Accepted Manuscript Title: Estimating distributional patterns of non-marine Ostracoda (Crustacea) and habitat suitability in the Burdur province (Turkey) Author: Mehmet YAVUZATMACA Okan ¨ ˘ ¨ ¨ GLU KULK OYL UO Ozan YILMAZ PII: DOI: Reference:
S0075-9511(16)30146-3 http://dx.doi.org/doi:10.1016/j.limno.2016.09.006 LIMNO 25533
To appear in: Received date: Revised date: Accepted date:
1-3-2016 26-9-2016 29-9-2016
¨ ˘ ¨ ¨ GLU, Please cite this article as: YAVUZATMACA, Mehmet, KULK OYL UO Okan, YILMAZ, Ozan, Estimating distributional patterns of non-marine Ostracoda (Crustacea) and habitat suitability in the Burdur province (Turkey).Limnologica http://dx.doi.org/10.1016/j.limno.2016.09.006 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Estimating distributional patterns of non-marine Ostracoda (Crustacea) and habitat suitability in the Burdur province (Turkey)
Mehmet YAVUZATMACA*, Okan KÜLKÖYLÜOĞLU and Ozan YILMAZ
Department of Biology, Faculty of Arts and Science, Abant İzzet Baysal University, 14280 Bolu, Turkey
*Corresponding author:
[email protected]
1
ABSTRACT We explored distributional patterns and habitat preferences of ostracods in the Burdur province (Turkey). At 121 sites we recorded 35 taxa (22 recent, 13 sub-recent), of which 23 represent new records for the province. According to the Index of Dispersion and d-statistics, the individual species exhibited clumped distributions. Cosmopolitan species dominated (63.64%). A direct effect of regional factors (e.g., elevation) was not observed, while local factors (e.g., water temperature) best explained species distribution among habitats. Based on alpha diversity values, natural habitats (springs, ponds, creeks) were more suitable than artificial habitats (e.g., troughs, dams), suggesting that natural habitats define regional species diversity. Twenty-two of the recorded species had wider ecological ranges than previously reported. Cosmopolitan species appeared to suppress non-cosmopolitan species due to their wider ecological range.
Keywords: Bioindicator, Clump distribution, Dominant species, Ostracods, Source habitats
2
1. Introduction
Ostracods are bivalved aquatic crustaceans that are generally small (0.3 - 5.0 mm, although some marine species may reach up to 30 mm in length) (Meisch, 2000). Their outer chitinous carapace has an epidermis of low magnesium calcium carbonate (calcite) that covers a calcitic shell which can be fossilized in sediments (Chivas et al., 1986). Fossil ostracods can be used to reconstruct paleo-environmental conditions. The first (oldest) undoubted fossil ostracod dates back to the Silurian period about 425 mya. These fossils represent the oldest known microfauna (Delorme, 1991; Siveter, 2008; Williams et al., 2008). Desiccation and freezing resistant eggs, and active and passive dispersal mechanisms contribute to their wide distribution throughout the world (McKenzie and Moroni, 1986; Horne and Martens, 1998; Rossi et al., 2003; Rodriguez-Lazaro and Ruiz-Muñoz, 2012; Külköylüoğlu, 2013) and in a variety of marine and non-marine aquatic habitats (Delorme, 1991; Meisch, 2000; Horne, 2003; Külköylüoğlu, 2013; Escrivá et al., 2014). The distributions of ostracods are effected by multiple factors such as temperature, sediment type, depth, vegetation, elevation, pH, dissolved oxygen, transparency of water and salinity (Malmqvist et al., 1997; Mezquita et al., 2001; Külköylüoğlu, 2005a; Martín-Rubio et al., 2005; Pérez et al., 2010; SzlauerŁukaszewska, 2012). Although species-specific responses to these factors (Benson, 1990; Delorme, 1991), some species are tolerant to a wide range of environmental conditions (e.g., water temperature, dissolved oxygen, etc.) (Uçak et al., 2014). Therefore, ostracods are bioindicators of aquatic conditions and are commonly used in different scientific fields such as geology (biostratigraphy), archeology, palaeobiology, palaeoclimatology, palaeolimnology, palaeoecology, wetland conservation, elemental and isotopes studies and evaluations of anthropogenic pollution (Forester, 1991; Holmes et al., 1998; Külköylüoğlu, 1998; Alvarez Zarikian et al., 2000; Mourguiart and Montenegro, 2002; Padmanabha and Belagali, 2008; Jiang et al., 2008; Sarı and Külköylüoğlu, 2010; Rodriguez-Lazaro and Ruiz-Muñoz, 2012; 3
Ruiz et al., 2013). Ostracods are particularly valuable as indicator species for estimating the past and present environmental changes. However, this requires an understanding and sophisticated knowledge of species-specific ecological requirements and tolerance ranges (limits) across habitats. Additionally, one may also question the type(s) of suitable habitats for ostracods and how ostracods respond to changes in such conditions (Külköylüoğlu, 2003a, 2004). The present study attempts to provide this understanding through a regional evaluation of ecology, distribution and habitat preferences of non-marine ostracods.
Species may exhibit random, clumped (aggregation) and uniform distributional patterns in response to biotic and abiotic factors. Of which, random distribution describes all individuals have equal probability of occurring in habitats. This distribution is also named as “Poisson distribution model” when population variance (s2) equals the mean (µ) (Ludwig and Reynolds, 1988; Zar, 1999). On the other hand, uniform and clumped distributional patterns show equal spacing and accumulation of species in an area and/or habitat, respectively (Ludwig and Reynolds, 1988). Determining the modes of these patterns can provide evidence to the effect of regional and local factors on species occurrence. While local factors (e.g., elevation) can influence the distribution of species residing in a particular habitat (e.g., lake, spring, etc.), regional factors can exert substantial influence on colonization and immigration of the species among the regions (Paradise et al., 2008). Determining type of such distributional patterns with those effective environmental variables on species distribution can help to protect species from extinction in particular areas. Despite this, there are no other extensive regional-scale geographical and ecological studies evaluating the distributional patterns of ostracod species (but see Yavuzatmaca et al., 2015).
Like most regions around the world, our knowledge about ostracod ecology and distribution in Turkey contains large gaps. For example, Burdur province (Fig. 1) has
4
received no systematic survey and habitat characterization for its ostracod fauna. Here, we present the results of the first extensive study on Burdur province ostracods. Accordingly, the main objectives of the present study are i) to determine distributional patterns (clumped, uniform, random) of ostracod species in Burdur, ii) to discuss the relationship between habitat suitability and ostracod species diversity, iii) to elucidate the most important environmental factors (local and/or regional) affecting species distribution among habitats along, and iv) to estimate species’ ecological optimum and tolerance levels.
2. Material and Methods
2.1.
Site Description
The province of Burdur with 6887 km2 of surface area (also known as the ‘Lake District Area’) is located in the South Anatolia between 36°53' - 37°50' north latitude and 29°24' - 30°53' east longitude. The province is surrounded by some extentions of the West Toros Mountains in the south, Lake Burdur and the Karakuş Mountain in the north and Lake Acıgöl and Eşeler Mountain in the west. Also, the province has 2.7% upland, 19% lowland, 60.6% mountains and 17.6% hilly lands (Burdur Valiliği, 2014). High mountains seperate the district from the Mediterranean region, and summer is hot but winter is very cold (Burdur, 2014).
2.2.
Sampling and Measurements
Total of 121 sampling sites with six different aquatic habitats (spring, lake, dam, pond, creek and trough) were randomly visited and sampled between August 30 and September 02, 2012 (Fig. 1). Sampling sites were 5 to 10 km apart to prevent bias on similarities in species diversity and distribution. Eight environmental variables (dissolved oxygen (DO, mg L-1), percent oxygen saturation (% sat.), water temperature (Tw, ºC), electrical conductivity (EC, 5
µS cm-1), total dissolved solids (TDS, mg L-1), salinity (Sal, ppt), pH, atmospheric pressure (mmHg)) were recorded with a YSI-Professional Plus before sampling to prevent possible results of “Pseudoreplication” (Hurlbert, 1984). In situ water phsyico-chemical measurements should be taken without any disturbance of the sampling site that can result from ostracod collection and subsequent increased turbidity and water column mixing. Air temperature (Ta, ºC), wind speed (km h-1) and air moisture (%) were obtained by a Testo 410-2 model anemometer, and basic geographical data (elevation, coordinates) were recorded with a geographical positioning system (GARMIN etrex Vista H GPS) (Appendix A).
Ostracod samples were collected from each site with a standard sized hand net (200 µm mesh size). We preserved samples in 250 ml plastic bottles and fixed with 70% of ethanol. In the laboratory, each sample was filtered through four standardized sieves (0.5, 1.0, 1.5 and 2.0 mm mesh size) under tap water and than kept in 70% ethanol for further studies following standard protocol (Danielopol et al., 2002). Subsequently, ostracods were sorted from sediments under a stereomicroscope (Olympus ACH 1X) and their soft body parts were dissected in lactophenol solution for taxonomic identification. Species identification was done using a light microscope (Olympus BX-51). The taxonomic key provided in Meisch (2000) was primarily used for taxonomic classification and species identification, although additional taxonomic keys (e.g., Bronhstein, 1947; Karanovic, 2012) were also used when necessary. All of the ostracod samples were curated at the Limnology Laboratory of Abant İzzet Baysal University, Bolu/TURKEY and are available upon request.
2.3.
Statistical Analyses
Distributional patterns of species among sampling sites were tested by the application of Poisson probabilities along with a Chi-square test (Ludwig and Reynolds, 1988). The observed number of sites (f) with 0, 1, 2, 3, 4 or more (4+) species was computed (Fig. 2). 6
Then, the mean (µ) was then calculated by multiplying the number of species (i.e., 0, 1,...,4 +) by f, then dividing by the total number of sampling sites. The Poisson probability of finding of x individuals in sampling units (P(x)) was calculated using Equation 1.
Equation 1 where e, represents Euler’s number and approximately equals 2.71828; µ, the mean number of successes that occur in a specified region; x, the actual number of successes that occur in a specified region; P(x; µ) the Poisson Probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is µ.
A Chi-square (X2) test was then applied to compare observed (O) and expected (E) frequencies of random distribution at 0.05 critical (α) level. The value of calculated Chisquare was computed using Equation 2.
Additionally, departure from Poisson distribution was tested by application of the Index of dispersion (variance (s2) / mean (µ)) (Ludwig and Reynolds, 1988) where s2/µ = 1 random distribution, s2/µ < 1 = uniform distribution, and s2/µ > 1 = clumped distribution.
To test whether data conformed to the Poisson distribution when the sample size is N30, we calculated d-statistics (Equation 4). To find d-statistics value, we need Chi-square (X2) (it is different from X2 calculated using Equation 2) calculated using Equation 3 (Ludwig and Reynolds, 1988).
7
where X2: Chi-square, Xi: the number of individuals in the ith sampling unit; N: total sample size; X : the mean number of successes that occur in a specified region
Equation 4
where X2 is derived from Equation 3
The d-statistics (Elliott, 1973 sensu Ludwig and Reynolds, 1988, p. 28) are interpreted as follows: i) if ΙdΙ < 1.96, accept a random dispersion ii) if d < -1.96, suspect a regular dispersion iii) if d > 1.96, a clump dispersion
The relationships between species and environmental variables (electrical conductivity (EC), water (Tw) and air (Ta) temperatures, dissolved oxygen (DO), elevation (Elev) and pH) were examined by Canonical Correspondence Analysis (CCA). The data were logtransformed (ter Braak, 1987; Birks et al., 1990) and tested with Monte Carlo Permutation tests (499 permutation) where rare species were removed before analyses. Before performing CCA, suitability of data for CCA was tested with Detrended Correspondence Analysis (DCA) (software package CANOCO for windows 4.5).
C2 software was used to estimate species tolerance (tk) and optimum (µk) levels for different ecological variables after using a transfer function of weighted averaging regression (Juggins, 2003). The accuracy of optimum estimates is proportional to species’ prevalence in 8
samples (ter Braak and Barendregt, 1986). Therefore, the optimum and tolerance levels of a species to ecological variables can show differences according to their occurrence frequencies in different geographical areas as this is the case in Burdur and in many other regions in and out of Turkey (see discussion below). This situation may be considered for further evaluation of the ideas about ecological preferences of individual species and using them as indicators of environmental conditions.
