Energy levels and weighted oscillator strengths for neon-like ions K X through Se XXV

Energy levels and weighted oscillator strengths for neon-like ions K X through Se XXV

ATOMIC DATA AND NUCLEAR ENERGY DATA LEVELS TABLES AND FOR NEON-LIKE 37, 1-l 5 (1987) WEIGHTED IONS OSCILLATOR K X THROUGH STRENGTHS SE XX...

983KB Sizes 0 Downloads 43 Views

ATOMIC

DATA

AND

NUCLEAR

ENERGY

DATA

LEVELS

TABLES

AND

FOR NEON-LIKE

37, 1-l 5 (1987)

WEIGHTED IONS

OSCILLATOR K X THROUGH

STRENGTHS SE XXV

E. BIEMONT* Institute of Astrophysics, University of Liege B-4200 Cointe-Liege, Belgium and J. E. HANSEN Zeeman Laboratory, University of Amsterdam Plantage Muidergracht, 4 NL- 1018 TV Amsterdam, The Netherlands

Weighted oscillator strengths are presentedfor the 2p6-2p53s,2p6-2p53d,2p53s-2p53p,and 2p53p2p53dtransitions in the neon isoelectronic sequencefrom K X to Se XXV. These have been calculated by an ab initio Hartree-Fock-Relativistic (HFR) self-consistent field method with configuration-interaction effects taken mto account. 0 1987 Academic press. hc.

* Research Associate of the Belgian National Fund for Scientific Research (FNRS)

0092-640X/87 $3.00 Copyright 0 1987 by Academic Press,Inc. All rights of reproduction in any form reserved.

Atomic

Data

and

Nuclear

Data

Tables.

Vol.

37.

No.

1, July

1987

E. BIEMONT

Neon-like

and J. E. HANSEN

Ions

CONTENTS

INTRODUCTION ., ._. _, .__.,__..._.,_..._., Method of Calculation Energy Levels . ., Oscillator Strengths EXPLANATION

OF GRAPHS

EXPLANATION

OF TABLES

GRAPHS

I-V.

._., ,__.._... .,

LS Composition

of Levels for Neon-like Ions Mg III through Se XXV . ... . .. . .

TABLES I. Slater Parameter Values for K X through Se XXV II. Computed Energy Levels for K X through Se XXV III. Comparison of Theoretical and Experimental Energy Levels for Ti XIII . IV. Weighted Oscillator Strengths (gf) for 2s22pb-2s22ps31 and 2s22p531-2s22p531’Transitions in K X through Se XXV

10 11 12 13

INTRODUCTION

A considerable amount of work has been devoted recently to both theoretical and experimental studies’-’ ’ of neon-like atomic systems for intermediate- or highionization stages (Z > 18). These studies have had several motivations. Population inversion in highly ionized neonlike selenium, yttrium,‘2~‘3 and krypton’4 has been demonstrated recentIy, with the observations of amplified emission of radiation. Moreover, the 2~~31-2~~31’ transitions, which occur in the region 100-400 A for the iron group elements, are of special interest for spectroscopic diagnostics of magnetically confined plasmas (for details, see for example Ref. 15). The neon sequence is also of interest in astrophysics where the occurrence in solar flare spectra of transitions in neon-like Fe XVII and Ni XIX has been discussed frequently in the past (see for example Refs. 16-20). Our knowledge of the oscillator strengths for neonlike ions (Z > 18) is still very fragmentary,2’-23 although some new results have been published recently.1,5,15 In particular, Fawcett’ has used the Hartree-Fock-ReIativistic (HFR) method24-26 due to Cowan and Griffin27 combined with a process of optimization of Slater parameters to obtain data for the ions Al IV to Ar IX. The main purpose of the present work is to extend Fawcett’s calculations to higher values of Z using a similar method.

The process of semiempirical optimization of the calculated energy levels used by Fawcett’ has been replaced, because of the scarcity of reliable experimental data, by an ab initio calculation of the transition probabilities but using larger basis-set expansions for the wave functions. The two procedures have been found to be equivalent (see below) insofar as the accuracy of the oscillator strengths is concerned. Method of Calculation

The Hartree-Fock-Relativistic self-consistent field method24z2s has been used to calculate the radial wave functions for the ions K X to Se XXV in the neon isoelectronic sequence. An extension of the calculations to lower Z was performed to make a comparison with Fawcett’s results’ possible. Due to computer memory limitations on the matrix dimensions, we had to restrict the number of configurations in the wave function expansions. The LS basis set finally adopted, basically restricted to the complex n = 3, included explicitly all the terms of the configurations 2s22p6, 2s2p63s, 2s2p63d, 2s22p53p, 2p63s2, 2p63pz, 2p63d2, 2s22p43s2, and 2s22p43s3d for even parity and 2s22p53s, 2s22p53d, 2s2p63p, 2s22p43s3p, 2s22p43p3d, and 2s22p54d for odd parity. According to 2

Atomc

Data and Nuclear

Data Tables.

Vol. 37. No. 1, July 1987

E. BIEMONT

and J. E. HANSEN

test calculations, these expansions are expected to include the largest part of the correlation effects for the low-lying configurations. In particular, the configurations 2~2~~31 were introduced because they have been shown to affect the 2.~~2~~31’ configurations considerably.3,4 HFR values were used for the interaction integrals but the exchange and configuration interaction integrals were multiplied by 0.95. This procedure of scaling down the integrals is well established in the literature (see for example Refs. 24, 25). We report in Table I the energy parameters adopted for the 2p53s, 2p53p, and 2p53d configurations in the ions K X to Se XXV.

by the MCDF method’ as well as with the experimenta values. This is illustrated in Table III for Ti XIII.

Oscillator Strengths

The calculated weighted oscillator strengths (gf) obtained for the ions K X to Se XXV are reported in Table IV. Only gfvalues greater than 0.0001 are given. In order to assessthe reliability of these values, we have extended the calculations to Z values smaller than 19 (these results are not reproduced here) in order to allow a comparison with Fawcett’s data.’ Excellent agreement was observed for the first ions of the sequence. This is illustrated in Fig. 1 for Cl VIII. In fact, except for a few weak lines, both sets of results agree within 5%, showing that, insofar as the oscillator strengths for the 2p6-2~~31 or 2~~31-2~~31’transitions are concerned, the accuracy of the ab initio calculations reported here is similar to that reached in Fawcett’s calculation.’ Fawcett’s results are, as already mentioned, based on an optimization process of the calculated energy values but are obtained with a smaller basis set. The f values compiled by the National Bureau of Standards for SC XII and Ti XII12’ and for V XIV, Cr XV, and Mn XVI22 are based on the monoconfigurational data of Crance2’ which agree with the self-consistent-field

