Author’s Accepted Manuscript Ethnomedicinal uses of plants for the treatment of malaria in Soon Valley, Khushab, Pakistan Amin Shah, Sarvat Rahim
www.elsevier.com/locate/jep
PII: DOI: Reference:
S0378-8741(17)30445-2 http://dx.doi.org/10.1016/j.jep.2017.02.005 JEP10709
To appear in: Journal of Ethnopharmacology Received date: 11 August 2016 Revised date: 20 January 2017 Accepted date: 2 February 2017 Cite this article as: Amin Shah and Sarvat Rahim, Ethnomedicinal uses of plants for the treatment of malaria in Soon Valley, Khushab, Pakistan, Journal of Ethnopharmacology, http://dx.doi.org/10.1016/j.jep.2017.02.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Ethnomedicinal uses of plants for the treatment of malaria in Soon Valley, Khushab, Pakistan Amin Shah⃰ , Sarvat Rahim Department of Botany, University of Sargodha, Sargodha, Pakistan ٭
Corresponding Author’s E-mail:
[email protected];
[email protected]
Abstract Ethnopharmacological relevance: To best of our knowledge this is the first quantitative ethnomedicinal study with the aim of documenting the indigenous knowledge and practices of using plants for malarial therapy in Soon Valley, Khushab, Pakistan. In this Valley, malaria is among the major public health problems but, until now, the population still mostly relies on herbal medicine for treatment. Materials and methods: Ethno-medicinal data were documented from 63 informants by using semi-structured questionnaires and interviewing the informants about their knowledge of plants regarding malaria and related symptoms. Documented data were evaluated using the quantitative ethno-botanical indices of frequency citation (FC), relative frequency of citation (RFC), percentage of respondents having knowledge (PRK) and Jaccard index (JI). Results: A total of 70 plant species belonging to 62 genera and 34 families were recorded as antimalarial in the study area. Solanaceae was found to be the most cited family with 7 species, followed by Fabaceae, Rutaceae and Lamiaceae with 5 species each. Ocimum americanum and Solanum incanum were the species with the highest relative frequency of citation (RFC = 0.25 each) and percentage of respondents having knowledge (PRK = 25.4% each), followed by Grewia tenax (RFC = 0.23, PRK = 23.8%), which indicates that these plants are the best species with anti-malarial properties. The most highly cited life form was found to be herbs (56%). The dominant plant part used in preparations were leaves (49%). The main mode of utilization was decoction (47%) followed by infusion (29%). In comparison, maximum similarity index is found in our study with JI (16.83) followed by (13.13). Similarity percentage of plants uses ranges from 0.81 to 16.83 while dissimilarity percentage varies from 0% to 17.65%. Conclusions: To the best of our knowledge seven plant species, viz. Withania coagulans, Fagonia
cretica,
Carthamus
oxyacantha,
Ehretia
obtusifolia,
Helianthus
annuus,
Olea ferruginea and Vitex trifolia, are reported from this region for the first time for the treatment of malaria. This first ethno-medicinal study highlights potential sources for the development of new antimalarial drugs from indigenous knowledge of medicinal plants found in the Soon Valley, Pakistan. Such investigations could be a subject for in vitro and in vivo antiplasmodial screening to develope new plant-based antimalarial drugs and can also be evaluated for other biological activities and novel drug discoveries. Keywords: Malaria, Medicinal plants, Solanaceae, RFC, Soon Valley, Pakistan 1. Introduction Malaria is a severe global health issue predominant in the tropics and subtropics and is caused by blood parasites viz. Plasmodium falciparum, P. ovale, P. malariae, P. vivax, and P. knowlesi (Singh, 2011). The disease is prevalent in 104 countries, with significant therapeutic, public and financial implications, and according to an assessment about 3.4 billion people are at the risk of malaria worldwide (Nchinda, 1998; World Malaria Report, 2013). Almost 207 million cases of malaria and 627,000 human deaths were caused by malaria in 2012 (World Malaria Report, 2013). Globally, 90% of all deaths from the disease were recorded in the World Health Organization (WHO) African Region, mainly in children under five years of age (World Malaria Report, 2014). Though there is extensive use of traditional herbal medications in the management of malaria (Gessler et al., 1995), and several hundreds of plants have been claimed to have possible antimalarial properties, there are numerous medicinal plants still to be recognized and assessed for their worth as protection against malaria parasites (Krettli et al., 2001). A significantly high occurrence of malaria continues due to the increasing resistance of mosquito vectors to insecticides (Talisuna et al., 2004) and resistance of parasites, chiefly Plasmodium falciparum, to existing treatments (Le Bras et al., 2006; Wondimu et al., 2007). These problems and the difficulty in generating effectual vaccines emphasize the vital necessity for new antimalarial drugs (Newman et al., 2003; Zirihi et al., 2005). A large number of medicinal plants effective against malaria have been documented in several studies (e.g. Krettli et al., 2001; Asase et al., 2005; Bertani et al., 2005; Zirihi et al., 2005; Tabuti, 2008; Asase and Oppong-Mensah 2009; Nguta et al., 2010; Koudouvo et al., 2011). The estimated number of annual malarial episodes in pakistan is more than 1.5 million (World Health Organization, 2004). Almost 1200 plant species belonging to 160 families are documented as being used against
malaria and fever globally (Willcox and Bodeker, 2004). Worldwide, traditional pharmacopeias have played a vital role in the discovery of new molecules of therapeutic interest and introduced two-thirds of all drugs in the past 30 years (Newman & Cragg, 2010). With the emergence of resistance of the most prevalent malarial parasite, P. falciparum, to conventional synthetic drugs such as quinine, artemisinin, etc. this traditional ethnobotanical and ethnopharmacological knowledge is very helpful to target plants for the discovery of new bioactive substances for new antimalarial drugs. So far only a limited number of studies (e.g. Ahmad et al., 2008; Ahmad et al., 2009 ; Ahmad et al., 2012; Qureshi et al., 2011) have been conducted in Soon Valley on the traditional uses of medicinal plants in general and were not relevant to malaria. The authors performed ethnomedicial surveys of anti-malarial plants across the Valley and applied quantitative ethnobotanical approaches to study these plants for the first time. The aim of the study was to collect comprehensive data and information on the medicinal use of anti-malarial plants from ethnic communities and traditional healers of Soon Valley, district Khushab, Pakistan, before it was lost. 2. Material and methods 2.1. Study site The study area (Soon Valley) is one of the eye catching valleys of Pakistan. It is located at 71°55′0.95″E longitude and 32°33′2.52″ N latitude, in the north-west of Khushab district, Central Punjab, Pakistan. The Valley stretches over 780 km², starting from village Jabah (391 meter) and ending at the top of Sakesar which is the highest peak of the Salt range with a height of 1527 meter above sea level. The climate of the Valley is dry, cold in winter with minimum temperature of 1°C in January and hot in summer with maximum temperature of 36°C in June. The Valley receives relatively low annual rainfall of 51 cm. This geographical position and variable climatic conditions impart to the valley unique characteristics that support a rich biodiversity and have resulted in the plant life of the Soon Valley being one of the most interesting in the region (Afzal et al., 1999). Because of varied altitudinal gradients and climatic conditions, the Valley harbors rich and diverse types of plant biodiversity and provides a potential source of medicinal plants. Naushehra, Khatwai, Bhuki, Khurra, Dharnal, Shakar Kot,
Mardwal, Kufri, Angah, Uchhali, Khabaiki, Khewa, Sabhral, Uggali, Bagh Shams ud Din, Sodhi, Koradhi, Phulvarri, Chitta and Jabah are the known towns/ villages in Soon Valley. Kanhati Garden, Sodhi Garden, Navarri Garden and Bagh Shams ud Din are the biodiversity hot spots. Uchhali, Khabaiki and Jahlar Lakes are masterpieces of nature that host diverse aquatic life. The wonderful waterfall of Daep Sharif (Kufri) of the Valley is full of ferns and mosses. Sakesar Mountain is a biodiversity hot spot with evergreen forest of Olea ferruginea, together with Acacia modesta in its foothills. The flora of the Valley is distinguished by the presence of valuable medicinal plant species like Nannorrhops ritchiana, Grewia villosa, Buxus papillosa, Verbascum thapsus, Rhazya stricta, Ajuga bracteosa, Silybum marianum, Salvia moorcroftiana, Ceratonia siliqua, Ephedra spp., Ziziphus spp., Clematis grata, Capparis decidua, Justicia adhatoda, Peganum harmala, Artemisia scoparia, Tecomella undulata, Phoenix sylvestris, Hibiscus mutabilis and Verbena tenuisecta etc., in addition to the anti-malarial plants. The land of Soon Valley is quite fertile and mostly rain-fed and is known for cultivation of vegetables throughout the area. The majority of people serve in the armed forces, while others earn their livelihood by rearing livestock such as goats and cattle, and some are associated with other forms of agriculture. The native residents are ethnic Awans with the sub-casts Majhial, Kroge, Bazrals, Chhatal, Phatwal and Mianwaddal (Fig. 1). 2.2. Ethnobotanical data collection The survey was carried out from May 2011 to August 2012 to collect information on ethnomedicinal plants. A total of sixty-three (63) informants including 8 traditional healers (Hakeems) who agreed to participate in the survey were interviewed using a semi-structured questionnaire. Questions were related to medicinal plants used in the treatment of malaria and related symptoms, the plant parts used, modes of preparation and administration of herbal remedies, the availability of plant species collected and the place (habitats) from which the species are harvested. Interviews were conducted orally in order to accommodate low levels of literacy. A demographic structure of the study population was made, and the respondents frequently went with the investigators to the field to collect plant material. In order to confirm the pharmacological relevance of gathered information, a literature review was also carried out. Data collected from literature included ethnomedicinal uses, phytochemical constituents and antiplasmodial activity of the documented species.
2.3. Plant collection, identification and preservation Plants mentioned by respondents were collected with their assistance from fallow land, fields and home gardens in the study area (Table 2). Plants were identified following the Flora of Pakistan (Nasir and Ali, 1970-2001). The list of plant species used to cure malarial disorders in the area was checked and updated after verification from the online website of The Plant List (http://www.theplantlist.org; accessed 3 April, 2014). Voucher specimens were preserved and deposited in the Herbarium of the University of Sargodha for their taxonomic identification by comparison with specimens in the herbarium and for future reference. The voucher numbers are given in the brackets after the botanical name of the taxa (Table 2). 2.4. Data analysis The following parameters were used to analyze the data on medicinal plants used for malarial symptoms among the indigenous population of the study area. 1. Taxonomic diversity, preparation, application and parts of the plant used. 2. The percentage of respondents who have knowledge regarding the use of a species in the treatment of malaria was estimated using the formula (PRK): (number of people interviewed citing species/total number of interviewed people using plants) ×100 (Al-Adhroey et al., 2010). 3. RFC was calculated using the standard method of Vitalini et al. (2013), which is RFC=FC/N (0
3. Results and discussion 3.1. Demographic data An ethnomedicinal survey was carried out among 63 informants, including 8 traditional healers, who were fully aware and had good knowledge about malaria and antimalarial plants, including 25 women and 38 men. This meant that 39.6 % of informants were female and 60.3 % were male.The majority of informants (63.4%) were inexperienced in medicinal plant preparations and experience of medicinal plant preparation was mainly confined to traditional healers and some old age people (36.5%). Informants were classified into six groups on the basis of age 25-34 (7.9%), 35-44 (15.9%), 45-54 (17.5 %), 55-64 (23.8%), 65-74 (20.6%), 75 and above (14.2%). On the basis of educational level, traditional knowledge regarding malaria is more prevalent among illiterate people 33.3% followed by graduate and above 26.9%, (10 years education) 17.4%, middle 11.1%, primary 4.76%, (12 years education ) 1.6%, It was observed that the informants could readily differentiate malaria on the basis of its usual clinical signs and symptoms, i.e. recurrent fever, headache, nausea and vomiting, chills, poor appetite, muscle and body pain and fatigue. Knowledge of plant uses was mostly received from older family members and society (Table.1). 3.2. Plants used for malaria and related symptoms A total of 70 plant species belonging to 62 genera and 34 families were recorded to be used in anti-malarial remedies (Table. 2). Analysis of the medicinal plant diversity revealed Solanaceae constituted the most dominant
that
family with seven plant species, followed by
Fabaceae, Rutaceae and Lamiaceae (5 species each), Apiaceae (4 species), Asteraceae, Amaranthaceae, Poaceae and Myrtaceae (3 species each), Meliaceae, Brassicacaeae, Capparidaceae, Boraginaceae, Lythraceae, Malvaceae, Euphorbiaceae (2 species each), while the remaining 18 families are represented by one species each. The most frequently used families, such as Solanaceae, Fabaceae, Rutaceae and Lamiaceae, indicate the importance of these families as sources of bioactive compounds like alkaloids, terpenoids, coumarins, flavonoids, chalcones, quinones and xanthones that possess anti-malarial properties and thus play significant roles in anti-plasmodial activity (Saxena, 2003; Rukunga and Simons, 2006) (Fig. 2).
