.0412 0.0037 0.0001 0.0132 0.2118 0.1977
0.1191 0.1622 0.2725 0.0078 2.6413 1.0111 0.1067 0.0519 0.3939 0.3701 O.ClCl 0.0215 0.0217 0.0534 3.0003 0.2062 0.1177 3.2836 C.OUlC 0.0092 0.6961 0.1957 0.042C 0.4421 0.302u 0.0006 0.0051 0.2069 0.0362 0.0289 0.0004
0.125Y 0.1536 c.3350 0.0086 2.5743 0.9611 0.2947 o.ou47 0.1688 0.1599 0.0061 0.0158 0.0152 0.0454 0.0001 0.2391 0.1115 0.27UJ 0.0331 0.0071 0.6726 0.1790 c.3409 3.4214 0.2971 0.00C1 0.3317 0.1893 0.0859 0.0134 0.0002
0.1310 0.1410 0.4074 0.0093 2.6848 C.92129 0.2838 0.0376 0.3465 0.3501 0.0036 C.0118 c.0109 0.0385
0.1350 0.1311 0.4a9u 0.0099 2.6155 0.8837 0.2738 0.0306 0.3267 0.3413 0.0021 0.0089 O.CO7R 0.0327
O.ZlC7 0.1072 C.2739 C-0263 0.0054 0.6497 0.16Ul C.0390 C-4023 0.2911 0.0028 0.1727 0.0940 0.0132 0.0001
0.2115 0.1043 0.2701 0.0204 0.0041 0.6281 0.1512 0.036U 0.1847 0.2850 C.COCl o.co22 0.1579 0.0810 0.0090 0.0001
O.CosO 0.2065 0.1711
c.0077 0.2027 0.1579
0.0061 0.199s 0.1474
Configurations TranS J-J' Co XVIII ______________--________________________----------------------------------------------------------------
Ni
cu
zn
Ga
-_-________-________------------------------~--------------~--------------------------------------------
2p5
2p6-
2p5
2,,6-
2P5JJ
3,1
--------___------------
-
2p51p
1:;
1 s-1P lS-JP 15-Ji’ lS-JP lS-1P 3P-30 Jtl-3;) 3?-lP lP-IL1 1 P-l? 3i'-1P 3P-10 lP-1c IP-IP 1 P-IP IP-JP IV-3P JP-35 IP-3s JP-JS 3?-lD JP-1P 3P-JP JP-3P lP-12 3P-33 lP-33 3P-30 lP-1s 3P-JP 3P-30 IP-lP IP-JS 32-12 3P-1s
o-1 o-1 o-1 o-1 o-1 2-3 2-2 2-l l-2 l-l o-1 2-2 l-2 2-l l-l O-l 1-o 2-l l-l o-1 l-2 l-l 1-o 2-2 l-2 2-l l-l o-1 1-o l-2 l-2 l-l l-l l-l 1-o
XIX
xx
Ti
XIII
XXI
v
XIV
XXII
O.lUl4 0.1165 0.7774 0.0111 2.5574 0.7~67 0.2479 0.0129 0.2790 0.3189 0.0004 0.004J 0.0332 0.0204 0.0002 0.2DRV 0.1323 0.259d 0.0371 0.0017 0.5729 0.1229 0.0268 0.3413 0.2580 0.0004 0.0012 0.1219 0.0574 0.0’511
0.1423 3.1127 0.9807 0.0112 2.43R5 0.7742 0.2401 0.3035 0.2661 0.1123 0.0032 a.0035 3.0025 0.0176 0.0002 0.2069 0.1711 3.2551 0.004% 0.0012 0.5577 0.1163 0.0213 0.3296 C.2511 o.coo5 O.OOlC 0.1157 0.'3620 0.0022
0.1429 0.1096 0.9842 0.0111 2.4341! 0.7545 0.2332 0.0053 0.2544 0.3060 o.ccc1 0.0023 0.0020 O.OlSl 0.0002 0.2047 0.1044 0.2520 0.0021 O.OOOR 0.5442 0.1108 0.02co 0.3191 0.2587 o.ccc5 0.000s 0.1087 0.0566 C.0015
0.1412 0.1070 1.0957 0.0109 2.1686 0.7371 0.2266 0.0025 0.2439 0.299@ 0.0001 C.0023 0.0015 0.0134 0.0002 0.2023 0.1059 0.2475 O.OOC7 0.0006 0.5322 0.1063 0.0169 0.3101 0.2546 0.0005 0.0008 0.1027 0.0512 0.0011