Energy Levels

The eigenvector

components

Neon-like Ions

of some of the

2s22p53s, 3p, and 3d levels show large departures from

LS coupling and this has given rise to some differences over the naming of the levels in the literature. Jup&n and Litzen suggested retaining, at high Z, the LS level ordering from the beginning of the sequence with the consequence that some of the designations do not correspond to the largest eigenvector component. Other authors have preferred’,5,2’-23 to label the levels according to the largest eigenvector component with the consequence that the smoothness of the curve showing the percentage composition for particular levels along the sequence is destroyed. This is illustrated in the Graphs, which show all the strongly mixed levels for which the leading components in the level composition change substantially along the sequence. It can be seen that most of the crossover points occur rather close to the lowest Z value tabulated in this work (Z = 19). We have therefore chosen to label the energy levels by the largest eigenvector component at large Z and in order to retain the smoothness in the reported oscillator strengths (fvalues) we have retained the order of the levels found at high Z down to K X even in the case of a crossover. From the Graphs it is possible to determine those cases where the name does not correspond to the largest eigenvector component; in addition, a summary is given under Explanation of Tables. The ab initio HFR energy levels are reported in Table II for the ions K X to Se XXV. Calculated energy levels in the neon isoelectronic sequence (for example Refs. 3, 28,29) have in the past been used as support for line identifications in highly ionized systems and we hope that the values presented here will be useful in a similar way. The accuracy of the calculated wavelengths is generally very good for the resonance transitions but for the 2~~31-2~~31’ transitions which appear at longer wavelengths, the accuracy is sometimes insufficient to disentangle blends. The energy levels obtained here (Table II) compare favorably with those obtained by other theoretical methods, that is by the parametric potential technique,28 by the l/Z perturbation expansion theory,29 and

I

I

I

Log lgfi Fawcett

0.0

-1.0

-2.0 Log Igf I This war

-1.0 0.0 -2.0 Figure 1. Comparison for Cl VIII of the oscillator strengths (log gf) reported by Fawcett’ and those of the present work. 3

Atomic

Data and NuclLlar

Data Tables,

Vol. 37, No. 1. July 1997

E. BIEMONT

and J. E. HANSEN

Neon-like

Ions

7. E. Trabert, Z. Phys. A 319,25 (1984)

calculations by Kastner et al.30 The uncertainties were expected to be within 50% for the most intense lines and larger than 50% for the weakest ones. Our calculations show, in many cases, differences amounting to a factor of 2, particularly for the 2p6-2~~3s transitions. No data have been reported for the 2pS3p-2p53d transitions. More extensive results are available for Fe XVII for which scaled Thomas-Fermi’6 and relativistic random phase approximation results3’ are also available. Both sets of oscillator strengths’6,3’ agree, in general, within 15% with our results. Similar considerations hold for Co XVIII and Ni XIX,23 for which the compiled values are based upon Refs. 16, 28, and 31. Bhatia et al.,’ using the SUPERSTRUCTURE code and a modified Thomas-Fermi potential, have calculated an extensive set offvalues for a number of ions including Ti XIII, Fe XVII, and Ge XXIII. A detailed comparison, for Ti XIII, has shown that the results in Ref. 5 in general agree with the HFR values within 15%, the differences being larger for a number of weak transitions in an apparently erratic manner.

8. M. C. Buchet-Poulizac, J. Physique, in press

J. P. Buchet, and S. Martin,

9. J. P. Buchet, M. C. Buchet-Poulizac, A. Denis, J. DCsesquelles, M. Druetta, and S. Martin, Phys. Scripta 31, 364 (1985) 10. C. Jupen, U. Litzin, 33, 69 (1986)

and B. Skogvall, Phys. Scripta

11. C. Jupen. U. Litzen, V. Kaufman, Rev. A 35, 116 (1987)

and J. Sugar, Phys.

12. D. L. Matthews, P. L. Hagelstein, M. D. Rosen, M. J. Eckart, N. M. Ceglio, A. U. Hazi, H. Medecki, B. J. MacGowan, J. E. Trebes, B. L. Whitten, E. M. Campbell, C. W. Hatcher, A. M. Hawryluk, R. L. Kauffman, L. D. Pleasance, G. Rambach, J. H. Scofield, G. Stone, and T. A. Weaver, Phys. Rev. 54, 110 (1985) 13. M. D. Rosen, P. L. Hagelstein, D. L. Matthews, E. M. Campbell, A. U. Hazi, B. L. Whitten, B. MacGowan, R. E. Turner, and R. W. Lee, Phys. Rev. Lett. 54, 106 (1985)

In Cr XV, the observed transition probabilities & = 48.5 X lo8 and 94.3 X lo8 SC’ for the 2p53s 3P!$-2p53p 3D3 and 2p53p 3D3- 2p5 3d 3F: transitions, respectively, obtained by Buchet-Poulizac et al.* agree well with (though appearing consistently smaller than) the values Aki = 53.1 X 10s and 98.1 X lo* s-’ derived from our tabulations.

14. S. Wong, R. Dukart, L. Koppel, R. Rodenburg, B. K. F. Young, R. Former, R. Stewart, and P. Egan, Bull. Am. Phys. Sot. 29, 12 12 ( 1984) 15. M. Finkenthal, P. Mandelbaum, A. Bar-Shalom, M. Klapisch. J. L. Schwab, C. Breton, C. DeMichelis, and M. Mattioli, J. Phys. B 18, L33 1 (1985)

Acknowledgment

16. M. Loulergue and H. Nussbaumer, phys. 45, 125 (1975)

We thank Dr. V. Kaufman for discussions about the appropriate choice of the scaling factors for the HFR integrals in this region of Z.

Astro-

17. S. 0. Kastner. J. Opt. Sot. Am. 70, 1550 (1980) 18. S. 0. Kastner,

Astrophys.

J. 275, 922 (1983)

19. C. Jupen, Mon. Not. R. Astron.

Sot. 208, 1P (1985)

20. U. Feldman, G. A. Doschek, and J. F. Seely, Mon. Not. R. Astron. Sot. 212, 41P (1985)

References 1. B. C. Fawcett,

Astron.

21. W. L. Wiese and J. R. Fuhr, J. Phys. Chem. Ref. Data 4, 263 (1975)

Phys. Scripta 30, 326 ( 1984)

2. C. Jupen and U. Litzen, Phys. Scripta 30, 112 (1984)

22. S. M. Younger, J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys. Chem. Ref. Data 7,495 (1978)

3. J. A. Cogordan, S. Lunell, C. Jupen, and U. Litzln, Phys. Scripta 31, 545 (1985)

23. J. R. Fuhr, G. A. Martin, W. L. Wiese, and S. M. Younger, J. Phys. Chem. Ref. Data 10, 305 (198 1)

4. J. A. Cogordan, S. Lunell, C. JupCn, and U. Litzin, Phys. Rev. A 32, 1885 (1985)

24. R. D. Cowan, The Theory of Atomic Structure and Spectra (Univ. of California Press, Berkeley, 198 1)

5. A. K. Bhatia, U. Feldman, and J. F. Seely, ATOMIC DATAANDNUCLEARDATATABLES 32,435(1985) 6. M. C. Buchet-Poulizac 27,99(1983)

25. G. E. Bromage, “The Cowan-Zealot Suite of Computer Programs for Atomic Structure,” Report ALR3, Appleton Laboratory (1978)

and J. P. Buchet, Phys. Scripta

4

Atomrc Data and Nuclear

Data Tables,

VoI 37, NO. 1. July 1907

E.BIEMONT andJ. E. HANSEN

26. B. C. Fawcett, “The Atomic Structure Hartree-FockRelativistic and Hartree-XR Program-Package Translated for the IBM from the Cowan-CDC Version plus the Zeeman Parameter Optimisation Routines,” Report RL-83-030, Rutherford Laboratory (1984) 27. R. D. Cowan and D. C. Griffin, J. Opt. Sot. Am. 66, 1010 (1976)

Neon-like

Ions

28. M. Crance, ATOMIC DATA 5, 186 (1973) 29. L. A. Bureeva and V. I. Safronova, Phys. Scripta 20, 81 (1979) 30. S. 0. Kastner, K. Omidvar, and J. H. Underwood, Astrophys. J. 148, 269 (1967) 3 1. P. Shorer, Phys. Rev. A 20, 642 ( 1979)

Atomc

Data

and

Nuclear

Data

TaMes.