3.3. Life Form, Part used and mode of utilization of medicinal plants
The life form most frequently used against different symptoms of malaria was found to be herbs (56%), followed by shrubs (27%) and trees (17%). The reason for the dominance of herbs is their better adaptation and acclimatization to the topographic and climatic conditions in the study area, as compared to shrubs and trees (Giday et al., 2003; Mesfin et al., 2012; Ayyanar and Ignacimuthu, 2005; Uniyal et al., 2006). It is reported by informants mostly herbs are used because of their potency and fast regeneration in study area as compared to other life forms. The high percentage of herbs is also reported in some other studies (Megersa et al., 2013; Upadhyay et al., 2010; Parveen et al., 2007). In the study area, leaves were the dominant plant part used (50.6%), followed by fruits (17.3%), whole plant (12%), seeds (10%), flower and peel (4% ), stem (3%) and root (1%) (Fig.3). This is because they are easy to collect them from herbs, rather than aerial parts of trees. Moreover herbs can be easily grown on the roadside, in home gardens, on farmland and in wild habitats and are more common in the study area as compared to other life forms such as trees, shrubs and climbers (Megersa et al., 2013). The frequent use of leaves is in agreement with other studies (Asase et al., 2010; Nguta et al., 2010; Koudouvo et al., 2011, Asase et al., 2012; Asase and oppong-Mensah., 2009; Nadembega et al., 2011). The preference towards leaves may be linked to the fact that leaves are the main photosynthetic organs of plants and act as their reservoirs for photosynthates or exudates which contain bioactive secondary compounds. These compounds protect against herbivores and some are of medicinal value to the human body (Balick & Cox, 1996; Ghorbani, 2005; Bhattarai et al., 2006). Additionally, the use of leaves is less deleterious to the survival of a plant species as compared to the use of other parts (e.g. roots, stem, bark), or the use of entire plants (Abebe and Ayehu, 1993; Giday et al., 2003; Zheng and Xing, 2009). Moreover, leaves are collected more easily than other parts of plants (Giday et al., 2009). The most important and diverse biopotency has been observed in alkaloids, quassininoids, sesquiterpene, lactones, coumarins, triterpenoids, limonoids, and quinolone alkaloids (Saxena et al., 2003). The components with antiplasmidial activity may be present in leaves. Leaves of Lantana camara have been reported to contain quinine like alkaloid lantanine (Burkill, 2000) is an example indicating that leaves extract of cited plant species could be tested for effective antiplasmodial constituents. The frequent use of fruit (17.3%) after leaves may be due to the accumulation of bioactive compounds in higher proportions than in other parts (Srithi et al., 2009). It is noteworthy that inhabitants of some areas of the Valley like Jahlar and Koradhi frequently prefer to use a plant whole, to overcome fatigue, muscle and body pain. However, the
majority of the herbal preparations identified in this study involved decoction (47%), followed by infusion (29%), powder (7%), raw (6%), juice (6%), cooked (3%), latex (1%) and oil (1%) (Fig. 4). Boiling the plant material and then drinking the extract is preferred. It is commonly observed that on heating various biological reactions are accelerated resulting in extraction of many active compound. (Zhang et al., 2005; Han et al., 2007; Chen et al., 2008; Al-Adhroey et al., 2010). These active compounds may be the reason of combating the pathogen and ultimately curing of the disease of malaria. Mostly dried plant material was used for herbal remedies in the study area. Decoctions were usually made by boiling plant material for a minimum of one and maximum of two hours. Local wood of Dodonaea viscosa , Prosopis juliflora, P. glandulosa is usually burnt for this purpose. Change in colour of the solvent(water in the current study) indicates “full dissolution of active ingredients into the solvents” that are then effectively used against the disease. Infusion is the second ranked mode of utilization of the medicinal plants in the study area. People of the Valley prefer fresh and uninfected leaves for making infusions. The users believe that this method of preparation results in more efficacious herbal recipes as many compounds that play a key role in the remedy of the disease are not denatured by heat (Idow et al., 2010 ; Dike et al., 2012).
3.4. Quantitative Data Analysis of Anti-malarial Plants 3.4.1. Relative Frequency Citation (RFC) and PRK values of cited taxa Relative frequency citation (RFC) unravels the local importance of each plant species used by the indigenous people of the area. It is calculated from Frequency of Citation (FC, the number of informants mentioning the use of plant species) divided by the total number of informants (N) who shared their wealth of knowledge in the survey (Tardio and Pardo, 2008) in the Relative frequency citation (RFC) and Percentage of respondents interviewed with knowledge (PRK) about medicinal flora used to treat malaria are mention in Table 2. Relative frequency citation was deliberated to determine the most common occurring medicinal plants used for malarial disorders. Ocimum americanum and Solanum incanum were the species with high relative frequency of citation (RFC= 0.25 each) and percentage of respondents
having knowledge
(PRK=25.4% each), followed by Grewia tenax (RFC= 0.23, PRK=23.8%) which indicates that these plants are the best plant species with anti-malarial properties and are widely used to treat
malaria in the Valley (Table 2). The highest value of RFC and PRK narrates the fact that these plants were well known to maximum number of the informants and also effective in curing malarial symptoms respectively. In our study RFC value ranges from 0.01 to 0.25. It was observed that people living in the study area were not fully aware about the medicinal worth plant species like, Trachyspermum ammi, Centella asiatica, Ehretia obtusifolia, Fagonia cretica, Grewia tenax, Ocimum americanum, Peganum harmala, Ricinus communis, and Withania coagulans. Though these taxa are abundantly flourishing in other regions of the country as well as globally but are rapidly going toward decline and consequently vanishing from the Soon Valley, because of their unscientific use. The poor educational background is the major reason that directly affects the learning system in this concern. The study is in agreement with Asase et al., (2005). The high values of RFC and PRK (Table 2) can assist in identifying the species which should be prioritized for conservation as their preferred used may cause to threats to their existence due to over harvesting for medicinal purposes (Asese et al., 2005) for medicinal purposes. Many other factors are also threatening the diversity of medicinal flora in the study area including use of plants for forage, fodder, fuel, timber and other ethnobotanical uses locally. 3.5. Comparative analysis of documented data with previous literature To determine whether the medicinal plants used by people of Soon Valley were already known for their use in treatment of malaria or not, a literature study on ethno- medicinal use was done and comparative results are listed in Table 2. A study based upon 36 research papers was conducted to search the anti-malarial plants. The result revealed that out of 70 plants that were recorded as anti-malarial plants, seven plant species viz., Withania coagulans, Fagonia cretica, Carthamus oxyacantha, Ehretia obtusifolia, Helianthus annuus, Olea ferruginea, and Vitex trifolia are reported from this region for the first time for the treatment of malaria (Table 2). This first ethno-medicinal study highlights the potential sources for the development of new antimalarial drugs from indigenous knowledge of medicinal plants found in the Soon Valley, Pakistan. The comparative bibliographic literature survey and comparison consisting of neighboring countries as well as in the world, showed that 13 listed plants species Canna indica, Centella asiatica, Citrus aurantifolia, Cleome gynandra, Cyperus rotundus, Lantana camara, Moringa
oleifera, Nymphaea lotus, Ocimum bacilicum, Piper nigrum, Salvadora persica, Sonchus oleraceus, Tamarindus indica reported from the study area of Pakistan have been used with similar recipes as in the other regions of the world (Table 2). This correspondence in the use of the same species in diverse cultures over a long period indicates that these plants may be effective in curing malarial symptoms (Van Wyk and Wink, 2004). The literature survey has revealed that various phytochemical constituents may be responsible for anti-malarial and antiplasmodial activity of cited plant species (Table 2). Our literature survey of reported 70 anti-malarial plants revealed that the similarity of uses ranges from 0.81 to 16.83 while dissimilar uses vary 17.65% (Parveen et al., 2007) to 0% (Table 3). The lowest indices of dissimilarity is found with studies of Nguta et al., (2010), Pierre et al., (2011) Yetein et al., (2013), Katuura et al., (2007), Mesfin et al., (2012), Stangeland et al., (2011), Al-Adhroey et al., (2010), Omosun et al., (2013), Koudouvo et al.,
(2011), Tabuti,
(2008), Asase and Mensah, (2009), Asase et al., (2005), Asase et al., (2012), Karunamoorthi and Hailu, 2014; Dike et al., 2012; Rahmatullah et al., 2010; Kamaraj et al., 2012; Prakash and Unnikrishnan (2013), Mavundza et al.,
(2011) Randrianarivelojosia et al., (2003) and
Shah et al., (2014). This is because in these ethnomedicinal studies data were documented with specific emphasis on antimalarial plants. It was found that most of these plants species are already known for similar use but their recipe, preparation and method of use is different in the majority of cases. In our study the highest degree of similarity index was found with studies conducted in Benin, West Africa, by Yetein et al., (2013) and in the Churu District of India by Parveen et al., (2007), with JI 16.83 and 13.13 respectively (Table 3). The reason of high similarity index may be the similarity in diversity of medicinal flora used against malaria in study site as in West Africa. The highest similarity index might be an indication of good efficacy of these plants against malaria (Orwa, 2002). The variation in JI may be due to the distance or may be due to the immense diversity of medicinal flora of study area with other reported countries. The resemblance and variation in ethnomedicinal studies seem to point out the importance of indigenous knowledge of medicinal plants in different regions where historical (Moerman,1998), ecological (Ladio et al., 2007), phytochemical and organoleptic (Leonti et al., 2003) factors interact in their selection. A comparison of documented data with literature based on antiplasmodial activity showed that among the total cited plant species 19 plant species are tested for phytochemical and anti
plasmodial activity (Table 4). Three plant species out of these 19 species including Dysphania ambrosioides, Citrus limon and Mangifera indica don’t show anti plasmodial activity this may be due to various reasons like the plant extracts were not prepared properly as suggested by traditional healers or extracts were tested individually, even though some plants were stated by traditional healers to be taken in combination with other plants or some plants are used to cure symptoms of malaria not the disease. In addition this may be due variation in storage and drying techniques or plant may simply not be active as antimalarial (Koch et al., 2005). In our study two Vitex species viz., Vitex negundo and Vitex trifolia antimalarial. Important phytochemical compounds found in
are documented as
Vitex negundo includes
negundoside, agnuside, vitegnoside, 7,8 dimethyl herbacetin 3-rhamnoside, 5,3'-dihydroxy— 7,8,4'-trimethoxy flavanone, 5-hydroxy-3,6,7,3',4'-pentamethoxy flavone, 5,7 dihydroxy- 6,4' dimethoxy flavonone, and 5 hydroxy-7,4' dimethoxy flavone (Gautam et al., 2008). On the other hand Vitex trifolia contain diterpene, known as vitetrifolin A, and two labdane-type diterpenes, named
vitetrifolins
B
and
C,
along
with
three
known
diterpenes,
rotundifuran,
dihydrosolidagenone and abietatriene 3b-ol (Ono et al., 2000). Both Vitex species are also imparted antibacterial activity (Hossain et al., 2001; Samy et al., 1998). Niligira et al., (2008) reported the chemical composition of five South African Vitex species (V. obovata ssp. obovata, V. obovata ssp. wilmsii, V. pooara, V. rehmannii and V. zeyheri) and concluded that the antimalarial activity of these taxa (maximum in V. rehmannii) and explain that the anti-malarial activity may probably be due to the presence of highly toxic compound labdane diterpene, 12S, 16S/R-dihydroxy-ent-labda-7, 13-diene-15, 16-olide and it is necessary to determine the exact level of this labdane diterpene in Vitex species. The phytochemistry of Withania species has been studied extensively and chemical such as steroidal lactones, alkaloids, flavonoids, tannin etc. have been recognized and isolated (Rahman et al., 1993; Kapoor, 2001). Nearly more than 13 alkaloids, 138 withanolides, and several sitoindosides have been reported different parts such as roots, berries and other aerial parts of Withania species (Subramanian and Sethi, 1969, 1971; Budhiraja et al., 1983; Velde et al., 1983; Neogi et al., 1988; Rahman et al., 1993; Choudhary et al., 1995; Rahman et al., 1998, 1999, 2003; Nur-e-Alam et al., 2003; Mirjalili et al., 2009; Xu et al., 2011). The major chemical compounds of this plant, withanolides, are mainly confined to the leaves and roots with concentration ranging from 0.001 to 1.5% (Kapoor, 2001; Kumar et al., 2007). Withanolides are
the principal bioactive compounds found in both species, but some witahnolides are specific to each of them. For example, major compound found in W. somnifera is Withaferin whereas, coagulin L is major compound in W. coagulans. Moreover, bioactive chemical constituents in Withania are alkaloids (ashwagandhine, cuscohygrine, anahygrine, tropine, etc) and steroidal compounds including ergostane-type steroidal lactones, withaferin A, withanolides A-Y, withasomniferin A, withasomidienone, withasomniferols A-C, withanone, etc (Gupta and Rana, 2007; Maurya and Akanksha, 2010). It seems possible to isolate specific common and novel antimalarial compound (witahnolide) from these plant species. Further phytochemical investigation may be helpful in determining the level of toxic diterpene in Vitex species and to investigate which specific bioactive compound is best antimalarial and common in both species of Withania.