0.1432 0.1049 1.1840 c.0105 2.3020 0.7219 0.2203 0.0009 0.2342 0.2938
0.0')02 0.0322 0.1954 0.1233
0.0032 0.0016 0.1812 0.1200
0.0002 0.0011 0.17t9 0.1172
0.0032 0.0008 0.1725 0.1149
cc
xv
Mrl
XVI
Fe
0.1378 0.1265 0.5795 0.0105 2.6489 0.8510 0.2645 0.0241 0.3091 3.3332 C.0012 0.0069 0.0057 0.0279 0.0001 0.2113 0.1027 0.2666 0.0152 0.0031 !l.bOAO O.lUOl 0.0334 0.36R7 0.2790 0.0002 0.0019 0.144H 0.0770 0.0063
0.1399 0.1210 C.6762 O.ClC9 2.6087 c-8221 0.2558 c.c1e1 0.2932 0.1257 o.ccc7 o.co5u o.cou3 0.0237 O.COOl C.2104 0.1021 C-2633 C.ClC7 o.co23 0.5895 0.1307 C.ClCl C.35U2 0.2733 c.coc3 0.0015 0.1335 0.0724 c.cou4
c.cc51 0.1963 C.1192
0.0001 0.0039 0.1910 0.1327
0.0001 c.cc30 O.lP91 0.1275
oe
RS
XIII
0.1430 0.1031 1.2777
XXIV
Se
13
xxv
2.2376 0.7087 0.2143 0.0001 0.225U 0.2380
0.1427 0.1018 1.3660 a.0094 2.1750 3.6973 0.2097 0.0001 0.2174 ‘).2823
C-1423 O.lCO7 1.44P6 o.cce6 2.1160 C-6875 0.2014 0.0006 C.2059 0.2769
0.0019 0.0012 0.0113 0.0003 0.1998 0.1076 0.2425 0.0001 0.0004 C.5215 0.1025 0.0140 0.101R 0.2511 c.occ5 c.0007 c.0975 0.0460 o.oocB
O-CO16 0.0010 0.0106 0.0003 C.1975 0.1094 0.2372 0.0001 c.0002 0.5121 0.0991 O.Cll4 0.2946 0.2479 c.occ5 O.OOOb 0.0931 0.0409 0.0005
0.0014 0.0009 0.0095 0.0003 0.1952 0.1111 0.2316 0.0006 0.0001 0.5049 0.0966 0.0091 0.2881 0.2451 0.0005 0.0005 0.0891 0.0362 0.0004
0.0012 C.OOQ7 C.CCf!6 0.0001 c-1931 C.1128 C.2257 C.OOl4 0.0001 C-4969 0.0944 c.co71 C.2P27 0.2427 0 -coo5 0.0005 O.CR56 0.0320 c.ccc3
0.0002 o.ooc5 0.1691 0.1126
0.0002 0.c001 0.1637 0.1106
0.0001 0.0002 0.1595 0.1086
O.COOl o.coo1 C-1554 0.1066
o.aico
____-_-_____-____-______________________----
-----
XVII
E. BIEMONT
TABLE
IV. Weighted Oscillator Strengths (gf) for 2s22p6-2s22p531 and 2s22p531-2.~~2~~31’ Transitions in K X through Se XXV See page 7 for Explanation
___--______----_____-----------------------------------------------------------------------------------confljuc3tionl-; Trdilr; J-J' 3 x c.1 x: SC XII -_--_--__-________-_____________________---------------------------------------------------------------20~32
-
2.~1~3.7
Neon-like Ions
and J. E. HANSEN
33-JF 3il-3F 32-10 3 I- 3 r 3:)-l c l P-l!I 33-1F 3x-30 3:1-1F 33-3'11 3,1-3!) lP-33 10-39 3!)-3P 3:1-3P 3,-3P lP-3P lP-3P 1.7-3P 3.)-l? I!)-3F ln-1F 1 r-3.; lo-3c 32-33 3P-37 JD-3n 1.1-32 I>-3P 3i'-3P 32-JP 3P-3P 3?-32 l')-l? 35-311 33-35: 35-12 3;-3P 35-37 35-37 3'l-3c 3310 3.1-3:‘ lo-3F lP-1P 12-30 lj-JF 3P-1P 3P-l;, 3?-3F 3P-1L! 3P-1F 31'-3.1 3P-3:: 3P-3P 3P-3P 3P-1P 3P-3D 3P-3F 33-10 33-33 33-3c 3:1-3P 3D-3P 3n-3P 3D-3F 3:>-1p lS-3P lS-1P lS-3c
