Enthalpies of formation of liquid and solid binary alloys based on 3d metals

Enthalpies of formation of liquid and solid binary alloys based on 3d metals

Physiea B 152 (1988) 303-346 North-Holland, Amsterdam ENTHALPIES OF FORMATION OF LIQUID AND SOLID BINARY ALLOYS BASED ON 3d METALS V. ALLOYS OF NICK...

2MB Sizes 1 Downloads 110 Views

Physiea B 152 (1988) 303-346 North-Holland, Amsterdam

ENTHALPIES OF FORMATION OF LIQUID AND SOLID BINARY ALLOYS BASED ON 3d METALS

V. ALLOYS OF NICKEL A.K. NIESSEN and A.R. MIEDEMA Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

F.R. de BOER Natuurkundig Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

R. BOOM Research Laboratories, Hoogovens-Groep, 1970 CA IJmuiden, The Netherlands Received 12 July 1988

Continuing the papers on alloys based on either Sc, Ti, V, Cr, Mn, Fe or Co we review in the present paper, on the basis of the model developed by Miedema and co-workers, enthalpies of formation of ordered binary intermetallic compounds of Ni with arbitrary metal partners. The enthalpy effects are also examined for liquid Ni alloys. The calculated values agree quite satisfactorily with the available experimental data for binary systems of Ni with a transition metal, except where Ni is the minority partner in alloys with the much more electropositive metals like Y, La and Ti, in which case the model tends to overestimate the enthalpy effects. A formalism is suggested to improve the predictions in these cases.

In the binary systems where Ni is alloyed with a non-transition metal differences are sometimes observed between predicted and experimentally determined enthalpies. These discrepancies are analysed taking into consideration information on all 3d metals. The limitations of the model will become clear for Ni alloys in particular.

1. Introduction

In recent papers [ 1-4 ] it has been demonstrated that the existing experimental information on the enthalpy of formation of alloys in binary systems based on Sc, Ti, V, Cr, Mn, Fe and Co can be reproduced within the experimental uncertainties by means of a semi-empirical model, which has been introduced extensively in [ 5 ]. In the present paper we compare predicted and experimental enthalpy effects that occur upon the formation of solid or liquid alloys based on Ni. The use of the model to predict enthalpy effects of Ni alloys and the comparison of the predicted values with experimental data are of particular interest since Ni is widely used in metallurgy and electronic devices, while moreover, for no other metal than Ni so much experimental thermodynamic infor-

marion is available. It is particularly interesting to compare enthalpy effects for alloys of Co and Ni; although Ni and Co have about the same model parameters, some differences in alloying behaviour may be expected between Ni and Co since the d band may become completely filled upon alloying Ni. In combination with the previous papers [ 1-4 ] in this series the present paper covers all the alloys of 3d transition metals and in fact the majority of experimental data on alloys containing at least one transition metal. Therefore it is appropriate to evaluate in this paper to what extent the experimental data and the most recently published version of the calculated enthalpy values [ 4,6 ] do agree. As in the previously published papers [ 1-4 ] of this series, our aim in this paper is to present a

0921-4526/88/$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)

304

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

Table Ni-Ia C a l c u l a t e d v a l u e s for the h e a t o f f o r m a t i o n , A H for , o f c o m p o u n d s o f five different c o m p o s i t i o n s , the limiting p a r t i a l h e a t s o f solution, A H °, a n d the h e a t o f m i x i n g for a statistically o r d e r e d liquid at the e q u i a t o m i c c o m p o s i t i o n , A H mix, in kJ ( m o l e o f a t o m s ) - l , for b i n a r y nickel s y s t e m s N i - M w h e r e M is a t r a n s i t i o n m e t a l o r a n o b l e m e t a l . A v a i l a b l e p h a s e - d i a g r a m i n f o r m a t i o n has b e e n a d d e d (¶).

~ t_tfo~

AH

I . d t l l calc

M

NiM 5

NiM 2

NiM

Ni2M

NisM



°

AHmi~

AH

°

Ni in M

NiM

M in Ni

Sc

- 21

- 42

- 57

- 53

- 29

- 130

- 39

- 180

Ti

-20

-40

-52

-46

-25

- 126

-35

- 154

V

- 11

-22

-27

-23

- 12

-69

-18

-75

Cr

-4

-8

-10

-8

-4

-27

-7

-27

Mn

-5

- 10

- 12

- 10

-5

-33

-8

-33

Fe

-1

-2

-2

-2

-1

-6

-2

-6

Co

0

0

0

0

C

0

C-

-1

0

-I

Ni Y

- 15

-31

-44

-45

-26

- -

-97

-31

- 162

Zr

-26

-53

-72

-68

-38

- -

-165

-49

-237

Nb

-17

-34

-45

-40

-22

- -

-107

-30

-136

Mo

-4

-9

- 11

- 10

-5

- -

-27

-7

-32

Tc

0

+1

+1

+!

0

C

+2

+1

+3

Ru

0

+1

+1

+1

0

+

+2

0

+2

RJa

(C+)

-3

- 1

-4

- 1

- 1

- 1

- 1

- 1

Pd

0

0

0

0

0

La

- 13

-26

-38

-39

-24

- -

-81

-27

- 146

Hf

-23

-46

-63

-59

-33

- -

-145

-42

-204

Ta

-17

-33

-44

-39

-21

- -

-105

-29

-133

W

-2

-4

-5

-4

-2

- -

-ll

-3

-14

Re

+1

+3

+3

+3

+2

+

+8

+2

+10

Os

+1

+2

+2

+2

+1

+

+5

+1

+6

Ir

-1

-2

-2

-2

-1

C

-5

-2

-7

Pt

-3

-5

-7

-6

-3

C-

-17

-5

-22

Th

- 19

-39

-56

- 58

-35

- -

- 122

-39

-218

U

- 16

- 31

-42

-40

-22

- 98

-29

- 140

Pu

- 14

- 28

- 37

- 34

- 19

-88

- 25

- 118

Cu

+2

+4

+5

+4

+2

C

+ 14

+4

+ 14

Ag

+9

+ 18

+23

+20

+ I1

+

+56

+ 15

+68

Au

+4

+8

+11

+10

+5

(C+)

+25

+7

+33

complete collection of the published experimental thermodynamic data on Ni systems. In addition, we present the known binary phase diagrams, making it possible to compare predictions with phase-diagram information in a qualitative way for those systems on which no thermodynamic data are available in the literature, as will be shown in sec. 2.

C

0

0

0

Since the model parameters depend on the electronic configuration, the formation of atomic magnetic moments of varying magnitude might be expected to be a disturbing factor in the prediction of the stability of Ni compounds as well. However, for Cr and Mn [2] and also for Fe [3 ] and Co [ 4 ] it has turned out that the dependence of the model parameters upon the magnetic state is not

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

305

Table N i - l b Calculated values for the heat o f formation, A H for , o f c o m p o u n d s o f five different compositions, the limiting partial heats o f solution, A H "°, and the heat o f mixing for a statistically ordered liquid at the equiatomic composition, A H mix, in k J ( m o l e o f a t o m s ) - I , for binary nickel systems N i - M w h e r e M is a non-transition metal. Available phase-diagram information has been added (¶). A T• ."/ ~for c M

NiM 5

NiM 2

NiM

- -° AH Ni2M

Ni5M



Ni in M

A H m~

A H- - °

NiM

M in Ni

Li

0

+1

+1

+1

0

+

+3

+1

+3

Na

+16

+32

+46

+44

+23

(+)

+100

+32

+140

K

+20

+39

+59

+68

+41

(+)

+123

+45

+235

Rb

+20

+39

+59

+71

+46

+ 123

+47

+259

Cs

+ 20

+ 39

+ 59

+ 74

+ 51

+ 122

+ 48

+ 284

Be

-4

-8

-9

-7

-3

-

-19

-4

-15

Mg

-3

-6

-8

-8

-4

-

-13

-4

-16

Ca

-4

-7

-10

-11

-6

-37

Sr

0

- 1

- 1

Ba

0

0

0

-2

-22

-7

- 1

-

-3

- 1

-6

0

+

+1

0

+1

0

Zn

-10

-19

-23

-20

-10

--

-34

-9

Cd

-3

-6

-8

-7

-4

-

+7

+2

+9

0

+1

+1

+1

+1

--

+28

+8

+40

-9*

-55*

Hg

B

+2

-23

-33

-27

- 14

- -

AI

- 19

-37

-48

-42

-22

- -

Ga

- 14

-28

-37

-34

- 18

In

-4

-9

-12

-12

-7

T1

+ 1

+3

+4

+4

+2

+

+5

+

--

C

+113

+54

+21

+9

Si

+8

- 17

-33

-32

- 18

Ge

+8

-9

-20

-21

-12

Sn

-8

- 16

-22

-23

Pb

+1

+1

+2

+2

N

+203

+ 103

+36

+ 10

P

- 13

-42

-61

-56

-30

As

- 17

-35

-47

-44

-25

- -

Sb

-7

-14

-20

-21

-13

- -

Bi

- 1

-3

-4

-4

~2

-

strong and that in practice the alloying properties of these metals can be described with unique values of the model parameters. Clearly no problems are expected for Ni alloys in this respect. In the phase diagrams presented in figs. 1 and 2 the most recent information has been included either in the phase diagram itself or in the references attached to the diagrams. Where no

...

-36

-82

-22

-97

-53

- 15

-69

+5

+2

+8

+41

+ 13

+67

...

+51"

+50*

-86

-23

-98

- -

-41

- 11

-51

- 13

- -

- 13

-4

-21

+!

+

+40

+13

+73

+4

+

...

+86*

+50*

...

-26*

- 134"

-65

-19

-93

-4

-1

-7

+31

+ 10

+58

complete phase diagram was available, as much partial information as possible has been included, for example the existence of compounds or the solubility at certain temperatures. Temperatures are indicated in units of lO3 °C. Calculated enthalpy values are presented in tables Ni-Ia and Ni-Ib for binary solid compounds of five different compositions and for binary liquid

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

306

nickel-based [1]

[1.2,31 1.5

....

~.-~-~

[ 1,2,4,5,6]

.

A

,.o~ O.

-

I

I

~

i|

1

Sc

Ni

O.

Ti

[I] N

1.5

[I_,7, 8]

Ni

V

oJ

Ni

'T?'o

,131

~c.,, ~-w--~

I

I

Cr

,i

[ 2 . 1 2 ] ~ co i-~ r~.z c~ z>:+,.>,.-

Ni

\

;;

Y

Ni

[1,2.~1

Zr

~

x

Nb

I~,2]~

o~"

o.

Ni

zzz~zz

,~

Ni

3.0-

[ I~_a~'17]

~.o

z ~

2°1-

10 Ni

- ~

•~ r ,

~e-_~~,.~

05 Th

Ni

Ni

Hf

~l

Jr

~

0.51 1 U

Ni

[1,2] ~

I

,.oF=q--r~ I

"T='Lo

Mo

[1'191~

Ni

To

,

l

[;J

w

Ni

~

% = ~

II I d l

I Ni

Pu

Ni

a

Fig. I. Binary phase diagrams of nickel with 3d-, 4d- and 5d-transition metals, noble metals and actinides. Temperatures (103 °C) are plotted vertically, the atomic concentration of Ni horizontally. Numbers between brackets are the references of experimental

307

A.K. Niessen et al. I Enthalpies of formation of Ni alloys

binary ph~e diillr=m,~ [1._9 ]

,=

1.0~"~-~,N,)

[1,10.11,/~]

[1 ]

I



Ni

-Co,Ni }

0.5 Mn

Ni

~,,

[1,2_.1

~°r't:-.

I

Fe

2^J ~-~"~ ~~"~[1]

(Tel 1.0 Tc

Ni

~.oI'~,,I:

1'I-/; ~

-,

"~--q "1

Re

Ni

q

Ru

Ni

1"0t

1Ot

i

i/ Ni

(Cu,Ni)

,.oF Ni

Ag

lAg) + (Ni)

Ni

''"Ni'

175

i

1

!

0.5

Ni

Pd

/

Ir

201 ,t L1 "L2 L * (Nil

[1]

.~,.<,.,,,.~o.il

Rh

2.

Os

[ 1,2,151

1.01" at low temp.

2.ol"-. I /,o,, ', ',,----~,q

1.5i

I

2.0

[1 231

[!, 20, 21,221

0.51 Cu

I

,or ,

Ni

Co

Ni

"]

o.si

Ni

Pt

Ni

------t

(pLN,)/

/(~'~',"~

I Ni

[1'2~'1 . 0 ~ (Au,Ni}

Au

Ni

b cited work; if more numbers are indicated, the dial-am has been reproduced from the underlined reference. (a) nickel and elements with less than five d electrons per atom and Co) nickel and elements with more than four d electrons per atom.

308

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

nickel-based

2o[ [ [2,2__5] _~

[ 1,2_] 2'0f / ' t ' i L 2 " ' " 1.0 / / ?>1200% ~I L +(Ni)

I

o.or

I

[i

Ni

\ Be

[1]

Q,2; 2.0

solubility of Ni in Na at 600"C 0 20 ppm No

1.0 Ni

0.0 N

[1]

Ni

11,2]

solubility of Ni

~

in K at 1055 °C 58 ppm K

Ni

[t.26.27] Z z

1.0

~._u~

10 Ni

0o

Co

Ni

Hm

Zn

[1. 28]

[2]

2° I

z~-

Ji

10

i

no i n f o r m a t i o n

Rb

Ni

Ni

0,0 Sr

i

Ni

Cd

Ni

[1,29]

[1.2]

1-01

/ ~/~---'~ no information Cs

Ni

10Iv,/-- L * INi) rI (Bo)*(Ni) 0.0 ~

Bo

0.5 f ~ . ...~-

Ni

0.0 !

Hg

en

r,~

/'1 !

Ni

II Fig. 2. Binary phase diagrams of nickel with non-transition metals ranged according to increasing valence. Temperatures (10 3 °C) are plotted vertically, the atomic concentration of Ni horizontally. Numbers between brackets are the references of cited experimental

A.E. Niessen et al. / Enthalpies of formation of Ni alloys

309

binary phase diagrams [1.2, 3 0 , 3 1 ,32]

1.01

0s| •

[1.37] 2.0

IC)+ L

1.0

(C)+ (Ni)

[1]

+'~.+_+.,

0.0

B

Ni

C

[1, 331 1.5

Ni

~'~.----,

10

I .j,n~:~ =I

~ununv+ ~ ._,,*,e+,, z

05 Ni

Si

[1,_2.34. 3.5] ~ ~ ~'~./TA

[11

1+f 1.0

1.0

~ .~.~~ ~z z

Ni

[1, 3.~8,3g)

._I 1.bl~

0.5 AI

N

Ni

..T.,r~em Q.z t----

o..,'~+-, ..~,

,, i i

0.5 P

Ni

[1_,40] 1.5

._

i

[1]

oJ

~sl-

<+",,,~.~<-"' -J

1.0

z z~.~:~

.-

.<- " ~

¢.~

1.0 0+0 ~

'

~

Ga

IIH

05

Ni

[!. 3.__6] c ~- -/ ~ c

Ge

Ni

As

[!.~3,~

[I]

" ¢:::'~ c

Ni

1.5 ~;~ z Z z z

1+0

0.0 In

Ni

1.0

1.0~

0.5

0.5

0.0 Sn

[i]

00

Sb

Ni

[i]

[!.4; ,+.2]

+ (Nil

(Tll+INi)

0.0" TI

Ni

ooi

0.0[ Ni

Pb

Ni

Bi

I

a Ni

work; if more numbers are indicated, the diagram has been reproduced from the underlined reference. (a) nickel and elements with less than three p electrons per atom and (b) nickel and elements with more than two p electrons per atom.

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

310

Table Ni-II Comp arison of experimental and calculated values for the heat of formation, A H for, of nickel compounds. Published experimental A,~ for values for the entropy of formation, ~ A.~for exp, have been added. The units for A H f°r and - - e x p are kJ (mole of atoms) - l and J (K mole of atoms) - l , respectively. System

Compound

A ~ -m- for exp

At-/'for Lx~~ calc

Ni-Ti

NiTi 2

- 27 298 K - 29 1202 K 28 298 K

- 40

- 34 298 K 34 298K - 32 (AG) 1300 K - 37 (AG) 1320 K 34 1450-1475 K 33 298 K

- 52

- 35 298 K - 54 1100-1300 K - 44 (AG) 1300 K - 41 (AG) 1320 K 43 1513 K 35 298 K

- 37

- 2 1 (AG) 1320 K

- 17

A.~ for ~ exp

-

NiTi

-

Remarks

1

calorim.

3,4

assessm.

117-19

calorim.

1

calorim.

118 28

emf 1150-1350 K calorim.

-

- 12 1100-1300 K

6 3-5

assessm.

117-19

calorim.

1

e mf

7

e mf

28

emf 1150-1350 K calorim.

-

6 3,4

assessm.

-

Ref.

calorim.

e mf

-

Ni3Ti

Method

117,19

Ni-V

NiV 3

Ni-Cr

Ni20Cr80

+ 8.0 1100-1500 K

- 5

+ 8.1 1100-1500 K

assessm,

boe sol. soln

8

Nis0Cr50

+ 6.4 1550 K

- 10

+ 9.3 1550 K

assessm,

foe sol. soln

1

Ni60Cr40

+ 3.6 1073-1448 K + 3.6 1100-1500 K +5 1123-1273 K

- 9

assessm,

foe sol. soln

11

assessm,

foe sol. soin

8

e mf

foe sol. soln

107

+ 0.6 1523 K +8 1123-1273 K

- 6

calorim,

foe sol. soln

17

emf

foe sol. soln

107

- 14 1050 K 14 1023 K 11 (AG ra) 1050 K

- 12

assessm,

sol. soln

1

emf 950-1150 K emf 950-1348 K

sol. soln

12

sol. soln

98

Ni7sCr25

Ni-Mn

NisoMnso

-

-

emf 1150-1350 K

+ 8.2 1100-1500 K +9 1123-1273 K

+9 1123-1273 K + 3.7 1050 K +4 1023 K

6

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table N M I

(continued)

System

Compound

Ni-Fe

NisoFeso

AH~,

AH~[ c

- 3.9 1200 K -3.7 ~-1200 K -4.6 1223-1373 K -2.4 1273 K

- 2

^.~ _ _ ~for p

+5.0 ~-1200 K

+ 6.3 1273 K

- 1.3

1273 K -5 1473 K -3.2 1523 K - 5.4 1550-1700 K

xs) 1573 K -5 ~-1370 K -3.6 T unknown

- 2.5 ( A G

Ni-Co

Nis0Cos0

+ 0.0 1400 K

+5.1 0

+0.6 1600 K

+6.5 1600 K

+0.9

Method

Remarks

calorim. +

sol. soln

1

assessm. assessm.

sol. soin

15

e mf

sol. s o l n

e mf 1173-1373 K e mf 1023-1423 K yap. press.

sol. soln

13

sol. soln;

2O

see also[21,22] sol. soln

16

calorim.

sol. soln

17

yap. press.

sol. soln

10

equilibr.

sol. soln

9

calorim.