Vol.

37,

NO.

1, July

1987

E. BIEMONT

and J. E. HANSEN

EXPLANATION GRAPHS

I-V.

LS Composition

Neon-like

Ions

OF GRAPHS

of Levels for Neon-like

Ions Mg III through Se XXV

Shown are levels for which the same LS basis state does not give the dominant contribution to the eigenvector over the range of Z studied. The heavy lines correspond to the components which normally are used to give names to the levels at the neutral end of the sequence, while a thin line shows a small component at the neutral end which becomes the main component at large 2. Components belonging to the same level are indicated by the same symbol (circles or triangles). The LS designation of each component is given on the left. Graph I can also be used for the 3P, level if the LS designations of the components are interchanged. Although the tabulations presented here are for the ions K X through Se XXV, the eigenvector compositions have been calculated for Mg III to Ar IX as well. The level designation used in the tables is that of the largest LS component at high Z (thin line).

6

Atomic Data and Nuclear

Data Tables,

Vol. 37, No. 1, July 1987

E. BIEMONT

and J. E. HANSEN

EXPLANATION

Neon-like Ions

OF TABLES

The nth level of a given parity and J value is labeled by the largest eigenvector component at high Z (Z >, 32) which hasnot been already assigned to another level. The same designation is then retained for the nth level for all values of Z. This means that in some Z regions the name given to a level does not correspond to the largest eigenvector component. These casesare shown in the Graphs and are summarized here for Z values > 19: 2~~3s3P7 for Z < 23 (V XIV): 2p53s‘Pp for Z < 23 (V XIV): 2p53p ‘PI for Z < 21 (SC XII): 2p53d ‘04 for Z < 25 (Mn XVI): 2p53d ‘F3 for Z > 3 1 (Ga XXII) and for Z < 22 (Ti XIII): TABLE I.

The main component in this region is Ipp. The main component in this region is 3PY. The main component in this region is 30,. The main component in this region is 3Fi. The main components are 3F3for Z > 3 1 and 3D3 for Z < 22.

Slater Parameter Values (in cm-‘) for K X through Se XXV Conf E F’(n1, n’l’) Gk (nl, n’l’) r nl

Configuration, with ls22s2omitted Average energy of configuration Electrostatic direct integral Electrostatic exchange integral Spin-orbit parameter

The adopted values of Fk, Gk, and l”, listed here are 1.O, 0.95, and 1.O times the tzb initio HFR values. TABLE

II.

Computed Energy Levels (in cm-‘) for K X through Se XXV Level

TABLE III.

Configuration, with ls22s2 omitted, and term designation. 3P0 means 3Po.

Comparison of Theoretical and Experimental Energy Levels (in cm-‘) for Ti XIII Level HFR MCDF l/Z PPT EXP Dl D2 D3 D4

Configuration, and term designation Hartree-Fock-Relativistic, this work Multiconfiguration Dirac-Fock, Ref. 3 l/Z expansion, Ref. 29 Parametric Potential Theory, Ref. 28 Experimental data from Ref. 7 (e), Ref. 2 (f), and Ref. 2 1 (lid HFR -- EXP MCDF - EXP l/Z - EXP PPT - EXP

TABLE IV. Weighted Oscillator Strengths (gf) for 2s22p6-2s22p531 and 2s22p531-2s22p531’ Transitions in K X through Se XXV Configurations Trans J-J’

Configuration labels for the initial and final levels. ls22s2 has been omitted. LS designations of initial and final states. 1s means ‘S. Total angular momenta of initial and final states

7

Atomic

Data

and

Nuclear

Data

Tables,

WI.

37.

No.

1, July

1997

GRAPHS I-V, LS Composition of Levels for Neon-like Ions Mg III through Se XXV Seepage6 for Explanation of Graphs

8

2 = A

I

I

Ti

Cr

Fe

Ni

Zn

Ge

Se

Ca

Ti

Cr

Fe

Ni

Zn

Ge

Se

Ca

Ti

Cr

Fe

Ni

Zn

Ge

Se

20

I

Mg

Si

S

Ar

Ca

Mg

Si

s

Ar

Mg

Si

S

Ar

22

I

28

30

34

26

16

18

32

24

14 I

12

1

I

1

if? B 0

-<

100

0 -

zi F

0

100

0

GRAPHS

I-V.

LS Composition

of Levels for Neon-like

See page 6 for Explanation

2 = 12

14

16

18

I

w

20

Ca

22

I Ti

Ions Mg III through Se XXV

9

of Graphs

24

I Cr

26

I Fe

28

I

1 Ni

30

I Zn

32

I

I Ge

I-

31

m

I Se

-

50

’ 5 01 ’ Mg

I

I

I

Si

S

Ar

Ca

Ti

Cr

Fe

Ni

Zn

Ge

Se

E.

BIEMONT

Neon-iike Ions

and J. E. HANSEN

TABLE I. Slater Parameter Values for K X through Se XXV See page 7 for Explanation

of Tables

_________-_-_-_____-____________________-------------------------------------------------Pac‘wwter K x ca XI Conf ____--__-__-_____-__---------------------------------------------------------------------2g535

2806732

?A"

2a122eo

371 u970

32ua367

v

xrv

u212092

CK

xv

u7397uo

url

XVI

5297922

Fe

XVII

5886686

262Ul

28309

30379

32U26

3uoa5

36564

t 2P

15541

19900

25122

31317

38601

U7098

569UO

68264

3444502

2991504

44u3312

3928522

u989022

58020

63967

69831

75112

e1574

a7422

5565706

6173428

93260

99c91

22OJU

24265

26022

28591

3C7E2

32903

35ou7

371au

23377

25879

28327

30784

33235

35680

38120

40555

155u9

19909

25132

31326

38610

U7107

569U7

68271

12050

14721

273OU63

EAV

3664

322U122

4793

3699568

6165

8203@98

7810

47UC206

9759

53075e6

74207

a2704

91169

99602

r;‘(2~,311

51353

59194

67061

7a919

a2818

90693

9.3561

29378

33910

JR060

u1022

47587

52153

56986

6127A

15573

19935

25161

31358

386UU

47143

56717

68313

31)

213

l3d

308

________--____--____---------------------------------------------------------------------Pardrretsr co XVIII Ni XIX COtIf _____________-______---------------------------------------------------------------------EA" ;'(

6505918 2F.35)

C2P

YAV

38593

40670

81220

95962

6912231

?2(2p,lp)

7155750

lOU914

7482192 110733

431

cu

xx

7836150 U2707 112655

8183373 116549

779

596

Zn

XXI

e547130 U'U767 131U69

e915aul 122361

;a

xx1r

3288699 U6851

152587

9679672 128221

116383

6535551

65679

2p.