3.6. Problems regarding the use of herbal remedies in the study area
During the study our focus was also to address issues and problems such as safety, quality, expertise and the exact dose and methods of preparation of herbal remedies for malaria. It was observed that the main problem is the lack of knowledge among inhabitants about the exact ratio of plant part material used for the preferred mode of utilization (Asase et al., 2005). This lack of standardization and quality control is the major drawback of traditional medicines (EvansAnfom 1986; Sofowora, 1982) which greatly affects the popularity of traditional remedies as compared to modern medications (Angmo et al., 2012). During the study it was observed that informants show a reluctance to use some of the plants identified as useful against malaria or its various symptoms, such as Calotropis procera, Datura metel, D. stramonium, Heliotropium indicum, Jatropha curcas, Withania somnifera, Lantana camara, Nicotiana tabacum and Ricinus communis. The inhabitants understand that these plants can cause symptoms including nausea, impotency, sterility, dizziness and hallucination. People have a general knowledge about toxic signs and their interpretation of toxicity is on the basis of observation. A scientific literature review showed that most of these species are moderately to highly toxic and the reluctance of the people of the Soon Valley to use them is very sensible. Calotropis procera, Datura stramonium and Withania somnifera cause gastric inflammation and abdominal disturbances, abortion and sterility. Furthermore, Datura stramonium also causes
anticholinergic effects (Diker et al., 2007). Nicotiana tabacum cause CNS disturbances (AlQura'n, 2005). Ricin and curcin are highly toxic toxalbumins that occur in the seeds of Ricinus communis and Jatropha curcas and cause digestive tract problems, and potentially more serious symptoms including, for Ricinus communis, multi-organ failure (Van Wyk et al., 2002; Farrell, 1992). On the basis of preliminary phytochemical investigations, at carefully controlled doses, these plants may be proved to have good efficacy against malaria or its symptoms.
4. Conclusion Due to economic limitations, providing modern health facilities in developing countries like Pakistan is still a far-reaching goal. For the daily need of medical treatment communities in remote areas heavily depend on ethnobotanical practices. People of Soon Valley had a rich tradition of medicinal plants consumption in this context. Prior to present study, knowledge about the medicinal plants used for malaria by the aboriginal communities of Soon Valley was not available in documented form. In that case, present study supports to secure such information up to some extent. Seven plant species that is Withania coagulans, Fagonia cretica, Carthamus oxycantha, Ehretia obtusifolia, Helianthus annuus, Olea ferruginea, and Vitex trifolia are reported from this region for the first time for the treatment of malaria. Result of this study has showed that the people of the studied area have a very good knowledge of medicinal plants used in management of malaria. To conserve such precious knowledge of indigenous communities regarding herbal remedies of malaria, there is dire need to protect, improve and document this information with scientific proofs. These medicinal plants may probably contain yet undiscovered antimalarial properties, which can serve as a template for the production of cheap antimalarial drug from indigenous knowledge of plants in Soon Valley, Pakistan.
It is
recommended to screen all mentioned plant species to confirm their anti-malarial activity and to gather available knowledge on preparation and toxicity risks in order to justify their traditional usage.
Acknowledgements The study was supported by Higher Education Commission Pakistan (Programme No. 20-1599/ 09/3007). The authors appreciatively thank all the guides the traditional healers who accepted to participate to the study.
References
Abdel-Wahab, S. M., Selim, M. A., El-Fiki, N.. 1990. Investigation of the flavonoid content of Salvadora persica L. Bull. Fac. Pharm (Cairo Univ), 28, 67-70. Abebe, D., Ayehu, A., 1993. Medicinal Plants and Enigmatic health Practices of Northern Ethiopia, Addis Ababa, Ethiopia. Abirami, A., Nagarani, G., Siddhuraju, P., 2014. In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci. Human Well. 3 (1), 16-25. Abukakar, M. G., Ukwuani, A. N., Shehu, R. A., 2008. Phytochemical screening and antibacterial activity of Tamarindus indica pulp extract. Asian J. Biochem. , 3 (2), 134-138. Adeniyi, B. A., Ayepola, O. O., 2008. The phytochemical screening and Antimicrobial Activity of Leaf Extracts of Eucalyptus camaldulensis and Eucalyptus torelliana (Myrtaceae). Res. J. Med. Plants. 2 (1), 34-38. Aditya, K., Kumar, A. R., 2014. Phytochemical evaluation of Vitex leuocoxylon, vitex negundo and vitex trifolia. Indian. J. Res. Pharm. Biotechnol. 2 (2), 1106. Afzal, S., Younas, M., Hussain, K., 1999. Physical and chemical characterisation of the agricultural lands of the Soan–Sakesar Valley, Salt Range, Pakistan. Soil Res. 37(6), 1035-1046. Agra, M. F., Baracho, G.S., Nurit, K., Basilio, I.J.L.D., Coelho, V. P. M., 2007.
Medicinal and
poisonous diversity of the flora of ''CaririParaibano'', Brazil. J. Ethnopharmacol. 111, 383395. Ahmad, I., Ahmad, M. S. A., Hameed, M., Hussain, M., Ashraf, M. Y., Ahmad, F., Malik, H., 2012. Status of plant diversity in the Soone Valley, Salt Range, Pakistan. Pak. J. Bot. 44, 59-62. Ahmad, I., Ahmad, M. S. A., Hussain, M., Hameed, M., Ashraf, M. Y., Koukab, M. Y., 2009. Spatiotemporal effects on species classification of medicinal plants in Soone Valley of Pakistan. Int. J. Agric. Biol. 11(1), 64-68.
Ahmad, I., Hussain, M., Ahmad, M. S. A., Ashraf, M. Y., Ahmad, R., Ali, A., 2008. Spatio-temporal variations in physiochemical attributes of Adiantum capillus-veneris from Soone Valley of salt range (Pakistan). Pak. J. Bot. 40 (4), 1387-1398. Ahmed, M. F., Rao, A. S., Ahemad, S. R., Ibrahim, M., 2012. Phytochemical studies and antioxidant activity of Melia azedarach Linn. leaves by DPPH scavenging assay. Int. J. Pharm. Appl. 3 (1), 271-276. Ajibesin, K. K., Ekpo, B. A., Bala, D. N., Essien, E. E., Adesanya, S. A. 2008 . Ethnobotanical survey of Akwa Ibom state of Nigeria. J. Ethnopharmacol. 115 (3), 387-408. Ajila, C. M., Rao, U. P., 2008. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem. Toxicol. 46 (1), 303-309. Akinjogunla, O. J., Adegoke, A. A., Udokang, I. P., Adebayo-Tayo, B. C., 2009. Antimicrobial potential of Nymphaea lotus (Nymphaeaceae) against wound pathogens. J. Med. Plant. Res., 3 (3), 138-141. Al-Adhroey, A. H., Nor, Z. M., Al-Mekhlafi, H. M., Mahmud, R., 2010. Ethnobotanical study on some Malaysian anti-malarial plants: A community based survey. J. Ethnopharmacol. 132, 362-364. Al-Bagìeh, N. H., 1992. Antiherpes simplex virus type 1 activity of benzylisothiocyanate. Biomed. letters, 47(185), 67-70. Aliyu, R. M., Abubakar, M. B., Kasarawa, A. B., Dabai, Y. U., Lawal, N., Bello, M. B., Fardami, A. Y. 2015. Efficacy and phytochemical analysis of latex of Calotropis procera against selected dermatophytes. J.intercult. ethnopharmacol, 4, 314-317. Allison, D. B., Cutter, G., Poehlman, E. T., Moore, D. R., Barnes, S., 2005. Exactly which synephrine alkaloids does Citrus aurantium (bitter orange) contain? Int. J. Obes. 29 (4), 443-446. Al-Qura'n, S., 2005. Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon. 46 (2), 119-129. Angmo, K., Adhikari, B. S., Rawat, G. S., 2012. Changing aspects of traditional healthcare system in Western Ladakh, India. J. Ethnopharmacol., 143 (2), 621-630.
Aron, P. M., Kennedy, J. A., 2008. Flavan‐3‐ols: Nature, occurrence and biological activity. Mol. Nutr. Food. Res.52 (1), 79-104. Arunkumar, S., Muthuselvam, M., 2009. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World. J. Agric. Sci. 5(5), 572-576. Asase, A., Akwetey, A. G., Achel, D. G., 2010. Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. J. Ethnopharmacol. 129, 367– 376. Asase, A., Hesse, D. N., Simmonds, M. S. J., 2012. Uses of multiple plants prescriptions for treatment of malaria by some communities in southern Ghana. J. Ethnopharmcol. 144, 448-452. Asase, A., Oppong-Mensah, G., 2009. Traditional antimalarial phytotherapyreme- dies in herbal markets in southern Ghana. J. Ethnopharmacol. 126, 492–499. Asase, A., Oteng-Yeboah, A. A., Odamtten, G. T., Simmonds, M. S. J., 2005. Ethnobotanical study of some Ghanaian anti-malarial plants. J. Ethnopharmacol. 99, 273–275. Auta, R., James, S. A., Auta, T., Sofa, E. M., 2011. Nutritive value and phytochemical composition of processed Solanum incanum (Bitter garden egg). Sci. World. J. 6 (3), 5-6. Ayyanara, M., Ignacimuthub, S., 2011. Ethnobotanical survey of medicinal plants commonly used by Kani tribals in Tirunelveli hills of Western Ghats, Indian. J. Ethnopharmacol. 134, 851–864. Bachheti, R. K., Rawat, G. S., Joshi, A., Pandey, D. P., 2013. Phytochemical investigation of aerial parts of Canna indica collected from Uttarakhand India. Int. J. Pharm.Tech. Res. 5(2), 294300. Bala, A., Kar, B., Haldar, P. K., Mazumder, U. K., Bera, S., 2010. Evaluation of anticancer activity of Cleome gynandra on Ehrlich's Ascites Carcinoma treated mice. J. Ethnopharmacol. 129 (1), 131-134. Balick, M., Cox, P., 1996. Plants Culture and People.Scientific American New York. Bertani, S., Bourdy, D., Landau, I., Robinson, J.C., Esterre, Ph, Deharo, E., 2005. Evaulation of French Guiana traditional antimalarial remedies. J. Ethnopharmacol. 98, 45–54.
Bhandary, S. K., Kumari, S. N., Bhat, V. S., Sharmila, K. P., Bekal, M. P., 2012. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds. J. Health. Sci. 2 (4), 35-38. Bhattarai, S., Chaudhary, R.P., Taylor, R.S., 2006. Ethnomedicinal plants used by the people of Manang district, central Nepal. J. Ethnobiol. Ethnomed. 2, 41. Boulekbache-Makhlouf, L., Meudec, E., Chibane, M., Mazauric, J. P., Slimani, S., Henry, M., Madani, K., 2010. Analysis by high-performance liquid chromatography diode array detection mass spectrometry of phenolic compounds in fruit of Eucalyptus globulus cultivated in Algeria. J. Agric. Food. Chem. 58 (24), 12615-12624. Budhiraja, R. D., Sudhir, S., Garg, K. N., 1983. Cardiovascular effects of a withanolide from Withania coagulans, dunal fruits. Indian. J. Physiol. Pharmacol. 27 (2), 129-134. Bukhari, N., Choi, J. H., Jeon, C. W., Park, H. W., Kim, W. H., Khan, M. A., Leet, S. H., 2008. Phytochemical studies of the alkaloids from Peganum harmala. Appl. Chem. 12(1), 101-4. Burkill, H. R. M., 2000. The useful plants of West Tropical Africa, Vol. 5. Royal Botanic Gardens, Kew, London Cavalcanti, E. S. B., Morais, S. M. D., Lima, M. A. A., Santana, E. W. P., 2004. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem. Inst. Oswaldo. Cruz. 99 (5), 541-544. Cavalli, J. F., Tomi, F., Bernardini, A. F., Casanova, J., 2004. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC‐MS and 13C‐NMR spectroscopy: quantitative determination of ascaridole, a heat‐sensitive compound. Phytochem. Anal. 15(5), 275-279. Chang, S. F., Hsieh, C. L., Yen, G. C. 2008. The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food chem. 106 (2), 569-575. Chen, G., Yang, M., Song, Y., Lu, Z., Zhang, J., Huang, H., Guo, D. A., 2008. Comparative analysis on microbial and rat metabolism of ginsenoside Rb1 by high‐performance liquid chromatography coupled with tandem mass spectrometry. Biomed. Chrom. 22 (7), 779–785.
