Solid State Conununications, Printed in Great Britain.
Vol.bl,No.9,
pp.679-683,
1984
0038-I098/84 $3.00 + .00 Pergamon Press Ltd.
E N E R G Y R E L A X A T I O N OF WARM E L E C T R O N S IN ( 1 0 0 ) - S i - M O S F E T s UNDER S U B S T R A T E BIAS W.
H 0 n l e i n a nd G.
Landwehr
M a x - P l a n c k - I n s t i t u t f(ir F e s t k b r p e r f o r s c h u n g , Hochfeld-Magnetlabor, F - 3 8 0 4 2 G r e n o b l e , F r a n c e , a nd Physikalisehes Institut der Universit~it Wfirzburg, D-8700 W0rzburg, FRG
(Received ii October 1983, in revied form 6 June 1984 by B. bCflhlschlegel) We h a v e s t u d i e d the e n e r g y l o s s of w a r m e l e c t r o n s i n a t w o d i m e n s i o n a l e l e c t r o n g a s a t the S i - S i O 2 i n t e r f a c e of ( 1 0 0 ) - S i M O S F E T s . T h e a p p l i c a t i o n of a n e g a t i v e s u b s t r a t e b i a s d e c r e a s e s the i n e l a s t i c e l e c t r o n - p h o n o n i n t e r a c t i o n c o n s i d e r a b l y a t T 1 = 1 . 8 K. T h e t e m p e r a t u r e d e p e n d e n c e of t he e n e r g y l o s s s u g g e s t s t h a t a t z e r o s u b s t r a t e b i a s and l ow t e m p e r a t u r e s d e f o r m a t i o n p o t e n t i a l s c a t t e r i n g by S i - b u l k p h o n o n s c a n n o t e n t i r e l y a c c o u n t f o r the e x p e r i m e n t a l f i n d i n g s .
I.
Introduction
mit.
It w a s s h o w n 5 t h a t r e f l e c t e d -
and R a y l e i g h -
t ype p h o n o n s c a n be n e g l e c t e d a nd t h a t the o n l y m o T h e e l e c t r o n - p h o n o n i n t e r a c t i o n in n - and p - c h a n nel inversion layers
d i f i c a t i o n of t he t h r e e - d i m e n s i o n a l s c a t t e r i n g a r i s e s r f r o m the t w o - d i m e n s i o n a l n a t u r e of t h e e l e c t r o n
of M O S F E T s h a s b e e n s u b j e c t
of m a n y e x p e r i m e n t a l
and t h e o r e t i c a l i n v e s t i g a t i o n s 1.
In the h i g h t e m p e r a t u r e
gas.
limit scattering may be
c a u s e d by i n t r a v a l l e y a c o u s t i c a l and o p t i c a l p h o n o n s and b y i n t e r v a l l e y o p t i c a l p h o n o n s . perature
The experimentally
d e t e r m i n e d v a l u e s of
~ph
by K a w a g u c h i a nd K a w a j i 8 c a n n o t be e x p l a i n e d b y t he s u r f o n t h e o r y u n l e s s u n r e a s o n a b l e
In the l o w t e m -
l i m i t o n l y i n t r a v a i l e y a c o u s t i c phonon
T h e d e d u c t i o n of tl~e e - p h s c a t t e r i n g
scattering is relevant.
If the c a r r i e r
too h i g h ,
the e l e c t r o n s
a r e c o n d e n s e d in the l o w e s t
electrical
s u b b a n d and no i n t e r s u b b a n d s c a t t e r i n g
assumptions
a r e m a d e f o r t he d e f o r m a t i o n p o t e n t i a l c o n s t a n t s .
energy is not
temperature
time from the
d e p e n d e n c e of the c o n d u c t i v i t y i s c e r -
tainly dubious because other temperature mechanisms
dependent
a r e u s u a l l y p r e s e n t 9.
has to be taken into account. Acoustic phonon s c a t 2 t e r i n g has f i r s t been t r e a t e d by Ezawa et al. for
Under
a s t r e s s - f r e e ideal s u r f a c e of an i s o t r o p i c e l a s t i c
concept is applicable I0, the energy-loss
continuum in the high t e m p e r a t u r e limit. These
carriers,
a u t h o r s calculated the phonon c o r r e l a t i o n function in the deformation potential approximation and i n t r o -
can give valuable information about inelastic scatii tering processes . Hess et al. 4 determined expe-
the assumption
that the electron-temperature
heated up by an external electric field,
duced the s u r f on modes a s a consequence of the
rimentally the energy-loss
boundary condition at the s u r f a c e . The calculated
type inversion layers.