2

assessm.

sol. soln; from A H mix sol. soln

calorim.

sol. soln

vap. press. 1480-1720 K calorim.

sol. soln; see also [ 24 ] sol. soln; from A H mix

~- 1780 K Ni-Y

311

NiY3

- 33 887-1224 K -19 298 K

- 23

- 35 887-1224 K -30 298 K

- 37

-35 887-1224 K -37 298 K

-44

- 31 887-1224 K -39 298 K

- 45

-29 88%1224 K -37 298 K

- 37

- 28 887-1224 K -35 298 K

- 34

Ni4Y

- 25 887-1224 K

- 30

NisY

- 34 298 K

- 26

Ni2Y 3

NiY

Ni2Y

Ni3Y

NiTY2

- 8.6 887-1224 K

emf calorim.

- 6.8 887-1224 K

e mf calorim.

-5.1 887-1224 K

e mf calortm.

- 2.5 887-1224 K

e mf calorim.

- 1.7 887-1224 K

e mf calorim.

- 1.6 887-1224 K

e mf calorim.

- 1.6 887-1224 K

e mf calortm.

Ref.

106

14

1

23 25

100 112-13 100 112-13 100 112-13 100 112-13 100 112-13 100 112-13 100 102-04

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

312 Table Ni-II System

(continued) Compound

A f°r ~ -/-- / exp

AH~[ c

31 298 K -21 887-1224 K

NilTY 2

Ni-Zr

- 16

- 37 298 K - 37 1230 K

- 53

- 49 298 K - 72 1300 K - 52 1405 K

- 72

Nil0Zr7

- 52 298 K

- 73

Ni2Zr

- 70 1300 K

- 68

Ni3Zr

- 67 1300 K

- 55

NiTZr 2

- 46 298 K

- 50

NiZr

Method

Remarks

calorim.

- 13 887-1224 K 19 298 K

NiZr 2

A.K' r°r ~ exp

Ref. 112-13

- !.5 887-1224 K

emf

100

-0.9 887-1224 K

emf

100

calorim.

112-13

calorim.

29

calorim,

+ 1.7 1300 K

see a l s o [ 115 ]

4,27

calorim.

29

emf

30

calorim,

see also [ 115 ]

4,27

calorim.

29

- 0.3 1300 K

emf

30

- 8.4 1300 K

emf

30

calorim.

29

calorim,

- 4 0

see a l s o [ 115 ]

4,27

1670 K NisZr

- 35 298 K - 48 1300 K

- 38 - 6.0 1300 K

calorim.

29

emf

30

calorim,

- 3 2

see a l s o [ 115 ]

4,27

1479 K Ni-Nb

NiNb

- 23 298 K - 35 (AG) 1220 K -42 1250 K

- 45

- 32 298 K 40 (AG) 1220 K -39 1250 K 24 1273 K

- 32

- 1.0 973 K 2.7 1073-1183 K -2.8 1193-1348 K + 8.2 1323 K

- I1

Ni3Nb -

Ni-Mo

NiMo

calorim.

- 5.2 1250 K

emf 1050-1370 K emf

1 32 51 a/o N i

caiorim.

+ 1.7 1250 K + 0.5 1273 K

+ 1.3 1073-1183 K + 1.0 1193-1348 K + 9.0 1323 K

31 1

emf 1050-1370 K emf 1273-1373 K emf 1050-1370 K

32 31,33 34

calorim.

48 a/o N i

35

emf

54 a/o N i

38

emf

54 a/o N i

38

emf 1223-1373 K

37

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table Ni-II System

313

(continued) Compound

A/-/ f°r - - - exp

AH~[ c

A,~ 'f°r ~ exp

+0.2 1473 K +0.8 1573 K - l.l

Method

Remarks

Ref.

calorim.

49 a/o Ni

36

calorim.

48 a/o Ni

35

assessm.

48 a/o Ni

114

298 K Ni3Mo

Ni4Mo

- 2.6 1073-1183 K + 8.0 1323 K

- 8

- 0.6 I073-I133 K + 7.3 1323 K 3.7 298 K

- 7

+ 1.1 1100 K + 3.9 1400 K + 1.9 unknown

- 1

+ 1.2 1073-1183 K + 9.6 1323 K

emf

38

emf 1223-1373 K

37

+ 2.9 1073-1133 K + 9.2 1323 K

emf

38

emf 1223-1373 K assessm.

37

-

Ni-Rh

NisoRhs0

T

+ 8.3 1100 K + 8.4 1400 K

emf 920-1370 K emf 870-1530 K calorim,

assessm,

Ni-Pd

Nis0Pds0

-0.5 1273 K

0

Ni-La

NiLa 3

- 13 298 K

- 19

calorim.

NiLa

- 15 298 K 28 298 K - 25 298 K

- 38

calorim.

Ni t.4La

- 29 298 K

- 40

Ni2La

- 20 298 K 30 298 K -23 1095 K

- 39

- 21 298 K - 28 298 K -26 1080 K

- 33

- 26 298 K -24 1035 K

- 30

- 21 298 K - 21, - 22 298 K - 26, - 27 298 K

- 24

+ 0.0 298

-

Ni7La 2

NisLa

sol. soln

39

sol. soln

41

sol. soln

40

sol. soln

I

42 52 a/o Ni

43

estimate

44

calorim.

42

e mf 805-950 K

44

caiorim.

45

e mf 947-1068 K calorim,

44

K

+ 0.3 298 K

- 0.8 298 K

-

Ni3La

+ 7.6 1273 K

114

- 0.6 298 K

+ 0.0 298 K

da t a for La N i 5 used from [ 43 ]

109

calorim.

43

emf 1124-1193 K calorim,

44

e mf 1023-1134 K calorim,

da t a for La N i 5 used from [ 43 ]

109 44

da t a for L a N i 5 used from [ 43 ]

109

calorim.

43

calorim.

46,93

calorim.

103-05

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

314 Table Ni-II System

(continued) Compound

A / / f °e xrp

~-"

AH~c

- 28 298 K - 24 298 K - 26 298 K - 27 298 K Ni-Hf

Ni-Ta

+ 0.7 298 K

Method

Remarks

Ref.

calorim.

19

emf 1104-1194 K calorim.

44

+ 0.6 298 K

calorim.

42 AS from C_ f r o m [ 95 ] e

26

NiHf 2

- 47 298 K

- 46

0.0 298 K

assessm.

116

NiHf

- 65 298 K

- 63

0.0 298 K

assessm.

116

Nil0Hf7

- 63 298 K

- 63

0.0 298 K

assessm.

116

NisHf2

- 57 298 K

- 54

0.0 298 K

assessm.

116

N i T H f2

- 52 298 K

-44

0.0 298 K

assessm.

116

NisHf

-42 298 K

- 33

0.0 298 K

assessm.

116

Ni2Ta

- 39 1173-1323 K 20 1240-1320 K - 36 1700 K

- 39

+ 1.0 1173-1323 K + 9.9 1240-1320 K

- 29 i 173-1323 K -20 1220-1320 K

- 31

-

Ni3Ta

Ni-W

A'K' f°r

emf emf

47 see also [ 85 ]

48

calorim.

97

+ 3. i 1173-1323 K +6.4 1220-1320 K

emf

47

emf

see also [ 85 ]

48

NiW

- 1.0 T unknown

- 5

+ 1.2 T unknown

assessm.

99

Ni4W

- 6.2 298 K 2.5 T unknown

- 2

+ 0.3 298 K + 1.1 T unknown

emf 1073-1273 K assessm.

49

-

99

Ni-Pt

Nis0Pt5o

- 9.3 298 K

- 7

+ 5.4 1625 K

assessm,

Ni-Th

Ni3Th 7

- 28 973 K

- 35

- 1.4 973 K

emf 841-1141 K

50

NiTh

- 45 973 K

- 56

- 2.4 973 K

emf 841-1141 K

50

Ni2Th

- 45 973 K

- 58

- 3.2 973 K

emf 841-1141 K

50

NisTh

- 43 973 K

- 35

- 7.1 973 K

emf 841-1141 K

50

NilTTh2

- 25 973 K

- 22

- 1.8 973 K

emf 841-1141 K

50

NiU 6

-21 1000 K

- 14

- 10 1000 K

emf 1073-1173 K

51

NiTU 5

- 55 1000 K

- 43

- 23 1000 K

emf 1073-1173 K

51

Ni-U

sol. soln

1

A.K. Niessen et aL / Enthalpies of formation of Ni alloys Table Ni-II

System

(continued)

Compound

AHfor - - - exp

Ni2U

- 54 1000 K - 32 1023 K

- 40

Ni77U23 6-phase

- 54 1000 K

- 30

NiTaU22 8-phase

- 53 1000 K

NisU

AH~[ c

51

- 29

- 19 1000 K

emf 1073-1173 K

51

-46 1000 K -44 1000 K - 30 1023 K

-22

- 16 1000 K - 16 1000 K

emf 1073-1173 K emf 1073-1173 K

-12

52

82 a/o Ni

+ 1.8 973 K + 2.0 1273 K + 2.4 1173-1373 K +2.3 1350 K

+5

+ 7.6 1150 K +8 293 K

+ 11

- 2 9 (AG) 1100 K - 26 298 K

-5

- 4 1 (AG)

-9

-1.2 951-1097 K + 4.7 973 K +4.8 1273 K

+ 8.6 1150 K

51 51

calorim.

NisoCuso

NiB¢

Ref.

emf 1073-1173 K

Ni-Cu

Ni5B¢21

Remarks

- 19 1000 K

-8.8 951-1097 K

Ni-B¢

- 19 1000 K

Method

51

NitTPU 2

NisoAUs0

A.~ for ~ exp

emf 1073-1173 K calorim.

Ni-Pu

Ni-Au

315

52

emf

ref. st. < P u >

53

assessm,

sol. soln; see also [ 89 ] sol. soln

1

emf 1173-1373 K emf

37

sol. soln

106

yap. press,

sol. soln

108

assessm,

sol. soln

1

caiorim,

sol. soln

54

assessm.

20 a/o Ni

1

calorim.

55

assessm.

1

calorim.

55

calorim.

1

1100 K

- 42 298 K Ni-Mg

NiMg 2

Ni2M8

Ni-Ca

- 13 298 K - 13 923-1033 K

- 6

- 18 298 K - 21 923-1033 K

- 8

+ 0.4 923-1033 K

vap. press,

ref. st. < Mg >

calorim.

56 1

- 4.2 923-1033 K

yap.press,

ref. st. < Mg >

56

Ni2Ca

-19 900-1150 K

-11

-9.7 900-1150 K

emf

ref. st. < C a >

94

Ni3Ca

- 16 1050-1350 K

-9

-7.1 1050-1350 K

emf

ref. st. < C a >

94

NiTCa 2

- 14 1050-1350 K

--8

--6.0 1050-1350 K

emf

ref. st. < C a >

94

NisCa

- 10 1050-1350 K

-6

-3.7 1050-1350 K

emf

ref. st. < C a >

94

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

316 Table Ni-II

(continued)

System

Compound

A ~ -H- for

Ni-Zn

NiZn 8

- 6.4 355 K 12 (AG) 623 K

- 7

- 15 355 K 18 (AG) 623 K - 18 753 K

- 11

e x p

-

NisZn21 v-phase -

-

2

AH~c

-

NiZn 3 yl-phase -

~

e x p

-3.5 973 K

- 14

- 19 355 K 22 (AG) 623 K - 22 753 K 27 773 K 20 905 K - 27 973 K

- 23

- 16 1100 K (AG) 1100 K - 18 1100 K 18 (AG) 1113 K

- 23

-2.5 753 K

-

-

-

NiZn //-phase -

-

1

9

ref. st. < Z n >

emf 973-1153 K assessm.

59 58

20 a/o Ni; ref. st. < Z n > ref. st. < Z n >

59

f r o m [ 58 ]; ref. st. < Z n > ref. st. < Z n >

90

25 a/o N i

57

61 1

vap. press, 993-1113 K

ref. st. {Zn}

60

calorim.

26 a/o N i

58

vap. press, 623-873 K emf 693-873 K vap. press,

ref. st. < Z n >

59

23 a/o Ni; ref. st. < Z n > f r o m [ 58 ]; 26 a/o Ni; ref. st. < Z n >

57

calorim.

- 2.8 753 K

-

vap. press. 623-873 K emf 693-873 K yap. press,

Ref.

58

calorim.

1

- 16 355 K 20 (AG) 623 K 19 753 K 22 773 K

Remarks

calorim.

-3.4 753 K

-

NiZn f/t-phase

Method

vap. press, 623-873 K

773 K -18 973 K 15 (AG) I100K 15 (AG) 1113 K

-

A.~ for

yap. press, 623-873 K emf 693-873 K vap. press,

90

58 ref. st. < Z n >

59

ref. st. < Z n >

57

f r o m [ 58 ]; ref. st. < Z n > ref. st. < Z n >

90

+ 0.2 905 K - 6.9 973 K

vap. press,

62

emf 973-1153 K

ref. st. < Z n >

61

+ 2.1 1100 K

vap. press, 1054-1150 K assessm,

ref. st. < Z n >

62

ref. st. < Z n >

1

calorim,

ref. st. < Z n >

63

vap. press, 971-1113 K

ref. st. {Zn}

60

Ni69Zn31

- 6.2 (AG xs) 1067 K

- 19

vap. press,

sol. soln; ref. st. < Z n >

Ni75Zn25

- 8.5 355 K 14 773 K

- 15

calorim,

sol. soln

58

yap. press,

f r o m [ 58 ]; sol. soln; ref. st. < Z n > ref. st. < Z n >

90

-

-

- 8.5 II00K 12 (AG) 1200 K

calorim, - 15

vap. press,

sol. soln; ref. st. {Zn}

110

63 91

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table N i - I I

(continued)

System

Compound

A for - - -I-4 exp

AH~[ c

Ni-Hg

NiHg 4

- 9.1 298 K -8.7

+ 1

443-505 K

N i - B

A.g' for ~ exp

- 15 298 K - 13

Method

Remarks

Ref.

emf 293-503 K y a p . press,

ref. st. < H g >

64

ref. st. < H g >

65

443-505 K

NiHg 3

- 7.2 298 K

+ 1

- 11 298 K

emf 293-503 K

ref. st. < H g >

64

NiHg 2

-7.2 298 K

+ 1

- 13 298 K

emf 293-503 K

ref. st. < H g >

64

NiB

- 50 298 K

- 33

calorim.

A H selected in [ 117]; see a l s o [ 119 ]

66

- 20 1385 K 23 298 K Ni4B 3

Ni2B

Ni3B

Ni-AI

317

NiAI 3

- 45 298 K

NiAI

Ni3AI

- 32

67

assessm.

88

26 298 K

- 4.2

assessm,

A H selected in [ 117]; see a l s o [ 119 ] monoclinic

- 26 298 K

- 3.9

assessm,

orthorhombic

- 23 1385 K 21 298 K

- 27

- 22 298 K

- 21

- 38 298 K 38 298 K - 56 980 K - 33 (AG)

- 28

1127

Ni2A13

- 3.7

calorim.

calorim.

66

88

88

calorim.

67

+ 0.2

assessm.

88

- 1.9

assessm.

88

assessm.

I

assessm.

117-19

+ 8.2 980 K

emf 933-1030 K emf

29 % Ni; ref. st. < A I >

69 68

K

- 57 298 K 57 298 K -70 298 K

- 43

- 59 298 K 59 298 K -67 980 K - 63 298 K -67 II00K - 71 1023 K

- 48

-41 298 K

-33

+4.3

+ 1.4 980 K

assessm.

1

assessm.

117-19

emf

39 % N i

69

assessm.

1

assessm.

117-19

emf 933-1030 K not given

51 a/o Ni; ref. st. < AI >

calorim,

ref. st. < A I >

70

calorim. assessm.

69

71,72 52

73 a/o N i

1

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

318 Table Ni-II System

(continued) Compound

A t- 4" f eox p r

AH~r~[c

A,q efor xp ~

38 298 K - 3 5

+ 0.5 980 K

Ref. 117-19

assessm.

77 a/o Ni

emf 633-1030 K

ref. st. < AI >

1 69

Ni3Ga7

- 34 300 K

- 25

calorim.

39,73

Ni2Ga 3

- 45 300 K

- 33

calorim.

39,73

NiGa

- 38 300 K 47 298 K - 43 1023 K - 43 1223 K

- 37

calorim.

39,73

calorim.

74

- 36 300 K 45 298 K

- 37

- 23 300 K 28 298 K - 33 1223 K

- 27

Ni3In 7

-21 673 K

Ni21n 3

Ni3Ga2

Ni3Ga

Ni-In

Remarks

assessm.

298 K - 47 980 K Ni-Ga

Method

Niln

Nil3In 9

Ni2In

e-phase Ni3In

- 2.9 1223 K

caiorim,

ref. st. < G a >

92

emf 1073-1273 K

ref. st. < G a >

75

calorim.

39,73

calorim.

74

calorim.

39,73

calorim.