103006

5906128

F2(2F,31)

r2P

2$3d

XIII

2u170

;3(

2~~3~:

Ti

22091

2736

2F53s

XII

G't2F.3~)

2569179

2p53a

SC

1014

Se

XXIII

10063870

176199

lOU79939

7s

XXIV

1637

se

xxv

11691069

50961 202505

11301722

134001

106420

129R

10863660

48993

12U73U

53033 231715

1216ClCU

139804

145632

0'(2~,3~)

39316

UlU43

U3566

U5685

47856

49935

52038

54167

9(

U2987

USU16

47942

50267

52732

55130

57547

59984

c*P

31226

95961

C3P

17812

21367

2p.39)

-::Av

7197130

7809777

112658 25830

8613998

131470 30050

9369902

152586 35318

101576C3

176197

41182

10977220

202501 47783

11928876

231708 55184

12712696

F*(2p,31)

133063

191372

149660

157931

1661.36

174U25

182650

190862

-?'(2p,,lj

11~268

122104

129928

1377110

1a5suo

153327

161103

168867

G3(2~,33)

C2P

65933

703eu

81270

96010

(3d 2037 2505 --___--_-_--_____-------------------------------------------------------------------------

74928 112707 3oua

79Uh6 131522 3675

a3998 152641 4395

39523 1762511 5209

93041 202561 6135

97553 231771 7177

E. BIEMONT

and J. E. HANSEN

Neon-like Ions

TABLE II. Computed Energy Levels for K X through Se XXV Seepage7 for Explanation of Tables

Lt?Vt?l

K x

Cf

XI

SC

XEI

Ti XIII

v XIV cr xv _--__--______--------------------------

Nil

3PO lP1 3P1 3P2

2017349 2401597 2424619 2394097

2826793 2805580 2834.340 2797017

3267604 32396v4 3275432 3230013

3739921 3703736 3748039 3693050

4243ev4 4197791 v252266 4186079

4779516 4721757 4786247 47090

5347066 5275579 5356123 5261852

5946639 5959199 5956039 58vVV72

2F53p

3PO 1so 1Pl 3Pl 351 301 3P2 302 102 303

2533J16 2617625 2560560 2588754 2534938 2580817 2570166 2557409 2587632 2556739

3007609 3110782 2935059 3015304 2952589 3005875 2991364 2976495 3014526 2976517

3462814 3574472 3V35.854 3473490 3000660 3462384 3442390 3425731 3473152 3426750

394R993 4069271 3916946 3963514 3879065 3950460 3925072 3905068 3963599 3907445

4466162 45951 e7 4428337 VV85568 4387760 VU70232 4437612 vvlvv62 44R63VV 4Vl8606

501433v 5152343 'A970036 5039862 4926685 5021837 4980616 4953868 5ou12ej U960239

5593513 5740906 5542060 5626614 5495775 5605423 5554091 5523237 5628713 5532350

62036e9 6361052 6144026 62v6049 6094955 6221146 61SaOU6 6122516 6248856 6134946

2p53-J

3PO 301 3Pl lP1 132 302 JP2 3F2 3F3 3;) 1 lF3 3?U

2753676 2791854 2755284 2932231 27749v0 2777927 2761537 2734683 2768690 2779326 2797334 27SSZOd

3192422 3236885 3195632 32Y4847 3216897 3245475 3202027 3241790 3209578 3221764 3245770 3205587

3661490 3712623 3665361 3768720 3689200 3724562 3672999 3720053 3680738 369&566 3725377 3676336

4160911 v219134 U165529 9284053 4191991 U235Uv6 v1745o2 u23091v 4182932 U197800 U236e55 U177526

4690730 S756v29 v6961v7 4831cvo 4724979 47103u9 4706540 4713375 v714397 4731u93 4780443 4709186

5250968 5324529 52572vv 5409914 5239487 5351518 5269134 5348057 5276810 5295689 5356341 5271357

58U1637 5923429 SeUee28 602091U Se82434 5961200 5962290 5955176 5e69651 se90417 5Y64790 5864069

6462777 65531U5 6U70935 6664325 6506860 6601670 6496043 6599981 6092956 6515730 6606055 6497376

___-_________-__-_______________________------------2~~33

32

XVI

Fe

XVII

--- .--- ----- ----- --- ---- - ---.

21, 53s

3PO 1Pl 3Pl 3P2

6578406 6472541 65H914V 6456344

7242Slo 7115552 7252608 7098977

79391v2 77.39149 7949579 7770517

8663471 8490265 8679299 8071676

7430694 9221830 9441904 9202219

10226015 9982732 10237601 9962242

11051893 10770162 11063966 10708726

11916eOl 11592269 11929165 11569890

2p53p

3PO 1so lP1 3Pl 351 331 3PL 3C2 132 303

6844838 7312981 6777157 693RVOO 67LVlVl 6369163 6792483 6751650 6701915 6768029

7516924 7696915 7440280 7593915 7393251 75v9667 7457412 7410579 7588190 7431608

8219903 8V13039 8133826 9302351 8072196 0262028 8152841 80992U6 e307e75 8125690

8953715 9161795 @a57921 905sv74 e790979 9008942 a573773 e5175ao 9061252 ee502ao

9710362 9943rt95 96123C3 98v2033 9539165 9787074 9635245 9565V90 3849620 9605397

10513637 1075786C 10397297 10652934 10317070 10600245 10422198 10342966 10670225 10391021

11336841 116C2955 11210053 11515610 11121657 11443340 11236937 1114713u 11523656 11204926

12196199 i 24e729e i 2058883 12409696 11961080 12325544 12087733 119R615U 12417499 12053882

2$33

3P3 321 3Pl lP1 1c2 3,2 JP2 3F2 3F3 333 3F3 3F4

7114383 72136V7 7123553 7340333 7161769 7275173 7140396 7267630 7146719 7171643 7250368 71U1289

7796475 7904933 7806714 8OV9437 7847190 7991989 7a25338 7973556 7930954 7a5819i 798dOOV 78258V6

8509068 8626995 8520416 8791733 8563150 8722433 a540915 8712838 8545hac 8575410 0729239 R541080

9252171 9379829 9264671 956759V 930367V 9V9673.5 5287125 9485307 9290904 9323329 9504364 9297013

10025@04 10163Uv2 10039u37 10377333 10086eOO 10305213 lOC63S84 lo292751 10066641 10101985 10313688 10063702

10829962 10977824 1084488e 11221275 10894550 11168229 ioe71484 11133953 10872892 10911398 11157515 108711V7

11661912 11920247 11678112 12096993 11730221 12023345 11706881 12006981 11706920 11780857 12033436 11706643

12529922 12698980 12547434 13013087 12602116 12939165 1257R429 12920415 12576992 12622650 12950051 12578478

11

Atoms

Data and Nuclear

Data Tables.

Vol. 37. NO. 1. July 1987

E. BIEMONT

and J. E. HANSEN

Neon-like Ions

TABLE III. Comparison of Theoretical and Experimental Energy Levels for Ti XIII Seepage7 for Explanation of Tables

IF?

Level

I’ 1

HClF

02

l/Z

I> I

04

PPT

FXP

_________--_____---_----------------------------------------------------------2p53s

2F53P

2p531

3PJ 3Pl 1Pl 3P2

3739921 3703736 3748039 3673059

-5817 -5414 -5561 -5124

3736575 3701503 3745941 3689736

-3663 -7647 -7659 -8446

3743891 3708220 3753200 3496300

-1347 -930 -400 -1992

3745300 3709200 3753600 3693300

62 so 0 -4882

3745738f 3709isoe 3753600e 3698182f

3Pa lS0 1Pl 3Pl 3;1 331 3P2 3C2 102 1113

3949793 UO69211 3916946 3963514 3979065 3950460 3925072 3305068 3563699 1907446

-367 6071 -1144 -1333 -239 -699 -1833 -1114 -1726 -1435

3942567 4072417 3910588 3957013 3971329 3943395 3919211 3898U54 3957451 3901012

-7293 9217 -7532 -7834 -7975 -7764 -7694 -7728 -7968 -7969

3950425 UO62100 3917295 3966349 3879400 3952900 3925900 3906691 3965900 3907900

55s -1100 -975 1501 -904 1701 -1005 419 47s -1711

3947303 40@7300 3912900 3964800 3980003 3950200 3921900 3900700 3965800 3904000

-2560 24100 -5190 -47 696 -9.5s -5005 -5402 375 -4361

3949960e 4063200~ 39180902 3964847f 3879304f 39511592 3926905f 3906182f 3965425f 3909881