s c a t t e r i n g times a g r e e only qualitatively with the
investigated the energy-loss
e x p e r i m e n t a l l y observed
nel inversion layers at low temperatures
T and they d i s a g r e e still
by a f a c t o r of 2 if additional s c a t t e r i n g m e c h a n i s m s 3 a r e taken into account . M o r e o v e r , the contributions,
riety of samples
a r i s i n g f r o m the s u r f a c e - i n d u c e d
of the energy-loss
phonon
amination
scattering,
of their data shows
varies considerably
t i m e ~c ~ w h i c h i s d o m i n a t e d by t h e b u l k - p h o n o n pn 2 interaction .
Recently,
4
and r e c e n t l y S h i n b a e t al.
5,6,7
carriers
of w a r m surface li-
of electrons in n-chanfor a vaAn
ex-
that the dependence
on the lattice temperature for different samples
r1
and gives 2 to 3.
Shinba et aL 6 calculated the energy-loss electrons model.
energy-loss
679
in p-
and L a n d w e h r 12
values of the exponent roughly ranging f r o m
ex-
t e n d e d the s u r f o n t h e o r y to the low t e m p e r a t u r e
of w a r m
Neugebauer
with different mobilities.
do not s i g n i f i c a n t l y i n f l u e n c e the t o t a l s c a t t e r i n g
H e s s et al.
of w a r m
at low temperatures
u s i n g t he
T h e y found a T14 d e p e n d e n c e o f t he
at small
AT -- T c - T 1 (T c = e l e c t r o n
W A R M ELECTRONS
680 temperature)
IN (100)-Si-MOSFETs
U N D E R SUBSTRATE
BIAS
Vol.
51, No. 9
1/ 2
in contrast to the experimental data. 2 e o s Si~d(NA -ND)
Chain and W h e e l e r 13 first pointed out that the ener-
Ndepl
gy loss decreases
N A,
if the electrons are forced closer
=
(3)
2 ¶e
ND = a c c e p t o r ,
donor concentrations,
to the interface by application of a negative sub-
solute dielectric constant,
strafe bias.
c o n s t a n t of Si.
This entirely unexpected result w a s
subsequently investigated in detail b y the authors 14. We
at T 1 = I. 6 K,
the energy loss drops b y if the substrate bias
voltage is increased to approx.
- 8 V.
and s t r o n g i n -
by
"0"I.G Cd
substrate bias hardly influences the energy loss whereas
eSi = relative dielectric
low temperatures
v e r s i o n ~d c a n be a p p r o x i m a t e d
found that at T 1 = 4.2 K the application of a
nearly one order of magnitude
For
eo = a b -
It w a s point-
=
EG
+
e
(4)
Usb
= energy gap of Si. Using the variational funct-
ion of F a n g and H o w a r d 16 for the z-dependent part of the electron w a v e function in the lowest subband
ed out that deformation potential scattering by bulk
b a 1/2
silicon phonons cannot entirely account for the ex-
~o(Z) = (-~-)
i
z exp(-g bz)
(5)
perimental results, but that at least one additional relaxation channel m u s t
exist. W e
proposed
the average extension of the carriers in z-direction
that
the energy relaxation might be caused by two-levelsystems
in the a m o r p h o u s
which is perpendicular to the interface is given b y
SiO 2 via surface- and
3
z°
oxide charges located at the interface.
= ~ ;
(6)
It is the
purpose of this paper to present n e w experimental
with
data supporting this m o d e l and to discuss the re6 sults of Shinba et al. including the possible influ-
b =
12 m z e2 (N de pl + 1 1 / 3 2 N s ) i / 3 (7) ~ o e S i "l~2
ence of the Si-SiO 2 interface. N
2.