The software program Species Diversity & Richness 4 (Seaby and Henderson, 2006) was used to calculate the Shannon-Wiener index value for different habitat types. The range of 1.5 and 3.5 was used to consider low to high index values as suggested by Magurran (1988). Species were classified as eudominant (32 – 100%), dominant (10 – 31%), subdominant (0.32 – 9%), recedent (1 - 3.1%), subrecedent (0.32 - 0.99%) and sporadic (< 0.31%) based on their dominance coefficient (Rombach, 1999)
3. Results
A total of 35 taxa (22 recent and 13 sub-recent) were encountered from 110 of 121 sampling sites in Burdur province. Of these, 23 (10 living and 13 sub-recent) taxa represents new records for Burdur (Appendix A). The occurrence probabilities of P (x = 0), P (x = 1), P (x = 2), P (x = 3) and P (x = 4(+)) of species in Burdur were calculated using Equation 1 and given in Table 1. Chi-square (X2) values of each occurrence (0, 1, 2, 3 and 4 (+)) are presented in Table 2. Ostracod occurrence did not conform to a random distribution or “Poisson distribution” 9
(X2calculated = 8.08 > X2table (3,121,0.05) = 7.81), Index of Dispersion and d-statistics (1.09 and 2.51, respectively) suggested a clump dispersion of ostracod species among sampling sites in Burdur.
The first two axes of the CCA explained 78.80% of relationships between 13 species and six environmental variables with a moderately low variance (9.50) (Table 3).
Among the variables, water temperature (Tw) (F = 3.746, P = 0.002) was the only one with strong effect on species followed by non-significant pH (F = 1.753, P = 0.074), dissolved oxygen (DO) (F = 1.494, P = 0.144), air temperature (Ta) (F = 1.170, P = 0.306), elevation (Elev) (F = 1.021, P = 0.406) and electrical conductivity (EC) (F = 0.4920, P = 0.610) (Fig. 3). Six species (Candona neglecta, Psychrodromus olivaceus, P. fontinalis, Cypria ophtalmica, Ilyocypris bradyi and Prionocypris zenkeri) were located at the left site of first axis where there is only elevation but three species (Limnocythere inopinata, Ilyocypris monstrifica and Physocypria kraepelini ) were located at the site of pH, EC and Ta. The other species (Heterocypris incongruens, H. salina, Potamocypris variegate and Herpetocypris intermedia) were placed at the site of Tw and DO. Two well known cosmoecious species (see discussion for definition) (H. incongruens and I. bradyi) were relatively closer to the center of diagram (Fig. 3).
There was no apparent relationship between species richness and elevation (Fig. 4). The number of sampling sites did not affect species richness at different elevational ranges (e.g., see 886 - 1036 m and 1339 - 1489 m of ranges) where species richness (8) were the same despite differences in the numbers of sites (23 and 11, respectively). Accordingly, there was no clear correlation between numbers of sites and numbers of species encountered within the elevational ranges. Sexually reproducing species were encountered more frequently than asexually reproducing species when elevation increased (Fig. 4). 10
Cosmopolitan species generally displayed relatively higher tolerance and optimum values for environmental variables than other species (Table 4). For example, H. incongruents, H. salina and I. bradyi had the highest tolerance levels for water temperature and L. inopinata had higher tolerance level for pH and electrical conductivity but I. monstrifica had highest tolerance level for pH. In contrast, C. neglecta shows higher than mean optimum values for dissolved oxygen concentration when P. variegata had highest optimum value for dissolved oxygen concentration. These results suggest species-specific tolerance (tk) and optimum (μk) levels of individual species for different environmental variables. Shannon-Wiener index values of ponds (H′ = 2.25), springs (H′ = 1.79) and creeks (H′=1.71) were higher than other sampled habitats (Table 5). Although troughs were sampled more frequently (58 sites with 10 spp.) than the other types of habitats, species richness are higher in ponds (17 sites with 15 spp.). In other words, a clear habitat effect was observed despite differences in sampling effort. Four cosmopolitan species (H. incongruens, H. salina, I. bradyi and P. olivaceus) were dominant over the sub-dominant species (C. neglecta, Cypria ophtalmica, Herpetocypris chevreuxi, H. intermedia, I. monstrifica, L. inopinata, P. variegata and P. zenkeri) while another 10 species were defined as sporadic (Table 5).
Although species abundance (number of individuals) was much higher in troughs than other habitat types (Table 6), species richness per site were high in the other five habitats. Among the habitats, spring and creeks exhibited equal species richness (7) with almost similar numbers of individuals.
11
4. Discussion Until now, 24 living species (Gülen, 1985; Altınsaçlı, 2004; Rasouli et al., 2014) have been recorded from Burdur, Turkey. 12 of these were encountered during the present study. Additionally, 23 (10 living and 13 sub-recent) taxa herein are new reports for the region (Appendix A). Thus, 47 ostracod species have been recorded from Burder, to date. Consequently, ostracod diversity in Burdur represents an important region for ostracod diversity in Turkey, comparable to other regions around the world in which systematic surveys have been conducted. For example, 37 taxa have been reported from 114 sites in Çankırı (Külköylüoğlu et al., 2016), 41 taxa have been reported from 111 sites in Adıyaman (Yavuzatmaca et al., 2015), 25 taxa have been reported from 50 sites in Diyarbakır (Akdemir and Külköylüoğlu, 2011), 34 taxa have been reported from 133 sites in Ordu (Külköylüoğlu et al., 2012c), 14 species have been reported from 38 sites in northern Finland (Iglikowska and Namiotko, 2010), 74 taxa have been reported from 320 sites in north east Italy (Pieri et al., 2009), and 54 species have been reported from 132 sites in upper Paraná River, Brazil (Higuti et al., 2009). Accordingly, numbers of species or taxa do not correspond to increasing sampling effort (the Sampling Effect Hypothesis) (Williamson, 1988; Hill et al., 1994). Rather, ostracod diversity patterns in Burdur may be better explained by the "Habitat Diversity Hypothesis" (Williams, 1943) which predicts that species richness increases with the availability and diversity of suitable habitats (see Külköylüoğlu et al., 2012a). Consequently, the numbers of ostracod species or taxa in an area may be related to variety of habitat types and habitat quality as is the case in our study.
The clumped distribution patterns exhibited by Burdur ostracods mirrors the distributional patterns of several other taxonomic groups. For example, benthic populations (Heip, 1976), marine benthic (Heip, 1975) and some sessile invertebrates (Schmidt, 1982)
12
also exhibited clumped distributions. For ostracods, Heip (1976) observed a clumped distributional pattern of Cyrideis torosa (Jones, 1850) in a brackish pool in northern Belgium. Conversely, Yavuzatmaca et al. (2015) identified random distributional patterns of ostracods among sampling sites in Adıyaman (Turkey). These opposing findings may be explained by differences in the types of habitats sampled and the prevalence of non-cosmopolitan species. Specifically, Yavuzatmaca et al. (2015) mostly sampled natural springs (n = 44), where noncosmopolitan species were mostly prevalent (ca 51.85% of all species). In Burdur, habitat destruction was clearly observed where natural spring have been transformed into troughs. This habitat degradation may result in the aggregation of ostracod species in the troughs that we sampled (n = 58). Species inhabiting troughs have decreased opportunities for free distribution. These habitats are generally constructed to store water for animals, for irrigation, and for cleaning and drinking purposes (Külköylüoğlu et al., 2013). In such habitats, a direct anthropogenic effect that alters physico-chemical characteristics of water sources is apparent. Dominance of cosmopolitan species in degraded habitats is well documented in the literature (Külköylüoğlu et al., 2013). This is probably the case in Burdur where the majority of sampling sites were troughs with a higher prevalence of cosmopolitan species. If we consider troughs as a source of point diversity (or diversity at a single point or microenvironment (Meffe and Carroll, 1997)), this may explain the way of aggregated distribution of the ostracods in Burdur.
Canonical correspondence analysis showed that only water temperature significanlty affected ostracod dispersion (Fig. 3). Several previous studies similarly identified water temperature as an important factor affecting ostracod assemblages (e.g., Malmqvist et al., 1997; Viehberg, 2006; Kiss, 2007; Külköylüoğlu et al., 2014; Uçak et al., 2014). Since many (if not all) aquatic physico-chemical variables (e.g., electrical conductivity, dissolved oxygen concentration) are affected by changes in temperature (Wetzel, 2001), such changes may 13
in/directly alter the species occurrences. Unlike our current study, Külköylüoğlu and Sarı (2012) identified pH as the most important predictor of ostracod assemblage structure in a variety of aquatic bodies in Bolu, Turkey. Like water temperature (Roca and Wansard, 1997; Xia et al., 1997; Palacios-Fest and Dettman, 2001; Elmore et al., 2012), pH exerts an important control on the calcification of ostracod valves because solubulity of carbonate and calcium in water is dependent on pH (Wetzel, 2001). In this case, fluctuations in water physico-chemical variables (e.g., temperature) can have severe impacts on species with low tolerance ranges (stenophiles). However, species with a high tolerance to different variables within a large geographical distribution or “cosmoecious” (Külköylüoğlu, 2013)” (I. bradyi, H. incongruens and P. zenkeri) are relatively closer to the center of diagram (Fig. 3), implying that such environmental variables may not have critical influence on the distribution of these species.
There is still debate about the effect of elevation on ostracod species richness and distribution. Stevens (1992) stated that species richness and elavations are negatively correlated. Mezquita et al. (1999a) argued that elevation was a limiting factor for ostracod distribution in different water bodies of Spain. Likewise, Pieri et al. (2009) noted the importance of altitudinal range as a critical factor for the distribution of freshwater ostracods in regional scale in Italy. Also, Poquet and Mesquita-Joanes (2011) stated that elevational range may increase regional diversity in warm or temperate climates because water temperature, alkalinity and conductivity values of aquatic bodies are high at low elevation. Other studies, however, did not support (Malmqvist et al., 1997; Külköylüoğlu et al., 2012a, 2012b; Guo et al., 2013) these previous statements. In the present study elevation did not appear to influence species richness although the effect was not statistically examined. For example, we found the same numbers of species (8 spp.) at 886 - 1036 m and 1339 - 1489 m a.s.l. ranges (Fig. 4). Similarly, elevation was not identified as a significant variable in CCA. 14
This does not mean that elevation does not have potential to affect ostracod distribution, particularly through its’ influence on water temperature and other aquatic physico-chemical variables (Brown and Gibson, 1983; Van der Meeren et al., 2010; Reeves et al., 2007; Rogora et al., 2008). Such kind of changes in waters may affect the occurrence and distribution of species. Species with wide tolerance levels to different environmental variables may have better adaptive values to these changes. This is probably the case in the present study (see Fig. 4). It seems that local factors (e.g., water temperature) are more effective than the regional factors (see CCA diagram, Fig. 3) on species occurrence and distribution where elevation may have indirect effect on species distribution.
The optimum and tolerance levels reported here for Burdur ostracod species differ from those reported for ostracods from different geographical areas (Karakaş Sarı and Külköylüoğlu, 2008; Külköylüoğlu et al., 2013; Rasouli et al., 2014; Uçak et al., 2014), probably because of differences in occurrence frequencies and abundances among ostracods assessed in analyses. Sampling adequacy should be evaluated before drawing conclusions about the ecological preferences of individual species. Knowledge about species-specific tolerance and optimum levels is important for understanding the life history of ostracods, using them in palaeoreconstruction studies, understanding the environmental changes and also important for using ostracod species as bioindicators. Because of the increased sampling effort conducted in this study, the ecological preferences to eight different environmental variables for 22 ostracod species were all wider than previously reported (Appendix B). Hence, use of living species as bioindicators should be done carefully.
As mentioned above, numbers of species (15 spp.) was higher in ponds than the other habitat types. However, dominancy of individuals per species (abundance) was clearly on the side of troughs where the conditions favor cosmopolitan species with higher tolerance and
15
optimum levels over non-cosmopolitans (Table 6). This is indeed the case in our samples where we found H. incongruens, a well-known cosmopolitan (also see cosmoecious species concept), in 31 of 58 troughs (Table 5). It appears that H. incongruens increases advantages over other species by means of increasing its abundance in such artificial habitats (i.e., troughs). Aquatic conditions are changeable in troughs where cosmopolitan species can tolerate. Accordingly, they show dominancy in numbers (Table 6).
