Energy saving using morning and evening civil twilight in the State of Bahrain

Energy saving using morning and evening civil twilight in the State of Bahrain

Renewable Energy, Vol.5, Part IL pp. 1547-1552, 1994 Elsevier Science Lid Printed in Great Britain 0960-1481/94. $7.00.1-0.00 Pergamon E N E R G Y S...

268KB Sizes 1 Downloads 32 Views

Renewable Energy, Vol.5, Part IL pp. 1547-1552, 1994 Elsevier Science Lid Printed in Great Britain 0960-1481/94. $7.00.1-0.00

Pergamon

E N E R G Y SAVING USING MORNING A N D EVENING CIVIL TWILIGHT IN THE S T A T E OF BAHRAIN W.E. A l n a s e r

University of Bahrain, Department of Physics, P. O. Box 32038, Bahrain ABSTRACT :

Comparison between the total solar irradiation including a n d excluding the civil twilight in B a h r a i n is studied. The solar i n t e n s i t y of the civil twilight (morning a n d evening twilight) in B a h r a i n is calculated. The calculations show t h a t the m a x i m u m civil twilight is on s u m m e r solistice (longest day) lasts for 52.3 min a n d the least on winter solistice (shortest day) for 50.7 min. In spring a n d a u t u m n equinox (day equal to night), the duration of the civil twilight is 46.1 rain. Monteith a n d Unsoworth e q u a t i o n [7] which estimates the daily global insolation for location having unprolonged d u s k a n d d a w n was evaluated for Bahrain. Their equation was found to fit very well with the m e a s u r e d d a t a in B a h r a i n (percentage difference of 6.5%). Discussion on the energy saving by introducing s u m m e r a n d winter time in B a h r a i n is presented INTRODUCTION :

Twilight is the time preceding sunrise and following s u n s e t w h e n the sky is p a r t l y i l l u m i n a t e d . Civil twilight is the interval w h e n the time zenith distance (03 ) referred to the earth's center of the center of the s u n ' s disc is between 90°50 ' a n d 96 °, n a u t i c a l twilight is the interval between 96 ° a n d 102 ° a n d astronomical twilight is t h a t between 102 ° and 108 ° . Twilight i n c r e a s e s the length of the day. Civil twilight e n d s w h e n the altitude of the s u n is 6 ° below the horizon; it is the lightning-up time for road vehicles [1]. The brightness of the sky varies t h r o u g h o u t twilight. It was found t h a t when the s u n is 6 ° below the horizon (i.e. at the end of civil twilight) the s k y b r i g h t n e s s A in log scale is +2.7; w h e n the s u n is 12 ° below the horizon (i.e. w h e n nautical twilight ends) A decreases to 0; when the s u n is 18 ° below the horizon (i.e. after astronomical twilight ends and it is fully night-time) A decreases to -3.1. The d u r a t i o n of the civil twilight in the Spring a n d A u t u m n equinox (solar declination angle 8 = 0) becomes m i n i m u m (day length = night length). The s u m of the morning and evening twilight is larger in s u m m e r solstice t h a n winter solstice [2]. The d u r a t i o n of the twilights (morning and evening) increases as the latitude ~ of the Iocatlon increases. 1547

1548 B a h r a i n is located a t l a t i t u d e 26°N a n d l o n g i t u d e 50 °. D o m e s t i c c o n s u m e r s u s e m o s t of t h e e l e c t r i c i t y p r o d u c e d w h i c h is a r o u n d 56.4%, C o m m e r c i a l 25.8%, I n d u s t r i a l - 17.2% a n d A g r i c u l t u r a l - 0 . 0 0 6 % [3]. G o v e r n m e n t office h o u r s are 7 : 0 0 a m to 2 : 1 5 pm. B a h r a i n is a n Islamic c o u n t r y , M u s l i m s a r e o b l i g a t e d to p r a y five t i m e s a d a y (at F a j e r o r b e f o r e s u n r i s e , n o o n , a f t e r n o o n , d u s k a n d night).