3-4 3-3 3-2 2- 3 2-2 l-2 3-3 3-2 2-3 2-2 2-l l-2 l-l 3-2 2-2 2-l l-2 l-l 1-o 2-l 2-3 2-3 2-2 2-l 1-2 l-l o-1 2-2 2-l 1-2 l-l 1-o 9-l 2-l l-l l-2 1-2 l-2 l-l 1-o 2-3 3-3 2-2 l-2 l-l 2-3 2-2 1-l O-l 2-3 2-2 2-3 2-2 2-l 2-2 2-l 2-l 2-3 2-2 l-2 l-l l-2 l-2 l-l 1-o l-2 l-l o-1 O-l o-1
2.0316 0.2282 0.0203 1.31u7 (I.3718 0.1507 0.0504 0.0173 0.0312 0.0342 0.3377 0.0114 0.2951 0.0245 0.0351 0.0121 0.0485 9.0109 0.0198 0.3314 1.543!l 0.0944 0.0032 o-a926 0.0529 0.3233 0.0551 0.3143 0.016V 0.3207 0.3227 0.0379 0.0055 0.0001 0.0051 a.0915 0.5293 0.4437 0.1591 0.0191 0.2993 0.3349 0.0307 0.04v7 3.313~ 0.1323 O.lV71 0.0127 0.0069 0.0'312 0.0072 5.1223 0.3036 0.3519 0.3731 C.3326 1.29v3 0.0011 a.0341 0.0009 0.0002 0.0146 3.0350 0.0032 0.9963 a.1 75h 0.2545 0.0354
of Tables
li
XIII
c XIV
CC xv
Yn XVI
FQ YVi:?
1.3672 c.1597 O.ClU7 0.9341 0.2799 0.5051 C-Cl27 O.OORS 0.0337 C.ClC5 0.0210 0.0022 0.2114 0.3215 a.cv55 0.0293 o.c557 c.ccu2 C.OO7R 0.0004 0.0010 i.aec6 0.9825 c.ca3e C.6v5R 0.015u 0.2263 0.0104 0.Cll40 0.0039 o.acsa C.CO67 o.ci 49 0.0051 O.OOOJ 0.0030 0.0085 O.!7R2 0.3297 0.1330 0.0094 C.22C5 O.OC67 a.ccci 0.0362 0.0025 O.CF24 0.09c7 C.Cl51 c.coe3
1.2865 0.15Cl '3.0136 O.YR35 3.2643 0.4759 o.cc99 0.0075 0.0032 3.COPV 0.01R7 3.0015 ').20?4 0.0212 0.0478 0.029') 0.3609 a.0029 9.0059 '1.oor)5 0.0009 l.alflf, 3.0776 c-0035 0.6140 0.0117 3.2132 0.0374 3.0031 Q-0027 0.0043 9.0052 0.0123 0.0051 3.0007 0.00?7 9.0199 0.2911 0.3152 0.1294 O.OORO 7.20‘39 3.0049 0.0001 9.0322 *cI.oc)17 C.0813 0.0835 Q-0155 3.aoe7
0.0013 0.0394 C.CCC6 0.2824 0.0562 C.CClO 0.9859 O.COG7 0.0011 0.0074 o.oco3 0.0023 c.ccc2 c.0002 0.6962 0.1334
:.0010 0.0316 s.0003 7.2700 0.0529 o.ooc3 O-R347 0.0007 0.0007 0.007r) 0.0004 0.0017 0.0001 0.0001 0.6v6-l 0.1296
1.215' C.141~ C-Cl ?S o-e393 C.iV97 0.450) c.cc7q C.COF6 O.COC? C.CC6O O-Cl77 O.COll c.1345 c.c211 C-CCC2 0.0297 O-C615 C.COlh c.co41 C.C?OG o.coo7 C.FF3C O-C727 c-co33 C.T@?V o.co57 0.2015 o-o')52 c.co25 0.0019 C-CC33 c .covc C.ClO2 c.0052 0.0012 0.0023 C-Cl37 0.12172 C.3C23 C-7241 c.coc5 c.1957 C.CC36 c-ccc1 0.02Pl 0.0311 O.CPfl 0.0773 C.Cl"h c.co91 0.0002 c-coo7 0.0755 c.ccc2 C.25A2 c.0479 c-ccc7 0.7995 O.COG7 o.coo5 0.0063 c-ccc3 o.cc12