74

- 5.2 1223 K

emf 1073-1273 K

ref. st. < G a >

75

-8

- 10 673 K

emf 633-943 K

ref. st. < I n >

76

-25 673 K - 23 850 K - 26 1060 K

- 10

- 10 673 K - 7.6 850 K

emf 633-943 K emf 633-943 K calorim,

ref. st. < I n >

76

ref. st. < I n >

76

ref. st. < I n >

77

-25 673 K - 22 850 K - 25 1060 K

- 12

emf 633-943 K emf 633-943 K calorirn,

ref. st. < I n >

76

ref. st. < In >

76

ref. st. < In >

77

- 17 850 K - 20 1060 K

- 13

emf 633-943 K calorim,

ref. st. < In >

76

ref. st. < In >

77

- 17 760 K 12 800 K 18 1060 K

- 12

ref. st. < I n >

78

see also [ 79 ]

1

calorim,

h i g h - T phase; ref. st. < I n >

77

- 13 673 K - 14 760 K

- 10

emf 633-943 K emf 663-873 K

ref. st. < I n >

76

ref. st. < I n >

78

- 10 673 K - 6.7 850 K

- 2.7 850 K

-4.9 760 K +0.9 800 K

- 12 - 3.8 673 K -4.2 760 K

emf 663-873 K assessm,

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table Ni-II System

(continued) Compound

f°r -A- f'/" - exp

AH~c

- 8.4 800 K - 13 850 K - 16 1060K Ni-C

Ni3C

A.q' f°r ~ exp + 2.2 800 K - 3.6 850 K

+ 8.5 298-1000 K

+7

+ 1.8 298-1000 K

+ 9.4 298 K

Ni-Si

Remarks

assessm,

see also [ 79 ]

1

emf 633-943 K calorim,

ref. st. < In >

76

ref. st. < I n >

77

assessm.

Ref.

87 117

NiSi 2

-31 298 K

-17

-0.7 298 K

a$~sm.

see also [ 2 ]; assessed AH selected in [ 117]; see also [ 119]

80

NiSi

-45 298 K

-33

-2.1 298 K

a$~sm.

see also [ 2 ]; assessed AH selected in [ 117]; see also [ 119 ]

80

calorim.

101

- 46 298 K

- 35

a&sessm.

see also [ 2,119 ]

80

- 48 298 K < - 36 (AG) 1273-2073 K

- 32

asse$sm.

see also [ 119]

80

Ni5Si 2

- 42 298 K

Ni3Si

Ni3Si 2 Ni2Si

equifibr. + phase d i a g r .

96

- 29

as~sln.

80

- 36 298 K

- 26

a$~sm.

31 (AG) 1273-2073 K

- 18

equifibr. + phase diagr.

NiGe

- 32 330 K

- 20

calorim.

Ni2G¢ 8"-phase

- 27 1060 K -29 1060 K -30 330 K -37 298 K -30 1060 K

- 21

calorim.

-21

calorim.

-21

calorim.

- 25 330 K -31 1060 K

- 17

- 25 1060 K -34 1023 K -34 298 K

-

Ni5Si

e'-phase e-phase

Ni3Ge

Ni-Sn

Method

assessm.

-42 298 K

Ni-Ge

319

Ni3Sn4

< -

calorim. calortm.

20

77 a/o Ni

80 96

39,73 high-T phase; 58 a/o Ni high-T phase; 61 a/o Ni high-T phase; 64 a/o Ni AH selected in[ll7] high-T phase; 64 a/o Ni

81 81 39,73 82 81

calonm.

76 a/o Ni

39,73

calorim.

76 a/o Ni

81

calorim.

ref. st. < S n >

81

calorim. ~$m.

52 117-19

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

320 Table Ni-II System

(continued) Compound

f°r -A- /-4 ,xp

Ni3Sn 2

-31 293K -39 298K -32 1060K -39 1023K

- 24

-23 293K -26 1060K -26 298K

-19

Ni3Sn

AH~[ c

A.~' f°r ~ exp

Method

Remarks

1

caionm. caiorim. calonm.

Ref.

A H selected in [ 117,119] ref. st. < Sn >

82 81

calorlm.

52

caionm.

1

caiorim.

ref. st. < Sn >

81 117-19

assessm.

Ni3N

+0.2 292K

+6

calorim,

Ni-P

NiP 3

-41 298K 39 298K

- 28

assessm.

117

assessm.

119

-48 298K -43 298K

- 42

assessm.

117

assessm.

119

-57 298K 51 298K

- 62

assessm.

117

assessm.

119

62 298K 55 298K

- 56

assessm.

117

assessm.

119

-62 298K -56 298K

- 50

assessm.

117

assessm.

119

55 298K -67 298K

- 45

assessm.

117

assessm.

119

36 298K

- 47

-

NiP 2

Ni6P 5

-

Ni2P

-

-

NisP 2

Ni3P

Ni-As

NiAs

-

-

A H selected in [ 117 ]; see also [ i 19 ]

calorim.

34 298K -

Ni-Sb

calorim.

ref. st. (NE)

83

Ni-N

84

NiSb 2

-26 298K

- 14

calorim.

32 a/o N i

NiSb

-42 298K

- 20

calorim.

A H selected in [ 117]; see also [ 119 ]

- 3 2

298K -33 1060K

calorim. calorim,

82

1

82

1

see also [ 111 ]

86

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table Ni-II System

Ni-Bi

321

(continued) Compound

AH~,

Ni3Sb

- 18 298 K - 18 1060K

- 18

- 3.9 298 K

- 4

NiBi

AH~[ c

^.~ exp for - - - -

Method

Remarks

calorim.

77 a/o Ni

calorim.

alloys. For the liquid alloys the two limiting enthalpies of solution are shown together with the heat of mixing of a regular mixture at equiatomic concentration. The reference states are those of the pure solid metals for the solid compounds while for the liquid alloys reference is made to the pure liquid metals. In these tables the information on each of the phase diagrams shown in figs. 1 and 2 is summarized characteristically by one of the following symbols: - - three or more compounds stable at low temperatures (indicating that AH f°r is large and negative); one or two compounds stable at low temperatures (indicating that AH f°r is negative); c - continous solid solubility at high temperatures and one or more ordered alloys at low temperatures (indicating that AH ~or is negative but closer to zero than in the foregoing cases); c continous solubility at all temperatures or a large solid solubility at low temperatures for at least one of the constituents if the crystal structure is different for the two constituent metals (indicating that AH f°r is approximately zero); c+ continous solubility at high temperatures and a miscibility gap at low temperatures (indicating that AH f°r is small, but positive); + no compounds and both solubilities smaller than 10 "/o (indicating that AH f°~ is posifive); ? the available information is contradictory. In a few cases it has been impossible to distinguish clearly one of these characteristics; the most probable one is then placed between brackets. This

calorim.

Ref. 1 86

AH selected in [ 117]; see also [ 119 ]

82

applies particularly to the simple quotations: >, which have been denoted by (+) since these quotations may indicate that no compounds exist in such binary systems. Although these symbols correlate with the sign of the enthalpy of formation, a numerical value of this enthalpy cannot be assigned to them.

2.

Nickel alloys

Table Ni-Ia and table Ni-Ib make it possible to compare in a qualitative way the predicted values for the enthalpy effects in solid and liquid alloys Table 1 Qualitative comparison o f AH ~[c at equiatomic composition in kJ (mole o f atoms) - l with phase-diagram information System

AH ~ c

Phase-diagram information

Ni-Sc Ni-Cd Ni-Ir Ni-Sr Ni-Ba Ni-Tc Ni-Ru Ni-Li Ni-Os Ni-Pb Ni-Re Ni-TI Ni-Ag Ni-Na Ni-K Ni-Rb Ni-Cs

- 57 - 8 - 2 - 1 0 + 1 +1 + 1 +2 +2 +3 +4 + 18 +46 + 59 + 59 + 59

five compounds two compounds solid solubility one compound no compounds; liquid immiscibility solid solubility solid solubility o f Ni and Ru no compounds; liquid immiscibility solid solubility no compounds; liquid immiscibility solid solubility no compounds; liquid immiscibility no compounds, liquid immiscibility very slight solubility in {Na} very slight solubility in {K} no information no information

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

322

Table Ni-III Comparison o f experimental and calculated values for the enthalpy of alloying o f liquid nickel alloys: the heats of solution AH°{Ni}, AHO{M} and the heat o f mixing A H e M ~. The reference states are those o f {Ni} and {M}; the heat o f fusion, AH fuse, used in a required conversion o f the reference state is g~ven. The unit o f all enthalpy values shown is kJ (mole o f atoms) - t . X

A/~°{Ni}

Sc

- 130

AHeM } - 39

AH°{M}

Method

- 180 147

prediction calorim. (1873 K)

-

Ti

- 126

-35

- 154 -207 183 - 184 ( - 190) - 188 -

( - 105) - 113

-44 -38 -38

- 1 4 8

V

Cr

-69

- 18

- 27

- 7 -4.3

- 33 (-31) (-36)

-

32

- 35 -36 -64 -6

Fe

(-18) 10 -

(-8.6) (-6.3)

- 8 - 11 -2.6 - 6.0

-

10

-

23

- 18 --2 -4.2 -2.1 -7.5 -4.2 +3.9 -5.8 -4.2 -5.2

assessm. (1823-1973 K)

- 134,- 180

assessm. (1873 K)

-75 - 107 -70,-95 (-73)

lm~lletioa calorim. (1873 K) assessm. 0873 K) assessm. (1873 K)

- 27 - 14 -37 (-9.2) 14 +0.2 (-2.3) ( - 15) - 7 . 9 , - 11

prediction calorim. (1873 K) calorim. (1950 K) yap. press. (1873 K) yap. press. (1873 K) vap. press. (1873 K) emf (1873 K) assessm. (1823-1873 K) assessm. (1873 K)

-

Mn

~edietion calorim. (1786-1803 K) calorim. (1873 K) calorim. (2000 K) yap. press. (1748-1973 K) assessm. (1100-2000 K)

- 33 (-49) (-23) <0

-

49

- 53 -47 -77 0 -6 (-21) (-41) -34 (-20) (-21) (-21)

prediction calorim. (1773 K) yap. press. (1310-1900 K) emf ( 1573 K)

emf (1683 K) equilibr. ( 1743-1893 K) equilibr. 0843 K) equilibr. (1893 K) assessm. (1200-1800 K) assessm. (1873 K) prediction calorim. (1773 K) calorim. (1803 K) calorim. (1813-1853 K) calorim. (1839 K) calorim. (1873 K) calorim. (1873 K) calorim. (1873 K) calorim. (1873 K)

Remarks

Ref.

168 A H ~ se : 15 A H ~ : 15 AH mix at 55 a/o Ni values at 1873 K A H ~ : 17.6; A H ~ : 16.2 AGo xs at 1873 K; AH~f~ : 15

189 3 4 5 178-79 184 6

AH(/se : 21 A~-o xs A H ~ r : 17 A H ~ r : 17 A~o xs AGo xs; AH~er : 17 A~-O xs A~o xs at 1873 K see also [ 12,176]

values at 1750 K AG xs; value at 50 % N i derived from AG ~fvln} AG xs A~'o xs A~-o,~

46 a/o Ni, 5 a/o C

3 6 184 3 8 7 10 131 11 184 6 9 142 13

133 132 132 132 156 6,184 136 30 14 16 15 17 18 136

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table Ni-III

X

(continued)

A/~°{Ni} +9.1

-6.9 - 10 (-76) ( - 10) -30

-6.5 -1.1 -6.5 -5.4

-4 -5.6

( - 30) - 18 ( - 10)

AH ~ v l }

AH°{M}

-6.4

-5 -3.0 -4.6 -33 -4.4 - 10 -2.8

-16 -32 (-140) (-23) -45 - 14 -14 - 11 -24 -24

-2.2 -2 -2.7 -9.5 -5.6 -4.9

-46 (-20) - 16

7.5

- 2.8

-6.5, - 8.8 (-9.5) -6.5 -6.5

-5.1 -2.7

16, - 2 2 (-27) -14

- !3

- 5.0

- 25

- 10

- 5.0

-

-

Co

- 16 -

0

0

-1

0

( + 1.2)

+ 0.4

25 0 -I

( + 1.2)

+0.3 ( + 1.3)

+0.4

-~0 +2.4 - 12 (+8.4) +3.3

"0 +0.6 -4.6 -0.4

(+

1.7)

~-0 +2.4 - 13 (-0)

+0.8

+3.3

-12 -9.9 Y Zr

Method

Remarks

yap. press. (1630-1870 K)

values at 1833 K; AG xs; value at 5__0a/o Ni derived from AG ~qi} value at 1873 K AG xs at 1873 K values at 1873 K

yap. yap. yap. yap. yap. yap. yap. yap. yap. yap. yap. vap. yap. yap. X-ray

press. (1750-1900 K) press. (1750-1900 K) press. (1773-1923 K) press. (1783-1873 K) press. (1800-1950. K) press. (1820-1950 K) press. (1825-1895 K) press. (1825-1930 K) press. (1873 K) press. (1873 K) press. (1873 K) press. (1873 K) press. (2174-2500 K) press. (2178-2558 K) (1833

assessm. (1873 assessm. (1873 assessm. (1873 assessm. (1873 assessm.

K) K) K) K)

calorhn. (1780 K) calorim. (1813 K) yap. press. (1480-1875 K) yap. press. (1773-1873 K) yap. press. (1873 K) yap. press. (1873 K) yap. press. (2174-2500 K) assessm. (1600-1900 K) assessm. (1873 K) assessm. (1873 K)

- 162

la~iaioa calorim. (1923 K)

- 165

-49

-237 - 202 -166

calorim. (1873 K) assessm. (1823-1973 K)

136

- 134

AG xs values at 2326 K

AG-°'s at 1873 K AG xs; see also [ 27,31,32 ] see also [ 163 ]

Ago xs

165

23 23 25 28 174 22 26 29 10 21 24 164 20 19 36 184 I 6 12 33 34 35 135 134

la~etim

(-48)

-

AG xs

assessm.

-11

- 30

values at 1873 K values at 1873 K AG xs at 1873 K value at 1873 K

assessm.

- 31

- 107

Ref.

K)

assessm. (1783-1973 K) assessm. (1873 K)

-97 ( - 17)

- 162,-220 Nb

323

values at 1800 K ; see also [40]

AGXS AH- / ~~ : 17.6; M 16.2

A~OXS

170 21 164 41 177-79 184 188

42 6 H f ~~ : 16.9 A~'o xs at 1873 K; AHf~ e : 16.9

assessm. (1873 K)

p~llceee calorim. (1873 K)

38 37 39

AH~:

26

3 184

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

324 Table Ni-III X

(continued) AH°{Ni} -

Mo

- 27

Pd

La

Hf

54

W

Pt

U

-26

AH°{M}

Method

Remarks

- 155

assessm. (1400-2800 K)

AH~ AH~

- 7

- 18

-4.4

0 +4.9 >0 (+4) +4.7 +5.0

0 +2.3 >0 +2.0 + 1.2 +2.3

- 32 -39

prediction solub. (1737-1973 K)

- 18

assessm. (1500-2800 K)

0 +5.3 >0 (+5) + 12 +5.0 + 8 . 1 , + 11

: 17.6; 22.9

178-80

A~-o xs at 1873 K; A H ~ o : 24.3 A H [ ~ : 17.6; AHk~oo 24.3

187 178-80

prediction calorim. (1873 K) vap. press. (1400-1873 K) e m f (1833-1973 K) assessm. (1873 K) assessm. (1873 K) asseasm. (1873 K)

see also [ i 84 ]

45 6

47

43 46

AG xs

44 1

-27 - 28

-146 - 172

prediction calorim. (1376 K)

AH~:

- 145

-42

- 58

- 204 -214 -216 - 293

wmlietion calorim. (1873 K) assessm. (1873 K) assessm.

A H ~ : 24 A H ~ : 26 AG xs

3 6 i 43

-29

-

133 -150 - 149

lmNlietion calorim. (1873 K) assessm. (1873 K)

A H ~ a : 32 A H ~ a : 31

3 6

-

105

-11

-3

-14 - 62

l~rt~lietion equilibr. 0873-1973 K) assessm. (1600-3700 K)

+40

+ 1.0

- 32

+ 16

-2.4

(+38) - 35

- 17 + 5.6

- 5 + 1.4 - 14

- 98

- 29

- 22 + 5.6

-

140

-44 Cu

Ref.

-81 - 54

- 167 Ta

AHeM }

+ 14 -2.5 + 5.4 + 11

+4

( + 1.6) ( + 15) + 17 (+5)

+ 2.8 -i.6 +4.3 +4.3 +2.3

+ 12

+ 3.0

- 3.5

- 2.9

+ 14

+ 11 + 17 + 17 (+8) + 12

assessm. (1873 K) assessm. (3000 K)

15.1

A~-o xs at 1873 K; A H ~ : 35 A H ~ : 17.6; A/-/~ 30.5 A ~ - o xs

AGXS; A H ( ~ :

178-80 184

46

prediction vap. press. (1733-2223 K) yap. press. (1877-1893 K)

values at 2073 K AG xs at 1877 K

prediction calorim. (1423 K)

AH~iSc~ : 17

prediefloa calorim. (1373 K) calorim. (1385 K) calorim. (1473 K) calorim. (1580 K) calorim. (1728 K) calorim. (1733-1763 K) calorim. (1748 K) calorim. (1753 K) yap. press. (1800-1873 K) ¢mf (1373-1673 K)

48

A H { ~ : 16.9 A H ~ : 15.1 A H ~ , ~ : 17.6

AG xs AG xs at 1673 K; A H { , ~ : 17.5

176

49 137

50

64 54,144 52,53 123 15 14 37 51 56 60

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table Ni-III X

(continued) A/7°{Ni}

AH~M}

AH°IM}

( - 67)

Ag

+0.9 +9.8 + 9.8

+ 1.4

( + 13) + 9.9

+3.5 + 2.9

+ 56 +75 + 100

+ 3.0

+ 15

+ 10 + 12 + 12 + 12, + 16 ( + 15) + 13 + 68

>0 Au

K Be

emf (1393-1523 K)

value at 1523 K; AH~e~ : 17

assessm. assessm. assessm. assessm. assessm. assessm. assessm.