F a j e r p r a y e r s t a r t s w h e n t h e s u n is u n d e r t h e

h o r i z o n b y 17.5 ° (nearly d u r i n g t h e b e g i n n i n g of t h e m o r n i n g a s t r o n o m i c a l twilight). T h i s m e a n s t h a t t h e p e o p l e offer FaJer p r a y e r s in t h e v e r y e a r l y s u m m e r m o r n i n g s (eg. a t 3 : 0 5 w i n t e r (on 2 0 t h J a n u a r y , p r a y e r h o u r s a f t e r t h e F a j e r p r a y e r (eg. a t 6 : 2 7 am). T h i s s u g g e s t s t h a t

am on 15th starts at 5:00 o n J u n e 15th advancing the

J u n e a n d a t a l a t e r t i m e in am). T h e s u n rises n e a r l y 1.5 at 4:45 am and on June 20th s t a n d a r d to m a k e time, u s e of

t h e twilight will b e v e r y u s e f u l a n d will s a v e electricity. T h i s p a p e r d e a l s w i t h t h e c a l c u l a t i o n of t h e d u r a t i o n of t h e m o r n i n g a n d e v e n i n g twilight f r o m w h i c h we will s h o w t h a t a c o n s i d e r a b l e s a v i n g of e n e r g y will r e s u l t f r o m m a k i n g u s e of t h e s e twilight. METHODS OF CALCULATIONS :

To c a l c u l a t e t h e s u m of t h e d u r a t i o n of m o r n i n g a n d e v e n i n g civil twilight (T) we u s e t h e following e q u a t i o n s : T = 1-~[tog°-to96]

(1)

w h e r e to98 a n d to9o are t h e h o u r a n g l e s a t 9 6 ° (civil twilight) a n d 9 0 ° ( s u n s e t or s u n r i s e ) r e s p e c t i v e l y . to a t a n y z e n i t h d i s t a n c e c a n be c a l c u l a t e d u s i n g t h e following e q u a t i o n [4] :

to

cos_ 1 i c o s e z - sin ¢ sin 81

w h e r e 8 is t h e s o l a r d e c l i n a t i o n angle [5] 8 = 2 3 . 4 5 sin I1360

284 + n 1 365 ]

(3)

n is t h e d a y of t h e y e a r s t a r t i n g o n I s t J a n u a r y ( F e b r u a r y is t a k e n a s 2 8 days). R e c o m m e n d e d v a l u e s of t h e a v e r a g e d a y s for m o n t h s a n d v a l u e s of n b y m o n t h are t a k e n f r o m Klein [6] (table i) as follows :

1549 T a b l e 1 : R e c o m m e n d e d A v e r a g e D a y s for M o n t h s a n d V a l u e s of n b y M o n t h s F o r t h e A v e r a g e D a y of t h e M o n t h

n for ith Month

D a y of M o n t h

Date

i

17

17

-20.9 -13.0

January

n, D a y of Year

8, D e c l i n a t i o n

February

31+i

16

47

March

59+

i

16

75

-2.4

April

90+

i

15

105

9.4

May

120 + i

15

135

18.8

June

151 + i

11

162

23.1

July

181 + i

17

198

21.2

August

212 + i

16

228

13.5

September

243 + i

15

258

2.2

October

273 + i

15

288

-9.6

November

304 + i

14

318

-18.9

December

334 + i

10

344

-23.0

is t h e l a t i t u d e of t h e l o c a t i o n in B a h r a i n (¢ = 26°N). To k n o w t h e t i m e a t w h i c h e i t h e r t h e m o r n i n g or e v e n i n g twilight s t a r t s or e n d s in B a h r a i n , we h a v e to c o n v e r t t h e h o u r a n g l e s into local t i m e TLW b y u s i n g t h e following e q u a t i o n : co TLW = 12 h r s . + - ~ - ~ - h r s . - 4 ( L s T - LLoc)min - E m i n (4)

LST is t h e s t a n d a r d m e r i d i a n for t h e local t i m e zone (LsT for B a h r a i n - 4 5 °) W a n d LLoc is t h e l o n g i t u d e of t h e l o c a t i o n in q u e s t i o n in d e g r e e s (LLoc for B a h r a i n -50°).