According to alpha diversity index values, natural habitats (springs, ponds and creeks) were apparently more suitable than those of artificial (e.g., troughs, dams, etc.) habitats (Table 5). Another study done in Kahramanmaraş (Turkey) by Külköylüoğlu et al. (2012a) showed partially similar results with our findings as limnocrene springs (H′ = 2.89), ponds (H′ = 2.2) and creeks (H′ = 1.95). In addition, the high values of Shannon-Wiener Index were also found for ponds (H′ = 1.25), springs (H′ = 1.00) and creeks (H′ = 0.71) in Zonguldak and Bartın (Turkey) (Külköylüoğlu, O. pers. comment). However, species diversity of lakes (3.0 species per sample (sps)), springs (2.8 sps) and ponds (2.1 sps) noted by Van der Meeren et al. (2010) in western Mongolia are higher than the present study (ponds (0.88 sps), springs (0.70 sps) and lakes (0.44 sps) (Table 6)). Such differences may be exlained by several factors such as sampling time, number of sampling sites and geographical differences. In our case, we collected samples in a short time in one season which may cause for such differences. Among the habitats, springs are known as natural biological laboratories with stable ecological conditions (Forester, 1991) if there is no disturbance. Having relatively stable ecological conditions, springs provide different opportunities for organism. Hence, springs have good conditions for ostracod diversity especially for noncosmopolitans. Unlike springs, creeks have spatial and temporal heterogeneity in physico-chemical and biological features. This is possibly because of different water sources merging into the creeks by means of precipitation and dissolved and/or particulate matters produced from drainage basin of flowing waters 16
(Wetzel, 2001). As stated by Lansac-Tôha et al. (2004), lotic habitats are the connection between the lentic habitats (e.g., especially open lakes) and so their fauna comes from all types of lentic habitats. Therefore, this eventually increases heterogeneity of creeks where microhabitats will provide alternative places for organism. Thus, this will make important changes in species richness and biodiversity. Conversely, there can be some negative effects of flowing waters on species diversity. For example, large flood events negatively effect the flowing water environments because they disturb all substrate types and the species as well. All this information may allow us to express the high diversity index value of creeks in the present study. Last habitat that we can consider as suitable for ostracods is “ponds”. Céréghino et al. (2012) pinpointed that biogeographic turnover is higher in ponds than in other freshwater bodies for freshwater species. Similarly, Martín-Rubio et al. (2005) stated most continental ostracods inhabit the stable water of lakes and ponds. In addition, the expression of Marmonier et al. (1994) may be used to elucidate high diversity of ostracods in ponds in the present study as they stated that temporary ponds have species with short life spans, desiccation resistance and tolerance, high migratory ability and have spherical or cylindrical body shape. The life spans of ostracods (e.g., Cypridopsis vidua reach to maturity in 45 days) that change species to species (Delorme, 1991) and the body shape of them (e.g., kidney, bean, elliptical, etc., (for more see Karanovic, 2012) imply why species diversity of ostracods are high in ponds. The well known dispersion abilty of ostracods by birds is another important event for explanation of ponds that are suitable or may be called as source habitats for ostracods. This is because ponds are the stepping stones for migration, dispersion and genetic exchange especialy for wild species (e.g., birds) (Céréghino et al., 2014) and so the eggs and ostracods attached to their feathers disperse large distances in different geographical areas and habitats on the path of migratory birds. If suitable conditions and source habitats for ostracods 17
are known, we may have a chance to prevent their extinction. Also, the number of similar studies should be increase in the world and in Turkey for ostracods and for other taxonomic groups since they are important for the protection of biodiversity. Over all habitats, such as ponds, springs and creeks may be called as suitable (or source) habitats for ostracods but this view should be tested in different geographical areas in future.
5. CONCLUSION
The number of taxa in Burdur were increased up to 47. Dominant species were generally cosmopolitans when they have higher abundance values than non-cosmopolitans in the present study. In other words, they seem to suppress the occurrence of non-cosmopolitans. Accordingly, they show aggregational pattern among the habitats where they occurred. As a result, frequent occurrences of cosmopolitans in aquatic bodies may be related the quality of these habitats, usually showing tendency for decrease. These conditions should be carefully monitored and should be taken under consideration for the protection of biodiversity. The sampling of natural habitats (for non-cosmopolitans), frequent presence of cosmopolitans and dispersal ability of ostracods may contribute to and be used as a way of explaining spatial patterns of ostracods among sampling sites. In spite that some of ponds, springs and creeks are under human impact, they may be showed as source habitats for ostracods. This should be tested in the future. As seen in the present study, the local factors (e.g., water temperature) are more effective than regional factors (e.g., elevation) on distribution of ostracods. Finally, ecological information was gathered from literature and from the present study of each species in Appendices A and B and are very important for using ostracods as bioindicators and for palaeoenvironmental reconstruction studies.
18
Acknowledgement
We would like to thank Daniel Hering (Germany) for his constructive review and comments on the earlier version of this manuscript and two anonymous reviewers. We also thank to Dr. Randy Gibson (USFWS, Texas) and Dr. Benjamin T. Hutchins (TPWD, Texas) for their comments and suggestions on English of the first draft of this study. Special thanks go to Mrs. Sinem YILMAZ for her help during field studies. This study is funded by the Scientific Project Research Agency of Abant İzzet Baysal University (Project no: 2012.03.01.534).
This
is
a
part
of
19
Ph.D.
dissertation
of
M.Y.
Appendix A. Ecological variables and taxa were reported from different aquatic bodies in Burdur. St. no
St. Ty
1
6
2
1
3
5
4
6
5
4
6
6
7
6
8
1
9
4
10
6
11
6
12
4
13
6
14
6
15
4
16
6
17
6
pH 7.2 4 7.2 5 7.1 3 7.8 6 7.8 3 7.6 2 7.9 6 7.1 5 7.9 3 8.5 1 8.2 3 8.6 2 8.1 9 8.1 1 7.8 9 7.9 9 7.7
DO
%D O
8.7
79.5 496.7
EC
Sp. EC
Sal
659.7
0.32
9.3
87.3 512
670
0.33
5.77
55.1 480.8
620
0.3
8.53
88.6 451.7
530.2
0.26
8.66
84.6 355.3
450.5
0.22
11.5 5
122. 665 3
760
0.37
8.94
91.9 279
328
0.16
4.55
43.3 581
752
0.37
7.39
71.5 603
766
0.38
8.41
81.5 181.3
228.8
0.11
9.85
89.5 179.4
245
0.12
8.78
96.7 347.2
386.5
0.19
11.3 3
135. 483 6
486.7
0.23
7.11
83.5 677
703
0.34
2.65
34.4 1390
1296
0.64
9.04
98.9 536
598
0.29
10.9
133. 525
513
0.25
Tw Ta 12. 1 12. 6 13. 2 17. 3 13. 9 18. 9 17. 1 13. 1 13. 9 14. 1 11 19. 8 24. 6 23. 1 28. 6 19. 8 26.
TDS
Atm.
Moist W. . s.
25.6 0.429 685.7 26.7
2.2
0.435 23.6 680.5 26.3 5
2.7
22.8 0.403 683
5.5
27.2
0.345 23.6 671.5 20.9 2 0.294 27.2 661.7 21 4 28.4 0.494 669.2 19.2 30.8
0.213 2 0.487 5 0.500 5 0.148 9 0.159 2 0.250 9 0.317 2
4.3 6.5 2.5
664.2 19.5
5.1
665.5 20.2
3.5
665.1 23.5
1.6
635.4 25.2
4.5
635
22.9
4.9
671.2 19.4
3.2
684.3 13.7
5.5
31.3 0.455 672.5 16.9
2.5
0.838 31.7 681.2 12.6 5
3.2
33.2 0.39
675.1 14.4
8.2
31.8 0.331 685.1 28.7
3.9
26.7 28 26.7 28.3 30.5 33.3
20
Elev Coordinate . N37°31'837'', 855 E036°02'383'' N37°38'791'', 921 E030°41'594'' N37°38'107'', 907 E030°42'167'' 105 N37°38'569'', 0 E030°35'921'' 118 N37°39'551'', 1 E030°35'551'' 108 N37°38'919'', 3 E030°33'190'' 113 N37°38'926'', 9 E030°30'906'' 112 N37°38'581'', 4 E030°30'393'' 112 N37°38'388'', 3 E030°30'493'' 153 N37°40'638'', 8 E030°31'080'' 152 N37°40'694'', 1 E030°31'196'' 108 N37°37'626'', 3 E030°31'253'' N37°32'555'', 882 E030°31'127'' 106 N37°34'509'', 1 E030°28'308'' N37°33'680'', 946 E030°28'235'' 102 N37°34'564'', 7 E030°26'708'' 898 N37°31'227'',
Date 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012
Taxa Po; (Isp) (Hsp; Isp; Psp; Pysp) Cn; Pzi; (Isp) Hi (Csp; Isp; Pzi) Hi; Ib (Esp; Hts; Hsp; Isp) Pfo; (Isp) Cn; Ib; Pf; (Pzi) Po Po; (Hsp) (Isp) Hi; Pv Hin; Hi
30.08.2012 30.08.2012
Hi; Ib; Pzi; Po 30.08.2012 Hi; Ib; Pv
18
5
19
6
20
6
21
6
22
3
23
1
24
6
25
1
26
6
27
3
28
6
29
3
30
6
31
6
32
6
33
4
34
4
35
5
36
6
6 8.0 1 8.0 6 8.0 6 7.9 8 8.7 6 7.3 6 7.7 4 7.8 2 7.8 4 8.1 3 7.3 5 8.3 8 7.3 9 7.6 7.3 3 8.0 8 7.8 2 7.6 8 7.4
3 3.2
40.4 800
762
0.37
11.5 7
138. 487 5
493.7
0.24
9.35
92.1 303.8
370
0.18
8.86
85.7 288
364.8
0.18
5.6
67.9 327.7
326.6
0.15
4.77
48.2 978
1176
0.59
7.63
76.5 472.2
579.4
0.28
7.95
73.3 290.6
367
0.18
8.94
89.4 301.6
365.2
0.18
6.6
72.4 351.4
388
0.19
8.26
103. 623 1
603
0.29
5.04
62
6.09
344.7
331.4
0.16
71.2 615
649
0.32
5.94
66.7 597
650
0.32
5.71
59.8 590
685
0.34
7.08
66.8 672
874
0.43
4.07
41.6 324.1
387.8
0.19
9.1
83.7 289.5
390.9
0.19
7.95
92.3 1068
1130
0.56
3 27. 8 24. 2 15. 8 13. 9 25. 2 16. 2 15. 3 14. 2 15. 9 20. 1 26. 6 27. 1 22. 3 20. 6 17. 7 12. 9 16. 4 11. 4 22
5 32.9 0.494 684.3 13
2.7
906
683.9 12.8
2.4
878
682.4 13.6
3.6
904
681.9 14
0
905
686.5 22.2
0
843
32.8 0.767 684.8 14.3
5.5
907
33.4 0.377 688.4 17.5
3.3
813
0
637
0
460
0
287
1.5
348
2.4
282
2.2
443
1.5
792
0
792
691.2 42.3
0
808
693
43.3
0
785
690.2 50.5
2
815
690.6 33.4
4.6
815
35.7 33.6 32.9 34.4
0.321 1 0.241 2 0.237 9 0.211 9
0.239 32.1 707.5 23.7 2 0.237 31.4 721.4 26.5 3 0.252 30.3 737.8 24.8 2 30.5 0.39
728.8 21.8
0.215 30.7 732.2 21.7 2 0.422 30.1 769.9 21.2 5 0.422 12.4 692.8 54.2 5 13.8 0.442 692.5 51.7 17.1 16.4 17.4 18.9
0.565 5 0.252 2 0.254 2 0.734
21
E030°28'277'' N37°30'531'', E030°27'003'' N37°29'825'', E030°26'687'' N37°30'527'', E030°25'110'' N37°30'453'', E030°24'693'' N37°30'715'', E030°32'463'' N37°30'156'', E030°33'286'' N37°28'623'', E030°32'090'' N37°18'918'', E030°46'278'' N37°19'051'', E030°48'237'' N37°20'007'', E030°48'767'' N37°22'519'', E030°48'876'' N37°22'239'', E030°49'626'' N37°23'364'', E030°47'747'' N37°26'745'', E030°29'863'' N37°26'310'', E030°29'447'' N37°25'078'', E030°26'957'' N37°25'205'', E030°25'556'' N37°25'859'', E030°23'902'' N37°23'448'',
30.08.2012 30.08.2012
(Hsp; Pos) Hi; Pv; Po; (Isp)
30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012 30.08.2012
(Csp; Im) Cn; (Hsp; Isp; Psp) Ib; Po; (Pzi) Cn Po (Hsp; Isp)
30.08.2012
Hi; Po Im; Li; Pk; (Hsp; Pos; Psp; 30.08.2012 Pysp) 30.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012
Hin; Hi; Ib (Hsp; Pzi) Hi; Ib Cn; Ib; Im; Tc; (Hsp; Psp)
Pfo 31.08.2012 Hs
37
4
38
6
39 40
6 6
41
4
42
5
43
4
44
5
45
3
46
6
47 48 49
4 5 1
50
6
51
4
52
5
53
4
54
4
55
6
1 8.1 6 7.4 2 7.9 4 8.1 8.0 3 8.3 1 8.1 6 8.1 3 8.3 8 7.0 5 8.2 1 8.5 1 7.8 2 8.1 5 8.6 5 8.5 1 8.2 8.4 5 7.6
9.53
92.6 612
767
0.38
7.6
74.4 832
1036
0.52
9.3
100
372.5
429.7
0.21
7.42
67.6 338.6
435.7
0.02
6.35
64.7 1824
2181
1.12
7.58
84.5 466.4
509.1
0.25
11.2 9
130. 420.9 4
442.9
0.21
6.96
76.3 525
586
0.29
7.02
81.5 352.8
371.2
0.18
4.54
48.7 1010
1158
0.58
5.95
66.2 346.9
381.3
0.18
9.74
110. 658 7
705
0.34
4.7
59
556
532
0.26
9.5
110. 407.1 4
421.7
0.2
9.5
96.3 198.1
235.4
0.11
5.88
72.9 395.6
386.6
0.18
4.16
49.7 329.6
338.2
0.16
5.77
69.1 491.4
492.1
0.24
7.18
73.2 497.7
608.3
0.3
14. 5 14. 8 18 12. 5 16. 5 20. 6 22. 5 19. 6 22. 4 18. 3 20. 3 21. 5 27. 2 23. 1 16. 7 26. 2 23. 7 24. 9 15.