(1200-1800 K) (1473 K) (1823 K) (1823 K) (1873 K)

la'ediefion solub. (1268-1638 K) solub. phase diagr,

+ 33

( + 14)

+2.9

(+8)

vap. press. (1600-1820 K)

(+2.1) ( + 12) ( + 14) + 15 ( - 7.1) (+8.0)

+0.8 + 3.6 +2.8 + 2.3 - 3.0 +2.2

(+3.8) ( + 10) ( + 14)

+3 +47 +40 + 100 +71 + 16

+1

+3

+ 100 - 11 -8.0 + 18 +6.1 +3.4 +0 + 13

+32

+ 123 +42

+ 45

-19

-4

+ 140

+ 235 -15

-74 Mg

Remarks

+7 +2.2 (+3.5) +2.2

>0 Na

Method

+ 25 (+8.0) + 12 ( + 18)

+7.0 Li

325

-13 -56

-4

-16

pcedietioa calorim. (1369 K) calorim. (1378 K) calorim. (1383 K)

Ref.

see also [ 32,58,59 ] AG xs; see also [ 32,57 ] A~o xs

AH~t~e~ : 17.6 liquid immiscibility

141 156 61 1 184 6 55 166 62 63 2

yap. press. (1600-1820 K) yap. press. (1600-1920 K) yap. press. (1623 K) emf 0400-1500 K) equilibr. (1523-1608 K) assessm. (1369 K) assessm. 0733 K)

AH~e~ : 17.5 AH~'et : 15.1 AH mix at 42 a/o Ni; A H ~ : 16.9 values at 1732 K; see also [ 68 ] AG xs at 1732 K values at 1820 K AG xs values at 1450 K AG xs at 1608 K AH~]~e~: 17.5 AG °xs

145 65 67 70 71 l 184

la~lletion solub. (923-1153 solub. (953-1153 solub. (973-1223 solub. (813-1098 solub. (873-1473 phase diagr,

AH~e~ : 17.5 AH{]~e~ : 17.5 AH~e~ : 17.5 AH~e~ : 17.5 AH~e~ : 17.5 liquid immiscibility

73 73 73 73 155 147,155

K) K) K) K) K)

la~lietltea solub. (473-873 K) solub. (505-783 K) solub. (719-873 K) solub. (719-873 K) solub. (873-1273 K) solub. (973-1187 K) solub.

AH~e~ : AH{~e~ : AH~e~ : AH~e~ : AH~: AH~e~ : AH~e~ :

lwedktiea solub. (933-1343 K)

AH~

wedktioa equilibr. (1623 K) ln'edlktlea calorim. (981 K, II20 K)

72 138 64 69

17.5 17.6 17.5 17.5 17.5 17.5 17.5

73 146 74 73 158 73,159 161-62

: 17.5

73

AG°~; AH~e~ : 17.6

148 77,140

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

326 Table Ni-III X

(continued) AH°{Ni}

AH~M}

AH°{M}

-42 (-38)

-14 ( - 10)

- 22 - 17

- 7

- 37 - 13

- 13

-0.9

+ 1 + 16

Ba

0

-8.0 ( - 7.4) - 7,8, - 11 + 1

>0 Zn

- 9 <0

- 36 -60...-52 (-26)

+7 <0

+2

+9

+ 28

+ 8

-

Cd

Hg

34

+ 40

+39 - 9

- 55

-25 - 12

- 101 (-73)

- 82 157 - 157 - 155 - 157 - 160 - 154 -166

- 22

- 97

-

-146

( - 138)

-49

- 136

- 50 -25

-22 - 151 -156

vap. press. (923-1023 K)

A~-o xs at AH~ : values at AH~e~ : A~-o xs at

assessm. (923-1123 K ) assessm. (1000 K ) lm~lletloa calorim. (1120 K) yap. press. (1737-1766 K) e m f (1050-1350 K)

assessm. (1750 K) assessm. (I 750 K) assessm. (1873 K)

(-5.4) ( - 32)

- 148 - 162

(-22) ( - 109)

Ref. 1000 K; 17.5 1373 K; 17.5 1023 K

A~-o xs

1,75 76 184 1

A~'o xs at 1753 K AG xs at 1200 K and at 45 a/o Ni; AH~[~¢~ : 17.5; A H ~ aa : 8.5 AG xs AG-* xs

77,140 66 157

1 184 6

predietion solub. (1073-1473 K) phase diagr,

AH~e~ : 17.5 liquid immiscibility

lm~dletlon yap. press. (ll00-1300 K) yap. press. 0 7 4 8 K)

AG xs AG"°xs

79 78

prediction vap. press. (823 K)

A~-o xs

173

155 i 47,155

prediction

solub. (373-483 K) solub. (667-1023 K)

+ 5

Al

Remarks

e m f (973-1423 K)

-42 Ca

Method

AH[,~¢~ : 17 AH~: 17

80 81

prediction

calorim. (1838 K) yap. press. (1400-1750 K) assessm. (1873 K) prediction calorim. (948 K) caiorim. (952 K) calorim. (1000 K) calorim. (1023 K) calorim. 0 0 3 0 K) calorim. (1100 K) calorim. (1158 K) calorim. (1173 K) calorim. (1773 K) calorim. (1873 K) calorim. (1923 K) yap. press. (1750-2100 K) e m f (1100 K) equilibr. 0 8 7 3 K) assessm. (1173 K)

A H mix at 1600 K AG-°xs

AH~ AH~ AH~ AH~e~ AH~ AH~ AH[,~ AH~:

: : : : : : :

17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

AG xs at 54 a/o Ni; value at 2000K AG xs AH~e~ : 17.5

82 191 184

86,149 139 88 85 190 84,87 167 150 89 3,90 83 91 92 93 160

A.K. Niessen et al. / Enthalpies of formation of Ni alloys Table Ni-III X

(continued) AH°{Ni}

AH~}

A/-~°{M} -

( - 70)

- 15

129,- 174 ( - 30) 133 -

In

+5 35 33 (-27) (-15)

+2

-

TI

+41 - 86 ( - 112)

( - 113) ( - 150) - 136 ( - 112) (-80) (-77)

-4.5 >0

(-15)

+!3 >0

+67

- 23 - 54 -56

- 98 ( - 188)

-54 -52

(-188)

-67 -54 -26 -36

(-200) (-148) (-142) 188 -

145

- 13 -49

129

-55

(-55)

-28

- 41 - 78 (-79) (-65) (-69) (-75) - 37

- 11

-

-

-

Ge

Sn

Method

Remarks

Ref.

assessm. (1873 K) assessm. (1873 K) assessm. (1873 K)

A~o xs

6 175 184

calorim. (1090 K) calorim. (1096 K) calorim. (1096 K) yap. press. (1248 K) assessm,

A H ~ : 17.5 AH~e~ : 17.5 AH~e~ : 12.6 AG ~ liquid immigcibility

186 94 95 96 151

phase diagr,

liquid immiscibility

2

+8

-

Si

327

( - 300) - 173 - 188 138, - 187 (-74) - 51

-38 -32 -26 -29

( - 117) (-53) ( - 132)

(-55)

-19

-32 -29 (-71)

- 13 -77...-66 -69...-61 -66 -59 -71...-67 -63 -60...-62 -61

-4

-21

lwe&ktlea calorim. (293 K,1873 K) calorim. (1400 K) calorim. (1750-1950 calorim. (1773 K) calorim. (1773-1823 calorim. (1793 K) calorim. (1873 K) emf (1753-1883 K) emf (1753-1883 K) emf (1753-1883 K) equilibr. (1853 K) asseum. (1773-1873 assessm. (1823-1873 assessm. (1873 K) assessm. (1873 K) assessm. (1873 K)

K) K) max. AH value AG ~ at 1753 K AG xs at 1883 K value at 1818 K AG~i } at 50 a/o Ni K) K)

l~¢~lctieo calorim. (1274 K) calorim. (1288 K) calorim. (1773 K) vap. press. (1623 K) yap. press. (1640-1920 K) equilibr. (1723 K) equilibr. (1723 K) assessm. (1723 K) assessm. (1873 K) lredlettoo calorim. (523-773 calorim. (621-770 calorim. (623 K) calorim. (623 K) calorim. (623-743 calorim. (698 K) calorim. (773-832 calorim. (775 K)

AH~e~ : 17.5; AH[[~e : 50.5

K) K)

K) K)

AG ° n at 1873 K see also [ 101,103 ]

AH~t~e~: 17.5 AH~e~ : 17.5 AG~; AH~e~ : 17.5 values at 1870 K AG °xs &G°~

AH~e~ : AH[]~e~ : AH[]~e~ : AH~: AH{~e~ : AH~el : AH~e~ : AH~e~ :

17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

100 183 15 89 98 97 99 104 104 104 102 185 184 105 6 175 171 106 107 109 108 110 111 184 175 153 i18 117 154 115 127 112-13 150

328

A.K.

Table Ni-III X

N i e s s e n et

(continued) A/~° {Ni} -57 - 59 -57 -70 -56 -54 -53 -55 (-45) (-42) -42 -24 -70

AH ~M}

-20 -19 - 13 - 15

A/~°{M}

(-80) (-94) (-25) (-97) -26

Pb

+40 +9.0 + 36 8.9

+ 13

+ 73

+ 10 + 1.7 + 18 + 8.9 +8.8 + 42

Bi

+ 31 (+4)

- 19 + 10 +2.7

Remarks

calorim. (883 K) calorim. (910 K) calorim. (913 K) calorim. (914 K) calorim. (1023 K) calorim. (1078-1093 K) calorim. (1095 K) calorim. (ll00 K) calorim. (1580 K) calorim. (1773 K) vap. press. (1573 K) vap. press. (1573-1623 K) assessm. (600 K) assessm. (1573 K)

AH~e~ : AH~iSe~ : AH~: AH~el : AH~e~ : AH~e~ : AH~e~ : AH~i~e~ :

prediction calorim. (823 K) yap. press. (1703-1783 K) emf (973-1373 K)

Ref. 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5

AG xs AG xs at 1573 K AH~: 17.2 A~o xs AH~Se~ : 17.5 A~o xs at 1750 K value at 1273 K; AH~e~ : 17.5 A H ~ : 17.5 AH~'~ : 17.5 AH~e~ : 17.5 A H ~ : 17.5 AH~'e~ : 17.5

120 114 116,121 119 85 94 182 122 123 124 126 125 152 184 127 181 172

A~o xs liquid immiscibility

73 73 169 73 128 63 184 2

- 93 (-96)

prediction yap. press. (1273-1423 K)

A~-o xs at 1423 K

129

+ 58 (+20)

lm~lietion emf (970-1170 K)

AG xs, evaluated at 1773 K

130

+ 5.2 - 65

Method

solub. (597-823 K) solub. (600-755 K) solub. (643-1000 K) solub. (645-1026 K) solub. (645-1517 K) solub. assessm. (1873 K) phase diagr,

>0 As

al. / Enthalpies of formation of Ni alloys

based on Ni with the available phase diagram information obtained from fig. 1 and fig. 2 and "translated" into qualitative information as described in sec. 1. In general the predictions are qualitatively in accordance with the information emerging from phase diagrams as can also be seen in tables Ni-Ia and Ni-Ib. This conclusion is confirmed by the additional information given in table 1 for the Ni-based systems whose phase diagrams are known, at least partly, in the absence of any useful experimental numerical thermodynamic information in the solid phase. By means of table Ni-II the experimentally observed enthalpies or free enthalpies of formation

which have been reported in the literature can be compared quantitatively with the predicted enthalpies of formation, while the predicted and observed formation enthalpies for liquid Ni alloys are collected in table Ni-III. In fig. 3 and fig. 4 this comparison is made more explicitly for ordered compounds by displaying the data from for vs ,Air-/" for plot. In fig. 3 table Ni-II in a AF']" ---exp ~,. ~¢ formation-enthalpy values of Ni compounds with transition metals are shown and in fig. 4 the formation-enthalpy values are presented for Ni compounds with non-transition elements. On the basis of fig. 3 and fig. 4 more or less similar conclusions can be arrived at for ordered

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

100

100

T

_AHfor "'exp

ii.'!J, /

/

/

/

,.for - AMcalc

-

Fig. 4. A H ~ [ versus A H ~ [ c (kJ (mole of atoms) -l) of ordered compounds of Ni with non-transition metals.

I&H C

/ /

/

5~

for I _&Hexp

50

/

!

/*

- ~Hfc°~

/

I/ i.i

for versus A H ~ foc (kJ (mole ofatoms)- 1) ofordered Fig • 3 , AHex p . . . . . . . . compounds of Nt with transttion metals, mcludmg actmtde, noble and alkaline earth metals.

100

~for -AMex p

5O

50

50

l

329

--)Ni-AI

/-"

/

//

/

/

/

/

Z

Z

z

/

,/

/

"

/

\

S

/,,

Ni_Sb~~~N/i/-Ga

/ //

Ni-ln /

^l_ifor

-'~f 'calc

~V

5()

forp and AH~.~[ fo c for some Ni-based Fig. 5. Comparison o f AHex systems indicating that the scatter in fig. 4 is caused, at least partly, by an incorrectly described concentration dependence of AH ~c-

-AHcalc

Fig. 6. Scheme to explain the loop-like curves as given in fig. 5 with the dependence of A H ~ [ c and A/4"for ---- exp on concentration.

330

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

Ni compounds as for the Co-based compounds; see [ 4 ]. In these figures A H r°r values are indicated by dots and AG r°r values by + signs, while the corresponding AG r°~ and A H f°r points have been connected by a line and an arrow pointing from A/.-/for towards A~r°r If one compound has been -- exp ~ v exp" subject o f more than one independent observations reported in the literature, the various experimental points have been connected by a drawn line, indicating the accuracy of the experimental data. Within the experimental uncertainty there is a fair agreement between prediction and experiment, certainly if ~A/4for values are not accepted -" cxp for ordered compounds with improbably large A.~ror exp values and the corresponding AG f°~ values are considered instead as a better alternative. In the following, more quantitative, discussion the thermodynamic properties o f a Ni-based alloy will occasionally be compared with those belonging to a similar alloy, but based on Co instead o f on Ni with the same partner metal, in order to elucidate some peculiar resemblances or differences in behaviour of these alloys of the two elements which are so similar as far as the values o f q~', n ws and V are concerned. F r o m the distribution of the points in fig. 3 and fig. 4, we may conclude that experiment and prediction agree satisfactorily. For Ni compounds with non-transition metals (fig. 4), in particular, we note that the experimental values tend to be more negative than the predicted ones while the rather wide scatter of the points suggests that the predicted concentration dependence is not confirmed by the experimental values, similar as for Co based alloys [ 4 ]. The latter is illustrated in fig. 5 where the points representing compounds in one and the same binary system are connected according to concentration. The meaning o f these loops can be understood from the schematically given difference in concentration dependence o f the predicted AH f°r and A- /-4 -f o r cxp in fig. 6. F r o m fig. 5 and fig. 6 it will be clear that, at least partly, the scatter shown in fig. 4 is related to an incorrectly predicted concentration dependence of A H r°r for these particular compounds. In sec. 4 we shall

come back to this point. For Ni compounds with other transition metals (fig. 3) there is indeed a satisfactory agreement, except for a number of cases with a strongly negative ,_.,,^ r~rfOrme.This set will contain the cases where the predicted enthalpy is overestimated due to a complete filling o f the d band at alloying. The general conclusions about the predicted enthalpies of Ni alloys are that we understand qualitatively the deviations for Ni with transition metals, and that further discussion is needed on the alloys with non-transition metals.

3. Alloys with Ni as minority element The more detailed discussion on the Ni-based systems with transition metals will firstly be concerned with the differences between predicted and experimentally observed enthalpies of formation if Ni is surrounded by more electropositive metals like La and Ti. In the model [ 5 ] it is proposed that the enthalpy o f formation contains two terms, a negative contribution stemming from the difference in ~b" and a positive one arising from the difference in n ws. The first contribution can be seen as arising from a charge transfer proportional to A~" over a difference in potential of -A~b'. However, the atomic cell with the highest electron potential ~b" can accept only a limited amount o f charge without drastic changes in the electronic configuration. Conversely, the atomic cell with the smaller electronegativity like Na or Ca cannot lose more than one or two valence electrons. The change in electronic configuration is reflected in a change o f the model parameters: if q~" is plotted versus Z, the number o f atomic valence electrons, ~" changes abruptly at the end of each d series, see fig. 7. Since there are several indications [ 7,8] that one electron will be transferred by a difference in potential of about 2 V, the empty d-electron states in Ni (about 0.5 electron per Ni atom) may be occupied upon alloying with a majority o f the partner metal which possesses a q~" such that l#*Ni -- (~" > 1 V.

A.K. Niessen et aL / Enthalpies of formation of Ni alloys

Iv] 5.0

/

3d series

./"'"

4.0 5

4d series 6

4

\

/

10

15

Fig. 7. ~* in r e l a t i o n to Z , the n u m b e r o f a t o m i c valence electrons for the three t r a n s i t i o n m e t a l series.

In view of the large differences in electronegativity in the systems of Ni with the transition metals Sc, Ti, V, Y, Zr, Nb, La, Hf, Ta, Th, U and Pu, these changes in electronic configuration may occur in the solid and the liquid state if Ni is sufficiently surrounded by these electron-donating metals. This effect is seen as a systematic deviation of the heat of solution, the prediction being too negative. Table Ni-III contains information about this aspect for the Ni-based systems with Ti, Y, La and U in the liquid phase. In the solid phase formationenthalpy values have been reported for Ti, V, Y, Zr, Nb, La, Ta and Th compounds with reasonably low concentrations of Ni (table Ni-II). The system Ti-Ni is very conclusive concerning this effect: in the liquid state (table Ni-III) the experimental heat of solution of Ni in liquid Ti appears to be less negative than the calculated one

331

and in the solid phase ~.a.,tAt/f°rcalc< ----expA/4f°rNiTi2 and NiTi (table Ni-II). As expected this effect is not present for NiaTi. It is also not observed for NiV3 since ¢ ' s i - ~b'v < 1 V. A large asymmetry is observed in the heat of solution in the liquid state for Ni-Y, but no conclusion can be drawn from solid-state data. Calorimetric measurements on Ni-Nb alloys indicate that here too a reduced enthalpy of formation is encountered: as expected, for the more Ni-rich compound Ni3Nb there is good agreement between calculation and experiment. Although the scatter of the experimental data is often large for Ni-Zr compounds the reduced formation enthalpy can be traced in the Ni-Zr system, too. The effect is also clearly observed in the Ni-La system, both in the solid phase and in the liquid phase. The data for Ni-Ta compounds could perhaps support the conclusion, too; unfortunately the data scatter widely. The trend is found indeed for Ni-Th, in particular, if one takes the AG f°r values in the solid phase for the latter system. The necessary reduction of ,~for '~,, ~c of Ni-based alloys with other transition metals appears to be well established if Ni is the minority partner in a relatively electropositive surrounding. If Ni is the minority partner the reduction of the enthalpy of alloying means a reduction of the negative contribution Air/for •~,, c~ ionic of aH~Ic: A r t for l i calc

--

a r J r for, ionic art zal~ calc -t- ~

for, pos calc ,

(1)

where (2) Upon accepting charge the electronegativity will drop more than average (Ni being the last one in the series of 3d-transition metals) leading to a lower value of the proportionality constant P. For AO" < 1 V this reduction is not present, but for larger values of AO" a drastic change may occur for alloys poor in Ni, as indeed can be observed if the experimental negative part, AF/for,ioaic calculated according to A/4" for, ionic "'exp

=

A r T for a r _ r for, pos - - - - exp - - za~, calc

(3)

A.K. Niessen et aL / Enthalpies of formation of Ni alloys

332

is plotted in relation to the calculated ionic part, AH~[; i°"~c. In fig. 8 where these quantifies related to one mole Ni have been plotted it is surprising that the observed trend is towards a constant reduction, independent of the magnitude of AH[.~6i°nic, or which is equivalent, independent of A~b" at larger A~," values. For Ni alloys with Mn and V it is expected, and observed, that the enthalpy is not reduced since the charge transfered to Ni is too small //

j'/ /./

300 //'/

i200 .x L I

"r 10C <1

~oo

20OAHo~~.