3PO 331 3Pl lP1 1x2 302 3P2 3F2 3f3 3Cl lF3 3t.4

4160911 4219134 U165529 4284053 4191891 4235446 4174502 4230914 UlY2402 u197300 U236365 4177526

-2809 -666 -2711 2453 -2047 -1943 -2396 -2103 -2091 -1955 -1971 -1968

u15551tl 4214855 4159994 U283479 4187119 4230167 416R93e 4225905 4177632 4193129 4231938 4172179

-8292 -U94S -82U6 1979 -6819 -7227 -7960 -7112 -6161 -6576 -6998 -7315

41s9uoo 4218300 U163532 U2e6700 41139674 4234348 11172080 4229900 4177517 4195200 4237879 4i7u7oa

-4uoo -1530 -4708 5100 -4254 -3046 -4918 3117 -6976 -4505 -957 -5394

4164600 4219800 416tJ200 42al600 420710'3 4226800 4169900 4242900 4183200 4197900 4242000 417e400

f

ROO 4163FJOOe 0 P2198OOq -40 4168240e c 42a1600'~ 13162 4133938f -10594 U237394f -6698 4176R98f 9783 u233017f -1293 4184093f -1805 4199705f 3164 423'3836f -1094 4179494f

_______---_____----_____________________----------------------------------------

12

AtomicDataandNuclearDataTables,Vol

37.M

l,July

1987

E. BIEMONT

TABLE

IV. Weighted Oscillator

Neon-iike

and J. E. HANSEN

Ions

Strengths (gf) for 2s22p6-2s22p531 and 2s22p531-2~~2~~31’ Transitions in K X through Se XXV See page 7 for Explanation of Tables

------__-_--_____--------------------------------------------------------------------------------------Confi.duration; TCdllS J-J’ K Y -----__-_________--------------------------------------------------------------------------------------15-l P zp62p51i o-1 0.1300 1 .i-IP O-l 0.1321 lS-30 o-1 0.1775 2p62p53.l 1:;-JP o-1 0.3361 lS-1P 2.1)371 o-1 2p 5 1s - 2~~32 3P-13 2-3 1.1303 JP- J!l 0.1346 2-2 3P-IP 2-1 0.0541 lP-l:! l-2 C.4550 lP-1P l-l 0.1711 IP-1P o-1 0.0287 JP-lL> 0.0424 2-2 lP-10 l-2 0.0463 IP-JP 0.5715 2-l l P-.3P l-l 0.0726 IP-3P o-1 0.2JlY lP-JP 1-o 0.1371 ZIP-35 2-l 0.2385 l?-3; 1-l 0.0607 JP-JS o-1 0.0143 ZIP-1 2 l-2 0.7394 3P-32 1-l 0.2333 3P-IP 1-o 0.0407 lP-32 2-2 0.4361 lP-3P l-2 0.3374 IP-1’3 2-l 0.0045 lP-3L) l-l O.OlOH JP-IU o-1 0.24oa IP-1s 1-o a.odcs 3P-3P l-2 0.!3652 O.OC12 IP-3c l-2 3P-1P l-l 0.0001 3P-35 l-l 0.5111 3P-IL1 l-l 0.2198 3?-1s 1-o 0.2090

ca

XI

SC

XII

0.1106 0.1761 0.2202 0.0059 2.5833 1.0655 0.1200 0.3544 0.422J 0.3907 O.Cl7J 0.0299 0.0314 0.0628 0.0310 0.2042 0.1261 0.2931 0.0500 3.0117 0.7193 0.214C o.o'r20 0.4637 0.1363 0.0013 0.0071) 0.2246 0.08Ub 0.0412 0.0037 0.0001 0.0132 0.2118 0.1977

0.1191 0.1622 0.2725 0.0078 2.6413 1.0111 0.1067 0.0519 0.3939 0.3701 O.ClCl 0.0215 0.0217 0.0534 3.0003 0.2062 0.1177 3.2836 C.OUlC 0.0092 0.6961 0.1957 0.042C 0.4421 0.302u 0.0006 0.0051 0.2069 0.0362 0.0289 0.0004

0.125Y 0.1536 c.3350 0.0086 2.5743 0.9611 0.2947 o.ou47 0.1688 0.1599 0.0061 0.0158 0.0152 0.0454 0.0001 0.2391 0.1115 0.27UJ 0.0331 0.0071 0.6726 0.1790 c.3409 3.4214 0.2971 0.00C1 0.3317 0.1893 0.0859 0.0134 0.0002

0.1310 0.1410 0.4074 0.0093 2.6848 C.92129 0.2838 0.0376 0.3465 0.3501 0.0036 C.0118 c.0109 0.0385

0.1350 0.1311 0.4a9u 0.0099 2.6155 0.8837 0.2738 0.0306 0.3267 0.3413 0.0021 0.0089 O.CO7R 0.0327

O.ZlC7 0.1072 C.2739 C-0263 0.0054 0.6497 0.16Ul C.0390 C-4023 0.2911 0.0028 0.1727 0.0940 0.0132 0.0001

0.2115 0.1043 0.2701 0.0204 0.0041 0.6281 0.1512 0.036U 0.1847 0.2850 C.COCl o.co22 0.1579 0.0810 0.0090 0.0001

O.CosO 0.2065 0.1711

c.0077 0.2027 0.1579

0.0061 0.199s 0.1474

Configurations TranS J-J' Co XVIII ______________--________________________----------------------------------------------------------------

Ni

cu

zn

Ga

-_-________-________------------------------~--------------~--------------------------------------------

2p5

2p6-

2p5

2,,6-

2P5JJ

3,1

--------___------------

-

2p51p

1:;

1 s-1P lS-JP 15-Ji’ lS-JP lS-1P 3P-30 Jtl-3;) 3?-lP lP-IL1 1 P-l? 3i'-1P 3P-10 lP-1c IP-IP 1 P-IP IP-JP IV-3P JP-35 IP-3s JP-JS 3?-lD JP-1P 3P-JP JP-3P lP-12 3P-33 lP-33 3P-30 lP-1s 3P-JP 3P-30 IP-lP IP-JS 32-12 3P-1s

o-1 o-1 o-1 o-1 o-1 2-3 2-2 2-l l-2 l-l o-1 2-2 l-2 2-l l-l O-l 1-o 2-l l-l o-1 l-2 l-l 1-o 2-2 l-2 2-l l-l o-1 1-o l-2 l-2 l-l l-l l-l 1-o

XIX

xx

Ti

XIII

XXI

v

XIV

XXII

O.lUl4 0.1165 0.7774 0.0111 2.5574 0.7~67 0.2479 0.0129 0.2790 0.3189 0.0004 0.004J 0.0332 0.0204 0.0002 0.2DRV 0.1323 0.259d 0.0371 0.0017 0.5729 0.1229 0.0268 0.3413 0.2580 0.0004 0.0012 0.1219 0.0574 0.0’511

0.1423 3.1127 0.9807 0.0112 2.43R5 0.7742 0.2401 0.3035 0.2661 0.1123 0.0032 a.0035 3.0025 0.0176 0.0002 0.2069 0.1711 3.2551 0.004% 0.0012 0.5577 0.1163 0.0213 0.3296 C.2511 o.coo5 O.OOlC 0.1157 0.'3620 0.0022