5 0.487 21.4 691.3 28.5 5 24
0.676 684.8 28.7
0.282 25.6 672.3 24.7 1 0.270 25.6 651 21.9 4 26
1477
0.330 8 0.286 27.9 7 0.383 31.2 5 0.241 27.1 2 27
0
810
0
884
1.6 7
674.2 23.5
5
674.6 35.4
1.6
663.5 20.5
6.1
663.9 29
1.6
660.7 26
12
103 3 131 0 103 2 103 3 117 1 117 2 119 4 112 9 103 8
31.7 0.754 665.8 22.3
1.6
0.247 32.5 672.3 20.1 7
2.5
29.7 0.455 676.1 18.9
17.5 990
32.3 33.1 30.5 31.5 30.5 33 33.8
0.344 5 0.274 3 0.153 4 0.251 6 0.219 7 0.320 4 0.395
676.1 17.8
1.8
671.1 15.8
2.7
661.8 16.3
0
655.5 22.2
1.6
657.5 10.4
2.5
666.4 19.9
1.6
662.7 14.2
0
22
988 104 2 115 9 123 9 122 4 110 4 114
E030°24'430'' N37°22'132'', E030°23'441'' N37°22'527'', E030°20'878'' N37°21'242'', E030°14'817'' N37°23'290'', E030°14'920'' N37°26'205'', E030°05'593'' N37°27'908'', E030°05'668'' N37°29'728'', E030°08'682'' N37°28'535'', E030°10'296'' N37°28'261'', E030°10'481'' N37°29'210'', E030°09'476'' N37°29'505'', E030°06'228'' N37°28'640'', E030°04'570'' N37°27'177'', E030°03'511'' N37°23'500'', E030°03'182'' N37°21'135'', E030°03'711'' N37°20'154'', E030°04'103'' N37°20'443'', E030°04'510'' N37°21'289'', E030°02'458'' N37°18'747'',
31.08.2012 31.08.2012 31.08.2012 31.08.2012
Hs; Po Hi; (Isp; Pysp) Hi; (Isp; Tsp)
31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012
(Cps; Hsp; Isp) Pk; (Isp; Psp) Cn; Hi; Ib; Po Li; (Cps; Im) Hi; Ib; (Csp; Psp) (Csp) Ib; Po; (Csp; Hsp) Ds; (Ig) Hi Hi; Pa Ib; Pzi; Po; (Csp; Cps; Hsp; Lis) Li; (Isp)
Ig; Isb; Li; Pv; (Cps) 31.08.2012 Hi; Ib; (Po)
56
1
57
6
58
4
59
2
60
2
61
6
62
6
63
3
64
6
65
3
66
6
67
6
68
6
69
5
70
5
71 72
3 4
73
5
74
5
3 7.6 3 7.8 5 8.7 9 8.9 6 9.0 2 8.2 6 7.8 9 8.6 1 8.0 2 8.7 3 7.6 1 8.2 9 7.9 4 8.4 1 8.2 5 8.5 8.0 1 8.4 2 8.3
5 11. 8 22. 3 28. 9
7.26
67.2 335.1
447.8
0.22
8.25
94.4 992
518.7
0.25
5.34
69
989
0.48
12.0 5 10.7 9 10.5 9
154. 628 1 135. 395.2 2 131. 500 2
594
0.29
28
29.8
396.2
0.17
26
34.5
7.26
84
1064
471.2
0.22
329.5
343.2
0.17
7.04
83.6 358.3
373.4
0.18
5.6
67.6 469.7
470.1
0.23
7.52
84.6 580
621
0.3
5.28
51
981
0.49
77.5
6.21
65.3 459.1
532
0.26
8.01
93.9 488.2
568.9
0.28
9.93
88.4 391
543.9
0.26
9.5
88.5 269.1
356.9
0.17
7.17
79.7 351.1
383.6
0.18
6.57
63.1 438.7
563
0.27
7.71
77.7 540
653
0.32
8.16
81.4 421.4
518
0.25
27. 6 23. 1 22. 9 24. 9 21. 5
34.5 33.3 32.3
31.4 29.5 30.5 30.5
2 0.291 2 0.336 7 0.643 5 0.383 5 0.247 8 0.307 5 0.256 7 0.241 8 0.304 8
640.3 12.6 644.9 15.5 669.6 25.8 670.1 26 670
14.8
668.8 13.2 665.2 13 659.1 14.4 665.4 14.4
28.3 0.403 660.2 23
14
14.7 0.637 660
17. 6 17. 6 10. 3 12. 1 20. 5 13. 5 15. 9 15.
0.346 16.8 657.2 43.7 4 0.369 17.4 656.3 38.2 8 0.353 20.9 646.1 32.6 6 23
43.7
0.232 651.3 34.1
0.218 25.6 662.3 28.9 9 24.6 0.366 661.4 36.5 0.422 25.9 659.2 32.2 5 25.7 0.338 652.7 30.3
23
5 142 2 8 137 0 5 105 1.9 9 104 6 2 104 6 2 105 11 8 110 2.6 1 119 5.7 1 111 12.7 0 118 3.8 3 118 2 7 123 1.6 6 123 0 5 139 0 1 134 0 0 120 1.8 1 120 0 4 122 0 9 4 131
E029°59'996'' N37°16'436'', E029°59'061'' N37°17'829'', E030°00'243'' N37°20'620'', E029°57'475'' N37°21'607'', E029°59'053'' N37°23'158'', E029°59'084'' N37°24'593'', E029°59'093'' N37°24'720'', E029°56'417'' N37°26'076'', E029°54'596'' N37°23'091'', E029°54'010'' N37°23'920'', E029°50'076'' N37°23'921'', E029°50'077'' N37°21'217'', E029°45'737'' N37°21'347'', E029°45'673'' N37°11'685'', E029°57'708'' N37°13'363'', E029°56'692'' N37°13'363'', E029°56'691'' N37°14'513'', E029°52'186'' N37°14'095'', E029°50'124'' N37°12'345'',
31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 31.08.2012 01.09.2012 01.09.2012
Co; Ib; (Hsp; Pzi; Psp; Pysp) Cn; Hi; Ib (Pzi) (Cps; Hsp; Isp; Lis) Co; Im; Li; (Hsp; Pos) Hs; Ib; (Hts; Im) (Hsp) (Cps; Isp; Isbp; Lis; Psp) Hi Li; (Cps; Pzi; Psp) Hc; Hi; Pzi Hi
01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012
(Hsp; Isp; Pysp) Cn; (Esp; Isp; Pysp) (Isp; Lis) Hi; Po; (Esp; Isp) Hi; (Isp; Pysp)
75
6
76
6
77
2
78
5
79
5
80
1
81
4
82
6
83
6
84
3
85
6
86
6
87
3
88
6
89
6
90
2
91
6
92
5
93
6
9 8.1 6 7.7 7 7.4 4 8.4 9 8.0 2 8.2 3 8.2 9 7.8 7 8.2 3 8.3 8.3 1 7.7 5 8.4 7 7.6 5 7.7 9 8.0 1 7.6 7 7.6 5 7.5
7.08
67.3 261.6
339
0.16
8.65
84.2 293.4
369.9
0.18
2.27
22.4 490.3
617.9
0.3
7.34
78.1 266.1
304.9
0.15
7.33
73.4 625
510
0.31
6.36
67.4 272.1
312.8
0.15
8.4
89.2 365.3
407.3
0.2
8.58
86.3 449
546.4
0.27
7.52
70.7 223.6
290.6
0.14
5.91
67.4 311.3
330.8
0.16
7.75
84.6 327
364
0.17
6.37
68.2 588
678
0.33
5.87
68.7 394.7
407.8
0.2
5.12
54.9 870
982
0.49
6.27
71.9 831
882
0.43
5.65
72.6 750
724
0.35
8.41
85.6 535
643
0.31
9.3
86.1 401.9
535.9
0.26
3.1
30.9 700
870
0.43
3 13. 1 14. 2 14. 2 18. 4 15. 4 18. 2 19. 6 15. 3 12. 8 21. 8 19. 7 18. 1 23. 3 19. 1 22 25. 8 16. 4 11. 9 14.