T h e "+" m e a n s "+" for e v e n i n g twilight a n d for s u n s e t a n d "-"

for m o r n i n g twilight a n d for s u n r i s e .

Hrs. m e a n s t h a t t h i s v a l u e is in h o u r s

a n d m i n m e a n s t h a t t h e v a l u e is in m i n u t e s . F o r B a h r a i n , e q u a t i o n {4} c a n b e r e - w r i t t e n a s follows : co TLW= 12 hrs. + _--:-- 2 0 m i n - E m i n 15

(5}

E is t h e e q u a t i o n of t i m e in m i n u t e s a n d c a n b e c a l c u l a t e d u s i n g S p e n c e r ' s e q u a t i o n [7]:

E = 229.2 /

0 . 0 0 0 0 7 5 + 0 . 0 0 1 8 6 8 c o s B - 0 . 0 3 2 0 7 7 sin B ) - 0 . 0 1 4 6 1 5 c o s 2B - 0 . 0 4 0 8 9 s i n 2B

(6)

1550

w h e r e B = { n - I) 3 6 0 365

I
RESULTS AND DISCUSSIONS

:

Fig. I s h o w s t he s u m of t he m o r n i n g and evening civil twilight t h r o u g h o u t the year. M a x i m u m twilight is on 2 1 s t J u n e (and lasts for 52.4 min) and on 2 1 s t D e c e m b e r (which lasts for 50.7 min). The s h o r t e s t twilight is on 18th M a r c h a n d 2 6 t h S e p t e m b e r a n d lasts 46.1 min. Since t h e s e figures are close to a n h o u r t h e n a d v a n c i n g t h e time on 18th M a r c h (for e x a m p l e c h a n g i n g the clock from 5:00 a m to 6:00 am) would m a k e people go to their d u ties (which s t a r t at 7:00 am) on 21st J u n e 1 h o u r a n d 14 min (new time) after t he s u n r i s e i n s t e a d of 2 h o u r s and 14 m i n (old time). This will tak e a d v a n t a g e of the s u n l i g h t a n d t he twilight.

Also t he people will be

coming h o m e earlier from work t h a n before and t herefore have m ore time to enjoy th e s ky lights a nd the twilight after dusk. This p r o c e s s would help th e c o u n t r y save large a m o u n t s of money. If we a s s u m e t h a t t h e r e are I million lamps, r a t e d 100 watts, t h a t would be switched off as people leave h o u s e s earlier by one hour , t h e n the a m o u n t of m o n e y t h a t c a n be saved is calculated as follows : a m o u n t saved in I ~ =

P o w e r of t h e l am p (W) x No. of l am ps x 32 {files} 1O0000O

i.e. a m o u n t saved in IK) =

(7)

(100W)(I000000){32) = 3200 I000000

This m e a n s t h a t the saving will be BD 3200 per h o u r i.e. n e a r l y 0.6 million B a h r a i n i Di na r s every six m o n t h s (since the time will be p u t b a c k to n o r m a l on 2 6 t h September). Also since the n u m b e r of h o u s e s in B a h r a i n are nearly 8 0 0 0 0 an d a h o u s e probably h a s 4 air conditioners on the average, t h e n if as a r e s u l t of a d v a n c i n g t he time (on 18th March and p u t t i n g it to n o r m a l on 2 8 t h September), people will switch off half of their air c o n d i t i o n e r s d u r i n g this h o u r .