o.ife9 o.oc59
1.8313 0.2107 0.0193 1.2329 II.3513 0.6909 0.0397 3.0147 0.0303 0.0266 0.0334 o.oc93 0.%654 0.7235 Cl.0373 3.031J 0.0519 0.0101 0.0174 0.0007 0.031', 1.4239 0.7953 0.0036 O.Y2')3 3.042v 0.2782 0.0135 0.3111 3.0126 0.0153 3.0180 0.0314 0.3C52
1.6877 0.1955 O.OlP2 1.1392 0.3319 0.6245 0.0293 0.0129
1.5651 O.lY21 c.017c 1.0501 0.3135 0.5779 0.0219 0.0111
0.02cs 0.0295 0.006C 0.2493 0.0223 o.o1(3v '3.0307 0.0545 0.0089 O.OlV9 O.OOCl 3.0016 1.3203 0.0940 0.0039 0.7679 0.0336 0.2766 0.0284 0.0034 0.0095 0.0127 O.OlU2 0.0260 0.0051
C.3165 0.0263 0.0043 0.2339 0.3223 o.ov1v 0.0301 C-0566 c.0074 C-3125 0.0002 0.0315 1.2299 O.Ojll c.co39 0.7219 0.3262 0.2577 0.0204 0.0365 ,J * 'I 9 7 1 0.0099 c-0111 3.0216 0.0050
0.0047 0.0024 0.4731 0.4123 0.1572 0.0166 0.2744 0.0253 0.3031 0.0462 0.0166 0.1197 0.1327 0.013'1 0.0053 0.0037 o.oc5o 0.0378 0.0027 0.3371 0.3736 0.0021 1.1173 0. ooi)3 0.0033 0.0329
O.OD42 c3.0034 0.4254 0.3A61 0.1511 0.0149 0.2556 0.01 ei
0.0100 0.0323 0.00lR '3.7103 0.1514
0.0069 3.COll 3.0010 0.8427 0.15lC
0.0338 a.07u7 0.334s 0.3550 0.1442 0.$>129 C-2457 0.3129 0.3091 O.OV33 0.0957 0.172H 0.1089 C.OlUC 0.0075 o.ooa3 0.0325 0.0620 0.0014 0.3097 0.9640 0.0015 1.0104 0.0007 a.0023 0.0965 0.0001 0.0048 c. coo4 o.ooc5 0.7335 0.1435
1.4592 0.17C2 c.0159 C.9924 C.2962 0.5336 C.0166 0.0097 0.0001 c-01 31 0.0234 0.0031 C.2217 0.0213 0.043v 0.0297 C.0563 C.CCSP 0.0101 0.0003 0.0013 1.15C6 0.0971 c.co39 c.6875 0.0202 C.2411 0.0146 0.0051 0.0052 C.CO76 c.aoe7 a.01 79 c.0050 0.0002 0.0034 0.006U 0.3491 0.3461 0.1392 0.0110 c.2329 0.0092 0.00c,1 0.0400 0.00.38 0.0972 C.0992 c-01 45 c.0079 0.0001 0.0019 0.0494 c.coc9 0.2953 0.0599 c.co12 c.9v39 0.0007 c.0017 '3.3073 0.0003 0.0033 c.cccv c.0003 0.7315 0.7 378
0.2373 0.0054
0.2228 0.0055
0.2099 0 . 0 ,7 5 6
0.19R6 0.0057
0.0456 3.03A4 0.1101 0.12co 7.0134 3.co71 0.0005 0.0035 9.0779 0.0020 3.3227 7.05A6 0.0017 1.oe7v o.coc7 0.0031 0.0053
a .ccci 0.6123 0.1263
E. BIEMONT
TABLE
IV. Weighted Oscillator
and J. E. HANSEN
Neon-like
15
Ions
Strengths (&) for 2s22p6-2s22p531 and 2s22p531-2.~~2~~31’ Transitions in K X through Se XXV See page 7 for Explanation of Tables
_________-_____---______________________---~--------------~-------------------------------------------confi,gur3tions
TCOrlS
J-J'
Co
YVIIT
‘di
XTx
-______-__--------__-----------------------~----------------------------------------------------------23 5 3p
-
2p53?