27 26.7 25.8 26.4 29.1 28.7 30.1 30.4 31.5 31.4 32.6
0.220 3 0.240 5 0.401 7 0.197 6 0.409 5 0.202 8 0.264 6 0.354 9 0.191 1 0.215 2 0.236 6
648.2 27.9
0
655.6 26.5
5
660.6 27.5
3
648
12
20
649.7 30.7
1.5
646.1 22.7
7.4
650.8 22.9
0
654
3
25
641.9 15.5
3.5
638
2.3
14.8
649.8 14.8
4
33.6 0.442 654.6 16.9
0
0.265 34.1 667 2
6
16.8
3 136 7 127 7 121 6 138 0 135 6 139 8 134 1 128 9 146 4 151 5 135 7 130 0 114 3 112 1 111 9
32.6 0.637 667.4 18.9
1.9
33.2 0.572 666.4 15.3
9.5
36.6 0.468 679.7 15.2
0
955
37.2 0.416 678.1 14.4
0
973
0
960
0
965
0.348 36.6 667.5 24 4 35.8 0.565 678.7 19
24
E029°48'594'' N37°10'954'', E029°48'759'' N37°10'496'', E029°46'906'' N37°11'069'', E029°45'365'' N37°08'460'', E029°45'521'' N37°08'438'', E029°46'046'' N37°07'890'', E029°46'191'' N37°06'883'', E029°46'313'' N37°05'643'', E029°46'500'' N37°00'046'', E029°49'821'' N37°59'365'', E029°51'134'' N37°01'750'', E029°46'891'' N37°01'454'', E029°46'683'' N37°04'445'', E029°44'149'' N37°04'485'', E029°42'489'' N37°05'647'', E029°39'705'' N37°06'497'', E029°36'491'' N37°06'422'', E029°36'713'' N37°05'412'', E029°35'351'' N37°06'691'',
01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012
Hi (Csp; Hsp) Co; Pos; Po; (Hsp) (Isp) Cn; Ib; Pv; Po; (Psp) Cn; Hi; Po Hs; Par (Pysp) Hi Li; (Cps; Esp; Psp) Hi; (Hts; Isp) (Isp; Psp; Pysp) (Hsp; Isp; Lis) (Hsp; Isp) Hi; Ib; Po; (Hts) (Cps; Isp; Psp) Hi; Ib; (Cn; Hts; Pzi; Psp)
Cn; Ib; (Psp) 01.09.2012 Hi; (Csp; Hts; Isp)
94
6
95
6
96
3
97
1
98
1
99
6
100
6
101
6
102
6
103
6
104
6
105
6
106
6
107
2
108
5
109
2
110
6
111
6
112
1
6 7.6 3 7.7 7 8.2 2 7.5 7 7.4 1 7.4 9 7.9 3 7.4 9 7.5 3 7.5 9 7.5 5 8.5 9 7.7 8 9.1 8.7 8 9.1 3 8.0 8 8.4 4 8.0
2.54
26.7 866
998
0.5
5.94
66.7 568
611
0.3
5.76
71.1 438.9
432.7
0.21
7.3
68
470.9
628.2
0.31
7.16
66.1 446.1
599.3
0.29
5.56
61.8 672
729
0.36
6.08
73.1 784
793
0.39
7.6
90.1 801
803
0.39
6.95
80.3 628
655
0.32
4.09
45
1185
0.59
2.31
23.5 852
1021
0.51
8.42
92
6.21
1072
606
681
0.33
63.8 463.2
550.9
0.27
7.34
82
2735
1.42
8.98
85.8 568
729
0.36
6.94
79.3 2411
2617
1.35
2478
8 18. 1 21. 3 25. 8 11. 8 11. 7 20. 9 24. 6 24. 5 22. 9 20. 1 16. 4 19. 3 16. 7 20. 1 13. 4
5 36.2 0.65 0.396 35.7 5 0.281 31 5 0.410 34.1 1 0.389 30.8 3
676.3 16.2
4
654.9 29.1
0
670.4 21.1
6
668.4 17.2
4.2
668.1 16.6
2
30.6 0.468 667.6 17.7
1.7
0.513 31.5 663.5 15.9 5
2.3
28.8 0.52
2.4
659.5 17
0.422 28.7 655.8 16.5 5
2.2
30
0
0.767 673.3 17.7
29.6 0.663 676.6 18.5 25.5 0.442 662.5 21.3 15.9
0.358 658.9 29.9 1
18.2 1774
668.7 48.7
2.2 9.4 0 1.7
21.4 0.481 663.1 39.5
4
21
22.9 1729
0
23.8 0.884 666.8 41.8
1.3
668.7 49.4
5.21
67.8 1387
1360
0.68
25. 8
7.34
85.9 321.7
334.2
0.16
23
24.7 0.217 664.4 28.6
2.8
5.67
55.8 774
958
0.48
15
25.9 0.624 669
2.8
32.4
25
990 126 6 107 3 107 9 107 9 110 6 116 1 120 9 125 9 103 8 995 116 4 120 8 111 6 120 4 113 4 115 3 118 0 111
E029°33'537'' N37°05'560'', E029°31'836'' N37°01'434'', E029°32'172'' N37°59'959'', E029°27'499'' N36°58'770'', E029°28'495'' N36°59'158'', E029°29'133'' N36°59'334'', E029°29'031'' N37°00'084'', E029°30'448'' N37°00'659'', E029°31'922'' N37°00'939'', E029°32'130'' N37°04'203'', E029°32'179'' N37°05'805'', E029°31'858'' N37°09'657'', E029°29'727'' N37°09'655'', E029°29'726'' N37°31'175'', E029°43'107'' N37°32'774'', E029°35'720'' N37°33'781'', E029°38'509'' N37°35'255'', E029°40'590'' N37°33'909'', E029°45'243'' N37°37'823'',
01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012 01.09.2012
Hi; Po; (Ig) Ib; (Hsp) (Isp) (Csp; Hsp; Isp; Pysp) (Pysp) Hi; Ib; Po Hs; (Isp) Hi; Ps (Esp) Hi; Po; (Isp) Hi; Po; (Hsp)
01.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012
Po; (Isp) Po Po; (Csp; Isp; Lis) Hs; (Pysp)
Hi 02.09.2012 Cn; Ib; Po
113
6
114
4
115
6
116
5
117
2
118
6
119
2
120
2
121
5 Max Min
3 8.6 4 9.2 6 7.8 5 8.1 4 8.9 5 7.9 1 9.4 4 9.0 5 8.2 7 9.4 4 7.0 5
6.59
62.7 720
903
0.45
6.18
67
1361
0.68
5.64
57.7 739
880
0.43
7.3
74.2 896
1080
0.54
5.61
38905 380.7 81.1 6 4
23.3 3
7.82
88.5 762
0.4
6.55
90
1216
816
14.2 24265 23430 2
14. 5 19. 4 16. 6 16. 1 28. 2 21. 6 26. 8 14. 2
8.13
79.2 435.7
557
0.26
7.94
89.1 486.5
526.9
0.25
21
12.0 5
154. 38905 23.3 23430 1 6 3
2.27
22.4 77.5
28. 9 10. 3
228.8
0.02
9 100 9 106 4 115 6 106 0
26.5 0.585 678.6 34.4
0
26.7 0.884 674.4 26.9
2.7
27.8 0.572 667.5 27.5
5.5
27.8 0.702 676.2 31.7
1.5
23.03 29.2 691.3 28.1 7
3.7
848
31.1 0.533 687.4 21.1
3
890
15.28 29.4 684.9 26.5 8
2.7
917
29
0.352 663.2 39
27.1
0.342 669 5
37.2 1774 12.4
21.3
769.9 54.2
0.148 635 9
10.4
118 0 3 112 16.3 0 153 17.5 8 0
E029°45'988'' N37°39'861'', E029°44'858'' N37°40'544'', E029°51'051'' N37°43'174'', E029°58'959'' N37°42'829'', E030°00'849'' N37°41'883'', E030°04'609'' N37°39'077'', E030°02'855'' N37°35'143'', E029°58'931'' N37°39'565'', E030°22'474'' N37°45'645'', E030°23'855''
02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012 02.09.2012
(Psp) Hi; Im (Esp; Isp; Pysp) Ib; Po; (Hsp; Psp) (Hts; Hsp; Lis; Pas) Hi; Ib; (Hts) Li; (Isp)
02.09.2012 02.09.2012
Ib; (Cn; Hsp; Pysp)
282
Abbreviations: St. no, site number; St. Ty., site type; DO, dissolved oxygen, mg L-1; % DO, percent saturation; EC, electrical conductivity, µS cm-1; Sp. EC, specific electrical conductivity; Sal, salinity, ppt; Tw, water temperature, ºC; Ta, air temperature, ºC; TDS, total dissolved solid, mg L-1; Atm., atmospheric pressure, mmHg; Moist., Moisture, %; W. s., wind speed, km h-1; Elev., Elevation, m a.s.l; Cn, C. neglecta; Csp, *Candona sp.; Co, Cypria ophtalmica; Cps, *Cypria sp.; Ds, Darwinula stevensoni; Esp, *Eucypris sp.; Hc, Herpetocypris chevreuxi; Hin, *H. intermedia; Hts, *Herpetocypris sp.; Hi, Heterocypris incongruens; Hs, H. salina; Hsp, *Heterocypris sp.; Ib, Ilyocypris bradyi; Ig, *I. gibba; Im, I. monstrifica; Isp, *Ilyocypris sp.; Isb, *Isocypris beauchampi; Isbp, *Isocypris sp.; Li, Limnocythere inopinata; Lis, *Limnocythere sp.; 26
Pas, *Paralimnocythere sp.; Pk, *Physocypria kraepelini; Par, Potamocypris arcuata; Pf, *P. fallax; Ps, *P. similis; Pv, *P. variegata; Pos, *Potamocypris sp.; Pzi, Prionocypris zenkeri; Pa, *Pseudocandona albicans; Psp, *Pseudocandona sp.; Pfo, *Psychrodromus fontinalis; Po, P. olivaceus; Pysp, *Psychrodromus sp.; Tc, *Trajancypris clavata; Tsp, *Trajancypris sp. The sub-recent form of taxa were shown in parenthesis. Aquatic types; 1, spring; 2, lake; 3, dam; 4, pond (or pool); 5, creek; 6, trough. * represents new reports for Burdur.
27
Appendix B Minimum and maximum values of eight different ecological variables for 22 species recorded in Burdur. Species Darwinula stevensoni Candona neglecta Pseudocandona albicans Cypria ophtalmica Physocypria kraepelini
Tw 41-352 2.1316-28.917 2.925-29.212 1.134-332 0.937-31.438
EC 863-96003 4.512-529018 92.926-506327 40.82-52602 64.2939-79937
pH 5.54-9.675 619-11.812 6.426-925 4.714-132 6.5940-10.4437
DO 0.326-16.4787 0.322-15.42 0.7528-15.829 02-202 1.0730-19.1237
Ta 128-30.29 6.620-42.321 9.330-36.321 635-34.563 4.1030-3438
Elev. 510-14402 017-31942 6131-229032 036-250014 0.52-16632
TDS 4.611-34212 0.052022-169123 0.153463-580.533 0.247863-450.533 0.215263-70241
Sal. 113-1514(0-3915g/L) 014-4024 0.118-5.515 04-2514 039-2.414
Ilyocypris gibba
3.727-422
122.217-1381027
5.84-9.82
2.0342-142
11.230-42.3542
12-31992
0.09943-575.333
04-3.643
Ilyocypris monstrifica
10.544-3544
30018-526018
6.844-9.2663
4.0763-10.7963
1535-34.563
745-139818
0.215263-0.300328
0.118-3.3018
Ilyocypris bradyi Prionocypris zenkeri Trajancypris clavata
1.6834-33.821 7.1430-31.722 3.727-30.647
15.642-529018 15.9422-139322 187.433-352927
5.432-9.8922 6.2933-9.362 7.252-8.822
0.282-20.732 2.012-20.702 1.8421-19.2321
8.420-42.821 2.230-33.322 16.463-38.721
045-31942 1045-298046 1045-242641
0.148228-177641 0.214522-61512 0.252263-12241
04-4.543 032-0.8322 0.133-1.347
Herpetocypris chevreuxi
5.748-33.949
74.728-147549
6.350-9.334
2.1151-175
1035-42.821
045-192123
0.135221-958.7549
0.0428-414
Herpetocypris intermedia
552-28.321
221.222-332052
633-9.1822
1.410-12.110
12.463-4221
12517-142010
0.147522-49433
0.133-0.433
Psychrodromus olivaceus Psychrodromus fontinalis
1.682-36.728 7.454-29.823
033-247863 84.917-386622
553-11.412 619-9.9217
1.742-202 2.5523-17.149
1828-40.521 15.922-31.122
0.52-170014 28518-223532
033-177463 0.254263-565.523
033-2.112 017-0.3763
Heterocypris incongruens
3.727-33.921
11.0422-1005018
0.2828-2012
12.463-42.921
017-31942(457055)
0.131322-2003441
07-5018
27
22
18
5.333-12.82
Heterocypris salina Isocypris beauchampi Potamocypris fallax Potamocypris similis
14
28
41
4
22
28
22
45
41
55
22
41
3.7 -34 1527-25.918 10.641-26.923 12.928-3321
15.94 -10050 254.19-123456 178.421-107412 033-386622
6.05 -9.9 7.3418-8.4563 5.0423-9.7317 6.533-8.8417
0 -1884 5.0523-10.857 1.4721-10.3058 3.2723-13.5428
18.5 -39.1 179-3363 24.223-42.321 19.6049-42.921
0 -2079 (4570 ) 30056-156023 60517-195423 11428-178923
0.1748 -20034 0.320463-186.039 0.133921-177641 033-414.723
0.122-5018 0.118-0.2463 0.112-1.1023 033-0.3963
Potamocypris variegata Potamocypris arcuata
9.959-2938 1327-2822
137.422-408527 16310-127927
6.558-9.1522 6.3261-9.9561
0.960-1429 7.1122-1227
12.559-35.763 27.222-39.522
11018-168412 561-201841
0.089022-41812 0.131322-163141
0.0622-0.3618(128) 0.122-0.522
Limnocythere inopinata
4.7530-3544
28.232-2426563
6.44-10.462
2.9123-13.2639
4.1030-3438
545-237641(457055)
0.215263-2397341
04-254
Abbreviations: Tw, water temperature (°C); EC, electrical conductivity (μS cm-1); DO, dissolved oxygen (mg L-1); Ta, air temperature (°C); Elev., elevation (m a.s.l); TDS, total dissolved solids (mg L-1); Sal., salinity (‰); 1Van Doninck et al., 2003; 2Külköylüoğlu, 2013; 3Gandolfi et al., 2001; 4
Ruiz et al., 2013; 5Rossetti et al., 2004; 6Külköylüoğlu et al., 2007; 7Külköylüoğlu, 2009; 8Horne, 2007; 9Külköylüoğlu, 2005b; 10Mezquita et al., 28
1999c;
11
Mischke et al., 2012;
12
Külköylüoğlu et al., 2013;
13
Keyser, 1976;
14
Meisch, 2000;
15
Van Doninck et al., 2002;
16
Külköylüoğlu, 2005a;
17
Külköylüoğlu et al., 2012c; 18Rasouli et al., 2014; 19Mazzini et al., 2014; 20Külköylüoğlu, 2005c; 21Yavuzatmaca et al., 2015; 22Uçak et al., 2014;
23
Akdemir and Külköylüoğlu, 2014; 24Gao and Hailei, 2014; 25Scharf and Brunke, 2013; 26Iglikowska and Namiotko, 2012; 27Mezquita et al., 2001;
28
Yılmaz, 2014; 29Delorme, 1991; 30Külköylüoğlu et al., 2014; 31Mezquita et al., 1999a; 32Külköylüoğlu et al., 2012b; 33Külköylüoğlu et al., 2012a;
34
Dügel et al., 2008; 35Horne and Mezquita, 2008; 36Pieri et al., 2009; 37Kiss, 2007; 38Özuluğ, 2011; 39Yılmaz and Külköylüoğlu, 2006; 40Yu et al.,
2009; 41Van der Meeren et al., 2010; 42Narasimha Ramulu et al., 2011; 43De Deckker, 1981; 44Karan-Žnidaršič and Petrov, 2007; 45Altınsaçlı, 2004; 46
Aygen et al., 2012;
47
Külköylüoğlu, 2008;
52
57
Valls et al., 2014;
48
Külköylüoğlu and Vinyard, 2000;
Mezquita et al., 1999b;
53
Boomer et al., 2006;
54
49
Sarı, 2007;
50
Fernandes Martins et al., 2010;
Roca and Baltanás, 1993;
55
Guo et al., 2013;
56
51
Karakaş Sarı and
Escrivá et al., 2014;
Külköylüoğlu, 2003b; 58Özuluğ, 2012; 59Külköylüoğlu and Dügel, 2004; 60Creuzé des Châtelliers and Marmonier, 1993; 61Pieri et al., 2006; 62Van
der Meeren et al. 2011; 63the present study.