= s u r f a c e c a r r i e r concentration, m = z-corns z ponent of the e f f e c t i v e m a s s • T h u s the a p p l i c a t i o n
Theory
of a n e g a t i v e s u b s t r a t e b i a s i n c r e a s e s b and f o r c e s
If t h e e l e c t r o n - e l e c t r o n
interaction is much strong-
er than electron-phonon
scattering
the e l e c t r o n s c l o s e r to the i n t e r f a c e . It should be
energy gain from randomized racterized
( t e e << Tph),., t h e
an external electric
f i e l d ESD i s
in the e l e c t r o n g a s w h i c h c a n be c h a 10 b y a n e l e c t r o n t e m p e r a t u r e Tc > T1
noted that for substrate experiments,
z
o
w a s c h a n g e d b y a b o u t 0. 1 n m o r
5%.
T h e m e a n e n e r g y g a i n p e r e l e c t r o n c a n e a s i l y be
To d e t e r m i n e
evaluated by
t he o s c i l l a t o r y t r a n s v e r s e
f i e l d = e p ( E s D ) For
small
deviations
2 ESD
- P;
/u
AT = Tc - T 1 and s m a l l
w e m a y u s e /u ° i n s t e a d of /U(EsD). state,
= mobility
(t)
T 1,
In the s t a t i o n a r y
the e l e c t r o n t e m p e r a t u r e
nikov-de Haas-effect,
SdH) a s a t h e r m o m e t e r .
of t he a m p l i t u d e of a c e r t a i n
< dE "~- > coll
(2)
i c f i e l d s 15,
bias can
formula for low magnet-
and no B - d e p e n d e n c e
was observed,
a p p l i e d the n e g a t i v e m a g n e t o - r e s i s t a n c e where
This
SdH o s c i l l a t i o n w i t h
electric field and substrate
be f i t t e d w e l l w i t h A n d o ' s dE < d--~-> field =
T we u s e c" m a g n e t o - r e s i s t a n c e (S hub-
p r o c e d u r e has b e e n d e s c r i b e d e l s e w h e r e in d e t a i l 12, 14 • A l t h o u g h t he e x p e r i m e n t a l l y d e d u c e d c h a n g e
temperature,
we h a v e
b i a s e s u s e d i n t he p r e s e n t
we
i n t he w e a k -
< d E / d t >coll describes the energy loss due l y l o c a l i z e d r e g i m e a s a n a l t e r n a t i v e m e t h o d of T c 19 e v a l u a t i o n . T h e r e s u l t s a r e in good a g r e e m e n t
to inelastic e-ph-interactions. T h e a p p l i c a t i o n of a n e g a t i v e s u b s t r a t e t h e b a c k of th e s i l i c o n s u b s t r a t e pletion layer
thickness.
bias Usb at
e n h a n c e s the d e -
The d e p l e t i o n l a y e r c h a r g e
per unit area Ndepl is given by
w i t h the S d H - d e d u c e d e l e c t r o n t e m p e r a t u r e ,
thus in-
dicating that a quantizing magnetic field does not h a v e a s i g n i f i c a n t i n f l u e n c e on the e n e r g y r e l a x a t 20 ion
WARM ELECTRONS
Vol. 51, No. 9
IN (100)-Si-MOSFETs bias
3. Results and Discussion
is observed.
creases
However,
considerably
The experiments have been performed on Si-(100)-
closer
MOSFETs with a channel length ranging from 400
tron-phonon
to 1000 /urn and a channel width of 4 0 - 5 0 /urn. In
scattering
order to avoid contact problems, the voltage drop
drops
along the channel at constant current was detected
681
UNDER SUBSTRATE BIAS
to the interface. interaction rate
as
electrons
Thus,
K,
T inc pushed
are
the inelastic
decreases
increases.
The
while
elec-
the total
of T c vs. ESD i s l o w e r e d 14. In F i g . 2,
the temperature
we plotted
at T 1 = 1.8
if the
the normalized
slope
energy
loss
as
a function
via potential probes. The total power input was kept well below 10 -6 W to ensure that the lattice
PS1004/5
was at bath temperature. Changes of the substrate
/~
u~: ov
¢~- :
:
__
u~:-~v
bias were c a r r i e d out at temperatures T 1 > 100 K
//Y//
in order to achieve stable potential conditions at the substrate. The change in Ndepl was checked by
.
3.6K
monitoring the threshold voltage Uth as a function
3.OK
of substrate bias with Uth deduced from SdH o s c i l lations at constant magnetic fields B < 5 Tesla. The gate voltage U was adjusted to keep the ing version l a y e r electron density N s Ug -Uth constant. The mobility p at N = 2 - 4 . 1 0 1 2 cm -2 was ap! & proximately 7'000 cmZ/Vs for all samples under investigation. Fig.