3'>-3F 3D-3F 3D-13 3i>-3“ 3:1-1c 1 P-1 '! 37-1 I-‘ 3D-3C 3 j-1F 3'5-30 3.1-3~1 l?-33 lP-33 3!1-3P 33-3P 3'J-3P lP-J? lP-3P lP-3P 3X-1? 1 l-3< 10-1F 13-3c 1n-3c 32-37 JP-3.1 3?-32 l?-3P lfl-32 32-J? 3P-3P 3P-3P 3P-3P VI-1P 33-33 3s-3c 3s-13 3f;-3P 3s-3P 35-3P 30-3c 3x-3!-J 37-3F lP-3r l?-I? 17-33 I':-JF 3P-1P 3P-1P 3P-3F 3?-1c 3?-1r 3P-33 3P-3c 3P-3P 3P-JP 3P-1P 3P-30 3P-3F 3ti-1v 33-30 33-3L? 3'3-3P 31)-3P 3'1-3P 37-3F 3 )-1P lS-3P lli-1P lS-3T;
3-4 3-3 J-2 2-3 2-2 1-2 3-3 3-2 2-3 2-2 2-l l-2 l-l 3-2 2-2 2-1 l-2 1-l 1-c 2-l 2-J 2-3 2-2 2-l l-2 l-l o-1 2-2 2-l l-2 l-l 1-o o-1 2-l l-l l-2 l-2 l-2 l-l 1-o 2-3 3-3 2-2 1-2 l-l 2-3 2-2 l-l o-1 2- 3 2-2 2-3 2-2 2-l 2-2 2-l 2-l 2-3 2-2 l-2 l-l l-2 l-2 l-l 1-o l-2 l-l o-1 o-1 o-1
1.1521 0.13u2 0.0114 0.9005 0.2157 o.u275 0.0362 0.0359 0.0302 0.0,355 0.0151( 0.0309 0.1872 0.0209 0.0531 0.028U 0.0519 o.onc7 0.3327 0.0907 0.3305 0.91b2 0.0681 0.0033 0.5595 0.0065 0.1711 0.0037 0.0020 0.0314 0.0124 0.0331 0.03@4 0.0353 0.0311 c.0320 0.0167 0.2U61 3.2YC5 0.1202 0.3357 0.190R 0.0327 O.OOCl C.OZU6 0.0507 0.0936 0.9719 0.0155 0.3095
cu
xx
Zn
CT% XXII
ce
0.9993 0.1152 0.00Rl 0.7096 0.19611 0.37uo O.OOJY 0.0043 0.0002 0.003c 0.0116 0.0003 0.1676 0.0210 0.06U5 C.3277 0.0582 0.0003 0.0003 0.0010 0.0002 0.79Ul 0.0564 0.0022 o.u935 0.0325 0.1661 0.0012 O.OOlO 0.0005 0.0310 0.0013 0.OOUt-i 3.oosu 0.0050 C.COl2 0.0259 0.1394 0.2602 0.1096 0.0035 0.1678 0.0012
0.9578 0.1099 a.0070 0.6859 0.1836 0.3605 C.0028 0.0039 0.0002 c.0025 0.0107 o.ooc2 0.1515 0.0212 C.069R 0.0276 c.0550 c.0009 0.0001 0.0011 0.0002 0.7612 0.0533 0.0020 C-4752 0.0018 c-1593 3.0009 C.0008 c.0003 0.0007 c.0010 0.0039 a.0054 0.0364 c.0010 0.0263 0.1772 0.2514 0.1063 c.0030 C-1613 0.0010
0.9204 O.lC51 0.0059 0.5609 0.1705 0.3492 O.CO23 o.cc3.5 0.0002 o.co21 0.0099 0.0001 0.1556 0.021u a.a760 0.0275 o.c5c5 o.co19
0.0155 0.0002 0.0762 0.3596 0.313e 0.3103 0.0032 0.0003 0.0115
0.0132 o.ooo1 0.0738 0.0564 C.0129 0.0105 0.0049 0.0002 0.0096
l-C)956 0.1272 O.UlO3 0.7665 0.;!223 0.4074 0.0050 0.9'353 0.0032 O.ClOUS 0.01u0 O.ClO35 0.1934 0.0209 0.0563 0.0211 0.0616 o.c:0!31 0.0016 0. a008 0.0004 0.8700 0.063!3 0.3029 0.5358 0.0048 o.iai9 0.0026 0.0015 O.OOlrJ 0.0013 0.0023 0.0370 0.0053 0.33023 0.0017 0.0199 0.2277 0.2797 0.1165 o.oc1(9 0.1e20 0.0020 0.0001 o.fJ212 0.0005 O.OYll 3.0672 0.0152 0.0099 0.0011 0.0084 3.0763