29
References Akdemir, D., Külköylüoğlu, O., 2011. Freshwater Ostracoda (Crustacea) of Diyarbakır Province, including a new report for Turkey. Turk. J. Zool. 35/5, 671-675. Akdemir, D., Külköylüoğlu, O., 2014. Preliminary study on distribution, diversity, and ecological characteristics of non-marine Ostracoda (Crustacea) from the Erzincan region (Turkey). Turk. J. Zool. 38, 421-431. Altınsaçlı, S., 2004. Investigation on Ostracoda (Crustacea) Fauna of Some Important Wetlands of Turkey. Pak. J. Biol. Sci. 7/12, 2130-2134. Alvarez Zarikian, C.A., Blackwelder, P.L., Hood, T., Nelsen, T.A., Featherstone, C., 2000. Ostracods as indicators of natural and anthropogenically-induced changes in coastal marine environments. Coast at the Millenium (Proceedings of the 17th International Conferences of The Coastal Society, Portland, OR USA, 9-12 July 2000). Aygen, C., Özdemir Mis, D., Ustaoğlu, M.R., 2012. Discovering the Hidden Biodiversity of Crustacea (Branchiopoda, Maxillopoda and Ostracoda) Assemblages in the High Mountain Lakes of Kackar Mountains (Turkey). J. Anim. Vet. Adv. 11/1, 67-73. Benson, R.H., 1990. Ostracoda and the discovery of global Cainozoic palaeoceanographical events, in: Whatley, R., Maybury, C. (Eds.), Ostracoda and Global events, pp. 41-59. Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F., 1990. Diatoms and pH Reconstruction. Philos. T. R. Soc. Lon. B, 327, 263-278. Boomer, I., Horne, J.D., Smith, R.J., 2006. Freshwater Ostracoda (Crustacea) from the Assynt region, NW Scotland: new Scottish records and a checklist of Scottish freshwater specie. Bull. Inst. R. Sc. Nat. Belg.: Entomologie & Biologie 76, 111-123. Bronhstein, Z.S., 1947. Fresh-water Ostracoda, Fauna of the USSR, Crustaceans, V.2. No.1. Russian Translation Series, 64. Academy of Sciences of the USSR Publisghers,
30
Moscow, Russia (English translation 1988); Amerind Publishing Company, New Delhi. Brown, J.H., Gibson, A.C., 1983. Biogeography, The C. V. Mosby Company, USA. Burdur, 2014. http://www.cografya.gen.tr/tr/burdur/iklim.html (accessed 08.01.2014). Burdur valiliği, 2014. http://www.burdur.gov.tr/ilin-konumu.asp (accessed 08.01.2014). Céréghino, R., Boix, D., Cauchie, H.M., Martens, K., Oertli, B., 2014. The Ecological Role of Ponds in a Changing Worl. Hydrobiologia 723, 1-6. Céréghino, R., Oertli, B., Bazzanti, M., Coccia, C., Compin, A., Biggs, J., Bressi, N., Grillas, P., Hull, A., Kaletta, T., Scher, O., 2012. Biological Traits of European Pond Macroinvertebrates. Hydrobiologia 689, 51-61. Creuzé des Châtelliers, M., Marmonier, P., 1993. Ecology of Benthic and Interstitial Ostracods of The Rhone River, France. J. Crustacean Biol. 13/2, 268-279. Chivas, A.R., De Deckker, P., Shelley, J.M.G., 1986. Magnesium and strontium in nonmarine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia 143/1, 135-142. Danielopol, D.L., Ito, E., Wansard, G., Kamiya, T., Cronin, T.C., Baltanás, A., 2002. Techniques for collecting and study of Ostracoda, in: Holmes, J.A., Chivas, A.R., (Eds.), The Ostracoda: application in quaternary research. Geophys. Monogr. 131, 6596. De Deckker, P., 1981. Ostracods of athalassic saline lakes. Hydrobiologia 81, 131-144. Delorme, L.D., 1991. Ostracoda, in: Thorpe, J.H., Covich, A.P., (Eds.), Ecology and Classification of North American Invertebrates. Academic Press, New York. Dügel, M., Külköylüoğlu, O., Kılıç, M., 2008. Species Assemblages and Habitat Preferences of Ostracoda (Crustacea) in Lake Abant (Bolu, Turkey). Belg. J. Zool. 138/1, 50-59.
31
Elliott, J.M., 1973. Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. Scientific Publication No. 25, Freshwater Biological Association, Ambleside, Westmorland, Great Britain, in: Ludwig, J.A., Reynolds, J.F., 1988. Statistical Ecology - A primer on methods and computing. John Wiley and Sons, New York. Elmore, A.C., Sosdian, S., Rosenthal, Y., Wright, J.D., 2012. A global evaluation of temperature and carbonate ion control on Mg/Ca ratios of ostracoda genus Krithe. Geochem. Geophy. Geosy. 13, 1-20. Escrivà, A., Rueda, J., Armengol, X., Mesquita-Joanes, F., 2014. Artificial dam lakes as suitable habitats for exotic invertebrates: Ostracoda ecology and distribution in reservoirs of the Eastern Iberian Peninsula. Knowl. Manag. Aquat. Ec. 412, 09, DOI: 10.1051/kmae/2013091. Fernandes Martins, M.J., Namiotko, T., Cabral, M.C., Fatela, F., Boavida, M.J., 2010. Contribution to the knowledge of the freshwater Ostracoda fauna in continental Portugal , with an updated checklist of Recent and Quaternary species. J. Limnol. 69, 160-173. Forester, R.M., 1991. Ostracode Assemblages from Springs in the Western United States: Implications for Paleohydrology. Mem. Entomol. Soc. Can. 155, 181-201. Gandolfi, A., Todeschi, E.B.A., Van Doninck, K., Rossi, V., Menozzi, P., 2001. Salinity tolerance of Darwinula stevensoni (Crustacea, Ostracoda). Ital. J. Zool. 68, 61-67. Gao, S., Hailei, W., 2014.Ostracodes from Recent Surface Deposits in Tibet, Response to Environmental Changes. Acta Geol. Sin. 88, 24-26. Guo, Y., Frenzel, P., Börner, N., Akita, L.G., Zhu, L., 2013. Recent Ostracoda of Taro Co (We stern Tibetan Plateau). I. Nat. Sicil. (17th International Symposium on Ostracoda, Roma, Italy. July 23rd-26th, 2013) XXXVII/1, 161-162.
32
Gülen, D., 1985. The Species and Distribution of the Group of Podocopa (OstracodaCrustacea) in Freshwaters of Western Anatolia. İstanbul Üniversitesi Fen Fakültesi Mecmuası Seri B 50, 65-80. Heip, C., 1975. On the Significance of Aggregation in Some Benthic Marine Invertebrates. Proceeding of 9th European Marine Biology Symposium, 527-538. Heip, C., 1976. The Spatial Pattern of Cyprideis torosa (Jones, 1850) (Crustacea: Ostracoda). J. Mar. Biol. Assoc. UK 56, 179-189. Higuti, J., Lansac-Tôha, F.A., Velho, L.F.M., Pinto, R.L., Vieira, L.C.G., Martens, K., 2009. Composition and Distribution of Darwinulidae (Crustacea, Ostracoda) in the Alluvial Valley of the Upper Paraná River, Brazil. Braz. J. Biol. 69/2, 253-262. Hill, J.L., Curran, P.J., Foody, G.M., 1994. The effect of sampling on the species-area curve. Global. Ecol. Biogeogr. Let. 4, 97-106. Holmes, J.A., Fothergill, P.A., Street-Perrott, F.A., Perrott, R.A., 1998. A high resolution Holocene ostracod record from the Sahel zone of Northeastern Nigeria. J. Paleolimnol. 20, 369-380. Horne, D.J., 2003. Key Events in the Ecological Radiation of the Ostracoda. The Paleontol. Soc. 9, 181–201. Horne, D.J., 2007. A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European non-marine Ostracoda. Quaternary Sci. Rev. 26, 1398-1415. Horne, D.J., Martens, K., 1998. An assessment of the importance of resting eggs for the evolutionary success of Mesozoic non-marine Cypridoidean Ostracoda (Crustacea). Arc. Hydrobiol. Special Issues Advanced Limnol. 52, 549-561. Horne, D.J., Mezquita, F., 2008. Palaeoclimatic applications of large databases: developing and testing methods of palaeotemperature reconstruction using non-marine ostracods. Senck. Lethaea 88, 93-112.
33
Hurlbert, S.T., 1984. Pseudoreplication and the Design of Ecological Field Experiments. Ecol. Monogr. 54/2, 187-211. Iglikowska, A., Namiotko, T., 2010. Freshwater Ostracoda (Crustacea) of Inari Lapland in northern Finland. Ann. Limnol-Int. J. Lim. 46, 199-206. Iglikowska, A., Namiotko, T., 2012. The impact of environmental factors on diversity of Ostracoda in freshwater habitats of subarctic and temperate Europe. Ann. Zool. Fenn. 49, 193-218. Jiang, Q.F., Shen, J., Liu, X.Q., Zhang, E.L., 2008. Holocene climate reconstruction of Ulungur Lake (Xinjiang, China) inferred from ostracod species assemblages and stable isotopes. Front. Earth Sci. China, 2, 31-40. Juggins, S., 2003. Software for Ecological and Palaeoecological Data Analysis and Visualization, - C2 User Guide. University of Newcastle, Newcastle-upon-Tyne, UK. Karakaş-Sarı, P., Külköylüoğlu, O., 2008. Comparative ecology of Ostracoda (Crustacea) in two rheocrene springs (Bolu, Turkey). Ecol. Res. 23, 821-830. Karanovic, I., 2012. Recent Freshwater Ostracods of the World. Springer-Verlag Berlin Heidelberg. Karan-Žnidaršič, T., Petrov, B., 2007. Non-marine Ostracoda ( Crustacea ) of Banat district in Serbia. Hydrobiologia 585, 57-66. Keyser, D., 1976. Zur Kenntnis der brackigen mangrovebewachsenen Weichböden SüdwestFloridas unter besonderer Berücksitchtigung ihrer Ostracodenfauna. Ph.D. Thesis, Universität Hamburg, Hamburg, Germany. Kiss, A., 2007. Factors affecting spatial and temporal distribution of Ostracoda assemblages in different macrophyte habitats of a shallow lake (Lake Fehér, Hungary). Hydrobiologia 585, 89-98.