Chiang, L. C., Chiang, W., Liu, M. C., Lin, C. C., 2003. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. J. Antimicrob. Chemother. 52 (2), 194-198. Choudhary, M. I., Dur-e-Shahwar, D., Parveen, Z., Jabbar, A., Ali, I ., Rahman, A., 1995. Antifungal steroidal lactones from Withania coagulans, Phytochem, 40 (4), 1243-1246. Chung, I. M., Ali, M., Ahmad, A., Lim, J. D., Yu, C. Y., Kim, J. S. 2006. Chemical constituents of rice (Oryza sativa) hulls and their herbicidal activity against duckweed (Lemna paucicostata Hegelm 381). Phytochem. Anal. 17(1), 36-45. Crozier, A., Jaganath, I. B., Clifford, M. N., 2006. Phenols, polyphenols and tannins: An overview. In Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet; Crozier, A.,Clifford, M., Ashihara, H., Eds.; Blackwell: Oxford, UK, 2006; pp. 1-24. Dabai, Y. U., Kawo, A. H., Aliyu, R. M., 2012. Phytochemical screening and antibacterial activity of the leaf and root extracts of Senna italica. Afr. J. Pharm. Pharmacol. 6(12), 914-918. de Albuquerque, U. P., Monteiro, J. M., Ramos, M. A., de Amorim, E. L. C. 2007. Medicinal and magic plants from a public market in north eastern Brazil. J. Ethnopharmacol. 110 (1), 76-91. Dike, I. P., Obembe, O. O., Adebiyi, F. E., 2012. Ethnobotanical survey for potential anti-malarial plants in south-western Nigeria. J. Ethnopharmcol. 144 , 618-26. Diker, D., Markovitz, D., Rothman, M., Sendovski, U. 2007. Coma as a presenting sign of Datura stramonium seed tea poisoning. Eur. J. Intern. Med. 18(4), 336-338. Ekpo, B. A., Bala, D. N., Essien, E. E., Adesanya, S. A., 2008. Ethnobotanical survey of Akwa Ibom state of Nigeria. J. Ethnopharmacol. 115 (3), 387-408. Evans-Anfom, E., 1986. Traditional medicine in Ghana: Practice, Problems and Prospects. Ghana Academy of Arts and Sciences. Felix, A. A., Domingo, A. O., 2008. Antioxidant activity and chemical constituents of Pupalia lappacea (L.) Juss. Res. J. Biol. Sci. 3 (7), 783-785.
Feng, S., Luo, Z., Zhang, Y., Zhong, Z.,
Lu, B., 2014. Phytochemical contents and antioxidant
capacities of different parts of two sugarcane (Saccharum officinarum L.) cultivars. Food Chemistry, 151, 452-458. Ferrell, M., 1992. Poisons and poisoners, An Encyclopedia of Homicidal poisonings, Robert Hale Bublishers, London, pp, 51-52. Firestone, D., (Ed.) 1999. Physical and chemical characteristics of oils, fats, and waxes (pp. 56-101). Champaign, IL: AOCS press. Gautam, L. M., Shrestha, S. L., Wagle, P., Tamrakar, B. M., 2008. Chemical constituents from Vitex negundo (Linn.) of Nepalese origin. Scientific World J. 6 (6), 27-32. Gessler, M.C., Mysuya, D.E., Nkunya, M.H.H., Mwasumbi, L.B., Schar, A., Heinrich, M., Tanenr, M., 1995. Traditional healers in Tanzania: the treatment of malaria with plant remedies. J. Ethnopharmcol. 48, 131-144. Ghisalberti, E. L., 2000. Lantana camara L.(Verbenaceae). Fitoterapia. 71(5), 467-486. Ghorbani, A., 2005. Studies on pharmaceutical ethnobotany in the region of TurkmenSahra, north of Iran (Part 1): general results. J. Ethnopharmacol. 102, 58–68. Giday, M., Asfaw, Z., Elmqvist, T., Woldu, Z., 2003.An ethnobotanical study of medicinal plants used by the Zay people in Ethiopia. J. Ethnopharmacol. 85, 43–52. Giday, M., Asfaw, Z., Woldu, Z., 2009. Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. J. Ethnopharmacol. 124, 513–521 Gonza, T.M.R., Casares, P.M., Sanchez, R.C.P., Ramiro, G.J.M., Molero, M.J., Pieroni, A., Giusti, M.E., Censorii, E., de Pasquale, C., Della, A., Paraskeva, H.D., Hadijchambis, A., Houmani, Z., El-Demerdash, M., El-Zayat, M., Hmamouchi, M., ElJorhig, S., 2008. Medicinal plants in the Mediterranean area: synthesis of the results of the project RUBIA. J. Ethnopharmacol. 116, 341–357
Goudarzi, G. R., Saharkhiz, M. J., Sattari, M., Zomorodian, K., 2010. Antibacterial activity and chemical composition of Ajowan (Carum copticum Benth. & Hook.) essential oil. J. Agric. Sci. Tech. 13, 203-208. Govindarajan, M., Sivakumar, R., Rajeswari, M., Yogalakshmi, K., 2012. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol. Res. 110 (5), 2023-2032. Gupta, G. L., Rana, A. C., 2007. Withania somnifera (Ashwagandha): a review. Phcog. Rev. 1, 129136. Gutiérrez, R. M. P., Mitchell, S., Solis, R. V., 2008. Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 117(1), 1-27. Han, J., Ye , M., Guo, H., Yang, M., Wang, B.R., Guo, D.A., 2007. Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MS. J. Pharm. Biomed. Anal. 44 (2), 430–438. Hashmi, M. A., Shah, H. S., Khan, A., Farooq, U., Iqbal, J., Ahmad, V. U.,Perveen, S., 2015. Anticancer and alkaline phosphatase inhibitory effects of compounds isolated from the leaves of Olea ferruginea Royle. Rec. Nat. Prod. 9 (1), 164-8. Hollman, P. C. H., Arts, I. C. W., 2000. Flavonols, flavones and flavanols–nature, occurrence and dietary burden. J. Sci. Food. Agr. 80(7), 1081-1093. Hossain, M. M., Paul, N., Sohrab, M. H., Rahman, E., Rashid, M. A., 2001. Antibacterial activity of Vitex trifolia. Fitoterapia, 72 (6), 695-697. Idowu, O. A., Soniran, O. T., Ajana, O., Aworinde, D. O., 2010. Ethnobotanical survey of antimalarial plants used in Ogun State, Southwest Nigeria. Afr. J. Pharm. Pharmacol. 4, 55-60. Ilhan, S., Savaroğlu, F., Çolak, F., 2007. Antibacterial and antifungal activity of Corchorus olitorius L.(molokhia) extracts. Int. J. Nat. Eng. Sci. 1 (3), 59-61.
Iqbal, K., Nawaz, S. A., Malik, A., Riaz, N., Mukhtar, N., Mohammad, P., Choudhary, M. I., 2005. Isolation and Lipoxygenase‐Inhibition Studies of Phenolic Constituents from Ehretia obtusifolia. Chem. Biodivers. 2 (1), 104-111. Irungu, B. N., Rukunga, G. M., Mungai, G. M., Muthaura, C.N., 2007. In vitro anti plasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. S. Afr. J. Bot. 73, 204-207. Ishikawa, T., Kudo, M., Kitajima, J., 2002. Water-soluble constituents of dill. Chem. Pharm. Bull. 50 (4), 501-507. Jain, N., Alam, M. S., Kamil, M., Ilyas, M., Niwa, M., Sakae, A., 1990. Two flavonol glycosides from Chenopodium ambrosioides. Phytochemistry. 29 (12), 3988-3991. Jain, S. C., Jain, R., Singh, R., 2009. Ethnobotanical survey of Sariska and Siliserh regions from Alwar district of Rajasthan, India. Ethnobot. Leaflets. 13,171-88. Jain, V. C., Shah, D. P., Sonani, N. G., Dhakara, S., Patel, N. M., 2010. Pharmacognostical and preliminary phytochemical investigation of Lawsonia inermis L. leaf. Rom. J. Biol. Plant Biol. 55 (2), 127-133. Jakabová, S., Vincze, L., Farkas, Á., Kilár, F., Boros, B., Felinger, A. 2012. Determination of tropane alkaloids atropine and scopolamine by liquid chromatography–mass spectrometry in plant organs of Datura species. J. Chromatogr. A, 1232, 295-301. Javanmardi, J., Khalighi, A., Kashi, A., Bais, H. P., Vivanco, J. M., 2002. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agric. Food. Chem. 50 (21), 5878-5883. Jena, J., Gupta, A. K. 2012. Ricinus communis Linn: a phytopharmacological review. Int. J. Pharm. Pharm. Sci. 4(4), 25-29. Jha, D. K., Panda, L., Lavanya, P., Ramaiah, S., Anbarasu, A., 2012. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its antituberculosis activity. Appl. Biochem. Biotechnol. 168(5), 980-990.
Jiang, J., Li, Y., Chen, Z., Min, Z., Lou, F., 2006. Two novel C 29-5β-sterols from the stems of Opuntia dillenii. Steroids, 71(13), 1073-1077. Kalita, D., Saikia, C. N., 2004. Chemical constituents and energy content of some latex bearing plants. Bioresour. Technol. 92(3), 219-227. Kamaraj, C., Kaushik, N. K., Rahuman, A. A., Mohanakrishnan, D., Bagavan, A., Elango, G., Zahir, A. A., Santhoshkumar, T., Marimuthu, S., Jayaseelan, C., Kirthi, A. V., Rajaku- mara, G., Velayutham, K., Sahal, D., 2012. Antimalarial activities of medicinal plants traditionally used in the villages of Dharma puri regions of South Indian. J. Ethnopharmacol. 141,796–802. Kamba, A. S., Hassan, L. G., 2010. Phytochemical and microbial screening of Parkinsonia aculeata L. leaves. Int. J. Drug. Dev. Res., 2 (1),1-7. Kanaze, F. I., Termentzi, A., Gabrieli, C., Niopas, I., Georgarakis, M., Kokkalou, E., 2009. The Phytochem. Anal. and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece–Crete indicates a new commercial source of hesperidin. Biomed. Chrom. 23 (3), 239-249. Kaou, A. M., Mahiou-Leddet, V., Hutter, S., Aïnouddine, S., Hassani, S., Yahaya, I., Azas, N., Ollivier, E., 2008. Antimalarial activity of crude extracts from nine African medicinal plants. J. Ethnopharmacol. 1, 74-83. Kapoor, L. D., 2000. Handbook of Ayurvedic medicinal plants: Herbal reference library (Vol. 2). CRC press. Karpagasundari, C., Kulothungan, S. 2014. Analysis of bioactive compounds in Physalis minima leaves using GCMS, HPLC, UV-VIS and FTIR techniques. J. Pharmacogn Phytochem. 3, 196-201. Karunamoorthi, K., Hailu, T., 2014. Insect repellent plants traditional usage practices in the Ethiopian malaria epidemic-prone setting: an ethnobotanical survey. J. Ethnobiol. Ethnomed. 10, 22. Kasolo, J. N., Bimenya, G. S., Ojok, L., Ochieng, J., Ogwal-Okeng, J. W., 2010. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J. Med. Plant. Res. 4(9), 753757.
Katuura, E., Waako, P., Ogwal-Okeng, J., Bukenya-Ziraba, R., 2007. Traditional treatment of malaria in Mbarara District, western Uganda. Afr. J. Ecol. 45, 48-51. Kawo, A., Mustapha, A., Abdullahi, B., Rogo, L., Gaiya, Z., Kumurya, A., 2009. Phytochemical properties and antibacterial activities of the leaf and latex extracts of Calotropis procera (Ait.) Ait. F. Bayero J. Pure Appl. Sci, 2(1), 34-40. Khajeh, M., Yamini, Y., Sefidkon, F., Bahramifar, N. 2004. Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food chemi. 86 (4), 587-591. Khalik, S. A., Miyase, T., El-Ashaal, H. A., Melek, F. R., 2000. Triterpenoid saponins from Fagonia cretica. Phytochemistry. 54(8), 853-859. Kilani-Jaziri, S., Bhouri, W., Skandrani, I., Limem, I., Chekir-Ghedira, L., Ghedira, K., 2011. Phytochemical, antimicrobial, antioxidant and antigenotoxic potentials of Cyperus rotundus extracts. S. Afr. J. Bot. 77(3), 767-776. Kirira, P. G., Rukunga, G.M., Wanyonyi, A. W., Muregi, F.M., Gathirwa, J. W., Muthaura, C. N., Omar, S. A., Tolo, F., Mungai, G. M., Ndiege, I. O., 2006. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi Districts of Kenya. J. Ethnopharmacol. 106, 403-407. Koch, A., Tamez, P., Pezzuto, J., Soejarto, D., 2005. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J. Ethnopharmacol. 101, 1-3 Koudouvo, K., Karoua, D. S., Kokou, K., Essien, K., Aklikokou, K., Glitho, I. A., Simpore, J., Sanogo, R., DeSouza, C., Gbeassor, M., 2011. An ethno botanical study of anti-malarial plants in Togo maritime region. J. Ethnopharmacol. 134, 183–190. Krettli, A., Andrade-Neto, V., Brandao, M., Ferrari, W., 2001. The search for new antimalarial drugs from plants used to treat fever and malaria or plants randomly selected: a review. Mem. Inst. Oswaldo. Cruz. 96, 1033–1043. Krishnaiah, D., Devi, T., Bono, A., Sarbatly, R., 2009. Studies on phytochemical constituents of six Malaysian medicinal plants. J. Med. Plant. Res. 3(2), 067-072.