300

[k J/mole Ni

for or po$ Or lOmC Fig. 8. The quantity (AHex p - AHfe0~tc ) versus AHf~tc " for binary systems where Ni is the minority partner in a c o m p o u n d with a transition metal in kJ (mole N i ) - L

In the next section a quantitative correction is presented accounting for limitations in transfer of charge to metals at the end of a transition-metal series. This correction scheme is applied to Ni in this paper, but this formalism can be applied similarly to alloys of either Pd or Pt, elements of the same column as Ni in periodic table.

4. Proposed corrections for Ni, Pd and Pd

This means that for large A~* it is no longer required that Ni is the minority partner. For the examples given in table 2 at least half an electron is expected to be transferred to each Ni atom, and it should be noted that in some compositions Ni is indeed not the minority partner; for the given compositions, both in the liquid and the solid phase, the value of 30 kJ (mole Ni) -1 is a reasonable estimate. Since a discontinuity of ~* (Z) can also be expected for the 4d- and 5d-series (fig. 7) the same phenomenon can be expected to occur for Pd and Pt. Unfortunately, the experimental information is relatively scarce. From recent free-enthalpy measurements [ 9 ] on Pd-rich Y alloys one might estimate a value of 90 kJ (mole Pd) -1 at larger values for fPvd. Atb*, where f~d is the degree to which Pd atoms are surrounded by dissimilar neighbours (Y). The large reduction for Pd is confirmed in experiments on Pd compounds with rare-earth metals by means of a dynamic differential calorimetric method [10,11] and is also consistent with the more steep drop in ~b" when going from Pd to Ag as compared with the drop in ~b* for Ni to Cu or Pt to Au in fig. 7. For Pt-based alloys there is an experimental value for equiatomic compounds of Pt with rare-earth metals [12] (the same kind of calorimetry as above), and further some values [ 13-17] for compounds very rich in Pt. The reduction of the formation-enthalpy effect for Pt compounds is without any doubt smaller than for Pd compounds. The correction to the predicted formationenthalpy effect accounting for a limited charge transfer can also be calculated by means of the following scheme. For alloys of two transition metals the ionic term of the enthalpy of alloying of the alloy ABn (per mole A) is written as ~t

The predictions can be improved by assuming that if more than about half an electron is transferred to a Ni atomic cell upon alloying, the enthalpy will be changed by about 30 kJ (mole Ni) -1. In order to decide whether more than the charge of half an electron is transferred to the Ni atoms one has to take into account the magnitude of A~b* and the degree to which Ni atoms are surrounded by dissimilar neighbours.

AH for, ionic (per mole A) ~

-

AZ A~

2

(4)

where AZ is the charge transferred per A atom (in units of electronic charge) that is assumed to be proportional to both AO" and f ~ such that f ~ is the degree to which A atoms are surrounded by dissimilar neighbours (B). With the charge transfer the difference in ~* is equalized and the

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

333

Table 2 The reduction of A H ~ [ c, AH corr, where AH corr = A H ~ [ e - AH f°e~rin kJ (mole Ni) - I if the d band in Ni becomes completely filled upon alloying of Ni and X. Predicted values for the enthalpy of fo-l~nation ( AH~t°[c)corr are also shown according to the formalism given in sec. 4 with ( A~b*max )0 = 1.05 V. X

CNi

A~b"

f~i

Ti Ti Y Y Y Y Y Zr

0.33 0.50 0.25 0.40 0.50 0.67 0.75 0.33

1.40 1.40 2.00 2.00 2.00 2.00 2.00 1.75

Zr

0.50

1.75

Nb Nb Nb La La La La La Ta Th Th Th

0.50 0.50 0.75 0.25 0.50 0.50 0.67 0.75 0.33 0.30 0.50 0.67

1.15 1.15 l.l 5 2.03 2.03 2.03 2.03 2.03 1.15 1.90 1.90 1.90

0.95 0.83 0.99 0.96 0.92 0.70 0.53 0.96 0.88 0.84 0.84 0.41 0.99 0.98 0.93 0.73 0.56 0.96 0.98 0.92 0.72

AH~ - 28 - 34 - 19 -30 -37 - 39 - 37 - 37 - 52 -23 - 35 - 32 - 13 - 15 - 25 - 20 - 21 - 39 - 28 - 45 - 42

AH~[e

AH corr

( AH~[c )corr

- 40 - 52 -23 -37 -44 - 45 - 37 - 53 - 72 -45 - 45 - 32 - 19 - 38 - 38 - 39 - 33 - 39 - 35 - 56 - 58

36 36 16 18 14 9 0 48 40 44 20 0 24 46 26 29 9 0 23 22 24

- 37 - 51 -8 - 12 - 19 - 36 - 37 - 41 - 61 -45 - 45 - 32 -3 - 9

-

- 9 26 33 33 22 35 50

a v e r a g e p o t e n t i a l o v e r w h i c h t h e c h a r g e is t r a n s -

Now AZ remains constant with further increasing

f e r r e d is A O ' / 2 . T h e r e f o r e

AO',

but

the

effective

difference

in

potential

AO'ar for the transferred charge becomes

AH for, ionic (per mole A) oc

_ f A ( A~* )2 2 . (5)

In the case of a limitation of the charge transferred due to the electronic configuration, of the electropositive

atom

(e.g. N a )

either

or of the

e l e c t r o n e g a t i v e a t o m (e.g. N i ) , A Z will b e p r o p o r tional

to

Ao"

for fA

=

1 until

A Z m ~ is r e a c h e d a t ( A 0 " m ~ ) 0 assumption

a

A~b*eff =

Hence tion

band

allows

for

some

v a l u e f o r A Z is

additional

(A0"m~)0

in

the

formalism

is o b t a i n e d

However, iff A <

as a

1 then AZ

the

it

of

charge

transfer,

O----

~r_r for, ionic ~'achargelimit

_--

A H for, ionic

the

ratio

without reads

in

of

limitacase

AZma x

Aw*eff "~

(8a)

AZ A~*

or

A Z m ~ is r e a c h e d

O =

(A~b*max) (2A~b* - A~b'max) ( A(~" )2

t

( A~b max ) 0 / f A .

i.e.

parameter

at

A~b max =

@,

A~" > a#'max,

best-fit parameter. =

for

charge

t r a n s f e r . H o w e v e r , t h i s s i m p l i f i c a t i o n is a c c e p t a b l e because

value

(7)

maximum

r e a l i s t i c , f o r N i i t is a n o v e r s i m p l i f i c a t i o n s i n c e t h e s-d

the

A~btmax ).

A H f°r,i°uic ( p e r m o l e A ) w i t h a n d

While for Na the

of a rigid maximum

A~b'max + 2 (A~b* -

(6)

a n d b y i n s e r t i n g eq. (6)

(8b)

334

A.K. Niessen et al. I Enthalpies of formation of Ni alloys

=

[

( A~b max ) 0

4

2

1

( A~b max ) 0

4

,,+"

"

(8c)

ilc"):4

In table 2 this correction is applied for those Ni-based alloys for which experimental information on AHror ---cxp is available in table Ni-II, using ( A~b'max) 0 = 1.05 V as best-fit parameter. In combination with the approximation between f ~ • A~b" and AZ, as given in [ 18 ] this corresponds to AZm~x is about 0.5 e per Ni atom. For Pd and Pt we have estimated that (A~b'max)0 = 1.15 V for Pd and ( A~b*m~x) 0 = 1.00 V for Pt, respectively.

5. Alloys of a transition metal and a non-transition metal

In this section the enthalpy of formation for binary alloys of a non-transition metal and a transition metal, in the solid state as well as in the liquid phase, will be discussed in more detail. Some discrepancies between the predicted and experimental enthalpy effects upon alloying a non-transition metal and a transition metal have already been mentioned in the previous section and in other papers of this series. Now the discussion is not limited to the alloys based on Ni, but covers in principle all alloys of a non-transition metal and a transition metal. For 3d-transition metals other than Ni this information is readily available in [ 1-4,19 ]; experimental information on alloys containing 4d- or 5d-transition metals [ 19 ] is less abundant than for 3d metals. For alloys of two transition metals we have previously shown that the contact-interaction model [ 5 ] yields an expression for AH r°r with two terms: AHf°r c~ f ( c S )

x [ _,, (,,+-)

x

Q (,,,,

cells (f]) and the molar surface area of the two constituent metals (V~ 3, V~ 3)

(9)

where f (c s) is a function of the surface concentration c s. We can express [ 5 ] f (c s) in the atomic concentration of one constituent (CA), the degree to which A atoms are surrounded by B atomic

[
tlO/

Expression (9) does not only apply to binary systems of transition metals, but also to systems of two non-transition metals. There is little doubt that such a description based on contactinteraction also applies in the case of alloys of a non-transition metal and a transition metal. The convincing agreement between predicted and observed enthalpy effects on the formation of a binary alloy of Co or Ni with another transition metal confirms the adequacy of the assumption that the energy effects upon alloying are generated at the interfaces of dissimilar atomic cells. Further support is found in fig. 9, where all available thermodynamic data [ 19 ] on compounds of transition metals with other transition metals have been collected. Those compounds are indicated for which it can be expected that the predicted charge transfer is reduced, as for example in NiLus. For a few compounds with the AuCu 3 structure the experimental enthalpy of formation is exceptionally large, presumably due to an additional contribution if some Brillouin zones are filled upon alloying. Taking into consideration that there is an uncertainty of 2 to 5 kJ (mole of atoms) -L in the predicted values and an uncertainty of about the same magnitude in the experimental results, the agreement between predicted and experimental values is very conclusive. A good agreement is also observed in the liquid state (fig. 11). The experimental values plotted in these figures were obtained solely by calorimetry. In fig. l0 and fig. 12 the thermodynamic data for alloys of a transition metal and a nontransition metal are analysed along the same lines as in fig. 9 and fig. 11. The scatter is much larger in fig. 10 than in fig. 9: 30 to 50 kJ (mole of atoms) -1 instead of l0 to 15 kJ (mole of atoms) -1. The way the points scatter in fig. 12 differs markedly from that in fig. 10. The predicted enthalpy of solution appears to be insufficiently negative in fig. 12 (liquid phase) while in fig. 10 (solid phase) the points scatter

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

335

i t

kJ

i

- &Hexp

for -AHex p

2O0

20(3

/'.

/. •

• HIPt3 /

t 10C

]1

"+'+Z /+

Y:

,,

//"I',

i']





I I

,,"

"~:/:" °.

/

..,o+

~" +//

- AHcalc



=

Fig. 9. Comparison of predicted and experimental AH for for compounds of a transition metal with another transition metal (e) or with a noble metal (&). One type of discrepancy is indicated by x; if sufficiently electropositive atoms surround a Ni, Pd or Pt atom, AH ~ c is too negative (e.g. in La3Ni ) since the d bands of the electronegative metal tend to be fully occupied upon alloying. The experimental values were obtained exclusively by calorimetry (taken from chapter III in [ 19 D.

t, i-icalc

=

Fig. 10.. Comparison o f A H ~ rP and A H ~ c for compounds of . . . a transmon metal (including the noble metals) and a polyvalent non-transition metal. The experimental values were obtained by calorimetry (taken from chapter III in [ 19 ]).

oo[l-,xo

T-• --o Hex p

//

300

IkJ7 1 Lm--gi~J

[&]

2O0

200

l

100

~

i /

/.

,-

,o,

0he'.



~).'.,~.. ~" .,,. .~.~.. • . . . / .

.: ..~. ~fi" ix

"

,4 / •

UPd3

:~

//1

/

• ///:.

./

/

100 / . . " " . . / : ' ~ " * v'" /" ~ y~:." ,/

~:



"/// /.

/

/

;~

.."

// /

x •

;

.

,~:.'~ ..

x,

-'Hca~

100

r kJ]200

"

i

-100

; ~//~

~/~

%1

r

L~I

-I0-'56m'.-~"-"

' ~ 0 0 /1/ / / /

//100

I kJ I

300

[moleJ

-100[ Fig. I I. Comparison of predicted and experimental A H °, the enthalpy of solution in the liquid phase of a transition metal and another transition metal (e) or a noble metal (A). As in fig. 9, some deviating points with Ni, Pd or Pt as solute metal are indicated by x (problem of full d bands). The experimental values were obtained by calorimetry (taken from chapter I l l in []9D.

Fig. 12. Comparison of AH"° ~p and A/~°calc for liquid alloys of a transition metal and a polyvalent non-transition metal (C, N and P are excluded). The experimental values were observed by calorimetry (taken from chapter III in [ 19 D. The dashed lines indicate that the scatter in fig. 12 is comparable to that fig. 10. The scatter in values of AH f°r is expected to be about 0.375 times that for the enthaipy of solution.

336

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

more evenly around the line where the predicted value is equal to the observed value. By means of fig. 5 we already indicated that for solid alloys with non-transition metals the concentration dependence of ~.,AUr°~c~ is not described correctly. In order to compare the predicted and the experimental concentration dependence of the enthalpy of formation more information is required than has been provided in fig. 5. A fairly complete survey on the concentration dependence of A/./ror _..~,p can readily be obtained from the phase diagrams by searching systematics in the concentration range where compounds tend to be present. For instance, if AHfor --exp as a function of concentration is asymmetric with the more negative values in the nontransition metal range, one expects to find compounds predominantly in that range. In our analysis we have divided the concentration range in eleven equal intervals and have counted the number of times a compound stable at low temperatures is found in each interval of the available binary phase diagrams of one nontransition metal with all transition metals, noble metals and Th, Pu and U. The number of compounds in each interval is then divided by the total number of compounds involved in this analysis, defining in this way a probability to observe a compound in an interval. The result of this procedure is shown in fig. 13 for all non-transition metals. The probability to find a compound is definitely not spread over the concentration range in a statistical way. In general the compounds cluster at compositions rich in the non-transition metal. This appears to be very pronounced for Be and Mg, and also for the other divalent metals Zn, Cd and Hg. The trend is very much the same as for Be and Mg: the smaller the molar volume the more asymmetric the number of compounds is distributed over the concentration intervals. The asymmetry observed in the occurrence of compounds in Zn-based phase diagrams is consistent with the quantitative information on the concentration dependence of AHfor ~ exp in the Co-Zn system, noted in [4]. For the trivalent non-transition metals the distribution of the compounds resembles only for M-based compounds that for the divalent metals. The pronounced asymmetry as for Be and Zn is not

observed for the tetravalent and pentavalent non-transition metals, however, the probability to find a compound at a certain concentration appears to be not a statistical one. Note that the diagrams for B, C, Si, Ge, N and P have to be considered with some care since in the pure state these elements have an enhanced stability with respect to the hypothetical metallic state, and the metallic character of compounds rich in these elements may be disputable. The strongly varying numbers of the compounds at lower concentrations of the non-transition metal, e.g. the pronounced minimum in the occurrence of Sn-based compounds around c = 0.6, are statistically significant. How complicated this matter in fact is will be illustrated in fig. 14 where we compare the compound occurrence in those systems where B is alloyed with d metals from different rows in the periodic system. One observes a striking difference between Sc, Y and La from the first row of transition metals, Cr, Mo and W from the middle row and Ni, Pd en Pt from the last row. For compounds based on C and N a similar behaviour is observed. In conclusion we note that the asymmetry in the number of compounds, which we now prefer to interprete as being related to an asymmetrical concentration dependence of the so-called R term, is certainly more pronounced for the metals with the smaller molar volumes (Be and Zn) than for others. The varying numbers of the compounds at lower concentrations of the non-transition metal may have some significance, indicating that the variation of the R term upon concentration does not have to be a monotonic function. It is appropriate to recall here the reasoning to introduce the R term. For alloys of a transition metal and a non-transition metal an equally important energy contribution, the so-called R term, has to be added to the two terms in eq. (4) that describes the enthalpy of formation of an alloy of two transition metals: AHf°r oc f ( c S ) x

[

-

x R].

(11)

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

30%

B

C

AI

Si

337

N

wt 20% 10%

30%

Mg

2O%

N

10% 0 Zn

30%

Ga

Ge

As

Jt

20%

10%

Cd

30%

In

Sn

Sb

TI

Pb

Bi

2O%

10% ~:~I~ii!i!i!~iiiii

Hg

3O% 20% 10% 0

0

0.5CA_.,. " 0

0.5CA_,,. 0

0.5CA ---,,.- 0

0.5CA

Fig. 13. The probabifity of finding compounds in binary systems of transition metals and the polyvalent non-transition metals in one of eleven equal ranges of concentration.

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

338

100%

7=2

t

W 5O%

015 c B " 1 60%

Z=3

Z=4

Z=5

Z=6

Z=7

Z=8

Z=9

Z=IO

W

50%

W 25%

0

0.5 CB --"'- 1

0

0 . 5 c B --,,,--1

0

0.5 c 8 --"~1

0

0.5 c B ---,'--1

Fig. 14. The probability o f finding c o m p o u n d s in binary systems o f transition metals and boron in one o f eleven equal ranges o f concentration for three groups o f transition metals as partner metals. Note the large differences between these groups.