34
Külköylüoğlu, O., 1998. Freshwater Ostracoda and their Quarterly Occurance in Şamlar Lake (Istanbul,Turkey). Limnologica 28, 229-235. Külköylüoğlu, O., 2003a. A new report on and the loss of Scottia pseudobrowniana Kempf, 1971 (Ostracoda) from a limnocrene spring in Bolu, Turkey. Crustaceana 76/3, 257268. Külköylüoğlu, O., 2003b. First report of the genus Isocypris (Ostracoda) from Turkey: Taxonomy, ecology, and general distribution. Crustaceana 75, 1083-1093. Külköylüoğlu, O., 2004. On the usage of ostracods (Crustacea ) as bioindicator species in different aquatic habitats in the Bolu region , Turkey. Ecol. Indic. 4, 139-147. Külköylüoğlu, O., 2005a. Factors effecting Ostracoda (Crustacea) occurrence in Yumrukaya Reedbeds (Bolu, Turkey). Wetlands 25, 224-227 Külköylüoğlu, O., 2005b. Ecology and phenology of freshwater ostracods in Lake Gölköy (Bolu, Turkey). Aquat. Ecol. 39, 295-304. Külköylüoğlu, O., 2005c. Ecological requirements of freshwater Ostracoda (Crustacea) in two limnocrene springs (Bolu, Turkey). Ann. Limnol-Int. J. Lim. 41, 237-246. Külköylüoğlu, O., 2009. Ecological Succession of Freshwater Ostracoda (Crustacea) in A Newly Developed Rheocrene Spring (Bolu, Turkey). Turk. J. Zool. 33, 115-123. Külköylüoğlu, O., 2013. Diversity, Distribution and Ecology of Non-marine Ostracoda (Crustacea) in Turkey: Application of Pseudorichness and Cosmoecious Species Concepts. Recent Res. Devel. Ecol. 4, 1-18. Külköylüoğlu, O., Akdemir, D., Sarı, N., Yavuzatmaca, M., Oral, C., Başak, E., 2013. Distribution and Ecology of Ostracoda (Crustacea) from Troughs in Turkey. Turk. J. Zool. 37, 277-287.
35
Külköylüoğlu, O., Sarı, N., Dügel, M., Dere, Ş., Dalkıran, N., Aygen, C., Çapar Dinçer, S., 2014. Effects of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake Çubuk, Turkey). Limnologica 46, 99-108. Külköylüoğlu, O., Dügel, M., 2004. Ecology and spatiotemporal patterns of Ostracoda (Crustacea) from Lake Gölcük (Bolu, Turkey). Arch. Hydrobiol. 160/1, 67-83. Külköylüoğlu, O., Dügel, M., Kılıç, M., 2007. Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake , Lake Yeniçağa (Bolu, Turkey). Hydrobiologia 585, 119-133. Külköylüoğlu, O., Sarı, N., 2012. Ecological characteristics of the freshwater Ostracoda in Bolu Region (Turkey). Hydrobiologia 688, 37-46. Külköylüoğlu, O., Sarı, N., Akdemir, D., 2012b. Distribution and ecological requirements of ostracods (Crustacea) at high altitudinal ranges in Northeastern Van (Turkey). Ann. Limnol-Int. J. Lim. 48, 39-51. Külköylüoğlu, O., Sarı, N., Akdemir, D., Yavuzatmaca, M., Altınbağ, C., 2012c. Distribution of Sexual and Asexual Ostracoda (Crustacea) from Different Altitudinal Ranges in the Ordu Region of Turkey: Testing the Rapoport Rule. High Alt. Med. Biol. 13/2, 126136. Külköylüoğlu, O., Vinyard, G.L., 2000. Distribution and ecology of freshwater Ostracoda (Crustacea) collected from springs of Nevada, Utah, and Oregon: A preliminary study. West. N. Am. Naturalist. 60, 291-303. Külköylüoğlu, O., Yavuzatmaca, M., Akdemir, D., Sarı, N., 2012a. Distribution and Local Species Diversity of Freshwater Ostracoda in Relation to Habitat in the Kahramanmaraş Province of Turkey. Int. Rev. Hydrobiol. 97/4, 247-261.
36
Külköylüoğlu, O., Yavuzatmaca, M., Sarı, N., Akdemir, D., 2016. Elevational distribution and species diversity of freshwater Ostracoda (Crustacea) in Çankırı region (Turkey). J. Freshwater Ecol. 31/2, 219-230. Lansac-Tôha, F.A., Bonecker, C.C., Velho, L.F.M., 2004. Composition, speies richness and abundance of the zooplankton community, in: Thomaz, S.M., Agostinho, A.A., Hahn, N.S., (Eds.), The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation. Leiden: Backhuys Publishers. pp. 145-190. Ludwig, J.A., Reynolds, J.F., 1988, Statistical Ecology - A primer on methods and computing. John Wiley & Sons, New York, pp. 337. Magurran, A.E., 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey. Malmqvist, B., Meisch, C., Nilsson, A.N., 1997. Distribution Patterns of Freshwater Ostracoda (Crustacea) in the Canary Island with Regards to Habitat Use and Biogeography. Hydrobiologia 347, 159-170. Marmonier, P., Bodergat, A.M., Doledec, S., 1994. Theoretical Habitat Templets, Species Traits and Species Richness: Ostracods (Crustacea) in the Upper Rhône River and its Floodplain. Freshwater Biol. 31, 341-355. Martín-Rubio, M., Rodriguez-Lazaro, J., Anadόn, P., Robles, F., Utrilla, R., Vázquez, A., 2005. Factors affecting the distribution of recent lacustrine ostracoda from the Caicedo de Yuso-Arreo Lake (Western Ebro Basin, Spain). Palaeogeogr. Palaeocl. 225, 118133. Mazzini, I., Ceschin, S., Abati, S., Gliozzi, E., Piccari, F., Rossi, A., 2014. Ostracod communities associated to aquatic macrophytes in an urban park in Rome , Italy. Int. Rev. Hydrobiol. 99, 1-10.
37
McKenzie, K.G., Moroni, A., 1986. Man as a Agent of Crustacean Passive Dispersal via Useful Plants: Exemplified by Ostracoda ospiti esteri of the Italian Ricefields Ecosystem: And Implications Arising Therefrom. J. Crustacean Biol. 6/2, 181-198. Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Heidelberg: Spektrum Akademischer Verlag, Süßwasserfauna von Mitteleuropa, 8, I-xii. Meffe, G.K., Carroll, C.R. 1997. Principles of Conservation Biology, Second Ed. Sinauer Associates, U.S. Mezquita, F., Griffiths, H.I., Domínguez, M.I., Lazano-Quilis, M.A., 2001. Ostracoda (Crustacea) as ecological indicators: a case study from Iberian Mediterranean brooks. Arch. Hydrobiol. 150, 545-560. Mezquita, F., Griffiths, H.I., Sanz, S.J., Soria, M., Pinon, A., 1999a. Ecology and Distribution of Ostracods Associated with Flowing Waters in the Eastern Iberian Peninsula. J. Crustacean Biol. 19, 344-354. Mezquita, F., Hernández, R., Rueda, J., 1999b. Ecology and distribution of ostracods in a polluted Mediterranean river. Palaeogeogr. Palaeocl. 148, 87-103. Mezquita, F., Tapia, G., Roca, J.R., 1999c. Ostracoda from springs on the eastern Iberian Peninsula: ecology , biogeography and palaeolimnological implications. Palaeogeogr. Palaeocl. 148, 65-85. Mischke, S., Schudack, U., Bertrand, S., Leroy, S.A.G., 2012. Ostracods from a Marmara Sea lagoon (Turkey) as tsunami indicators. Quatern. Int. 261, 156-161. Mourguiart, P., Montenegro, M.E., 2002. Climate Changes in The Lake Titicaca Area: Evidence From Ostracod Ecology. Geoph. Monog. 131, 151-165. Narasimha Ramulu, N., Benerjee, G., Srikanth, K., Ravindar, B., Gowri, P., 2011. Seasonal Changes in the ostracod population in relation to the physico – chemical changes of a perennial tank in Warangal district. Int. J. Adv. Biotech. Res. 2/2, 286-290.
38
Özuluğ, O., 2011. A preliminary study on Ostracoda (Crustacea) fauna of the Istranca Streams-Turkey. J. Fish. Sci. 5/2, 93-98. Özuluğ, O., 2012. The Effect of Dam Construction on the Ostracoda (Crustacea) Assemblages in Kazandere Stream, Thracea, Turkey. Pak. J. Zool. 44, 635-639. Padmanabha, B., Belagali, S.L., 2008. Ostracods as indicators of pollution in the lakes of Mysore. J. Environ. Biol. 29/3, 415-418. Palacios-Fest, M.R., Dettman, D., 2001. Temperature controls monthly variation in Ostracode valve Mg/Ca: Cypridopsis vidua from a small lake in Sonora, Mexico. Geochim. Cosmochim. Ac. 65, 2499-2507. Paradise, C.J., Blue, J.D., Burkhart, J.Q., Goldberg, J., Harshaw, L., Hawkins, K.D., Kegan, B., Krentz, T., Smith, L., Villalpando, S., 2008. Local and regional facors influence the structure of treehole metacommunities. BMC Ecol. 8/22. DOI:10.1186/1472-67858-22 Pérez, L., Lorenschat, J., Bugja, R., Brenner, M., Scharf, B., Schwalb, A., 2010. Distribution , diversity and
ecology of
modern
freshwater
ostracodes
(Crustacea),
and
hydrochemical characteristics of Lago Petén Itzá , Guatemala. J. Limnol. 69, 146-159. Pieri, V., Martens, K., Stoch, F., Rossetti, G., 2009. Distribution and ecology of non-marine ostracods (Crustacea, Ostracoda) from Friuli Venezia Giulia (Ne Italy). J. Limnol. 68/1, 1-15. Pieri, V., Martens, K., Naselli-Flores, L., Marrone, F., Rossetti, G., 2006. Distribution of Recent ostracods in inland waters of Sicily (Southern Italy). J. Limnol. 65, 1-8. Poquet, J.M., Mesquita-Joanes, F., 2011. Combined effects of local environment and continental biogeography on the distribution of Ostracoda. Freshwater Biol. 56, 448469.
39
Rasouli, H., Aygen, C., Külköylüoğlu, O., 2014. Contribution to the Freshwater Ostracoda (Crustacea) Fauna of Turkey: Distribution and Ecological Notes. Turk. J. Fish. Aquat. Sci. 20, 11-20. Reeves, J.M., De Deckker, P., Halse, S.A., 2007. Groundwater Ostracods from the arid Pilbara region of northwestern Australia: Distribution and Water Chemistry. Hydrobiologia 585, 99-118. Roca, J., Baltanás, A., 1993. Ecology and Distribution of Ostracoda in Pyrenean Springs. J. Crustacean Biol. 13/1, 165-174. Roca, J.R., Wansard, G., 1997. Temperature influence on development and calcification of Herpetocypris
brevicaudata
Kaufmann,
1900
(Crustacea:
Ostracoda)
under
experimental conditions. Hydrobiologia 347, 91-95. Rodriguez-Lazaro, J., Ruiz-Muñoz, F., 2012. A General Introduction to Ostracods: Morphology, Distribution, Fossil Record and Applications, in: Horne, D.J., Holmes, J.A., Rodriguez-Lazaro, J., Viehberg, F.A., (Eds.), Development in Quaternary Science, Ostracoda as Proxies for Quaternary Climate Change. Elsevier, pp. 1-14. Rogora, M., Massaferro, J., Marchetto, A., Tartari, G., Mosello, R., 2008. The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. J. Limnol. 67/2, 75-86. Rombach, R., 1999. Auswirkungen verschiedener Formen der Bewirtschaftung von Halbtrockenrasen auf die Zikaden am Beispiel der Enzian-Schillergras-Rasen (Gentiano-Koelerietum) der Nordeifel. – Dissertation. Math. Naturwiss. Fakultaet, Rheinische
Friedrich-Wilhelms-Universitaet
science/Diss11c.pdf.
40
Bonn:
URL;
http://www.punct.de/
Rossetti, G., Bartoli, M., Martens, K., 2004. Limnological characteristics and recent ostracods (Crustacea, Ostracoda) of freshwater wetlands in the Parco Oglio Sud (Northern Italy). Ann. Limnol-Int. J. Lim. 40, 329-341. Rossi, V., Benassi, G., Veneri, M., Bellavere, C., Menozzi, P., Moroni, A., 2003. Ostracoda of the italian ricefields thirty years on: new synthesis and hypothesis. J. Limnol. 62, 18. Ruiz, F., Abad, M., Bodergat, A.M., Carbonel, P., Rodríguez-Lázaro, J., González-Regalado, M.L., Toscano, A., García, E.X., Prenda, J., 2013. Freshwater ostracods as environmental tracers. Int. J. Environ. Sci. Tech. 10, 1115-1128. Sarı, N., 2007. Determination of Ecological Features of the Freshwater Ostracoda (Crustacea) in Bolu Region (Turkey). MSc Thesis, Abant İzzet Baysal University, Bolu. Sarı, N., Külköylüoğlu, O., 2010. Ostracods (Crustacea) and habitat similarities in the Bolu region (Turkey). Turk. J. Zool. 34, 225-230. Scharf, B., Brunke, M., 2013. The recolonization of the river Elbe with benthic and hyporheic Ostracoda (Crustacea) after the reunion of Germany in 1989. Int. Rev. Hydrobiol. 98, 305-312. Schmidt, G.H., 1982. Random and Aggregative Settlement in Some Sessile Marine Invertebrates. Mar. Ecol. Prog. Ser. 9, 97-100. Seaby, R.M., Henderson, P.A., 2006. Species Diversity and Richness, Version 4. Pisces Conservation Ltd., Lymington, UK. Siveter, D.J., 2008. Ostracods in the Palaeozoic?. Senck. Leth. 88/1, 1-9. Stevens, G.C., 1992. The elevational gradient in altitudinal range: An extension of Rapoport's latitudinal rule to elevation. Am. Nat. 140, 893-911.