Kumar, A., Kaul, M.K., Bhan, M.K., Khana, P.K., Suri, K.A., 2007. Morphological and chemical variation in 25 collections of the Indian medicinal plant, Withania somnifera (L.) Dunal (Solanaceae). Gene. Resour. Crop Evol. 54(3). 655-660.
Kuti, J. O., 2004. Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food. Chem. 85(4), 527-533. Kvist, L. P., Christensen, S. B., Rasmussen, H. B., Mejia, K., Gonzalez, A., 2006. Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. J. Ethnopharmacol. 106, 390-402. Ladio, A., Lozada, M., Weigandt, M., 2007. Comparison of traditional wild plant knowledge between aboriginal communities inhabiting arid and forest environments in Patagonia, Argentina. J. Arid Environ. 69 (4), 695–715. Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., Premier, R. 2007. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem. 101(4), 1727-1741. Lamaeswari, G., Ananthi, T., 2012. Preliminary phytochemical screening and physicochemical characterization of Canna indica L. Int. J. Pharm. Sci. Rev. Res. 14(2), 76-79. Le Bras, J., Musset, L., Clain, J., 2006. Antimalarial drug resistance. Méd. Mal. Infect. 36, 401–405. Lee, S. J., Umano, K., Shibamoto, T., Lee, K. G. 2005. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 91(1), 131-137. Leonti, M., Sticher, O., Heinrich, M., 2003. Antiquity of medicinal plant usage in two Macro-Mayan ethnic groups (Mexico). J. Ethnopharmacol. 88, 119–124. Li, S., Lo, C. Y., Ho, C. T., 2006. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J. Agric. Food. Chem. 54 (12), 4176-4185.
Mainasara, M. M., Aliero, B. L., Aliero, A. A., Dahiru, S. S., 2011. Phytochemical and antibacterial properties of Calotropis procera (Ait.) R. Br. (Sodom Apple) fruit and bark extracts. Int. J. Mod. Bot. 1(1), 8-11. Malik, S., Ahmad, S. S., Haider, S. I., Muzaffar, A., 1987. Salvadoricine-a new indole alkaloid from the leaves of Salvadora persica. Tetrahedron Lett. 8 (2), 163-164. Mathur, D., Agrawal, R. C., Shrivastava, V., 2011. Phytochemical Screening and Determination of Antioxidant Potential of Fruits Extracts of Withania coagulans. Recent Res. Sci.Technol. 3 (11):26-29. Maurya, R., Akanksha, J., 2010. Chemistry and pharmacology of Withania coagulans: an Ayurvedic remedy. J. Pharm. Pharmacol. 62,153-160 Mavundza, E. J., Maharaj, R., Finnie, J. F., Kabera, G., Van Staden, J., 2011. An ethnobotanical survey of mosquito repellent plants in uMkhanyakude district, KwaZulu-Natal province, South Africa. J. Ethnopharmacol. 137, 1516-1520. Megersa, M., Zemede, A., Ensermu, K., Abebe, B., Bizuneh, W., 2013. An ethnobotanical study of medicinal plants in WayuTuka District, East Welega Zone of Oromia Regional State, West Ethiopia.J. Ethnobiol. Ethnomed. 9,68. Menan, H., Banzouzi, J.-T., Hocquette, A., Pelissier, Y., Blache, Y., Kone, M., Mallie, M., AkéAssiand, L., Valentin, A., 2006. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J. Ethnopharmacol. 105, 131– 136. Mesfin, A., Giday, M., Animut, A., Teklehaymanot, T., 2012. Ethno botanical study of antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J. Ethnopharmacol. 139, 221–227. Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., Palazón, J., 2009. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14 (7), 2373-2393. Moerman, D., 1998. Native American Ethnobotany. Portland Timber Press
Moustafa, A. M. Y., Ahmed, S. H., Nabil, Z. I., Hussein, A. A., Omran, M. A., 2010. Extraction and phytochemical investigation of Calotropis procera: effect of plant extracts on the activity of diverse muscles. Pharm. Biol. 48 (10), 1080-1190. Murch, S. J., Alan, A. R., Cao, J., Saxena, P. K., 2009. Melatonin and serotonin in flowers and fruits of Datura metel L. J. Pineal Res. 47 (3), 277-283. Mythili, T., Ravindhran, R., 2012. Phytochemical screening and antimicrobial activity of Sesbania sesban (L.) Merr. Asian J. Pharm. Clin. Res. 5 (4), 179-182. Nadembega, P., Boussim, J. I., Nikiema, J. B., Poli, F., Antognoni, F., 2011. Medicinal plants in Baskoure, Kourittenga Province, Burkina Faso: An ethnobotanical study. J. Ethnopharmacol. 133, 378-395. Namukobe, J., Kasenene, J. M., Kiremire, B. T., Byamukama, R., Kamatenesi-Mugisha, M., Krief, S., Kabasa, J. D., 2011. Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda. J. Ethnopharmacol.136, 236245. Nasir, E., Ali, S.I. (Eds)., 1970–2001. Flora of Pakistan Fascicles 1–200. Nathiya, M.,
Dorcus, D., 2012. Preliminary phytochemical and anti-bacterial studies on Physalis
minima Linn. Int. J. Curr. Sci. 24-30. Nchinda, T.C., 1998. Malaria: a re-emerging disease in Africa. Emerg. Infect. Dis. 4, 399–403. Nenaah, G., 2013. Antimicrobial activity of CalotropisproceraAit.(Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J. Microbiol. Biotechnol. 29 (7), 1255-1262. Neogi, P., Kawai, M., Butsugan, Y., Mori, Y., Suzuki, M., 1988. Withacoagin, a new withanolide from Withania coagulans roots. Bull. Chem. Soc. Jpn., 61 (12), 4479-4481. Newman, D. J, Cragg, G. M. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75, 311–35.
Newman, D.J., Cragg, G.M., Snader, K.M. 2003. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1022–1037. Nguta, J. M., Mbaria, J. M, Gakuya, D. W., Gathumbi, P. K., Kiama, S. G., 2010. Traditional antimalarialphytotherapy remedies used by the south coast community, Kenya. J. Ethnopharmacol. 131, 256–267. Nur‐e‐Alam, M., Yousaf, M., Qureshi, S., Baig, I., Nasim, S., Choudhary, M. I., 2003. A Novel Dimeric Podophyllotoxin‐Type Lignan and a New Withanolide from Withania coagulans Helv. Chim. Acta, 86 (3), 607-614. Nyiligira, E., Viljoen, A. M., Van Heerden, F. R., Van Zyl, R. L., Van Vuuren, S. F., Steenkamp, P. A., 2008. Phytochemistry and in vitro pharmacological activities of South African Vitex (Verbenaceae) species. J. Ethnopharmacol. 119 (3), 680-685. Ohtani, K., Kasai, R., Yamasaki, K., Tanaka, O., Kamel, M. S., Assaf, M. H., Ali, A. A., 1992. Lignan glycosides from stems of Salvadora persica. Phytochem. 31 (7), 2469-2471. Okokon, J. O., Effiong, I., 2010. Antiplasmodial and antidiabetic activities of Eleusine indica. Int. J. Drug. Dev. Res. 2(3). 493-500. Olasehinde, E. F., Olusegun, S. J., Adesina, A. S., Omogbehin, S. A., Momoh-Yahayah, H., 2013. Inhibitory action of Nicotiana tabacum extracts on the corrosion of mild steel in HCl: adsorption and thermodynamics study. Nat. Sci. 11(1), 83-90. Olowokudejo, J. D., Kadiriand, A. B., Travih, V. A., 2008. An ethnobotanical survey of herbal markets and medicinal plants in Lagos State of Nigeria. Ethnobot. Leaflets. 12, 851-865. Omosun, G., Okoro, I. A., Ekundayo, E., Ojimelukwe, P. C., Ibe, O., 2013. Ethnobotanical study of medicinal plants useful for malaria therapy in eight local government areas of Abia State, Southeast Nigeria. Adv. Med. Plant Res. 1, 39-44. Ono, M., Sawamura, H., Ito, Y., Mizuki, K., Nohara, T., 2000. Diterpenoids from the fruits of Vitex trifolia. Phytochemistry, 55 (8), 873-877.
Ortuño, A., Báidez, A., Gómez, P., Arcas, M. C., Porras, I., García-Lidón, A., Del Rio, J. A., 2006. Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chemistry, 98(2), 351-358. Orwa, J. A., 2002. Herbal medicine in kenya: evidence of safety and efficacy. East Afr. Med. J. 341342 Osungunna, M. O., Adedeji, K. A., 2011. Phytochemical and antimicrobial screening of methanol extract of Heliotropium indicum leaf. J. Microbiol. Antimicrob. 3 (8), 213-216. Ou, Z. Q., Schmierer, D. M., Rades, T., Larsen, L., McDowell, A., 2013. Application of an online post‐column derivatization HPLC‐DPPH assay to detect compounds responsible for antioxidant activity in Sonchus oleraceus L. leaf extracts. J. Pharm. Pharmacol. 65 (2), 271279. Parveen, Upadhyay, B., Roy, S., Kumar, A.,2007. Traditional use of medicinal plants among the rural communities of Churu District in the Thar Desert, India. J. Ethnopharmacol. 113, 387-399. Pierre, S., Toua, V., Tchobsala, Fernand-N, T. F., Alexandre-Michel, N. N., Jean, M., 2011. Medicinal plants used in traditional treatment of malaria in Cameroon. J. Ecol. Nat. Env. 3(3) 104-117. Prakash, B.N., Unnikrishnan, P.M., 2013. Ethnomedical survey of herbs for the management of Malaria in Karnataka, India. Ethnobotany Research and Applications 11: 289–298. Prakash, N. U., Selvi, C. R., Sasikala, V., Dhanalakshmi, S., Prakash, S. B. U., 2012. Phytochemistry and Bio-Efficacy of a weed, Dodonaea viscosa. Int. J. Pharm. Pharm. Sci. 4 (2), 509-512. Pranithanchai, W., Karalai, C., Ponglimanont, C., Subhadhirasakul, S., Chantrapromma, K., 2009. Cassane diterpenoids from the stem of Caesalpinia pulcherrima. Phytochemistry. 70 (2), 300-304. Qureshi, R., Maqsood, M., Arshad, M., Chaudhry, A. K., 2011. Ethnomedicinal uses of plants by the people of Kadhi areas of Khushab, Punjab, Pakistan. Pak. J. Bot. 43 (1), 121-133. Rahman, A. U., Abbas, S., Shahwar, D. E., Jamal, S. A., Choudhary, M. I., 1993. New withanolides from Withania spp. J. Nat. Prod, 56, 1000-1006.
Rahman, A., Choudhary, M. I., Qureshi, S., Gul, W., Yousaf, M. 1998. Two new ergostane-type steroidal lactones from Withania coagulans. J. Nat. Prod, 61(6), 812-814. Rahman, A., Shabbir, M., Yousaf, M., Qureshi, S., Shahwar, D., Naz, A., Choudhary, M. I., 1999. Three withanolides from Withania coagulans. Phytochemistry. 52,1361-1364. Rahman, A., Shahwar, D., Naz, A, Choudhary, M. I., 2003. Withanolides from Withania coagulans. Phytochemistry. 63,387-390. Rahmatullah, M., Ferdausi, D., Mollik, A., Jahan, R., Chowdhury, M. H., Haque, W. M., 2010. A survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr. J. Trad. Complement. Altern. Med. 7(2). 91-97. Randrianarivelojosia, M., Rasidimanana, T. V., Rabarison, H., Cheplogoi, K.P., Ratsimbason, M., Mulholland, A.D., Mauclère, P., 2003. Plants traditionally prescribed to treat tazo (malaria) in the eastern region of Madagascar. Malar. J. 2 (1), 25. 10.1186/1475-2875-2-25 Rathee, S., Rathee, P., Rathee, D., Rathee, D., Kumar, V., 2010. Phytochemical and pharmacological potential of Kair (Capparis Decidua). Int. J. Phytomed. 2 (1), 10-17. Rathore, S. K., Bhatt, S., Dhyani, S., Jain, A., 2012. Preliminary phytochemical screening of medicinal plant Ziziphus mauritiana Lam. fruits. Int. J. Curr. Pharm. Res. 4, 160-162. Ravikumar,S., Inbaneson, S.J., Suganthi, P., 2012. In vitro antiplasmodial activity of ethanolic extracts of South Indian medicinal plants against Plasmodium falciparum. Asian Pac. J. Trop. Dis. 2 (3), 180-183. Ray, A. B., Chand, L., Dutta, S. C., 1975. Salvadourea: a new urea derivative from Salvadora persicaLinn. Chem. Indus. London 1, 517-518. Rozza, A. L., de Mello Moraes, T., Kushima, H., Tanimoto, A., Marques, M. O. M., Bauab, T. M., Pellizzon, C. H., 2011. Gastroprotective mechanisms of Citrus lemon (Rutaceae) essential oil and its majority compounds limonene and β-pinene: involvement of heat-shock protein-70, vasoactive intestinal peptide, glutathione, sulfhydryl compounds, nitric oxide and prostaglandin E 2. Chem. Biol. Interact. 189 (1), 82-89.