1 shows
the electron
t i o n of t h e e l e c t r i c peratures
field
temperature ESD for
and two different
At T 1 = 3.6
K,
!
hardly
as
a func-
two different
substrate
an influence
tem-
bias
voltages.
of t h e
substrate
'" I
2
Fig. 2
PS 3~/11b ° U~b= OV • U~b=- OV
1.5
1.0
/
/
°
4
5
•2
3
4
TcIK]~
Normalized energy loss as a function of the c a r r i e r temperature T
at different c l a t t i c e temperatures for zero substrate
T, t
3
1.8K
/
//
bias Usb(left) and -4 V (right) of the electron temperature for two different subs t r a t e biases. As indicated by the arrows, we extrapolated the curves for T c - T l - ~ 0 12. Fig. 3 shows extrapolated values of the energy l o s s as a function of the negative substrate bias for different lattice temperatures. As it is already suggested by
0.5
Fig.
1, the substrate bias hardly influences the
energy l o s s at T1 = 4.2 K, whereas at T 1 = 1.8 K P / ( T c - T I) drops considerably. At Usb = - 9 V, a 01
Fig.
1
02
0.3
Temperature A T as between
a function
Usb
3.6
of w a r m
probes
at lattice K and
minimum can be seen with a slight i n c r e a s e for 5 higher substrate bias voltages. Shinba et al. cal-
=twrm""cm ]~
of the electric
the potential
and
03
increase
(100)MOSFET of 1 . 8
0.4
E
electrons
PP temperatures
2 substrate
numerC
i c a l l y in the framework of the surfon theory. F o r
field for
culated the energy l o s s as a function of T
a
small
T1
lytical expression (see equation A5 in ref.
biases
AT and low temperatures, they gave an ana6) from
which we calculated the energy l o s s indicated by the dashed lines in Fig. 3. Although this expression is
682
WARM ELECTRONS IN (100)-Si-MOSFETs UNDER SUBSTRATE BIAS ,
i
i
,
,
,
,
,
,
,
however,
PS 304111a
that
x drops
~-----~~-o--38K
a
tried
further
perature
energy
Tc --# T 1 as bias as
- Usb
extrapolated
a function with
The
values
for
of the substrate
the lattice
a parameter.
calculated
loss
temperature
dotted
after
lines
ref.
indicate
Moreover,
stence
of irregularities phonon
to a c h a n g e
good
agreement
strate
biases
and
for
with
o f z o,
it gives
the experimental
at the minimum
T 1 ~ 4.2
surprisingly data
for
sub-
for low temperatures
K in the whole
substrate
bias
range. In Fig.
4,
loss
a function
as
versus
we plotted
good
of the lattice
the substrate
corresponding
bias
surfon
x
with theory.
1 4
of the energy
temperature
voltage.
to t h e m i n i m u m ,
agreement
by the
the exponent
T1
At the voltage
we find x = 4 in
the T 1 dependence
predicted
At low substrate
bias
voltage,
~
4
Exponent versus
should ions
extension
an
bias
from
existence rise
x
-Usb
in a region average
of l a t t i c e
wave
of charges
phonon
of the interface,
the Si-crystal
and
the amor-
function
energy
we
excitat-
to t h e a v e r a g e
at or near
to additional
the with two
the amorphous
( t is comparable
of t h e e l e c t r o n
inversion
layer
e.g.
z ). o
the interface
relaxation
~ ' "~ ' 12
electrical
energy as
be
channels
a function
for
27.
interaction
to screening
electrons
induced
3,
interaction
pile
biases
would
and
the
relaxation belonging
Si-crystal remain.
at
thus
by
therefore
in z . Pushing o would result
energy
the bare
This
up
the
typical
generation
subjected
interface
substrate
which to the
to phonons
to changes
Fig.