3.0009 0.0009 0.0003 0.8301 0.0599 0.0025 O.SlUC 0.0035 0.173s 0.0013 0.0012 0.0007 0.0013 O.COlP 0.0050 o.o05(r 0.003!! 0.001 9.023C 0.2119 0.2696 0.1130 0.0041 0.1749 0.0016 O.GOCl o.ole2 o.ooc3 0.0786 O.OhJl O.Cl(r6 0.0101 0.002c o.ooc3 0.0139
0.2361 0.0446 0.0005 0.7133 0.0036 0.0002 0.0345 0.0002 0.0037
0.2257 0.092u o.oocu 0.6804 O.OOC6 o.ooc1 O.OOJl 0.0001 0.0005
0.2156 o.ouo3 0.0003 0.6509 O.OOCh 0.0001 0.0029 0.0001 0.0000
0.2056 0.0385 c.0003 0.6241 c.0005 0.0001 C.0023 0.0001 0.0003
0.5923 0.1232
0.5551 0.1202
0.5331 0.1172
0.5128 0.114u
0.1672 3.015-l
0.1522 0.0349
0.1579 o.ooYu
0.154u 0.0039
0.0005 0.0006 0.0206 3.0301 0.2869 0.0471 0.0306 0.7471 O.OOQ7 0.0003 0.005u 0.0303 0.0009
l.OUY9 0.1210 0.0092 9.7363 0.2093 0.3996 0.0041 0.0047 0.0002 0.0037 0.0127 o.oooc 0.1739 0.0203 0.0601 0.0273 C.OECU
XYI
u
XIII
4s
XXIV
se
xxv
0.0012 0.0001 0.7315 0.0506 0.0017 o.u5ea 0.0013 0.1534 o.!loo5 C.COC6 c.coo2 0.0005 o.ccc7 0.0033 o.oosu 0.0079 O.CCC9 0.0300 0.17R5 0.2r(31 0.1031 c.cc25 0.1555 0.0009
0.8862 0.1007 o.ooaf3 0.6462 0.1570 0.3398 0.0020 0.0033 0.0002 0.0017 0.0071 0.0001 0.1499 0.0217 o.aa32 0.0273 0.0450 0.0029 0.0002 0.0013 0.0001 0.704u c.ous3 0.0015 0.4421 3.0009 ').lYEO 0.0003 o.ooou 0.0001 0.0003 0.0005 9.0027 0.005u 0.0092 0.0007 3.0309 0.1721 0.235'~ 0.1001 o.co22 O.lSOO 0.0007
c .e5so C.0966 C.CO38 0.6296 c-1431 0.3321 C.CO17 C.COJl O.COOl C.COlS o.oot3u C.CCCl 0.144U 0.0219 C.CYlU 0.0273 c .c3es C.Cc!Ul 0.0006 0.0013 0.0001 C.6795 C.Ck62 0.0013 C.4272 O.COO6 0.1430 0.0002 c-ccc3 C.CCCl 0.0002 c.coo(r 0.0072 o.co5u C.0106 C.COO6 o.c3os 0.1673 0.2282 0.0972 c.cc19 O.lZ5C o.ooc5
0.0113 O.OCOl o.c715 0.0536 c.0117 0.0107 0.0072 0.0002 0.0081 0.0001 0.1957 O.C3ER o.coc2 0.5998 0.0005
0.0096 0.0001 0.0692 0.0511 0.0106 0.0109 0.0102 0.0002 0.0069 0.0001 0.1856 C.0352 o.coo2 0.5776 o.ooou
O.OOP2
o.oc17
0.0013
C.COlO
0.0002
0.0002
0.0001
O.U9$9 0.1116
0.11792 0.1oe9
0.4652 0.1064
C.U529 0.1037
0.1514 0.0933
0.1491 O.OO27
0.1472 9.0022
c.1454 0.0017
O.C670 0.04R9 c.cc95 C.ClO9 0.0101 0.0001 o.cc59 o.cco2 c.1751 O.C338
c.aoci 0.5572 o.coou