Rukunga, G., Simons, A. J., 2006. The potential of plants as a source of antimalarial agents. A review. Africa Herbal Antimalarial Meeting. CDE and ICRAF. World Agroforestry Centre, Nairobi, Kenya. Saeed, M. A., Sabir, A., 1999. Effects of Fagonia cretica L. constituents on various endocrinological parameters in rabbits. Turkish J. Biol. 23(2), 187-198. Samy, R. P., Ignacimuthu, S., Sen, A., 1998. Screening of 34 Indian medicinal plants for antibacterial properties. J. Ethnopharmacol. 62 (2), 173-181. Saxena, S., 2003. Antimalarial agents from plant sources. Curr. Sci. 85, 1314–1329. Shah, G. M., Abbasi, A. M., Khan, N., Guo, X., Khan, M. A., Hussain, M., Bibi, S., Abdul Nazir, A., Tahir, A. A., 2014. Traditional uses of medicinal plants against malarial disease by the tribal communities of Lesser Himalayas–Pakistan. J. Ethnopharmacol. 155, 450–462. Shalaby, N. M., Abd-Alla, H. I., Ahmed, H. H., Basoudan, N., 2011. Protective effect of Citrus sinensis and Citrus aurantifolia against osteoporosis and their phytochemical constituents. J. Med. Plant. Res. 5(4), 579-588. Sharma, A. K., Gangwar, M., Tilak, R., Nath, G., Sinha, A. S. K., Tripathi, Y. B., Kumar, D., 2012. Comparative in vitro antimicrobial and phytochemical evaluation of methanolic extract of root, stem and leaf of Jatropha curcas Linn. Pharmacogn. J. 4 (30), 34-40. Sharma, N., Patni, V., 2013. In vivo and in vitro qualitative phytochemical screening of Grewia species. Int. J. Biol. Pharm. Res. 4 (9), 634-639. Siddiqui, B. S., Afshan, F., Gulzar, T., Hanif, M., 2004. Tetracyclic triterpenoids from the leaves of Azadirachta indica. Phytochemistry, 65 (16), 2363-2367. Siddiqui, B. S., Gulzar, T., Mahmood, A., Begum, S., Khan, B., Rasheed, M., Tariq, R. M., 2005. Phytochemical studies on the seed extract of Piper nigrum Linn. Nat. Prod. Res. 19 (7), 703712.
Simonsen, H. T., Nordskjold, J. B., Smitt, U. W., Nyman, U., Palpu, P., Joshi, P., Varughese, G., 2001. In vitro screening of Indian medicinal plants for antiplasmodial activity. J. Ethnopharmacol. 74, 195-204. Singh, A., Singh, P.K., 2009.An ethnobotanical study of medicinal plants in Chandauli District of Uttar Pradesh, Indian. J. Ethnopharmacol. 121, 324-329. Singh, G., Maurya, S., De Lampasona, M. P., Catalan, C., 2006. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control. 17(9), 745-752. Singh, S., 2011. Current scenario of control of malaria. Trop. Parasitol. 1(2), 52-53. Sivakumar, V., Rajan, M. S., Riyazullah, M. S., 2010. Preliminary phytochemical screening and evaluation of free radical scavenging activity of Tinospora cordifolia. Int. J. Pharm. Pharm. Sci. 2, 186-188. Sofowara, A., 1982. Medicinal Plants and Traditional Medicines in Africa. Wiley. New York. Srithi, K., Balslevb, H., Wangpakapattanawonga, P., Srisangac, P., Trisonthia, C., 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J. Ethnopharmacol. 123, 335–342. Srivastava, J., Vankar, P. S., 2010. Canna indica flower: New source of anthocyanins. Plant Physiol. Biochem. 48 (12), 1015-1019. Ssegawa, P., Kasenene, J. M., 2007. Medicinal plant diversity and uses in the Sango bay area, Southern Uganda. J. Ethnopharmcol. 113, 521-540. Stangeland, T., Alele, P. E., Katuura, E., Lye, K. A., 2011. Plants used to treat malaria in Nyakayojo sub-county, western Uganda. J. Ethnopharmcol. 137, 154-166. Subashini, R., Rakshitha, S. U., 2012. Phytochemical screening, antimicrobial activity and in vitro antioxidant investigation of methanolic extract of seeds from Helianthus annuus L. Chem. Sci. Rev. Lett. 1(1), 30-34.
Subramanian, S. S., Sethi, P. D., 1969. Withaferin-A from the roots of Withania coagulans. Curr. Sci. 38:267-268. Subramanian, S. S., Sethi, P. D., Glotter, E., Kirson, I., Lavie, D. 1971. 5, 20α (R)-dihydroxy-6α, 7αepoxy-1-oxo-(5α)
witha-2, 24-dienolide, a
new steroidal
lactone from
Withania
coagulans. Phytochemistry, 10 (3), 685-688. Tabuti, S.R.T., 2008. Herbal medicines used in treatment of malaria in Budiope country, Uganda. J. Ethnopharmocol. 116, 33–42. Talisuna, A.O., Bloland, P., D’Alessandro, U., 2004. History, dynamics, and public health importance of malaria parasite resistance. Clin. Microbiol. Rev. 17, 235–254. Tardío, J., Pardo-de-Santayana, M., 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ. Bot., 62(1), 24-39. Teklehaymanot, T., Giday, M., Medhin, G., Mekonnen, Y., 2007. Knowledge and use of medicinal plants by people around Debre Libanos monastery in Ethiopia. J. Ethnopharmacol. 111(2), 271-283. The Plant List. 2012. Version 1.1. Royal Botanic Garden, Kew, Missouri Botanical Garden, and other collaborators. Published on the Internet; http://www.theplantlist.org/ (accessed 3 April, 2014).
Tian-Shung, W., 1989. Flavonoids from root bark of Citrus sinensis and C. nobilis. Phytochem. 28 (12), 3558-3560. Uddin, Q., Samiulla, L., Singh, V. K., Jamil, S. S., 2012. Phytochemical and Pharmacological Profile of Withania somnifera Dunal: J. Appl. Pharm. Sci. 02 (01), 170-175. Uniyal, S.K., Singh, K.N., Jamwal, P., Lal, B., 2006. Traditional use of medicinal plants among the tribal communities Chhota, Western Himalaya. J. Ethnobiol. Ethnomed. 2 (14), 1-8. Upadhyay, B., Parveen, B., Dhaker, A. K., Kumar, A., 2010. Ethnomedicinal and ethnopharmacostatistical studies of Eastern Rajasthan, India. J. Ethnopharmacol. 12, 64-86.
ur-Rehman, N., Mehmood, M. H., Alkharfy, K. M., Gilani, A. H., 2011. Prokinetic and laxative activities of Lepidium sativum seed extract with species and tissue selective gut stimulatory actions. J. Ethnopharmacol. 134(3), 878-883. Van Wyk, B. E., Heerden, F. V., Van Oudtshoorn, B . 2002. Poisonous plants of South Africa. Briza Publications, Arcadia. Pretoria, pp 16-290. Van Wyk, B.-E., Wink, M., 2004. Medicinal Plants of the World: An Illustrated Scientific Guide to Important Medicinal Plants and their Uses. Timber Press, Portland, Oregon, USA, 480 pp. Velde, V.V., Lavie, D., Budhiraja, R.D., Sudhir, S., Garg, K.N., 1983. Potential biogenetic precursors of withanolides from Withania coagulans. Phytochemistry, 22(10), 2253-2257. Vieira, R. F., Grayer, R. J., Paton, A. J., 2003. Chemical profiling of Ocimum americanum using external flavonoids. Phytochemistry, 63(5), 555-567. Vitalini, S., Iriti, M., Puricelli, C., Ciuchi, D., Segale, A., Fico, G., 2013.Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) – an alpine ethno botanical study. J. Ethnopharmcol. 145, 517–529. Willcox, M. L., and Bodeker, G., 2004. Traditional herbal medicines for malaria. B.M.J. 329, 11561159. Wondimu, T., Asfaw, Z., Kelbessa, E., 2007. Ethnobotanical study of medicinal plants around Dheeraa’ town, Arzi zone, Ethiopia.J. Ethnopharmcol. 112, 152–161.. World Health Organization (WHO), 2004.Second Malaria Cross Border Meeting for Afghanistan, Islamic Republic of Iran and Pakistan. World
Malaria
Report,
2013.
Global
Malaria
Program.
World
Health
Organization.
〈www.who.int/malaria〉. World Malaria Report, 2014. Geneva, Switzerland: WHO Press;. World Health Organization (WHO). Xu, Y. M., Gao, S., Bunting, D. P., Gunatilaka, A. L., 2011. Unusual withanolides from aeroponically grown Withania somnifera. Phytochemistry, 72(6), 518-522.
Yazdanparast, R., Bahramikia,S., 2008. Evaluation of the effect of Anethum graveolens L. crude extracts on serum lipids and lipoproteins profiles in hypercholesterolaemic rats. DARU J. Pharm. Sci. 16(2), 88-94. Yetein, M. H., Houessou, L. G., Lougbégnon, T. O., Teka, O., Tente, B., 2013. Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (WestAfrica). J. Ethnopharmacol. 146,154–163. Zhang, J.L., Cui, M., He, Y., Yu, H. L., Guo, D. A., 2005. Chemical finger print and metabolic fingerprint analysis of Danshen injection by HPLC–UV and HPLC–MS methods. J. Pharm. Biomed. Anal. 36 (5), 1029–1035. Zheng, X., Xing, F., 2009. Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. J. Ethnopharmacol. 124, 197-210. Zirihi, G.N., Mambu, L., Guédé-Guina, F., Bodo, B., Grellier, P., 2005. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J. Ethnopharmacol. 98, 281- 285.
Table 1 Demographic characteristics of informants (N= 63) Demographical characteristics
Number
%age
25-34
5
7.9
35-44
10
15.9
45-54
11
17.5
55-64
15
23.8
65-74
13
20.6
75 and above
9
14.2
Male
38
60.3
Female
25
39.6
21
33.3
6
4.76
7
11.1
11
17.4
Age
Gender
Education Illiterate a Primary Middle c Matric
d
b
Inter e
01
1.6
Graduate and above f
17
26.9
a; never attended school, b; Attended school from 1-5 classes, c; attended school from 1-8 classes, d; attended school from 6-10 classes, e; (12th class), f; (university level education)
Table 2 Medicinal plants of Soon valley, Khushab, Pakistan used against various symptoms of malaria along with FC, RFC and PRK values.
S r. N o.
Plant name**
1
Aloe vera (L.) Burm.f. SAS-S-50
Asphodel aceae
2
Anethum graveolens L. SAS-S-52
Apiaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Kanwa r gandal
Herb /W
Naushe hra/G
Leav es
Latex
Mix two tea spoon of latex in half cup of milk and drink to cure fever and heada che.
Soya
Herb /C
Kufri/ A.F.
Who le plant
Deco ction
Boil whole plant in water and use one glass of decoct ion twice a day to reduce vomiti ng.
F C
RF C*
PR K*
Phytochemical constituents
2
0.0 3
3.1 7
Flavonoids, terpenoids, tannins, Saponin (Arunkumar and Muthuselvam, 2009)
1
0.0 1
1.5 8
Essential oils, fatty oil,proteins carbohydrates, furanocoumarin , polyphenols, fiber, mineral (Ishikawa et al., 2002) (Yazdanparast and Bahramikia, 2008)
*
Previou s reports for compar ison*** 1■, 2■, 3■, 4■, 5Δ, 6Δ, 7Δ, 8●, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6■, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ,
S r. N o.
Plant name**
3
Azadirachta indica A. Juss. SAS-S-06
Meliacea e
4
Brassica nigra (L .)W.D.J. Koch
Brassicac eae
SAS-S-32
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Neem
Tree /C
Marda wal/G
Leav es Fruit
Deco ction
Half cup of decoct ion of leaves and fruits is used thrice a day to cure fever.