Due
passing of the
might
sitive
surface loss
phonon,
electrons
layer
to the
of ions
SiO 2 26.
ac-field,
couple
A
the distance
system
version
er
electrons.
modulates
in the
however,
x of the normalized
of substrate
sides
to
emit-
to c r o s s interact
by the
a mixture
SiO 2 layer
be able inversion
phonons
Thus,
on both
originating
4 nm
temperature
.
to h a v e
mirror-charge
~' ~.' ~,'
for 14
be characterized t
hand,
en-
scatter-
impinging
might
be able
characteristic
expect
phous
ively
lattice
may
wavelength
for
-~b[V]-Fig.
systems
at low temperatures
interface,
P
should
strongly
scatter
other
velocithe exi-
to resonant
into the SiO 2 and
state which
sound that
Phonons
and
high,
~
2'
o'
enter
level
gives x
On the
ted by hot electrons interface,
The
due
the
be very and
as
to t h e
low tem-
at the interface
s t a t e s 2 2 ' 2 3 , 24.
electrons.
for
clear
the SiO 2 onto the interface
layer
such
theory 21,
become
into the Si-crystal
of the
modes
According
should
transmission
ing by surface
intrude insensitive
the possibility
densities
it has
hances
from
6.
to the si-
mismatch
to n o t t o o d i f f e r e n t
ties.
it should
phonon
phonons
we pro-
At first
of the Si-SiO 2 interface
acoustical
data,
adjacent
at the interface.
of the acoustic
transparency
Normalized
reduces
of s u r f a c e - i n d u c e d waves
if the
of t h e p h y s i c a l
licon
results
3
the experimental
that an SiO 2 layer
Rayleigh
Fig.
for
the influence
of the Si-SiO 2 interface.
crystal
indicates
substantially
be mentioned
due
This
No. 9
is decreased.
o
to account
existence
-U~blV]~
z
to estimate
perties
< 3.
is modified
distance
In o r d e r
-°-
to v a l u e s
e-ph-scattering
average
Vol. 5 1 ,
would,
mobile be
of
effect-
very
electrons
insenclos-
in screening
out
channels.
Thus,
to the
minimum
deformation-potential
in
Vol.
683
W A R M E L E C T R O N S IN (100)-Si-MOSFETs U N D E R SUBSTRATE BIAS
51, No. 9
Inelastic surface
scattering as described
in the present experiments m / m ° as determined
above
should be influenced s t r o n g l y by phonons o r i g i n a t -
f r o m SdH-data s h o w s an increase with substrate
i n g f r o m the a m o r p h o u s SiO 2. It i s w e l l known
bias in the low bias range.
that,
due to the e x i s t e n c e of t w o - l e v e l - s y s t e m s ,
p h o n o n d e n s i t y of s t a t e s in a m o r p h o u s nificantly different from crystalline peratures
T < 1 K 28, 25.
e n c e in c r y s t a l s ,
solids is sig-
FET
e.g.,
to the T 3 - d e p e n d -
T h e s p e c i f i c h e a t of v i t r e o u s SiO_ a t T = 2 z29 1 K shows approximately a T -dependence , thus
good a g r e e m e n t
data (Fig.
electrons
substrate
in a n S i - ( 1 0 0 ) - n - c h a n n e l M O S -
closer
bias.
P u s h i n g t he
to t he i n t e r f a c e r e s u l t s of t he c a r r i e r
temperature
b i a s i s s e e n a t T 1 = 3 . 6 K.
4).
for zero substrate
temperatures.
m a d e to e x p l a i n the e x p e r i m e n t a l l y
and i n t e r a c t i o n w i t h t w o - l e v e l - s y s t e m s
of
/~T f o r t e m p e r a t u r e s
mass
observed in-
T 1 = 3 . 6 K.
calculated.
Data for lower temperatures There
is,
i n t he a m o r -
p h o u s SiO 2 c a n q u a l i t a t i v e l y a c c o u n t f o r t he e x p e r i mental findings.
surfons
Acknowledgment
scattering can ac-
c o u n t f o r the c h a n g e in e l e c t r o n t e m p e r a t u r e T 1 = 3. 6 K.
bias at low
It i s s u g g e s t e d t h a t s u r f a c e c h a r g e s
s u b s t r a t e b i a s in c o n -
j u n c t i o n w i t h s c a t t e r i n g by 2 D - p h o n o n s , and the s u r f a c e r o u g h n e s s
V a s s 30
of the e l e c t r o n e f f e c t i v e
m/m ° with increasing
The temper-
b i a s can be e x p l a i n e d by an a d d i t i o n a l e n e r g y r e laxation mechanism
p o i n t e d out t h a t a d e c r e a s e
at
w h e r e a s h a r d l y a n i n f l u e n c e of the
I t s h o u l d be n o t e d t h a t a n o t h e r a t t e m p t h a s b e e n
crease
in a c o n -
a t u r e d e p e n d e n c e of the e n e r g y l o s s u n d e r s u b s t r a t e
w h i c h i s in
with our experimental
electrons
under negative substrate
T 1 = 1 . 8 K,
states.