Whereas much attention has been paid in [ 5 ] to the physical meaning o f each o f the first two terms in eq. 6, the third term, the R term, has been introduced without much argumentation. Since about the same additional energy is required in the liquid as in the solid phase, and since in the liquid phase it is very improbable that an additional contribution to the formation enthalpy can be ascribed to effects owing to the tilling o f Brillouin zones o f particular crystal structures, the o r i o n has to be sought in the fact that different types o f metals are combined: here a metal with p-type electron wave functions is combined with a metal with mainly d-type wave functions. Adopting the contact-interaction as essential, it has been assumed that the concentration dependence o f the R term is similar to that o f the first two

terms [ 5 ]. It is an intentional choice to treat the third term, too, as an atomic interfacial energy, independent of concentration, which leads, however, to some controversial aspects. Relation (6) is oversimplified: A H ° {^} in {B} and A H ° is} i, {A} cannot differ in sign. But there are some examples showing such a change in sign, e.g. in the Co - S n , Cr - S n , U - Pb, M n - Sb and R u - Bi systems. The exceptional occurrence o f different signs for the enthalpies o f solution in these phase systems implies that relatively large differences may occur in the numerical experimental values o f both terminal enthalpies of solution (larger than predicted by means o f the variation in V~ 3) for systems with equal sign for both enthalpies o f solution. In the solid phase such an asymmetry will lead to an asymmetric distrib-

A.K. Niessen et aL / Enthalpies of formation of Ni alloys

339

a "'=a

R"ffiO.73 R

l

i • ::':" , / :



I :.:.:::-

,oo. •

,oo

I . . ...





:

"

,

I

,

100

-~Hcal -o ,c------~ 200

-

./:•'~ ;o.O -~Hc~1c---,,,..

1

200

-100 Fig. 15. The effect of the inclusion of the reduction factor for the R term in the liquid phase for fiquid solutions of a transition metal and a non-transition metal for which AH ° has been determined by calorimetry. The scatter is more evenly distributed around the line where A/7 ° exp = AH° calc without this reduction factor (at right) if the transition metal belongs to one at the end of the d series (o) and with the reduction factor taken into account (left figure) if the d metal (,t,) is situated at the begin of the d series in the periodic system.

urion of compounds in phase systems. For instance, if A H ~ as a function of concentration is asymmetric with the more negative values in the non-transition metal range, one will find compounds predominantly in that range. Fig. 5 and the distribution of compounds with concentration (fig. 13) make clear that the concentration dependence of ALrror ,~--~1c is indeed insufficiently accounted for by f(c s). A possible orion of the incorrectly predicted concentration dependence could be found in the R term. The introduction of R as a constant that is included between brackets in eq. 6 is in fact a too crude approximarion. Unfortunately, at present we have not found a formalism for the R term, either based on physical insight or purely empirical, in which the observations can be treated quantitatively. Perhaps one should have two, in principle independent, relations for AHf°r: one based on the solution of a transition metal in a non-transition metal and the other for the reversed situation. This idea is qualitatively very attractive since it opens the

possibility for a change in sign of the two terminal heats of solution, compounds in the solid phase and liquid immiscibility in the liquid phase and a concentration dependence largely differing from eq. (6). Unfortunately, we are unable to introduce such a scheme without including many more fully empirically determined parameters. Since the introduction of more empirical parameters means a complete loss of simplicity we have not modified the model. The only difference in the treatment of the ¢nthalpy effects in the solid and liquid phase is the reduction of the R term in the liquid state. The advantage of keeping this reduction factor is that the predicted sign to be ascribed to phase systems in the solid phase and in the liquid phase may differ for one and the same binary. If the emphasis of the analysis is on the sign of the formationenthalpy effects of phase systems one prefers that the uncertainty is proportional to AH ° {A}i°{S}, while the choice of neglecting the reduction factor might be a more constant spread of the uncertainty in some cases as is demonstrated in fig. 15.

340

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

The calorimetrically determined enthalpies of solution AH ° for solutions based on either Ti, V, Cr, Mn or Fe, Co, Ni (as collected in chapter III) are plotted versus the predicted AH °. Indeed, for Fe-, Co- and Ni-based solutions one could prefer no reduction, in contrast to the solutions with Ti up to Mn. We conclude that the quantitative information on the enthalpies of formation does not always support a reduced value of the R term for liquid alloys. Data for individual systems of 3d metals for which both the heat of solution in the liquid phase and the heat of formation for compounds rich in the respective solvent metal have been measured support this conclusion, too. The enthalpy effect in the liquid phase arises in principle from the same mechanisms as in the solid phase. However, the environment of the solute atom may be more variable; if heats of solution are measured in the situation of a high-meltingpoint solute metal (e.g. Ni) and a low-meltingpoint solvent (e.g. Sn) clustering of the solvent atoms around the solute atoms may occur. This preferential surrounding of the solute atoms by the solvent atoms produces negative contributions to both the alloying enthalpy and the entropy. The complication of cluster formation may well be more serious for liquid alloys of a transition metal and a non-transition metal. The R term in liquid alloys possibly favours (or requires) local ordering, strongly affecting the entropy of formation. This ordering will depend on temperature; hence a temperature-dependent enthalpy of solution may occur as reported for Ni in Sn (table Ni-III). At least the thermodynamic properties of liquid solutions of transition metals in low-melting non-transition metals can be very complex!

6. Conelmioas In this paper we have presented an extensive comparison of experimental and model values for enthalpy effects in alloys containing Ni. Apart from the benefit of reporting such a large collection of data, we have demonstrated the usefulness of comparing model predictions with experiments: it focusses attention to the limitations of the model.

The main limitation of the model appears to be the fact that no distinction is made between the electrons with various kinds of wave functions. This is encountered in the reduction of the enthalpy at the end of each transition-metal series if the d band becomes fully occupied upon alloying with a more electropositive metal. The latter can be overcome by applying the formalism sketched in this paper. This limitation is also encountered if atomic cells of a transition metal and a non-transition metal, either in the solid or in the liquid phase become first neighbours. The description of the additional energy required in the model is too crude. The concentration dependence of the enthalpy of formation for alloys of such metal combinations, if interpreted in terms of relation (5), would imply at least a different value of R at each side of the binary phase diagram and stronger variations of RIP than used at present.

References [ 1 ] F.R. de Boer, R. Boom and A.R. Miedema, Physica 101B (1980) 294. [ 2] F.R. de Boer, R. Boom and A.R. Miedema, Physica l13B (1982) 18. [3] R. Boom, F.R. de Boer, A.K. Niessen and A.R. Miedema, Physica 115B (1983) 285. [4] A.K. Niessen, A.R. Miedema, F.R. de Boer and R. Boom, Physica B 151 (1988) 401. [ 5 ] A.R. Miedema, P.F. de Ch~tel and F.R. de Boer, Physica 100B (1980) 1; see also [ 19 ]. [ 6 ] A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Chatel, W.C.M. Mattens and A.R. Miedema, CALPHAD 7 (1983) 51. [ 7] A.R. Miedema and F. van der Woude, Physica 100B (1980) 145. [8 ] A.K. Niesscn, High Temp. - High Pressures 14 (1982) 649. [9 ] S. Paasch and H.-J. Schaller, Ber. Bunsenges. Phys. Chem. 87 (1983) 812. [ 10] A. Palcnzona and S. Cirafici, Thermochim. Acta 10 (1974) 313. [ 11 ] A. Palenzona and S. Cirafici, Thermochim. Acta 12 (I 975) 267. [ 12] A. Palenzona and S. Cirafici, Thermochim. Acta 25 (1978) 252. [ 13 ] H.-J. Schaller, Bet. Bunsenges. Phys. Chem. 80 (1976) 999. [ 14] P.J. Meschter and W.L. Worrel in Proc. Conf. Int. Thermodyn. Chim. C.N.R.S., Marseille, 1975. [15] P.J. Meschter and W.L. Worrel, Metall. Trans. 7 A (1976) 299.

A.K. Niessenet al. / Enthalpiesofformation of Ni alloys [16] p.J. Meschter and W.L. Worrel, Metall. Trans. 8 A (1977) 503. [ 17 ] V. Srikrishnan and P.J. Ficalora, Metall. Trans. 5 (1974) 1471. [ 18] F. van der Woude and A.R. Miedema, Solid State Commun. 39 (1981) 1097. [19] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen, Cohesion in Metals (North-Holland, Amsterdam, to be published).

1. References to the nickel-based binary phase diagrams [ 1 ] M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, Toronto, London, 1958); R.P. Elliott, First Supplement (1965); F.A. Shunk, Second Supplement (1969). [2 ] W.G. Moffat, Handbook of Binary Phase Diagrams (Genium, Schenectady, 1987). [ 3 ] V.Ya. Markiv, I.S. Gravilenko, V.V. Pet'kov and N.N. Beryavina, Metalloffyzika No. 73 (1978) 39, see also V.Ya. Markiv, V.V. Pet'kov, I.S. Gravilenko and N.N. Beryavina, Chem. Abstr. 86 (1977) 63785. [ 4 ] V.S. Khlomov, V.N. Pimenov, Yu.E. Ugaste and K.P. Gurov, Phys. Met. & Metallogr. 46 (1978) (3) 188. [ 5 ] E.R. Stevens and O.N. Carlson, Metall. Trans. ! (1970) 1267. [6] M. Dalre and M. Gerspacher, J. Less-Common Met. 17 (1969) 334. [ 7 ] L.A. Pugliese and G.R. Fitterer, Metall. Trans. 1 (1970) 1997. [ 8 ] L. Karmazin, Czech. J. Phys. 28B (1978) 1175. [ 9 ] K.E. Tsiuplakis and E. Kneller, Z. Metallkd. 60 (1969) 433. [ 10 ] P.L. Gruzin, Yu.L. Rodionov and V.A. Pryakhin, Dokl. Akad. Nauk SSSR 251 (1980) 1384. [ 1! ] J.K. van Deen and F. van der Woude, Acta Metall. 29 (1981) 1255. [ 12 ] C. Becle, B. Bourniquel, G. Develey and M. Saillard, J. Less-Common Met. 66 (1979) 59. [ 13 ] C. Allibert, J. Driole and ~. Bonnier, C. R. Acad. Sci. Paris, t.271, S~-rieC (1970) 273. [ 14 ] C.P. Heijwegen and G.D. Rieck, Z. Metallkd. 64 (1973) 450. [ 15 ] J.N. Pratt, Project Meeting CALPHAD VII, 1978, 88. [ 16] K.H.J. Buschow, In: Handbook on the Physics and Chemistry of Rare Earths (Eds K.A. Gschneidner Jr and LeRoy Eyring, North-Holland, Amsterdam, 1984), Vol. 6, p.l. [ 17 ] V.N. Pimenov, Yu.E. Ugaste and Akkushkarova, Russ. Metall. 1977 (1) 155. [ 18] E.M. Savitsky, M.A. Tylkina and E.P. Arskaya, Izv. VUZ Chem. Metall. 1970 (4) 113. [ 19 ] J.-P. Zanghi, A. van Craeynest and D. Calais, J. Nucl. Mater. 39 (1971) 133. [ 20 ] J. Vrijen and S. Radehutr, Phys. Rev. B 17 (1978) 409. [ 21 ] E. Sehurman and E. Sehulz, Z. Metallkd. 62 (1971) 758. [ 22 ] E.A. Feest and R.D. Doherty, J. Inst. Met. 99 (1971) 102. [ 23 ] D.A. Stevenson and J. Wulff, Trans. Metall. Soc. AIME 221 (1961) 271.

341

[ 24 ] J. Tomiska, L. Erd~lyi, A. Neckel and H. Nowotny, Z. Metallkd. 68 (1977) 734. [ 25 ] K.M. Friederich, S. J6usson, F. Aldinger and G. Petzow, Z. Metallkd. 71 (1980) 584. [26] S. Budurov, G. Wassilew and N. Nentschew, Z. Metallkd. 65 (1974) 681. [ 27 ] A.J. Morton, Acta Metall. 27 (1979) 863. [ 28 ] A.J. Goldschmidt and M.J. Walker, J. Appl. Cryst. 2 (1969) 273. [29] A. Baranski and Z. Galus, Electroanal. Chem. and Interracial Electrochem. 46 (1973) 289. [ 30] J.-D. Sch6bel and H.H. Stadelmaier, Z. Metalikd. 56 (1965) 856. [ 31 ] A.S. Sobolev and T.F. Fedorov, Inorg. Mater. 3 (1967) 643. [ 32 ] K.I. Portnoi, V.M. Romashov, V.M. Chubarov, M.Kh. Levinskaya and S.E. Salibekov, Poroshk. Met. 7 (1967) 15 and Chem. Abstr. 66 (1967) 119482. [ 33 ] A. Taylor and N.J. Doyle, J. Appl. Cryst. 5 (1972) 201. [34] S. Martosudirdjo and J.N. Pratt, Thermochim. Acta 17 (1976) 183. [ 35 ] P. Feschotte and P. Eggimann, J. Less-Common Met. 63 (1974) 15. [36] K.J. Best and T. G6decke, Z. Metallkd. 60 (1969) 659. [ 37 ]L.D. Lucas, M&m. Sci. Rev. M6tall. 66 (1969) 747. [ 38 ] E.B. Badtiev, O.S. Petrushkova and L.A. Panteleimonov, Vesta. Mosk. Univ., Ser. 2, 15 (1974) 367. [39] L.F. Lutskaya and P.V. Gel'd, Inorg. Mater. 13 (1977) 315. [40] M. Ellner, T. G6decke and K. Schubert, J. LessCommon Met. 24 (1971) 23. [41 ] E.M. Rybalkin and B.P. Burylev, Termodin. Svoistva Rasplavov, Mater. Konf. (1969) 225 and Chem. Abstr. 74 (1971) ! 16523. [42] B.P. Burylev and E.M. Rybalkin, Tr. Krasnodar. Politekh. Inst. 63 (1974) 108 and Chem. Abstr. 83 (1975) 16547 [43] S. Heinrich, H.U. Rexer and K. Schubert, J. LessCommon Met. 60 (1978) 65. [ 44 ] O. Kubaschewski, Iron Binary Phase Diagrams (Springer, Berlin, 1982). [ 45 ] P. Villars and L.D. Calvert, Pearson's Handbook of Crystallographic Data for lntermetallic Phases (American Society for Metals, Ohio, 1985).

2, References to table Ni-H [ 1 ] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (American Society for Metals, Ohio, 1973). [ 2 ] B. Predel and R. Mohs, Arch. Eisenhfittenwes. 41 (1970) 143. [ 3 ] J.C. Gachon, M. Notin and J. Hertz, Thermochim. Acta 48 (1981) 155. [ 4 ] J.C. Gachon and J. Hertz, CALPHAD 7 (1983) 1. [ 5 ] J.C. Gachon, J. Giner and J. Hertz, Scr. Metall. 15 (1981) 981. [6] V.I. Alekseev and G.A. Levshin, Izv. VUZ Chem. Metall. 1980 (11) 19.

342

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

[ 7 ] G. Chattopadhyay and H. Kleykamp, Z. Metallkd. 74 (1983) 182. [ 8 ] J. Velisek, Kovov~ Mater. 18 (1980) 641. [ 9] E.J. Grimsey and A.K. Biswas, J. Chem. Thermodyn. 9 (1977) 415. 10] B.R. Conard, T.B. McAneney and R. Sridhar, Metail. Trans. 9B (1978) 463. I 1 ] M.V. Rao and E. Fioris-Magon L., MetaU. Trans. 4 (1973) 2471. 12] V.N. Eremenko, G.M. Lukashenko and V.R. Sidorko, Russ. J. Phys. Chem. 42 (1968) 343. 13 ] C. Gatellier, D. Hem'iet and M. Olette, C. R. Acad. Sci. Paris, t.271, S~rie C (1970) 453. 14 ] M.V. Ran and W.A. Tiller, Mater. Sci. & Eng. 14 (1974) 47. 15] O. Kubaschewski, K.-H. Geiger and K. Hack, Z. Metallkd. 68 (1977) 337. 16 ] W. Rammensee and D.G. Fraser, Bet'. Bunsenses. Phys. Chem. 85 (1981) 588. 17 ] O. Kubaschewski and K. Hack, Z. Metalikd. 70 (1979) 789. 18 ] J. Vrestal, A. Pokorna and K. Stransky, Kovov6 Mater. 12 (1974) 3. 19 ] C. Colinet, A. Pasturel, A. Percheron-Gu~gan and J.C. Achard, J. Less-Common Met. 134 (1987) 109. [ 20 ] K. Ono, Y. Ueda, A. Yamaguchi and J. Moriyama, Nippon Kinzoku Gakkaixhi (J. Jpn Inst. Met.) 36 (1972) 188. [21 ] K. Ono, Y. Ueda, A. YAraasuchi and J. Moriyama, Trans. Jpn Inst. Met. 18 (1977) 610. [ 22 ] Y. Tanji, Y. Nakasawa, Y. Saito, K. Nish/mura and K. Nakatanka, Phys. Status Solidi (a) 56 (1979) 513. [ 23 ] J. Tomiska, H. Nowotny, L. Erd61y and A. Neckel, Ber. Bunsenges. Phys. Chem. 83 (1979) 1035. [ 24 ] J. Vrestal and J. Kucera, Metali. Trans. 2 (1971) 3367. [ 25 ] B. Predel and R. Mohs, Arch. Eisenhfittenwes. 41 (1970) 1. [26] W.N. Hubbard, P.L. Rawlins, P.A. Connick, R.E. Stedwell Jr and P.A.G. O'Hare, J. Chem. Thermodyn. 15 (1983) 785. [ 27 ] J.C. Gachon, M. Dirand and J. Hertz, J. Less-Common Met. 92 (1983) 307. [ 28 G.A. Levshin and V.I. Alekseev, Russ. J. Phys. Chem. 53 (1979) 437. 29 M.P. Henaff, C. Colinet, A. Pasturel and K.H.J. Buschow, J. Appl. Phys. 56 (1984) 307. 30 G.A. Levshin, G.B. Petrov, V.I. Alekseev and V.I. Polikarpov, DokL Phys. Chem. 269 (1983) 215. 31 E.M. Sokolovskaya, L.L. Meshkov and G.A. Tikhankin, DokL Phys. Chem. 229 (1976) 709. 32 V.I. Alekseyev, G.B. Petrov and G.V. Shcherbedinskiy, Russ. Metall. 1978 (5) 47. 33 G.A. Tikhankin, L.L. Meshkov and E.M. Sokolovskaya, Moscow Univ. Chem. Bull. 31 (1976) 89. 34 N.P. Lyakishev, Yu.P. Snitko, V.I. Alekseev and G.A. Levshin, Russ. J. Phys. Chem. 57 (1983) 101. [ 35 ] P.J. Spencer and F.H. Put.land, J. Chem. Thermodyn. 7 (1975) 531. [ 36 ] O. Kubaschewski and Th. Hoster, Z. Metallkd. 74 (1983) 607. [ 37 ] I. Katayama, H. Shimatani and Z. Kozuka, Nippon Kinzoku Gakkaishi (J. Jpn Inst. Met.) 37 (1973) 509.