Kali sarson
Herb /C
Khewa /A.F.
Leav es
Infusi on
Half cup infusi on of fresh leaves is used for fever.
F C
RF C*
PR K*
Phytochemical constituents
1 5
0.2 3
23. 8
Tannins, saponins, flavonoids, terpenoids, cardiac glycosides, alkaloids. (Krishnaiah et al., 2009) Tetracyclic triterpenoids zafaral, Meliacinanhydr ide (Siddiqui et al., 2004)
4
0.0 6
6.3 4
Flavonols, Quercetin, kaempferol and isorhamnetin. (Crozier et al., 2006; Hollman et al., 2000; Aron et al., 2008)
*
Previou s reports for compar ison*** 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1■, 2∆, 3■, 4■, 5Δ, 6■, 7■, 8■, 9■, 10■, 11■, 12■, 13■, 14■, 15■, 16■, 17■, 18Δ, 19●, 20●, 21Δ, 22■, 23Δ, 24Δ, 25Δ, 26●, 27■, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4 Δ, 5 Δ, 6 Δ, 7 Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18■, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ,
S r. N o.
Plant name**
5
Caesalpinia pulcherrima (L.) Sw. SAS-S-64
Fabaceae
6
Calotropis procera (Aiton) W.T.Aiton SAS-S-17
Apocyna ceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Gul-eturra
Shru b/C
Naushe hra /G
Leav es
Infusi on
Half cup infusi on of fresh leaves is used for vomiti ng and nausea
Ak, akra
Shru b/ W
Jabah/ F.L.
Flo wer
Infusi on
Infusi on of half cup of flower s is effecti ve in curing fever
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Flavonoid quercetin (Chiang et al., 2003) Pulcherrin, Neocaesalpin (Pranithanchai et al., 2009)
6
0.0 9
9.5 2
Tannins, Flavonoid, Saponins, Glycosides Cardiac, Glycosids Steroids, Volatile Oil (Mainasara et al., 2011) reducing sugars, tannins, steroid glycosides, flavonoids, saponins (Kawo et al., 2009).quercetin -3-O-rutinoside. Kaempferol -3O-rutinoside (Nenaah, 2013) Sterols, FA,
*
Previou s reports for compar ison*** 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8●, 9Δ, 10Δ, 11■, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8●, 9Δ, 10Δ, 11Δ, 12Δ , 13■, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19■, 20●, 21■, 22Δ, 23Δ, 24Δ, 25Δ, 26●, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ,
S r. N o.
7
8
Plant name**
Family
Local name
Canna indica L. SAS-S-38
Cannacea e
Akeek
Capparis decidua (Forssk.) Edgew.
Capparac eae
Dela
SAS-S-08
Hab it/ type
Place of collecti on
Herb /C
Khurra /G
Tree /W
Jahlar / F.L.
Part (s) used
Leav es
Leav es
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
Infusi on
1 glass infusi on of fresh leaves is taken thrice a day agains t fever
3
0.0 4
4.7 6
Deco ction
1 glass decoct ion of leaves is
1 0
0.1 5
15. 8
Non-glycerides wax Hydrocarbon. (Kalita and Saikia, 2004) Carbohydrates, glycosides. Annins (Moustafa et al., 2010), alkaloids, saponins, flavonoids, tanins, steroids, anthraquinone, triterpenoids (Aliyu et al., 2015) Alkaloids, carbohydrates, proteins, flavonoids, terpenoids, glycosides, steroids, tannins, saponins and phlobatinins (Lamaeswari et al., 2012) betulinic acid, oleonolic acid and traraxer-14en-3-one. (Bachheti et al., 2013) Cyanidin-3-O(60 0-O-arhamnopyranos yl) -bglucopyranosid e Cyanidin-3O-(60 0-O-arhamnopyranos yl)-bgalactopyranosi de Cyanidin-3O-bglucopyranosid e Cyanidin-Obgalactopyranosi de (Srivastava and Vankar, 2010) Alkaloids, terpenods, glycosides, fatty acids (Rathee et al., 2010)
Previou s reports for compar ison*** 34Δ, 35Δ, 36Δ
1∆, 2●, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22■, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ
1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
taken twice a day to cure fever.
9
1 0
Carthamus oxyacantha Bieb. SAS-S-19
M.
Centella asiatica (L.) Urb. SAS-S-18
Asterace ae
Apiaceae
Kandy ari
Herb /W
Khatw ai/ F.L.
Leav es
Deco ction
Decoc tion of leaves is used for fever and body pain
5
0.0 7
7.9 3
.Flavonoids, glycosides sterols and serotonin (Firestone, 1999).
Herb /W
Koradh i/ F.L.
Who le plant
Deco ction
Half glass decoct ion of whole plant is taken thrice a day
6
0.0 9
9.5 2
Tannins, phlobatannins, saponins, flavonoids, terpenoids, cardiac glycosides alkaloids (Krishnaiah et al., 2009)
Previou s reports for compar ison*** 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2●, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9●, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
to cure muscl e and body pain.
1 1
Chenopodium album L.
Amarant haceae
Bathu
Herb /W
Ochhal i /F.L.
Who le plant
Deco ction
1 cup decoct ion of whole plant is taken twice a day agains t vomiti ng.
1
0.0 1
1.5 8
Quercetin, Isorhmnetin (Jain et al., 1990);
Rutaceae
Sangta ra
Shru b/C
Navarr i Garden /G
Fruit
Juice
Juice is used to cure nausea vomiti ng and weakn ess in fever
2
0.0 3
3.1 7
Psoralene, Bergapten, Sopimpinellin, Imperatorin, Isobergapten, Kaempferol, Myricetin, 4',5,7Trihydroxy-3,6dimethoxy flavones, Rutin, β-Sitosterol, Hesperidin (Shalaby et al., 2011)
SAS-S-67
1 2
Citrus× aurantifolia (Christm.) Swingle SAS-S-44
Previou s reports for compar ison*** 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23■, 24Δ, 25Δ, 26Δ, 27■, 28●, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ , 19Δ, 20Δ, 21Δ, 22Δ , 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11■, 12■, 13●, 14Δ, 15Δ, 16Δ, 17■, 18■, 19Δ, 20●, 21Δ,
S r. N o.
Plant name**
1 3
Citrus aurantium L. SAS-S-51
Rutaceae
1 4
Citrus limon (L.) Burm.f. SAS-S-11
Rutaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Malta
Shru b/C
Sodhi Garden /G
Fruit
Juice
Juice is used to cure nausea vomiti ng and weakn ess in fever
Nibu
Shru b/C
Kanhat i Garden /G
Fruit , peel
Raw
Crush the fruit along with peels add half tea spoon of salt and mix half glass of water. Use thrice a day
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Synephrine (Allison et al., 2005)
7
0.1 1
11. 1
α-Tujene, αPinene, Sabinene, βPinene, βMircene, αTerpinolene, Limonene, Terpinolene, αTransbergamotene, βBisabolene (Rozza et al., 2011)
*
Previou s reports for compar ison*** 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31■, 32Δ, 33Δ, 34Δ, 35●, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8■, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28●, 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9■, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
it is effecti ve agains t all malari al sympt oms 1 5
Citrus maxima (Burm.) Merr. SAS-S-13
Rutaceae
Metha
Shru b/C
Bagh Shams ud Din/ G
Fruit
Raw
Cut the fruit and use in raw form along with salt it is very effecti ve in malari a fever
7
0.1 1
11. 1
Phenol, Tannins, Flavonoids (Abirami et al., 2014)
1 6
Citrus sinensis (L.) Osbeck SAS-S-21
Rutaceae
Malta, kenu
Shru b /C
Bagh Shams ud Din/ G
Fruit
Juice
Same as menti oned in Citrus aurant ifolia
5
0.0 7
7.9 3
flavanone glycosides and polymethoxyfla vones (Ortuño et al., 2006), Flavonoids (chalcone, citrunobin) (Tian-Shung, 1989), Hydroxylated polymethoxyfla vones and methylated flavonoids, (Li et al., 2006), Hesperidin, (Kanaze et al., 2009)
Previou s reports for compar ison*** 26Δ, 27■, 28●, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35●, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12■, 13●, 14■, 15Δ, 16Δ, 17■, 18■, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ,
S r. N o.
Plant name**
1 7
Cleome gynandra L. (syn. Gynandropis gynandra (L.)Briq) SAS-S-04
1 8
Corchorus olitorius L. SAS-S-39
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Capparac eae
Herb /W
Ugali/ F.L.
Leav es
Deco ction
Half cup of decoct ion of leaves is used twice a day agains t malari a fever and body pain
Malvacea e
Herb /W
Angah/ F.L.
Root s
Powd er
1 tea spoon of powde r is taken with milk to cure body pain twice a day
F C
RF C*
PR K*
Phytochemical constituents
1 3
0.2 0
20. 6
Flavonoid alkaloids tannins (Bala et al., 2010)
3
0.0 4
4.7 6
(Ilhan et al., 2007)
*
Previou s reports for compar ison*** 30Δ, 31Δ, 32Δ, 33Δ, 34■, 35Δ, 36Δ 1∆, 2●, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3■, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13●, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ,
S r. N o.
Plant name**
1 9
Cyperus rotundus L. SAS-S-65
Cyperace ae
2 0
Datura metel L. SAS-S-05
Solanace ae
2 1
Datura stramonium L.
Solanace ae
Family
Local name
Ghass
Dhato ora
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Herb /W
Uggali/ F.L.
Leav es
Deco ction
Half cup decoct ion of leaves is used thrice a day for muscl e and body pain
Herb /W
Sabhra l/ F.L.
Leav es
Infusi on
Herb /W
Chitta/ F.L.
Leav es
Infusi on
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Polyphenols, Flavonoids, Tannins, Sterols (Kilani-Jaziri et al., 2011)
1 cup infusi on of fresh leaves is used agains t fever twice a day
1 1
0.1 7
17. 4
Melatonin Serotonin (Murch et al., 2009), Tropane alkaloids (atropine and scopolamine), (Jakabová et al., 2012)
1 glass
4
0.0 6
6.3 4
Tropane alkaloids
*
Previou s reports for compar ison*** 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20Δ, 21Δ, 22Δ, 23Δ, 24■, 25Δ, 26Δ, 27■, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25■, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31●, 32●, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
SAS-S-33
2 2
2 3
Dodonaea viscosa (L.) Jacq SAS-S-66
Dysphania ambro sioides (L.) Mosyakin & Clemants (syn. Chenopodium am
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
of infusi on of fresh leaves is taken early in the morni ng agains t muscl e and body pain
(atropine and scopolamine), (Jakabová et al., 2012)
Sapindac eae
Sanath a
Shru b/W
Sultan Medhi/ F.L.
Leav es
Infusi on
Infusi on of leaves is used once in morni ng to cure body pain
1
0.0 1
1.5 8
Tannins, Phlobatannins, Saponins, Flavanoids, Terpenoids, Glycosides, (Prakash et al., 2012)
Amarant haceae
Bathu
Herb /W
Khewa / F.L.
Leav es
Cook ed
Used in cooke d form as vegeta
5
0.0 7
7.9 3
Carene, Terpinene, Cymene, Limonene, Terpinene, trans-p-Mentha-
Previou s reports for compar ison*** 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28●, 29Δ, 30Δ, 31Δ, 32●, 33Δ, 34■, 35Δ, 36● 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12■, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9●, 10Δ, 11Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
2 5
Ehretia obtusifolia Hochst. ex DC. SAS-S-09
F C
RF C*
PR K*
Boragina ceae
Poaceae
Ghass
1(7),8-dien-2ol, cis-pMentha-1(7),8dien-2-ol, Ascaridole , trans-p-Mentha2,8-dien-1-ol, cis-p-Mentha2,8-dien-1-ol 1,4-Dihydroxyp-menth-2-ene, 1,2,3,4Tetrahydroxyp-menthane (Cavalli et al., 2004)
Shru b/W
Navarr i /F.L.
Ste m, thin bran ches
Deco ction
1 glass decoct ion is used in morni ng to cure body pain.
9
0.1 4
14. 2
Phenols (Iqbal et al., 2005)
Herb /W
Bhuki /F.L.
Leav es
Deco ction
1 cup of decoct ion is used for body pain and fever
3
0.0 4
4.7 6
Alkaloids, Terpenes, flavonoids, tannins, anthraquinones, saponins, glycosides (Okokon et al., 2010)
A.
Eleusine indica (L.) Geartn. SAS-S-40
Phytochemical constituents
*
ble to cure fever and vomiti ng
brosioides L.) SAS-S-25
2 4
Recip e
Previou s reports for compar ison*** 12Δ, 13Δ, 14■, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32●, 33●, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■, 14Δ, 15Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
twice a day
2 6
Eucalyptus globulus Labill SAS-S-34
Myrtacea e
Safaid a
Tree /C
Shakka r Kot/ A.F.