1,
we have i n v e s t i g a t e d the e n e r g y l o s s
siderable increase
i n d i c a t i n g a c o n s t a n t d e n s i t y of
r e d u c i n g the e x p o n e n t b y a p p r o x .
In c o n c l u s i o n , of w a r m
solids at tem-
The specific heat,
i s n e a r l y l i n e a r in T in c o n t r a s t
the
however,
at
T h e a u t h o r s a r e g r a t e f u l to D r .
w e r e not
the d i f f i c u l t y t h a t
Forschungslaboratorien,
G.
M~nchen,
Dorda,
Siemens
for providing the
samples. References
i. For a comprehensive review, see T.Ando, A.B.Fowler, F.Stern, Rev.Mod.Phys.54, 437 (1982) 2. H.Ezawa, S.Kawaji, K.Nakamura, Jpn.J.Appl.Phys.13, 126 (1974)
16. F.F.Fang, W.E.Howard, Phys.Rev.Lett.18, 797 (1966) 17. F.Stern, W.E.Howard, Phys.Rev.163,816 (1967) 18. F.F.Fang, A.B.Fowler, A.Hartstein, Surf.Sci.73, 269 (1978)
3. H.Ezawa, Surf.Sci.58, 25 (1976)
19. Y.Kawaguchi, S.Kawaji, Jap.J.Appl.Phys.21,L709 (1982)
4. K.Hess, T.Englert, T.Neugebauer, G.Landwehr, G.Dorda
20. W.HSnlein, G.Landwehr, Proc.of the Int.Conf. on
Phys.Rev.B16, 3652 (1977)
Two-Dimensional-Systems, Oxford 1983, Surf. Science, in print
5. Y.Shinba, K.Nakamura, J.Phys.Soc.Japan 51, 3908 (1982)
21. S.B.Kaplan, J.Low Temp.Phys.37,343 (1979)
6. Y.Shinba, K.Nakamura, M.Fukuchi, M.Sakata,
22. H.Kinder, Physica 107B, 549 (1981)
J.Phys.Soc.Japan 51, 157 (1982) 7. Y.Shinba, K.Nakamura, M.Fukuchi, M.Sakata, J.Phys.Soc.Japan 51, 3908 (1982)
23. J.Halbritter, Physica 108B, 917 (1981) 24. D.Marx, W.Eiseemenger, Z.Phys.B 48, 277 (1982) 25. For a comprehensive review of T L S see e.g.
8. Y.Kawaguchi, S.Kawaji, Surf.Sci.98,210 (1980)
Amorphous Solids, Low Temperature Properties,
9. F.Stern, Phys.Rev.Lett.44,1469 (1980)
ed.W.A.Phillips in Topics in Current Physics,
10. G.Bauer, Springer Tracts in Modern Physics 74, 1 (1974) 11. E.M.Conwell, High Field Transport in Semiconductors, Academic Press, New York, London (1967) 12. T.Neugebauer, G.Landwehr, Phys.Rev.B21,702 (1980) 13. K.M.Cham,R.G.Wheeler, Surf.Sci.98,210 (1980)
Springer, Berlin-Heidelberg-New York (1981) 26. D.J.Di Maria, Z.A.Weinberg, J.M.Aitken, J.Appl. Phys.48, 898 (1977) 27. J.Halbritter, Phys.Lett. 69, 374 (1979) 28. S.Hunklinger, J.Physique 39, Colloque C6, Suppi.8, 1444 (1978)
14. W.H6nlein, G.Landwehr, Surf.Sci.113,260 (1982)
29. R.C. Zeller, R.O.Pohl, Phys.Rev.B4, 2029 (1971)
15. T.Ando, in Proceedings of the International
30. E.Vass, in: Application of High Magnetic Fields
Conference on the Application of High Magnetic
in Semiconductor Physics, G.Landwehr, Ed.
Fields in Semiconductor Physics, wQrzburg (1976)
Lecture Notes in Physics 177, Springer Verlag
unpublished and ref.1, p.539
1983, p.114