0.1429 0.1096 0.9842 0.0111 2.4341! 0.7545 0.2332 0.0053 0.2544 0.3060 o.ccc1 0.0023 0.0020 O.OlSl 0.0002 0.2047 0.1044 0.2520 0.0021 O.OOOR 0.5442 0.1108 0.02co 0.3191 0.2587 o.ccc5 0.000s 0.1087 0.0566 C.0015

0.1412 0.1070 1.0957 0.0109 2.1686 0.7371 0.2266 0.0025 0.2439 0.299@ 0.0001 C.0023 0.0015 0.0134 0.0002 0.2023 0.1059 0.2475 O.OOC7 0.0006 0.5322 0.1063 0.0169 0.3101 0.2546 0.0005 0.0008 0.1027 0.0512 0.0011

0.1432 0.1049 1.1840 c.0105 2.3020 0.7219 0.2203 0.0009 0.2342 0.2938

0.0')02 0.0322 0.1954 0.1233

0.0032 0.0016 0.1812 0.1200

0.0002 0.0011 0.17t9 0.1172

0.0032 0.0008 0.1725 0.1149

cc

xv

Mrl

XVI

Fe

0.1378 0.1265 0.5795 0.0105 2.6489 0.8510 0.2645 0.0241 0.3091 3.3332 C.0012 0.0069 0.0057 0.0279 0.0001 0.2113 0.1027 0.2666 0.0152 0.0031 !l.bOAO O.lUOl 0.0334 0.36R7 0.2790 0.0002 0.0019 0.144H 0.0770 0.0063

0.1399 0.1210 C.6762 O.ClC9 2.6087 c-8221 0.2558 c.c1e1 0.2932 0.1257 o.ccc7 o.co5u o.cou3 0.0237 O.COOl C.2104 0.1021 C-2633 C.ClC7 o.co23 0.5895 0.1307 C.ClCl C.35U2 0.2733 c.coc3 0.0015 0.1335 0.0724 c.cou4

c.cc51 0.1963 C.1192

0.0001 0.0039 0.1910 0.1327

0.0001 c.cc30 O.lP91 0.1275

oe

RS

XIII

0.1430 0.1031 1.2777

XXIV

Se

13

xxv

2.2376 0.7087 0.2143 0.0001 0.225U 0.2380

0.1427 0.1018 1.3660 a.0094 2.1750 3.6973 0.2097 0.0001 0.2174 ‘).2823

C-1423 O.lCO7 1.44P6 o.cce6 2.1160 C-6875 0.2014 0.0006 C.2059 0.2769

0.0019 0.0012 0.0113 0.0003 0.1998 0.1076 0.2425 0.0001 0.0004 C.5215 0.1025 0.0140 0.101R 0.2511 c.occ5 c.0007 c.0975 0.0460 o.oocB

O-CO16 0.0010 0.0106 0.0003 C.1975 0.1094 0.2372 0.0001 c.0002 0.5121 0.0991 O.Cll4 0.2946 0.2479 c.occ5 O.OOOb 0.0931 0.0409 0.0005

0.0014 0.0009 0.0095 0.0003 0.1952 0.1111 0.2316 0.0006 0.0001 0.5049 0.0966 0.0091 0.2881 0.2451 0.0005 0.0005 0.0891 0.0362 0.0004

0.0012 C.OOQ7 C.CCf!6 0.0001 c-1931 C.1128 C.2257 C.OOl4 0.0001 C-4969 0.0944 c.co71 C.2P27 0.2427 0 -coo5 0.0005 O.CR56 0.0320 c.ccc3

0.0002 o.ooc5 0.1691 0.1126

0.0002 0.c001 0.1637 0.1106

0.0001 0.0002 0.1595 0.1086

O.COOl o.coo1 C-1554 0.1066

o.aico

____-_-_____-____-______________________----

-----

XVII

E. BIEMONT

TABLE

IV. Weighted Oscillator Strengths (gf) for 2s22p6-2s22p531 and 2s22p531-2.~~2~~31’ Transitions in K X through Se XXV See page 7 for Explanation

___--______----_____-----------------------------------------------------------------------------------confljuc3tionl-; Trdilr; J-J' 3 x c.1 x: SC XII -_--_--__-________-_____________________---------------------------------------------------------------20~32

-

2.~1~3.7

Neon-like Ions

and J. E. HANSEN

33-JF 3il-3F 32-10 3 I- 3 r 3:)-l c l P-l!I 33-1F 3x-30 3:1-1F 33-3'11 3,1-3!) lP-33 10-39 3!)-3P 3:1-3P 3,-3P lP-3P lP-3P 1.7-3P 3.)-l? I!)-3F ln-1F 1 r-3.; lo-3c 32-33 3P-37 JD-3n 1.1-32 I>-3P 3i'-3P 32-JP 3P-3P 3?-32 l')-l? 35-311 33-35: 35-12 3;-3P 35-37 35-37 3'l-3c 3310 3.1-3:‘ lo-3F lP-1P 12-30 lj-JF 3P-1P 3P-l;, 3?-3F 3P-1L! 3P-1F 31'-3.1 3P-3:: 3P-3P 3P-3P 3P-1P 3P-3D 3P-3F 33-10 33-33 33-3c 3:1-3P 3D-3P 3n-3P 3D-3F 3:>-1p lS-3P lS-1P lS-3c

3-4 3-3 3-2 2- 3 2-2 l-2 3-3 3-2 2-3 2-2 2-l l-2 l-l 3-2 2-2 2-l l-2 l-l 1-o 2-l 2-3 2-3 2-2 2-l 1-2 l-l o-1 2-2 2-l 1-2 l-l 1-o 9-l 2-l l-l l-2 1-2 l-2 l-l 1-o 2-3 3-3 2-2 l-2 l-l 2-3 2-2 1-l O-l 2-3 2-2 2-3 2-2 2-l 2-2 2-l 2-l 2-3 2-2 l-2 l-l l-2 l-2 l-l 1-o l-2 l-l o-1 O-l o-1

2.0316 0.2282 0.0203 1.31u7 (I.3718 0.1507 0.0504 0.0173 0.0312 0.0342 0.3377 0.0114 0.2951 0.0245 0.0351 0.0121 0.0485 9.0109 0.0198 0.3314 1.543!l 0.0944 0.0032 o-a926 0.0529 0.3233 0.0551 0.3143 0.016V 0.3207 0.3227 0.0379 0.0055 0.0001 0.0051 a.0915 0.5293 0.4437 0.1591 0.0191 0.2993 0.3349 0.0307 0.04v7 3.313~ 0.1323 O.lV71 0.0127 0.0069 0.0'312 0.0072 5.1223 0.3036 0.3519 0.3731 C.3326 1.29v3 0.0011 a.0341 0.0009 0.0002 0.0146 3.0350 0.0032 0.9963 a.1 75h 0.2545 0.0354

of Tables

li

XIII

c XIV

CC xv

Yn XVI

FQ YVi:?