41
Szlauer-Łukaszewska, A., 2012. Ostracod Assemblages in Relation to Littoral Plant Communities of a Shallow Lake (Lake Świdwie , Poland). Int. Rev. Hydrobiol. 97/4, 262-275. ter Braak, C.J.F., 1987. The Analysis of Vegetation-Environment Relationships by Canonical Correspondence Analysis. Vegetatio 69, 69-77. ter Braak, C.J.F., Barendregt, L.G., 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Math. Biosci. 78, 57-72. Uçak, S., Külköylüoğlu, O., Akdemir, D., Başak, E., 2014. Distribution, Diversity and Ecological Characteristics of Freshwater Ostracoda (Crustacea) in Shallow Aquatic Bodies of the Ankara Region, Turkey. Wetlands 34, 309-324. Valls, L., Rueda, J., Mesquita-Joanes, F., 2014. Rice fields as facilitators of freshwater invasions in protected wetlands: the case of Ostracoda (Crustacea) in the Albufera Natural Park (E Spain). Zool. Stud. 53, 68-77. Van der Meeren, T., Almendinger, J.E., Ito, E., Martens, K., 2010. The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia 641, 253-273. Van der Meeren, T., Ito, E., Verschuren, D., Almendinger, J.E., Martens, K., 2011. Valve chemistry of Limnocythere inopinata (Ostracoda) in a cold arid environment— Implications for paleolimnological interpretation. Palaeogeogr. Palaeocl. 306, 116126. Van Doninck, K., Schön, I., Debruyn, L., Martens, K., 2002. A general purpose genotype in an ancient asexual. Oecologia 132, 205-212. Van Doninck, K., Schön, I., Martens, K., Goddeeris, B., 2003. The life-cycle of the asexual ostracod Darwinula stevensoni (Brady and Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia 500, 331-340.
42
Viehberg, F.A., 2006. Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia 571, 213224. Wetzel, R.G., 2001. Limnology: Lake and River Ecosystems. Academic Press, Elsevier Science (USA). Williams, C.B., 1943. Area and number of species. Nature 152, 264-267. Williamson, M., 1988. Relationship of species number to area, distance and other variables. Analytical biogeography: an integrated approach to the study of animal and plant distributions (Ed. by Myers, A.A., Giller, P.S.), Chapman and Hall, London. Williams, M., Siveter, D.J., Salas, M.J., Vannier, J., Popov, L.E., Pour, M.G., 2008. The earliest ostracods: the geological evidence. -Senck. Let. 88/1, 11-21. Xia, J., Engstrom, D.R., Ito, E., 1997. Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperetaure variation on Candona rawsoni. Geochim. Cosmochim. 61/2, 383-391. Yavuzatmaca, M., Külköylüoğlu, O., Yılmaz, O., 2015. Distributional patterns of non-marine Ostracoda (Crustacea) in Adiyaman Province (Turkey). Ann. Limnol-Int. J. Lim. 51, 101-113. Yılmaz, S., 2014. Comparative Analyses of Ostracoda (Crustacea) Diversity and Determination of their Ecological Characteristics in Düzce and Karabük (Turkey) Regions. MSc Thesis, Abant İzzet Baysal University, Bolu. Yılmaz, F., Külköylüoğlu, O., 2006. Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey). Ecol. Res. 21, 165-173.
43
Yu, N., Chen, S., Li, E., Chen, J., Chen, L., 2009. Tolerance of Physocypria kraepelini (Crustacean , Ostracoda ) to water-borne ammonia , phosphate and pH value. J. Env. Sci. 21, 1575-1580. Zar, J.A., 1999. Biostatistical Analysis. Prentice-Hall, Upper Saddle River, New Jersey.
44
Fig. 1. 121 ramdomly selected sampling sites from 11 counties (Merkez, Ağlasun, Çeltikçi, Bucak, Kemer, Yeşilova, Karamanlı, Tefenni, Çavdır, Gölhisar, and Altınyayla) of Burdur.
45
Fig. 2. Numbers of sites carrying 0, 1, 2, 3, 4 or more (4+) species of ostracods.
46
Fig. 3. Graph of CCA showing the ordination of 13 species and the six environmental variables (arrows) (Tw, pH, DO, EC, Elev and Ta) from Burdur by first and second axes. Triangles show species code. For abreviations see Appendix A.
47
50 Sta.Type Sta. Taxa Sp. Sex Asex
40
Value
30
20
10
0
0 9 8 7 6 85 34 83 32 64 48 33 18 03 5-8 4-7 3-5 2-4 0-1 9-1 8-1 7-1 6-1 9 3 8 3 8 73 58 43 28 8 14 13 11 10
Elevational range
Fig. 4. The number of taxa, species, site type, sampled site and species with sexual and asexual reproduction at the nine different 150 m a.s.l. elevational ranges in Burdur. Abbreviations: Sta. (number of sites), Sta. Type (site type), Sp. (species number), Sex (species sexually reproduce) and Asex (species asexually reproduce).
48
Table 1 Poisson probabilities of 0, 1, 2, 3 and 4(+) occurrence of ostracod species calculated using Equation 1 in Burdur. P(x=0) probability of no occurrence 0.29 P(x=1) probability of one occurrence 0.41 P(x=2) probability of two occurrences 0.29 P(x=3) probability of three occurrences 0.14 P(x=4+) probability of four(+) occurrences 0.05
49
Table 2 Calculated Chi-square values of 0, 1, 2, 3 and 4(+) occurrences of species in Burdur. Expected (E) probability = N x Poisson Probability; five classes (n) with two constants (habitat and species) so degrees of freedom, df = n-2 => 5-2 = 3. Class x f(obs.freq.) Exp. Prob. O-E (O-E)2 (O-E)2/E 1 0 41 35.32 5.68 32.29 0.91 2 1 35 49.74 -14.74 217.24 4.37 3 2 26 35.02 -9.02 81.44 2.33 4 3 14 16.44 -2.44 5.96 0.36 5 4 5 5.79 -0.79 0.62 0.11 (X2)
N=121
50
8.08
Table 3 Summary table of the CCA for 13 species (with two or more occurrences) from 79 sites and six environmental variables in Burdur (* shows the results of DCA). Axes 1 2 3 4 Total inertia *Lengths of gradient 0.00 5.75 3.98 2.25 Eigenvalues 0.35 0.24 0.10 0.04 6.19 Species-environment correlations 0.65 0.60 0.30 0.32 Cumulative percentage variance of species data 5.60 9.50 11.10 11.80 of species-environment relation 46.90 78.80 92.60 98.50 Sum of all eigenvalues 6.19 Sum of all canonical eigenvalues 0.74
51
Table 4 Optimum (uk) and tolerance (tk) levels of 13 species to four different ecological variables in Burdur. N2 represents Hill’s coefficient value as the measure of effective number of occurrences. Abbreviations: DO (dissolved oxygen concentration, mg L-1), EC (electrical conductivity, µS cm-1), Tw (water temperature, ºC), Max (maximum) and Min (minimum).
Species H. incongruens P. olivaceus I. bradyi L. inopinata C. neglecta H. salina C. ophtalmica P. kraepelini I. monstrifica P. variegata P. zenkeri P. fontinalis H. intermedia
Count 38 26 26 8 12 6 3 2 4 5 4 2 2
Max 171 121 143 14 41 121 19 2 18 135 25 9 74
N2 11.61 11.12 7.60 5.30 4.53 4.25 2.07 1.80 1.78 1.75 1.57 1.42 1.05 Mean Max Min
pH uk tk 7.95 0.29 7.89 0.44 7.80 0.27 8.50 0.44 7.76 0.31 7.94 0.43 7.56 0.37 8.31 0.16 8.85 0.51 8.12 0.23 7.92 0.37 7.25 0.37 8.10 0.36 8.00 0.35 8.85 0.51 7.25 0.16
DO uk tk 7.83 2.39 6.68 2.19 7.35 1.69 5.88 2.16 7.54 1.97 8.39 2.01 4.58 3.70 7.12 4.42 9.19 3.91 11.21 1.01 8.25 2.48 5.38 3.22 7.08 0.83 7.42 2.46 11.21 4.42 4.58 0.83
52
EC uk 610.90 771.07 632.91 2619.36 633.33 741.77 541.34 368.57 421.50 491.36 651.93 686.35 701.61 759.38 2619.36 368.57
tk 120.46 202.11 120.67 4492.43 175.75 203.18 56.85 34.51 127.03 6.04 96.09 91.44 5.57 440.93 4492.43 5.57
Tw uk tk 19.25 3.98 17.21 3.53 17.91 4.32 24.45 2.13 14.69 3.18 22.01 6.01 13.56 3.42 25.57 3.25 25.57 3.54 24.75 1.42 18.89 4.41 12.79 1.20 23.03 1.77 19.97 3.24 25.57 6.01 12.79 1.20
Table 5 Dominance percentage (%) of 22 ostracod species among 3516 individual, their occurrence frequencies in six different aquatic habitat, and Shannon-Wiener index (H′) value of each habitat. Abbreviations: ASI (All Sample Index) and JSE (Jackknife Standard Error). Species
%
Spring (n=10)
C. neglecta
3.01
4
C. ophtalmica
0.97
1
D. stevensoni
0.03
1
H. chevreuxi
0.77
H. intermedia
2.16
H. incongruens
30.55
H. salina
10.41
I. bradyi
18.15
I. gibba
0.11
I. monstrifica
0.71
I. beauchampi
0.06
L. inopinata
1.17
P. kraepelini
0.09
P. arcuata
0.20
1
P. fallax
0.14
1
P. similis
0.06
P. variegata
5.23
P. zenkeri
0.91
P. albicans
0.28
P. fontinalis
0.31
1
P. olivaceus
24.49
2
T. clavata
0.20
Shannon-Wiener
Lake (n=9)
Dam Pond Creek Trough (n=10) (n=17) (n=17) (n=58) 2
5
1
2 1 2
1
4
2
1 2
3
31 5
7
14
1 1
1
2 1
2
4
2
1
1
1 1
1
3
2
2
1 1 3
1
6
14
1
H
1.79
1.32
1.42
2.25
1.71
1.68
Variance H
0.05
0.04
0.09
0.03
0.02
0.01
Exp. H
6.00
3.75
4.14
9.44
5.54
5.35
53
ASI
JSE
2.33
0.25
Table 6 Number of species (or species richness, N. spp.), individuals (N. ind.), individual per species (ind./spp.) and species per site (spp./site) with minimum and maximum values of pH, dissolved oxygen (DO, mg L-1), electrical conductivity (EC, S cm-1), salinity (Sal, ppt), water (Tw) and air (Ta, C) temperatures and elevation (Elev., m a.s.l.) in six different habitat types.
Habitats N. spp.
Pond Trough Spring Creek Lake Dam
15 10 7 7 4 3
N. ind. 156 2582 382 322 50 24
ind./spp. 10.40 258.20 54.57 46.00 12.50 8.00
spp./site
pH
DO
EC
Sal
Tw
Ta
Elev.
0.88
7.82-9.26 7.05-8.64 7.15-8.23 7.13-8.78 7.44-9.44 8.13-8.76
2.65-11.29 2.31-11.57 4.55-9.30 3.20-9.93 2.27-12.05 5.04-7.52
198.10-1824 77.50-1387 272.10-978 266.10-896 395.20-389056 311.30-580
0.11-1.12 0.02-0.68 0.15-0.59 0.15-0.54 0.17-23.33 0.15-0.30
12.90-28.90 11.00-27.60 11.70-27.20 10.30-27.80 14.20-28.20 20.10-27.10
16.40-33.00 12.40-37.20 23.60-34.50 17.40-36.60 18.20-36.60 25.60-34.40
785-1341 348-1538 637-1428 815-1391 848-1216 282-1515
0.17 0.70 0.41 0.44 0.30
54