The a m o u n t of m o n e y saved will be BD 5180 per d a y i.e. nearl y

1.0 million a y e a r (This is a s s u m i n g t h a t each air conditioner has a n electric power of 2 0 0 0 W) Monteich [8] r e p o r t e d t h a t the daily solar radiation can be found u s i n g the following relation : H=

2S o

Imax

(8)

1551

Gmax is the m a x i m u m solar irradiation recorded d u r i n g the y e a r (In B a h r a i n Imax -- 9 9 1 .5 Wm "2) and S O is the m a x i m u m s u n s h i n e d u r a t i o n [3].

2 c o s -I {-tan So = y-g

tan

8)

{9)

This m e a n s t h a t on 2 1 s t J u n e (So = 13.6 hrs.), t he daily average sol ar irradiation will be 8 5 8 8 . 8 Whm "2 (30.92 M j m 2 ) .

E q u a t i o n (8) was modified

for h ig h er latitude s w he r e in s u m m e r the dawn and the d u s k are prolonged. A full sine wave was us e d i.e. N

'

H = Imax

fo

2lnt~

sin I~-~o] d t = Imax -So ~, (10)

w h e r e t is t h e time a f t er s u n r i s e . This m e a n H' will be 6 7 4 2 . 2 Whm -2 (24.27 M J m "2) instead of 8588.8 W hm "2. Since the s u m of the civil twilight (morning a n d evening) in B a h r a i n is from 46 to 52 m i n u t e s , e q u a t i o n (8) r e p r e s e n t s B a h r a i n m or e a c c u r a t e l y t h a n e q u a t i o n (10). For example, t he daily a v e r a g e s ol a r i r r a d i a t i o n r e c o r d e d on 2 1 s t J u n e 1993 at B a h r a i n U n i v e r s i t y w a s 8 0 6 4 . 7 W h m -2 (29.03 MJm-2), t h i s is less t h a n t h e calculated H from e q u a t i o n (8) by 6.5% only. REFERENCES

1.

Acker A a n d J a s c h e k C, 1986, "Astronomical Method of Calculation, J o h n Wiley & Sons, Chichester, U.S.A.

.

A l n a s e r W E a n d Awadalla N S, 1991, Astronomical Cal cul at i ons for p r a y e r time a nd twilight, AI-Obykan Press, Saudi Arabia (in Arabic)

.

Central Statistics Organisation Statistical Abstract 1992, p. 401.

.

Duffle J A a n d B e c k m a n W A, 1992, Solar E n g i n e e r i n g of T h e r m a l

(1993), D i r e c t o r a t e of S t a t i s t i c s ,

Processes, 2nd Edition,, A Wiley Interscience Publication, J o h n Wiley & Sons, New York, U.S.A. .

C o o p e r P I, 1969, T he A bs or pt i on of solar r a d i a t i o n in sol ar stills, Solar Energy, Vol. 12, P. 3

.

Klein S A, 1977, C a l c u l a t i o n of the m o n t h l y average i n s o l a t i o n on tilted surface, Solar Energy, Vol. 24, P. 325.

1552

7.

S p e n c e r J W, 1971, Fourier Series R e p r e s e n a t i o n of the position of the sun, Search, Vol. 2 (No. 5), P. 172. Moneith J L and U n s o w o r t h M H, 1990, Principles of Environmental Physics, 2nd Edition, Edward Arnold, London, P. 45,

.

Min.

1

l

l

I

l

i

i

I

1

i

l

1

_

IC'L,~ s

I c-

I

52

t I

°~

I

I

C3~ ccq3 :> q3 c-

i

I

~=~

I

i,

I I J

!

[ {

\

\

I

I

I c¢-

49

-

\

I

I

I

48

\

\

l \

J

F

,

I !

E 47

\

J i

\

O

(/3

I

I

O

E

t

I

\

/

I

t ! I

t

I X''i M

',

I

._ l A

,M

t

j

I

J

I

A

I , '~." S

/ 0

I

N

I

D

~

Month

Figure 1 :

T h e d a i l y v a r i a t i o n o f t h e s u m o f t h e m o r n i n g a n d e v e n i n g civil t w i l i g h t in B a h r a i n ( l a t i t u d e = 2 6 N, l o n g i t u d e = 5 0 ° E).