1.3672 c.1597 O.ClU7 0.9341 0.2799 0.5051 C-Cl27 O.OORS 0.0337 C.ClC5 0.0210 0.0022 0.2114 0.3215 a.cv55 0.0293 o.c557 c.ccu2 C.OO7R 0.0004 0.0010 i.aec6 0.9825 c.ca3e C.6v5R 0.015u 0.2263 0.0104 0.Cll40 0.0039 o.acsa C.CO67 o.ci 49 0.0051 O.OOOJ 0.0030 0.0085 O.!7R2 0.3297 0.1330 0.0094 C.22C5 O.OC67 a.ccci 0.0362 0.0025 O.CF24 0.09c7 C.Cl51 c.coe3

1.2865 0.15Cl '3.0136 O.YR35 3.2643 0.4759 o.cc99 0.0075 0.0032 3.COPV 0.01R7 3.0015 ').20?4 0.0212 0.0478 0.029') 0.3609 a.0029 9.0059 '1.oor)5 0.0009 l.alflf, 3.0776 c-0035 0.6140 0.0117 3.2132 0.0374 3.0031 Q-0027 0.0043 9.0052 0.0123 0.0051 3.0007 0.00?7 9.0199 0.2911 0.3152 0.1294 O.OORO 7.20‘39 3.0049 0.0001 9.0322 *cI.oc)17 C.0813 0.0835 Q-0155 3.aoe7

0.0013 0.0394 C.CCC6 0.2824 0.0562 C.CClO 0.9859 O.COG7 0.0011 0.0074 o.oco3 0.0023 c.ccc2 c.0002 0.6962 0.1334

:.0010 0.0316 s.0003 7.2700 0.0529 o.ooc3 O-R347 0.0007 0.0007 0.007r) 0.0004 0.0017 0.0001 0.0001 0.6v6-l 0.1296

1.215' C.141~ C-Cl ?S o-e393 C.iV97 0.450) c.cc7q C.COF6 O.COC? C.CC6O O-Cl77 O.COll c.1345 c.c211 C-CCC2 0.0297 O-C615 C.COlh c.co41 C.C?OG o.coo7 C.FF3C O-C727 c-co33 C.T@?V o.co57 0.2015 o-o')52 c.co25 0.0019 C-CC33 c .covc C.ClO2 c.0052 0.0012 0.0023 C-Cl37 0.12172 C.3C23 C-7241 c.coc5 c.1957 C.CC36 c-ccc1 0.02Pl 0.0311 O.CPfl 0.0773 C.Cl"h c.co91 0.0002 c-coo7 0.0755 c.ccc2 C.25A2 c.0479 c-ccc7 0.7995 O.COG7 o.coo5 0.0063 c-ccc3 o.cc12

o.ife9 o.oc59

1.8313 0.2107 0.0193 1.2329 II.3513 0.6909 0.0397 3.0147 0.0303 0.0266 0.0334 o.oc93 0.%654 0.7235 Cl.0373 3.031J 0.0519 0.0101 0.0174 0.0007 0.031', 1.4239 0.7953 0.0036 O.Y2')3 3.042v 0.2782 0.0135 0.3111 3.0126 0.0153 3.0180 0.0314 0.3C52

1.6877 0.1955 O.OlP2 1.1392 0.3319 0.6245 0.0293 0.0129

1.5651 O.lY21 c.017c 1.0501 0.3135 0.5779 0.0219 0.0111

0.02cs 0.0295 0.006C 0.2493 0.0223 o.o1(3v '3.0307 0.0545 0.0089 O.OlV9 O.OOCl 3.0016 1.3203 0.0940 0.0039 0.7679 0.0336 0.2766 0.0284 0.0034 0.0095 0.0127 O.OlU2 0.0260 0.0051

C.3165 0.0263 0.0043 0.2339 0.3223 o.ov1v 0.0301 C-0566 c.0074 C-3125 0.0002 0.0315 1.2299 O.Ojll c.co39 0.7219 0.3262 0.2577 0.0204 0.0365 ,J * 'I 9 7 1 0.0099 c-0111 3.0216 0.0050

0.0047 0.0024 0.4731 0.4123 0.1572 0.0166 0.2744 0.0253 0.3031 0.0462 0.0166 0.1197 0.1327 0.013'1 0.0053 0.0037 o.oc5o 0.0378 0.0027 0.3371 0.3736 0.0021 1.1173 0. ooi)3 0.0033 0.0329

O.OD42 c3.0034 0.4254 0.3A61 0.1511 0.0149 0.2556 0.01 ei

0.0100 0.0323 0.00lR '3.7103 0.1514

0.0069 3.COll 3.0010 0.8427 0.15lC

0.0338 a.07u7 0.334s 0.3550 0.1442 0.$>129 C-2457 0.3129 0.3091 O.OV33 0.0957 0.172H 0.1089 C.OlUC 0.0075 o.ooa3 0.0325 0.0620 0.0014 0.3097 0.9640 0.0015 1.0104 0.0007 a.0023 0.0965 0.0001 0.0048 c. coo4 o.ooc5 0.7335 0.1435

1.4592 0.17C2 c.0159 C.9924 C.2962 0.5336 C.0166 0.0097 0.0001 c-01 31 0.0234 0.0031 C.2217 0.0213 0.043v 0.0297 C.0563 C.CCSP 0.0101 0.0003 0.0013 1.15C6 0.0971 c.co39 c.6875 0.0202 C.2411 0.0146 0.0051 0.0052 C.CO76 c.aoe7 a.01 79 c.0050 0.0002 0.0034 0.006U 0.3491 0.3461 0.1392 0.0110 c.2329 0.0092 0.00c,1 0.0400 0.00.38 0.0972 C.0992 c-01 45 c.0079 0.0001 0.0019 0.0494 c.coc9 0.2953 0.0599 c.co12 c.9v39 0.0007 c.0017 '3.3073 0.0003 0.0033 c.cccv c.0003 0.7315 0.7 378

0.2373 0.0054

0.2228 0.0055

0.2099 0 . 0 ,7 5 6

0.19R6 0.0057

0.0456 3.03A4 0.1101 0.12co 7.0134 3.co71 0.0005 0.0035 9.0779 0.0020 3.3227 7.05A6 0.0017 1.oe7v o.coc7 0.0031 0.0053

a .ccci 0.6123 0.1263

E. BIEMONT

TABLE

IV. Weighted Oscillator

and J. E. HANSEN

Neon-like

15

Ions

Strengths (&) for 2s22p6-2s22p531 and 2s22p531-2.~~2~~31’ Transitions in K X through Se XXV See page 7 for Explanation of Tables

_________-_____---______________________---~--------------~-------------------------------------------confi,gur3tions

TCOrlS

J-J'

Co

YVIIT

‘di

XTx

-______-__--------__-----------------------~----------------------------------------------------------23 5 3p

-

2p53?

3'>-3F 3D-3F 3D-13 3i>-3“ 3:1-1c 1 P-1 '! 37-1 I-‘ 3D-3C 3 j-1F 3'5-30 3.1-3~1 l?-33 lP-33 3!1-3P 33-3P 3'J-3P lP-J? lP-3P lP-3P 3X-1? 1 l-3< 10-1F 13-3c 1n-3c 32-37 JP-3.1 3?-32 l?-3P lfl-32 32-J? 3P-3P 3P-3P 3P-3P VI-1P 33-33 3s-3c 3s-13 3f;-3P 3s-3P 35-3P 30-3c 3x-3!-J 37-3F lP-3r l?-I? 17-33 I':-JF 3P-1P 3P-1P 3P-3F 3?-1c 3?-1r 3P-33 3P-3c 3P-3P 3P-JP 3P-1P 3P-30 3P-3F 3ti-1v 33-30 33-3L? 3'3-3P 31)-3P 3'1-3P 37-3F 3 )-1P lS-3P lli-1P lS-3T;