[ 38]L.L. Meshkov, L.S. Guzey and E.M. Sokolovskaya, Russ. J. Phys. Chem. 49 (1975) 1128. [ 39] J.N. Pratt, J.M. Bird and S. Martosudirdjo, Rep. US Army, Contr. DAJA 37-73-C-3010, Univ. of Birmingham, England, 1974. [ 40 ] J.B. Darby, private communication in ¢39 ]. [ 41 ] F. Hofer, J. Solid State Chem. 45 (1982) 303. [42] S. Watanabe and O.J. Kleppa, J. Chem. Thermodyn. 15 (1983) 633. [ 43 ] K.N. Semenenko, R.A. Sirotina and A.P. Savchenkova, Russ. J. Phys. Chem. 53 (1979) 1356. [ 44 ] T.N. Rezukhina and S.V. Kutsev, Russ. J. Phys. Chem. 56 (1982) I. [ 45 ] K.N. Semenenko, R.A. Sirotina, A.P. Savchankova and T.S. ll'ina, Russ. J. Phys. Chem. 56 (1982) 1564. [46] C. ChatiHon-Colinet, H. Diaz, J.C. Mathieu, A. Percheron-Gu~'gan and J.C. Achard, Ann. Chim. Fr. 4 (1979) 657. [ 47 ] G.A. Lyakishev, Yu.P. Snitko, V.I. Al©kscev and G.A. Levshin, Dokl. Phys. Chem. 258 (1981) 582. [ 48 ] S.N. Nesterenko, L.L. Meshkov and E.M. Sokolovskaya, Moscow Univ. Chem. Bull. 36 (1981) 88. [49] L.L. Meshkov, L.S. Guzey, V.A. Kazakov and E.M. Sokolovskaya, Vestn. Mosk. Univ., Set. 2, 13 (1972) 351 and Chem. Abstr. 77 0972) 119009. [ 50] W.H. Skelton, N.J. Magnani and J.F. Smith, Metall. Trans. l (1970) 1833. [ 51 ] V.A. Lebedev, V.I. Pyatkov, R.R. Abdrakhmanov, I.F. Nichkov, S.P. Raspopin and N.V. Nazarov, Russ. J. Phys. Chem. 48 (1974) 1489. [ 52 ] H.-D. Dann6hl and H.L. Lukas, Z. Metailkd. 65 (1974) 642. [ 53 ] G.M. Campbell, J. Chem. Thermodyn. 6 (1974) I 110. [ 54 ] B. Predel and E. Zehnpfund, Thermochim. Acta 8 (1974) 283. [ 55 ] M.I. Ivanov, T.F. Karpova and N.Yu. Dalago, Inorg. Mater. 17 (1981) 414. [56] To Ngok Tkhai and V.F. Serebryakov, Soy. NonFerrous Met. Res. 12 (1984) 161. [ 57 ] S.A. Ali and V.A. Geiderikh, Russ. J. Phys. Chem. 46 (1972) 1443. [ 58 ] N. Ahmad and J.N. Pratt, Thermochim. Acta 45 (1981) 139. [ 59 ] C. Cunat, M. Dirand, J.P. Hi]ger and J. Hertz, In: proc. Journ~es de Calorim~trie et d'Analyse Thermique, 1978, B23-183 [ 60 ] S. Budurov and G. Wassilew, Z. Metallkd. 68 (1977) 795. [61 ] B.I. Lyazgln, V.A. Lebedev, G.N. KaT~ntsev, I.F. Nichkov, S.P. Raspopin and V.I. Tyukavkin, Russ. Metaii. 1970 (4) ll5. [ 62 ] S. Lau, Y.A. Chang and S. Kou, Metall. Trans. 5 (1974) 1979. [ 63 ] W. Vogeibein, B. Predel and Y.A. Chang, Z. Metallkd. 73 (1982) 530. [64] A. Baranski and Z. Galus, Electroanal. Chem. & Interracial Electrochem. 46 0973) 289. [ 65 ] G. Jangg and F. Steppan, Z. Metallkd. 56 0965) 172. [ 66 ] O.S. Gorelkin, A.S. Dubrovin, O.D. Kolesnikova and N.A. Chirkov, Russ. J. Phys. Chem. 46 (1972) 431. [67] S. Sato and OJ. Kleppa, Metall. Trans. 13B 0982) 251. [ 68 ] S.C. Schaefer, Rep. Invest. 7993, U.S. Dept of the Interior, Bureau of Mines, Washington D.C. 20240, 1975.

A.K. Niessen et al. / Enthalpies of formation of Ni alloys [ 69 ] V.M. Es'kov, V.V. Samokhval and A.A. Vecher, Russ. Metall. 1974 (2) 118. [ 70 ] V.M. Sandakov, Yu.O. Esin and P.V. Gel'd, Russ. J. Phys. Chem. 46 (1972) 897. [71 ] E.-Th. Heuig and H.L. Lukas, In: proc. Journ6es de Calorim~trie et d'Analyse Thermique, Grenoble, 1975, Vol. 6, II 13.1. [ 72 ] E.-Th. Henig and H.L. Lukas, Z. Metallkd. 66 (1975) 98. [73] S. Martosudirjo and J.N. Pratt, Thermochim. Acta 17 (1976) 183. [ 74 ] B. Predel, W. Vogelbein and U. Schallner, Thermochim. Acta 12 (1975) 367. [ 75 ] 1. Katayama, S. Igi and Z. Kozuka, Nippon Kinzoku Gakkaishi (J. Jpn Inst. Met.) 38 (1973) 332. [ 76 ] G.A. Vinokurova, V.A. Geiderikh and Ya.I. Gerasimov, Dokl. Phys. Chem. 211 (1973) 600. [ 77] B. Predel and W. Vogeibein, Thermochim. Acta 30 (1979) 187. [ 78 ] G.A. Vinokurova and V.A. Geiderikh, Russ. J. Phys. Chem. 44 (1970) 1190. [ 79 ] D. Bhattacharya and D.B. Masson, Mater. Sci.& Eng. 28 (1977) 285. [ 80 ] T.G. Chart, High Temp. - High Pressures 5 (1973) 241. [81 ] B. predel and W. Vogelbein, Thermochim. Acta 30 (1979) 201. [ 82 ] B. Predel and H. Ruge, Thermochim. Acta 3 (1972) 411. [ 83 ] H. Hahn and A. Konrad, Z. Anorg. Atlg. Chem. 264 (1951) 181. [ 84 ] T.A. Stolyarova, Ocherki Fiz. - Khim. Petrol. 8 (1978) 150. [ 85] S.N. Nestetenko and L.L. Meshkov, Russ. J. Phys. Chem. 58 (1984) 594. [ 86] B. Predel and W. Vogeibein, Thermochim. Acta 24 (1978) 155. [ 87 ] F.D. Richardson, J. Iron Steel lust. 175 (1953) 33. [ 88 ] K. Hack and T.G. Chart, Teclm. Rep. CEC - EUR 7820 (1982) p.9-1. [ 89 ] J. Vrestal and K. Stransky, Kovov6 Mater. I 1 (1973) 203. [ 90 ] R.P. Anantatmula and D.B. Masson, Metall. Trans. 5 (1974) 605. [ 91 ] Y.A. Chang, G. Henning and D. Nanjock, Acta Metall. 22 (1974) 7. [ 92 ] H. Jacobi, D. St6ckel and H.L. Lukas, Z. Metallkd. 62 (1971) 305. [93] H. Diaz, A. Percheron-Gu6gnn, J.C. Achard, C. Chatillon and J.C. Mathieu, Int. J. Hydrogen Energy 4 (1979) 445. [94] M. Notin and J. Hertz, Acta Metall. 31 (1983) 903. [ 95 ] D. Ohlendoff and H.E. Flotow, J. Less-Common Met. 73 (1980) 25. [ 96 ] P.R. Wengert and L. Spanoudis, J. Am. Ceram. SOc. 57 (1974) 94. [ 97 ] F. Sommer, J. Schott and B. Predel, Z. Metallkd. 76 (1985) 369. [ 98 ] M. Venkataramau and J.P. Haira, Metall. Trans. 14A (1983) 2125. [ 99 ] A. Gabriel, H.L. Lukas, C.H. AUibert and I. Ausara, Z. Metallkd. 76 (1985) 589. [ 100 ] P.R. Subramanian and J.F. Smith, MetaU. Trans. 16B (1985) 577. [ 101 ] L. Topor and O.J. Kleppa, Z. Metallkd. 77 (1986) 65. [ 102 ] C. Colinet and A. Pasturel, Phys. Status Solidi (a) 80 (1983) K75.

343

[ 103 ] C. Colinet and A. Pasturel, Calorim. Anal. Therm. 14 (1983) 233. [ 104] A. Pasturel, C. Colinet, C. AUibert, P. Hicter, A. Percheron-Gu6gan and J.C. Achard, Phys. Status Solidi (b) 125 (1984) 101. [ 105] A. Pasturel, F. Liautaud, C. Colinet, C. Allibert, A. Percheron-Gu6gan and J.C. Achard, J. Less-Common Met. 96 (1984) 93. [ 106] Z. Moser, W. Zakulski, P. Spencer and K. Hack, CALPHAD 9 (1985) 257. [ 107] J. Tousek, J. Vrestal and A. Rek, Kovov~ Mater. 16 (1978) 649. [ 108 ] J. Tomiska and A. Neckel, lk'r. Buusenges. Phys. Chem. 88 (1984) 551. [ 109] A.L. Shilov, L.N. Padurets and M.E. Kost, Russ. J. Phys. Chem. 57 (1983) 338. [ I I 0 ] S . Budurow, G. Wassilew and L. Mandadshieva, Z. MetaUkd. 67 (1976) 307. [ i 11 ] R. Lenbolt, H. Ipser and K.L. Komarek, Z. Metallkd. 77 (1986) 284. [ 112] C. Colinet, A. Pasturel and K.H.J. Buschow, J. Appl. Phys. 62 (1987) 3712. [ 113] C. Colinet, A. Paeturel and K.H.J. Buschow, In: Proc. Conf. on Liquid and Amorphous Metals, GarmischPartenkirchen, 1986, p. 277. [ 114] L. Brewer and R.H. Lamoreaux, At. Energy Rev. Spec. Issue 7 (1980) 11. [ l 1 5 ] J . Charles, J.C. Gachon and J. Hertz, CALPHAD 9 (1985) 35. [ 116] P.J. Spencer, At. Energy Rev. Spec. Issue 8 (1981) 9. [ 117] I. Barin, O. Knacke and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Supplement (Springer, Berlin, Heidelberg, New York and Verlag Smhleisen, Dfissekiorf, 1977). [ 118] P.A. Gomozov, Yu.V. Zasypalov and B.M. Mogutnov, Russ. J. Phys. Chem. 60 (1986) 1122. [11910. Kubuchewski and C.B. Alcock, Metallurgical Thermochemistry (Per~mon, Oxford, New York, Toronto, Sidney, Paris, Frankfurt, 1979).

3. Referemces to table Ni-lll [ 1 ] R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Ohio, 1973). [ 2 ] M. Hamen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, Toronto, London, 1958); R.P. Elliott, First Supplement (1965); F.A. Shank, Second Supplement (1969). [3] V.G. Dyubanov, A.Ya. Stomakhin and A.F. Filippov, Izv. VUZ Chem. Metall. 1975 (3) 5. [ 4 ] Yu.O. Esin, M.G. Valishev, A.F. Ermakov, P.V. Gel'd and M.S. Petrushevskii, Russ. J. Phys. Chem. 55 (1981) 421. [ 5 ] R.M. German and G.R. St Pierre, Metall. Trans. 3 (1972) 2819. [ 6 ] O.I. Ostrovskiy, A.Ya. Stowakhin and V.A. Grigoryan, Russ. Metall. 1977 (1) 71. [ 7 ] S. Wagner, D.J. Shade and G.R. St Pierre, Metall. Trans. 3 (1972) 47.

344

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

[ 8 ] G.I. Batalin, V.P. Kurach and V.S. Sudavtsova, Ukr. Khim. Zh. 49 (1983) 547. [9 ] G.I. Batalin, V.A. Stukalo, N.Ya. Neshchimenko and N.V. Patselii, Russ. J. Phys. Chem. 55 (1981) 1395. [ 10 ] W. Gilby and G.R. St Pierre, Trans. Metall. Soc. AIME 245 (1969) 1749. [11] R.J. Fruehan, Trans. Metall. Soc. AIME 242 (1968) 2007. [ 12 ] L. Kaufman and H. Nesor, Z. Metallkd. 64 (1973) 249. [ 13] K. Okajima and H. Sakao, Trans. Jpn Inst. Met. 16 (1975) 87. [ 14] Y. Tozaki, Y. Iguchi, S. Ban-ya and T. Fuwa, In: Proc. Int. Symp. Metall. Chem. - Appl. Ferrous Met. (Iron Steel Inst., London, 1973), p. 130. [ 15] Abol-Hassan K. AbdeI-Aziz, A.A. Vertman and A.M. Samarin, Russ. Metall. 1966 (3) 10. [ 16] Y. Iguchi, Y. Tozaki, M. Kakizaki, T. Fuwa and S. Ban-ya, Tetsu-to-Hagan~ (J. Iron Steel Inst. Jpn) 67 (1981) 925. [ 17 ] B. Predel and R. Mohs, Arch. Eisenhfittenwes. 41 (1970) 143. [ 18 ] G.I. Batalin, N.N. Minenko and V.S. Sudavtsova, Russ. Metall. 1974 (5) 82. [ 19 ] K.C. Mills, K. Kinoshita and P. Grieveson, J. Chem. Thermodyn. 4 (1972) 581. [20] N.N. Sirota and M.B. Breslav-Maflennikov, Vestsi Akad. Navuk BSSR Set. Fiz.-Mat. Navuk 1977 (!) 110. [ 2 1 I N . Maruyama and S. Ban-ya, Nippon Kinzoku Gakkaishi (J. Jpn Inst. Met.) 42 (1978) 992. [ 22 ] G.R. Belton and R.J. Fruehan, J. Phys. Chem. 71 (1967) 1403. [ 23 ] B.R. Conard, T.B. McAneney and R. Sridhar, Metall. Trans. 9B (1978) 463. [ 24 ] W. Rammensee and D.G. Fraser, Ber. Bunsenges. Phys. Chem. 85 (1981) 588. [25] O. Kubaschewski, K.-H. Geiger and K. Hack, Z. Metallkd. 68 (1977) 337. [ 26] G.R. Zellars, S.L. Payne, J.P. Morris and R.L. Kipp, Trans. Metall. Soc. AIME 215 (1959) 181. [ 27 ] R.J. Fruehan, Thesis, Univ. of Pennsylvania, 1966. [28] R. Speiser, A.J. Jacobs and J.W. Spretnak, Trans. Metall. Soc. AIME 215 (1959) 185. [ 29 ] M. Onillon and M. Olette, C. R. Acad. Sci. Paris, t.263, S~rie C (1966) 1122. [ 30 ] F. Sauerwald and F. Fleischer, Z. Elektrochem. 39 (1933) 686. [ 31 ] F. K6rber, W. Oelsen and H. Lichtenberg, Mitt. Kaiser Wilhelm Inst. Eisenforsch. 19 (1937) 131. [ 32 ] H.O. yon Samson-Himmelstjerna, Z. Metallkd. 28 (1936) 197. [33] J.F. Elliott, M. Gleiser and V. Ramakrishna, In: Thermochemistry for Steelmaking (Addison-Wesley, Reading, Mass., 1963),p. 514. [ 34 ] G.K. Sigworth and J.F. Elfiott, Met. Sci. 8 (1974) 298. [ 35 ] M.V. Rao and W.A. Tiller, Mater. Sci. & Eng. 14 (1974) 47. [ 36 ] Y. Waseda and K.Th. Jacob, Arch. Eisenhfittenwes. 52 (1981) 131. [ 37 ] Y. Iguchi, Y. Tozaki, M. Kakizaki, S. Ban-ya and T. Fuwa, Tetsu-to-Hagan~ (J. Iron Steel Inst. Jpn) 63 (1977) 953. [ 38 ] B. Predel and R. Mohs, Arch. Eisenhfittenwes. 41 (1970) 61.