3-4 3-3 J-2 2-3 2-2 1-2 3-3 3-2 2-3 2-2 2-l l-2 l-l 3-2 2-2 2-1 l-2 1-l 1-c 2-l 2-J 2-3 2-2 2-l l-2 l-l o-1 2-2 2-l l-2 l-l 1-o o-1 2-l l-l l-2 l-2 l-2 l-l 1-o 2-3 3-3 2-2 1-2 l-l 2-3 2-2 l-l o-1 2- 3 2-2 2-3 2-2 2-l 2-2 2-l 2-l 2-3 2-2 l-2 l-l l-2 l-2 l-l 1-o l-2 l-l o-1 o-1 o-1

1.1521 0.13u2 0.0114 0.9005 0.2157 o.u275 0.0362 0.0359 0.0302 0.0,355 0.0151( 0.0309 0.1872 0.0209 0.0531 0.028U 0.0519 o.onc7 0.3327 0.0907 0.3305 0.91b2 0.0681 0.0033 0.5595 0.0065 0.1711 0.0037 0.0020 0.0314 0.0124 0.0331 0.03@4 0.0353 0.0311 c.0320 0.0167 0.2U61 3.2YC5 0.1202 0.3357 0.190R 0.0327 O.OOCl C.OZU6 0.0507 0.0936 0.9719 0.0155 0.3095

cu

xx

Zn

CT% XXII

ce

0.9993 0.1152 0.00Rl 0.7096 0.19611 0.37uo O.OOJY 0.0043 0.0002 0.003c 0.0116 0.0003 0.1676 0.0210 0.06U5 C.3277 0.0582 0.0003 0.0003 0.0010 0.0002 0.79Ul 0.0564 0.0022 o.u935 0.0325 0.1661 0.0012 O.OOlO 0.0005 0.0310 0.0013 0.OOUt-i 3.oosu 0.0050 C.COl2 0.0259 0.1394 0.2602 0.1096 0.0035 0.1678 0.0012

0.9578 0.1099 a.0070 0.6859 0.1836 0.3605 C.0028 0.0039 0.0002 c.0025 0.0107 o.ooc2 0.1515 0.0212 C.069R 0.0276 c.0550 c.0009 0.0001 0.0011 0.0002 0.7612 0.0533 0.0020 C-4752 0.0018 c-1593 3.0009 C.0008 c.0003 0.0007 c.0010 0.0039 a.0054 0.0364 c.0010 0.0263 0.1772 0.2514 0.1063 c.0030 C-1613 0.0010

0.9204 O.lC51 0.0059 0.5609 0.1705 0.3492 O.CO23 o.cc3.5 0.0002 o.co21 0.0099 0.0001 0.1556 0.021u a.a760 0.0275 o.c5c5 o.co19

0.0155 0.0002 0.0762 0.3596 0.313e 0.3103 0.0032 0.0003 0.0115

0.0132 o.ooo1 0.0738 0.0564 C.0129 0.0105 0.0049 0.0002 0.0096

l-C)956 0.1272 O.UlO3 0.7665 0.;!223 0.4074 0.0050 0.9'353 0.0032 O.ClOUS 0.01u0 O.ClO35 0.1934 0.0209 0.0563 0.0211 0.0616 o.c:0!31 0.0016 0. a008 0.0004 0.8700 0.063!3 0.3029 0.5358 0.0048 o.iai9 0.0026 0.0015 O.OOlrJ 0.0013 0.0023 0.0370 0.0053 0.33023 0.0017 0.0199 0.2277 0.2797 0.1165 o.oc1(9 0.1e20 0.0020 0.0001 o.fJ212 0.0005 O.OYll 3.0672 0.0152 0.0099 0.0011 0.0084 3.0763

3.0009 0.0009 0.0003 0.8301 0.0599 0.0025 O.SlUC 0.0035 0.173s 0.0013 0.0012 0.0007 0.0013 O.COlP 0.0050 o.o05(r 0.003!! 0.001 9.023C 0.2119 0.2696 0.1130 0.0041 0.1749 0.0016 O.GOCl o.ole2 o.ooc3 0.0786 O.OhJl O.Cl(r6 0.0101 0.002c o.ooc3 0.0139

0.2361 0.0446 0.0005 0.7133 0.0036 0.0002 0.0345 0.0002 0.0037

0.2257 0.092u o.oocu 0.6804 O.OOC6 o.ooc1 O.OOJl 0.0001 0.0005

0.2156 o.ouo3 0.0003 0.6509 O.OOCh 0.0001 0.0029 0.0001 0.0000

0.2056 0.0385 c.0003 0.6241 c.0005 0.0001 C.0023 0.0001 0.0003

0.5923 0.1232

0.5551 0.1202

0.5331 0.1172

0.5128 0.114u

0.1672 3.015-l

0.1522 0.0349

0.1579 o.ooYu

0.154u 0.0039

0.0005 0.0006 0.0206 3.0301 0.2869 0.0471 0.0306 0.7471 O.OOQ7 0.0003 0.005u 0.0303 0.0009

l.OUY9 0.1210 0.0092 9.7363 0.2093 0.3996 0.0041 0.0047 0.0002 0.0037 0.0127 o.oooc 0.1739 0.0203 0.0601 0.0273 C.OECU

XYI

u

XIII

4s

XXIV

se

xxv

0.0012 0.0001 0.7315 0.0506 0.0017 o.u5ea 0.0013 0.1534 o.!loo5 C.COC6 c.coo2 0.0005 o.ccc7 0.0033 o.oosu 0.0079 O.CCC9 0.0300 0.17R5 0.2r(31 0.1031 c.cc25 0.1555 0.0009

0.8862 0.1007 o.ooaf3 0.6462 0.1570 0.3398 0.0020 0.0033 0.0002 0.0017 0.0071 0.0001 0.1499 0.0217 o.aa32 0.0273 0.0450 0.0029 0.0002 0.0013 0.0001 0.704u c.ous3 0.0015 0.4421 3.0009 ').lYEO 0.0003 o.ooou 0.0001 0.0003 0.0005 9.0027 0.005u 0.0092 0.0007 3.0309 0.1721 0.235'~ 0.1001 o.co22 O.lSOO 0.0007

c .e5so C.0966 C.CO38 0.6296 c-1431 0.3321 C.CO17 C.COJl O.COOl C.COlS o.oot3u C.CCCl 0.144U 0.0219 C.CYlU 0.0273 c .c3es C.Cc!Ul 0.0006 0.0013 0.0001 C.6795 C.Ck62 0.0013 C.4272 O.COO6 0.1430 0.0002 c-ccc3 C.CCCl 0.0002 c.coo(r 0.0072 o.co5u C.0106 C.COO6 o.c3os 0.1673 0.2282 0.0972 c.cc19 O.lZ5C o.ooc5

0.0113 O.OCOl o.c715 0.0536 c.0117 0.0107 0.0072 0.0002 0.0081 0.0001 0.1957 O.C3ER o.coc2 0.5998 0.0005

0.0096 0.0001 0.0692 0.0511 0.0106 0.0109 0.0102 0.0002 0.0069 0.0001 0.1856 C.0352 o.coo2 0.5776 o.ooou

O.OOP2

o.oc17

0.0013

C.COlO

0.0002

0.0002

0.0001

O.U9$9 0.1116

0.11792 0.1oe9

0.4652 0.1064

C.U529 0.1037

0.1514 0.0933

0.1491 O.OO27

0.1472 9.0022

c.1454 0.0017

O.C670 0.04R9 c.cc95 C.ClO9 0.0101 0.0001 o.cc59 o.cco2 c.1751 O.C338

c.aoci 0.5572 o.coou