[ 39 ] J. Tomiska, H. Nowotny, L. Erd~lyi and A. Neckel, Ber. Bunsenges. Phys. Chem. 83 (1979) 1035. [40 ] K.W. Lange and H. Lindseheid, In: Proc. Int. Symp. Metall. Chem. - Appl. Ferrous Met. (Iron Steel Inst., London, 1973). [41 ] N.N. Sirota and M.B. Breslav-Maslennikov, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1978 (3) 122. [42 ] G.I. Batalin, V.A. Stukaio, N.Ya. Neshimenko, V.A. Gladkikh and O.I. Lynborets, Russ. Metall. 1977 (6) 35. [ 43 ] N.A. Vatolin and Yu.S. Koslov, Russ. Metall. 1977 (1) 67. [44] N.A. Vatolin, A.I. Timofeev, O.A. Fain and E.L. Dubinin, Russ. J. Phys. Chem. 45 (1971) 1146. [ 45 ] N.A. Vatolin, Yu.S. Kozlov and E.A. Pastukov, Russ. Metall. 1977 (5) 181. [ 46 ] N.A. Vatolin, A.I. Timofeev and E.L. Dubinin, Russ. J. Phys. Chem. 45 (1971) ! 149. [ 47 ] S. Watanabe and O.J. Kleppa, J. Chem. Thermodyn. 15 (1983) 633. [48] K.W. Lange, Z. Metallkd. 64 (1973) 111. [49 ] A.I. Chegodaev, E.L. Dubinin, N.A. Vatolin and A T Timofeev, Russ. J. Phys. Chem. 51 (1977) 876. [50] D.L. Vieth and M.J. Pool, Project Themis Rep. No. 72-30, Univ. of Cincinnati, 1972. [ 51 ] B. Predel and R. Mohs, Arch. Eisenhlittenwes. 42 (1971) 575. [ 52 ] R.N. Dokken and J.F. Elliott, Trans. Metall. Soc. AIME 233 (1965) 1351. [ 53 ] M.G. lknz and J.F. Elliott, Trans. Metall. Soc. AIME 230 (1964) 706. [ 54] S. Sato and 03. Kleppa, Metall. Trans. 13B (1982) 251. [55] L. Elford, F. Mfiller and O. Kubaschewski, Ber. Bunsenges. Phys. Chem. 73 (1969) 601. [ 56 ] C.W. Schultz, G.R. Zellars,S.L. Payne and E.F. F6rster, US Bureau Mines, Rep. Invest. No. 6410, 1964. [57 ] I.T. Sryvalin, O.A. Fain and Yu.P. Nikitin, Izv. VUZ Chem. Metail. 1958 (4) 66. [ 58 ] R. Hultgren and P.D. Desai, In: Selected Thermodynamic Values and Phase Diagrams for Copper and Some of its Binary Alloys (Int. Copper Res. Assoc., New York, 1971). [ 59 ] U. Kuxmann and J. Riecke, Erzmetall 25 (1972) 395. [60] A.D. Kulkarni and R.E. Johnson, Metall. Trans. 4 (1973) 1723. [ 61 ] G.K. Sigworth and J.F. Elliott, Can. Metall. Quarterly 13 (1974) 455. [ 62 ] D.A. Stevenson and J. Wulff, Trans. Metall. Soc. AIME 221 (1961) 271. [ 63 ] B. Predel and H. Sandig, Z. Metallkd. 60 (1969) 208. [ 64 ] B. Predei and E. Zehnpfund, Thermochim. Acta 8 (1974) 283. [ 65 ] J. Tomiska, L. Erd61yi, A. Neckel and H. Nowotny, Z. Metallkd. 68 (1977) 734. [66] N. Meysson and A. Rist, M6m. Sci. Rev. M6t. 62 (1965) 1127. [ 67 ] V.V. Berezutskii, V.N. Eremenko and G.M. Lukashenko, Russ. J. Phys. Chem. 46 (1972) 1230. [ 68 ] J. Tomiska, CALPHAD 4 (1980) 63. [ 69 ] A. Neckel, L. Erd61yi, G. Sodeck and E. Buschmann, Can. Metall. Quarterly 13 (1974) 379. [70] E.J. Gfimsey and A.K. Biswas, Trans. Inst. Mining Metall. 83C (1974) 250.

A.K. Niessen et aL / Enthalpies of formation of Ni alloys [ 71 ] S.S. Wang and J.M. Toguri, J. Chem. Thermodyn. 6 (1973) 53. [ 72 ] R.A. Oriani and W.K. Murphy, J. Phys. Chem. 62 (1958) 199. [ 73 ] R.A. Walker and J.N. Pratt, Rep. Dept Phys. Metall. Sci. Mater., Univ. of Birmingham, Eng., 1971. [ 74 ] R.M. Singer and J.R. Weeks, Rep. USAEC ANL-7520, 1969. [ 75 ] P. Sieben and N.G. Schmahl, Giesserei 18 (1966) 197. [ 76 ] I.T. Sryvalin, O.A. Fain and B.M. Lepinskikh, Russ. J. Phys. Chem. 38 (1964) 637. [ 77 ] F. Sommer, J.-J. Lee and B. Predel, Z. Metalikd. 74 (1983) 100. [78] A. Moseva, D. Nenov and N. Gidikova, Arch. Eixnhllttenwu. 48 (1977) 533. [ 79 ] H. Hagtwara, S. Sugino and K. Yamaguchi, Bull. Univ. Osaka Prefect. A 26 (1977) 81 and Chem. Abstr. 88 (1978) 95640. [80] G. Jangg and H. Palman, Z. Metallkd. 54 (1963) 364. [ 81 ] J.R. Weeks, Corrosion 23 (1967) 98. [82] Yu.O. Fain, V.M. Bayer, P.V. Gel'd and M.S. Petrushevskiy, Russ. Metall. 1974 (4) 52. [ 83 ] V.M. Sandakov, Yu.O. Fain and P.V. Gel'd, Russ. J. Phys. Chem. 45 (1971) 1020. [84] E..Th. Henig and H.L. Lukas, In: Proc. Journ~'s de Calorim6trie et d'Analyse Thermique, Grenoble, 1975, Vol. 6, 13.1. [85 ] H.-D. Dann6hl and H.L. Lukas, Z. Metallkd. 65 (1974) 642. [86] C. Chatillon-Colinet, H. Diaz, J.-C. Mathieu, A. Percheron-Gu~gan and J.-C. Achard, Ann. Chim. Ft. 4 (1979) 657. [ 87 ] E.-Th. Henig and H.L Lukas, Z. Metaiikd. 66 (1975) 98. [88] M. Jeymond, D. Landaud, M. Legardeur and A. Pasturel, Thermochim. Acta 55 (1982) 301. [89] N.V. Gizenko, S.N. Kilesso, D.V. ll'inkov, B.I. Emlin and A.L. Zav'yalov, Soy. Non-Ferrous Met. Res. II (1983) 263. [90] V.G. Dyubanov, A.Ya. Stomakhin and A.F. Filippov, Izv. VUZ Chem. Metall. 1972 (3) 69. [91 ] G.R. Johnston and L.D. Palmer, High Temp. - High Pressures 12 (1980) 261. [92 ] S.C. Schaefer and N.A. Gokcen, High Temp. Sci. Ii (1979) 31. [ 93 ] F. Vachet, P. Desr~ and I~. Bonnier, C. R. Acad. Sci. Paris, t.260 (1965) 453. [ 94 ] W. Vogelbein, Thesis, Univ. of Stuttgart, 1976. [ 95 ] B. Predel and W. Vogelbein, Thermochim. Acta 30 (1979) 187. [ 96 ] V.V. lkrezutskii, M.I. Ivanov and G.M. Lukashenko, Ukr. Khim. Zh. 47 (1981) 543. [ 97 ] P.V. Gel'd and Yu.M. Gertman, Phys. Met. & Metallogr. 12 (1961) (l) 42. [ 98 ] P.V. Gel'd and Yu.M. Gertman, Phys. Met. & Metallogr. 10 (1960) (2) 137. [99] V.A. Stukalo, G.I. Batalin, N.Ya. Neshchimenko and V.P. Kurach, Russ. Metall. 1979 (6) 68. [ 100 ] W. Oelsen and H.-O. yon Samson-Himmelstjerna, Mitt. Kaiser Wilhelm. Inst. Eisenforsch. 18 0936) 131. [ 101 ] P.J. Bowles, H.F. Ramstad and F.D. Richardson, J. Iron Steel Inst. 202 0964) ll3. [ 102] L. Martin-Garin, I. Ansara and P. Desr6, C. R. Acad. SCi. Paris, t.266, S~rie C (1968) 1595.

345

[ 103 ] K. Sano, K. Okajima and N. Okuda, Mere. Fac. Eng. Nagoya Univ. 8 (1956) 250. [ 104 ] K. Schwerdtfeger and H.-J. Engell, Trans. Metall. Soc. AIME 233 (1965) 1327. [ 105 ] T.G. Chart, High Temp. - High Pressures 5 (1973) 241. [ 106] R. Castanet, J. Chem. Thermodyn. 11 (1979) 913. [ 107 ] A.N. Shlapak, E.A. Beloborodova and G.I. Batalin, Ukr. Khim. Zh. 46 (1980) 209. [ 108 ] L. Erd61yi, L. Neckel, J. Tomiska and H. Nowotny, Bet. Bunsenges. Phys. Chem. 81 (1977) 1003. [ 109 ] V.V. Berezutskii, V.N. Eremenko and G.M. Lukashenko, Dopov. Akad. Nauk UkRSR Set. B 1977 (2) 122. [ I I0 ] B.P. Burylev and V.D. Ivanova, Izv. VUZ Chem. Metall. 1978 (2) 18. [ I I I ] V.D. lvanova and B.P. Burylev, Russ. J. Phys. Chem. 45 (1971) 1166. [112] J.N. Pratt, J.M. Bird and S. Martosudirdjo, Rep. US Army, Contr. DAJA 37-73-C-3010, Univ. of Birmingham, Engl., 1974. [ 113] S. Martosudirjo and J.N. Pratt, Thermochim. Acta 17 (1976) 183. [114 ] G.F. Day and R. Hultgren, J. Phys. Chem. 66 (1962) 1532. [115] J. Hertz, C. R. Acad. Sci. Paris, t.262, S&ie C (1966) 1652. [ 116 ] R.A. Oriani and W.K. Murphy, Acta Metall. 8 (1960) 23. [ 117 ] A.K. Jena and T R . Ramachandran, SCr. Metall. 5 (1971) 639. [ 118 ] R.C. King and OJ. Kleppa, Acta Metall. 12 (1964) 87. [119] R.A. Walker and J.B. Darby, Acta Metall. 18 (1970) 1261. [ 120 ] B. Predel and H. Ruge, Mater. Sci. & Eng. 9 (1972) 141. [ 121 ] R. Oriani and W.K. Murphy, Acta Metall. 10 (1962) 879. [ 122 ] W. Vogelbein, B. Predel and Y.A. Chang, Z. Metallkd. 73 (1982) 530. [ 123 ] M.J. Pool, I. Arpshofen, B. Predel and E. Schultheisz, Z. Metallkd. 70 (1979) 656. [ 124 ] F. K6rber and W. Oelsen, Mitt. Kaiser Wilhelm Inst. Eisenforsch. 19 (1937) 209. [ 125] V.N. Eremenko, G.M. Lukashenko and V.L Pritula, Ukr. Khim. Zh. 39 (1973) 227. [ 126] V.N. Eremenko, G.M. Lukashenko and V.L Pritula, Russ. J. Phys. Chem. 45 (1971) 1131. [ 127 ] J.B. Darby, A.W. Bryant and S.D. Smith, Coll. Int. CNRS 201 (1972) 219. [ 128 ] T. Alden, D.A. Stevenson and J. Wulff, Trans. Metall. Soc. AIME 212 (1958) 15. [ 129] M. Hino and T. Azakami, Nippon Kogyo Kaishi 96 (1980) 553. [ 130 ] M. lwase and A. McLean, Metall. Trans. 14B (1983) 765. [ 131 ] G.R. Belton and R.J. Fruehan, Metall. Trans. 1 (1970) 781. [ 132] K. Mukai, Y. Wasai, K. Funatsu, K. Wasai and H. Koda, Nippon Kinzoku Gakkaishi (J. Jpn Inst. Met.) 46 (1982) 870. [ 133 ] K.T. Jacob, Metall. Trans. 13B (1982) 283. [ 134] K. Sanbongi and M. Ohtani, Tetsu-to-Hagan~ (J. Iron Steel Inst. Jpn) 40 (1954) 1106. [ 135 ] J. Velisek, Kovov~ Mater. 20 (1982) 257. [ 136] Y. Iguchi, S. Nobori, K. Saito and T. Fuwa, Tetsu-toHagan~ (J. Iron Steel Inst. Jpn) 68 (1982) 633.

346

A.K. Niessen et al. / Enthalpies of formation of Ni alloys

[137] C.B. Alcock and A. Kubik, Trans. Inst. Mining Metali. 77C (1968) 220. [1381 L. Topor and O.J. Kleppa, Metall. Trans. 15B (1984) 573. [139] H. Diaz, A. Percheron-Gu6gan, J.C. Achard, C. Chatillon and J.C. Mathieu, Int. J. Hydrogen Energy 4 (1979) 445. [140] J.-J. Lee, Th~is, Univ. of Stuttgart, 1982. [ 141 ] Yu.T. Mel'nikov and V.E. Novoselov, Russ. J. Phys. Chem. 50 (1976) 1416. [1421 J.N. Pratt and A. Ahmad, USNTIS Rep. AD-AOI7668, 1975. [ 143] P.J. Spencer, At. Energy Rev. Spec. Issue 8 (1981) 9. [144] O.J. Kleppa and S. Watanabe, Solid State Commun. 46 (1983) 799. [ 145 ] A. Neckel, E. Buschmann and L. Erd61yi, In: Abstr. Symp. Thermodynamik der Legierungen, Univ. of Mfinster, Germany, 1972, p. 83. [146] D.L. Johnson, Atomics Int., Rep. NAA-SR-8381, 1964. [ 147] W.G. Moffat, Handbook of Binary Phase Diagrams (Genium, Schenectady, 1987). [ 148] G. Bienvenue, C. Potard, B. Schaub and P. Desr6, In: Thermodynamics of Nuclear Materials (IAEA, Vienna, 1976), p. 777. [1491 A. Pasturei, C. Chatillon-Colinet, C. Lartigue and A. Percheron-Gu6gan, Ann. Claim. Fr. 7 (1982) 59. [ 150] M.J. Pool, G. Starr and W.W. Griffith Jr, In: Abstr. Symp. Thermodynamik der Legierungen, Univ. of Mfiuster, Germany, 1972, p. 36. [151] C. Dasarathy, Trans. Metall. Soc. AIME 245 (1969) 2015. [ 1521 R. Boom, Set. Metall. 8 (1974) 1277. [1531 J.C. Gaehon, M. Notin, C. Cunat, J. Hertz, J.C. Parlebas, G. Moraitis, B. Stupfel and F. Gautier, A¢ta Metall. 28 (1980) 489. [154] J.S. Lleada and M.B. Bever, Trans. Metail. Soc. AIME 215 (1959) 728. [ 1551 Y. Takeudai, K. Moehizuki, M. Watanabe and I. Obinata, Metall 20 (1966) 2. [1561 L. Kaufman, CALPHAD 2 (1978) 117. [ 1571 M. Notin and J. Hertz, Aeta Metall. 31 (1983) 903. [ 1581 R . L Eichelberger and R . L McKisson, USAEC Rep. AI-AEC-12955, Rockwell, California, 1970. [ 159] R.L. Eiehelberger and R.L. McKisson, USAEC Rep. ANL-7520, 1968, Part 1, p. 319. [16Ol A.A. Vertman and K.N. Ermolaev, Fiz. & Khim. Obrab Mater. 1974 (3) 42. [ 1611 T.D. Claar, Reactor Techn. 13 (1970) 124.

[162] S.P. Awasthi and H.U. Borgstedt, J. Nucl. Mater. 16 (1983) 103. [ 163 ] J.M. Larrain, CALPHAD 4 (1980) 155. [ 164 ] L.Sh. Tsemekhman, S.E. Vaisburd and Z.F. Shirokova, Russ. J. Phys. Chem. 45 (1971) 1176. [ 165]G.G. Camere, i and G. Mazzei, Adv. Mass. Spectr. 6 (1974) 603. [ 166 ] J.M. Larrain, Can. Metall. Quarterly 18 (1979) 401. [ 167 ] J.-J. Lee and F. Sommer, Z. Metallkd. 76 (1985) 750. [ 168 ] Yu.O. Fain, S.E. Detain and V.V. Litovskii, Russ. J. Phys. Chem. 59 (1985) 131. [ 169 ] E. Pelzel, Metall 9 (1955) 692. [ 170 ] H. Lindscheid and K.W. Lange, Z. Metallkd. 61 (1970) 193. [ 171 ] R. Castanet, J. I.*ss-Common Met. 103 (1984) LI. [ 172] C.R. Cavanaugh and LF. Elliott, Trans. Metall. Soc. AIME 230 (1964) 633. [ 173 ] D.R. Conant and G.R.B. Elliott, J. Chem. Eng. Data 13 (1968) 354. [ 174] J. Tomiska, Z. Metallkd. 76 (1985) 532. [ 175] M.G. Frohtmrg and S. Anik, Ber. Bunsenges. Phys. Chem. 89 (1985) 130. [ 176 ] Y.-Y. Chuang and Y.A. Chang, Z. Metallkd. 77 (1986) 460. [ 177 ] A. Gabriel, H.L. Lukas, C.H. Allibert and I. Ansara, Z. Metallkd. 76 (1985) 589. [ 178 ] L. Kaufman and H. Nesor, CALPHAD 2 (1978) 81. [ 179 ] L. Kanfman, CALPHAD 1 (1977) 7. [ 180 ] L. Kaufman and H. Nesor, CALPHAD 2 (1978) 55. [ 181 ] T. Pomianek, Z. Metailkd. 77 (1986) 388. [182]L Schott and F. Sommer, J. Less-Common Met. 119 (1986) 307. [ 183 ] L. Topor and O.J. Kieppa, Z. Metallkd. 77 (1986) 65. [ 184 ] G.K. Sigworth, J.F. Elliott, G. Vaughn and G.H. Geiger, Trans. Metall. Soc. C I M , 1977, 104. [ 185 ] S. an Mey, Z. Metallkd. 77 (1986) 805. [ 186 ] C. Cofinet, A. Bessoud and A. Pasturel, Z. Metallkd. 77 (1986) 798. [187] K.W. Lange and H. Sehenck, Metali. Trans. 1 (1970) 2036. [ 188 ] G.K. Sigworth and J.F. Elliott, Can. Metall. Quarterly 15 (1976) 123. [ 189] I.V. Nikolaenko, G.I. Batalin and E.A. Beioborodova, Russ. J. Phys. Chem. 61 (1987) 252. [ 190] P.A. Gomozov, Yu.V. Zasypalov and B.M. Mogutnov, Russ. J. Phys. Chem. 60 (1986) 1122. [ 191] E.K. Storms and E.G. Szklarz, J. Less-Common Met. 135 (1987) 229.