Leav es
Infusi on
Half cup infusi on of fresh leaves is used for nausea and vomiti ng thrice a day
4
0.0 6
6.3 4
Hydroxybenzoi c Acids,hydrolyz able tannins, flavonols (BoulekbacheMakhlouf et al., 2010)
2 7
Eucalyptus camaldulensis Dehnh. SAS-S-35
Myrtacea e
Safaid a
Tree /C
Dharna l/ A.F.
Leav es
Infusi on
Half cup infusi on of fresh leaves is used for nausea and vomiti ng thrice a day
4
0.0 6
6.3 4
Tannins, Saponins Glycosides (Adeniyi and Ayepola, 2008)
Previou s reports for compar ison*** 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ , 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18■, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26●, 27Δ, 28●, 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ , 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ,
S r. N o.
Plant name**
2 8
Fagonia cretica L. SAS-S-46
Zygophyl aceae
2 9
Foeniculum vulgare Mill. SAS-S-54
Apiaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Magha zakae
Herb /W
Jahlar /F.L.
Who le plant
Deco ction
1 glass decoct ion of whole plant is used for muscl e and body pain, fever, and heada che thrice a day
Sonf
Herb /C
Mardw al/ A.F.
Who le plant
Deco ction
I glass decoct ion of whole plant is used for curing poor appetit e in the morni ng
F C
RF C*
PR K*
Phytochemical constituents
2
0.0 3
3.1 7
Triterpenoid saponins (Saeed et al. 1999; Khaliq et al., 2000);
1
0.0 1
1.5 8
Trans-anethole, Linoleic acid, palmitic acid, oleic acid (Singh et al., 2006)
*
Previou s reports for compar ison*** 21●, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ,
S r. N o.
Plant name**
3 0
Grewia tenax (Forssk.) Fiori
Family
Local name
Malvacea e
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Shru b/W
Salman Sharif /F.L.
Leav es
Deco ction
1 glass decoct ion of leaves is used agains t malari a twice a day.
Herb /C
Uggali/ A.F.
Seed s
Powd er
1 tea spoon of powde red form of seeds is used agains t poor appetit e early in the morni ng
SAS-S-03
3 1
Helianthus annuus L. SAS-S-68
Asterace ae
Suraj mukhi
F C
RF C*
PR K*
Phytochemical constituents
1 5
0.2 3
23. 8
Alkaloids , Tannins Anthraquinones Glycosides, Saponins Flavonoids, Steriods/ Terpenoids Phenols Coumarins Resins (Sharma and Patni, 2013)
1
0.0 1
1.5 8
Tannins, saponins, flavonoids, carbohydrates, steroids, oils, fats, Steroids, Triterpenoids (Subashini and Rakshitha, 2010)
*
Previou s reports for compar ison*** 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20●, 21●, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ,
S r. N o.
Plant name**
3 2
Heliotropium indicum L. SAS-S-63
Boragina ceae
3 3
Jatropha curcas L. SAS-S-36
Euphorbi aceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Hathi soodh
Herb /W
Khabai ki /F.L.
Who le plant
Infusi on
1 glass decoct ion of whole plant is taken twice a day for muscl e and body pain
Safaid arind
Shru b/C
Kanhat i Garden /G
Leav es
Infusi on
Half cup of infusi on of leaves is taken in the morni ng to cure vomiti ng and nausea
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Alkaloids, saponin tannin (Osungunna and Adedeji, 2011)
4
0.0 6
6.3 4
Alkaloids, saponin tannin, Terpenoid, Steroid, Glycosides, Phenolic Compound, Flavonoid (Sharma et al., 2012)
*
Previou s reports for compar ison*** 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32●, 33●, 34Δ, 35●, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6■, 7Δ, 8●, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14■, 15Δ, 16■, 17Δ, 18Δ, 19●, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26■, 27Δ, 28Δ, 29Δ, 30Δ, 31■, 32Δ,
S r. N o.
Plant name**
3 4
justicia adhatoda L. SAS-S-14
Acanthac eae
3 5
Lantana camara L. SAS-S-10
Verbenac eae
3 6
Lawsonia inermis L. SAS-S-62
Lythrace ae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Herb /W
Khurra /F.L.
Leav es
Deco ction
Half glass decoct ion of leaves is used for vomiti ng thrice a day.
Bhang
Shru b /C
Kanhat i Garden /F.L.
Leav es
Deco ction
Mehnd i
Shru b/C
Phulva rri/ G
Leav es
Deco ction
F C
RF C*
PR K*
Phytochemical constituents
7
0.1 1
11. 1
quinazoline alkaloids (vasicoline, vasicolinone, vasicinone, vasicine, adhatodine and anisotine)- (Jha et al., 2012)
Half cup of decoct ion of leaves is used for curing poor appetit e
8
0.1 2
12. 7
Triterpenes, Iridoid glycosides, Furanonaphtho quinones, Flavonoids Phenylethanoid glycosides (Ghisalberti, 2000)
I glass of decoct
1
0.0 1
1.5 8
Carbohydrates, glycosides tannins,
*
Previou s reports for compar ison*** 33●, 34Δ, 35●, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24●, 25Δ, 26Δ, 27Δ , 28Δ, 29Δ, 30Δ, 31Δ , 32Δ , 33Δ, 34■, 35Δ, 36Δ 1■, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14■, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20●, 21■, 22Δ, 23Δ, 24Δ, 25■, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32●, 33Δ, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6■,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
ion of leaves is used to cure muscl e and body pain vomiti ng and heada che thrice a day
phenolic, compounds, gums mucilage (Jain et al., 2010)
3 7
Lepidium sativum L. SAS-S-55
Brassicac eae
Haalon
Herb /W
Jabbah / /F.L.
Leav es
Infusi on
1 glass of infusi on of leaves is used for poor appetit e and fever twice a day
1
0.0 1
1.5 8
Alkaloids, Saponins, Anthraquinones , (ur-Rehman et al., 2011)
3 8
Mangifera indica L. SAS-S-58
Anacardi aceae
Aam
Tree /C
Navarr i Garden /G
Fruit
Raw
Eaten in raw form to cure poor appetit
1
0.0 1
1.5 8
Polyphenols, Carotenoids (Ajila and Rao, 2008)
Previou s reports for compar ison*** 7Δ, 8■, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18■, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28■, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36∆ 1∆, 2■, 3■, 4■, 5■, 6Δ, 7Δ, 8Δ, 9●, 10Δ, 11■, 12■,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
e
3 9
Melia azedarach L. SAS-S-26
Meliacea e
Bakain darekh
Tree /C
Naushe hra / A.F.
Leav es, seed s
Deco ction
1 glass decoct ion is used for fever, heada che and body pain thrice a day
5
0.0 7
7.9 3
Alkaloids, tannins, saponins, phenols, glycosides, steroids, terpenoids and flavonoids (Ahmed et al., 2012)
4 0
Mentha spicata L. SAS-S-37
Lamiacea e
Pahari Poodn a
Herb /C
Bagh Shams ud Din/ A.F.
Who le plant
Deco ction
1 glass decoct ion of whole plant is used for curing nausea
3
0.0 4
4.7 6
Limonene, linalool, 1, 8cineole. (Govindarajan et al., 2012)
Previou s reports for compar ison*** 13■, 14■, 15■, 16■, 17■, 18Δ, 19Δ, 20●, 21Δ, 22■, 23Δ, 24Δ, 25Δ, 26●, 27Δ, 28Δ, 29■, 30Δ, 31■, 32Δ, 33Δ, 34■, 35●, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14■, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20■, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29■, 30Δ, 31Δ, 32Δ, 33Δ, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6■, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
and vomiti ng
4 1
Moringa oleifera Lam. (Syn. Moringa moringa (L.) Millsp. nom. inval.) SAS-S-59
Moringac eae
Sohanj na
Tree /C
Mardw al/ A.F.
Leav es
Infusi on
1 glass decoct ion of leaves is used agains t vomiti ng thrice a day
1
0.0 1
1.5 8
Flavonols, carotenoids, quercetin, kaempferol, bcarotene (Lako et al.,2007) tannins, anthraquinones (Kasolo et al., 2010)
4 2
Nicotiana tabacum L. SAS-S-48
Solanace ae
Tamba ku
Herb /C
Jabah/ A.F.
Leav es
Infusi on
Half cup decoct ion of leaves is used agains t fever once a day
2
0.0 3
3.1 7
Tannin, flavonoid, terpenoid (Olasehinde, et al., 2013)
Previou s reports for compar ison*** 17Δ, 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2●, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9■, 10Δ, 11Δ, 12■, 13●, 14■, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5■, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20●,
S r. N o.
Plant name**
4 3
Nymphaea L. SAS-S-69
4 4
Ocimum americanum L. SAS-S-01
lotus
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Nymphae aceae
Herb /W
Ochhal i /F.L.
Leav es
Deco ction
1 cup decoct ion of leaves is used for fever early in the morni ng.
Lamiacea e
Herb /W
Salman Sharif /F.L.
Leav es
Deco ction
Half cup decoct ion of leaves is effecti ve agains t fever and vomiti ng.
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Alkaloids, flavonoids, anthraquinones, cardiac glycosides (Akinjogunla1 et al., 2009)
1 6
0.2 5
25. 4
Flavonoids (Vieira et al., 2003); methyl cinnamate (Cavalcanti, 2004)
*
Previou s reports for compar ison*** 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30■, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ,
S r. N o.
Plant name**
4 5
Ocimum bacilicum L. SAS-S-20
Lamiacea e
4 6
Olea ferruginea Wall. Ex Aitch
Oleaceae
SAS-S-41
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Niaz bo, harain
Herb /C
Khatw ai /F.L.
Leav es
Deco ction
1 glass infusi on of leaves is used for vomiti ng once a day
Kahu
Tree /W
Sakesa r/ F.L.
Leav es
Deco ction
1 glass decoct ion is used for fever and muscl e pain twice a day.
F C
RF C*
PR K*
Phytochemical constituents
5
0.0 7
7.9 3
Phenols (Javanmardi et al. 2002); Methyl cinnamate (Lee et al., 2005)
3
0.0 4
4.7 6
Quercetin, βamyrin, oleuropein, and ligstroside (Hashmi et al., 2015)
*
Previou s reports for compar ison*** 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31■, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1■, 2∆, 3■, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ,
S r. N o.
Plant name**
4 7
Opuntia sp. SAS-S-53
Cactacea e
4 8
Oryza sativa L. SAS-S-22
Poaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Thor
Shru b/W
Khatw ai /F.L.
Who le plant
Deco ction
Decoc tion of whole plant is used for heada che and musle pain in malari a.
Chawa l
Herb /C
Sodhi / A.F.
Seed s
Cook ed
Used in cooke d form agains t vomiti ng in malari a
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Quercetin (Kuti, 2004, Chang et al., 2008); Steroids (Jiang et al., 2006)
5
0.0 7
7.9 3
Ethyl acetate, methanol, ethanol, sulphuric acid and vanillin(Chung et al., 2006)
*
Previou s reports for compar ison*** 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11■, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ,
S r. N o.
Plant name**
4 9
Parkinsonia aculeata L. SAS-S-49
Fabaceae
5 0
Peganum harmala L. SAS-S-12
Nitrariac eae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Walait i keekar
Tree /C
Dharna l/ G
Leav es
Deco ction
Half glass infusi on of leaves is used for fever twice a day
Harmu l
Herb /W
Jahlar /F.L.
Seed s
Powd er
Half tea spoon of powde r form of seeds is taken in morni ng for fever
F C
RF C*
PR K*
Phytochemical constituents
2
0.0 3
3.1 7
Tannin, alkoloids, glycoside, terpenoids, flavonoid, terpenes, streriods, volatile oil and saponin (kamba et al., 2010)
7
0.1 1
11. 1
Alkaloids, flavonoids and anthraquinones (Bukhari et al., 2008).
*
Previou s reports for compar ison*** 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32■, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34■, 35Δ, 36Δ
S r. N o.
Plant name**
5 1
Physalis minima L. SAS-S-60
Solanace ae
5 2
Piper nigrum L. SAS-S-27
Piperacea e
5 3
Psidium guajava L. SAS-S-56
Myrtacea e
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Herb /W
Koradh i/ F.L.
Leav es
Deco ction
1 cup decoct ion of leaves is used for body pain twice a day.
Kali mirch
Herb /W
Naushe hra / A.F.
Seed s, Fruit
Powd er
Amroo d
Shru b/C
Sodhi Garden /G
Fruit
Raw
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Powde r form of seed is effecti ve agains t fever and body pain
4
0.0 6
6.3 4
Alkaloids, anthraquinones, flavonoids, cardiac glycosides, phenols, quinones, reducing sugars (Nathiya m et al., 2012) Heneicosanoic acid, Bicyclo, Hepta-2, 4dien, Octadecanoic acid, Stearic acid, Octadeca9, 12-dienoic acid, Ellagic acid, Catechol, Gallic acid, Catechin (Karpagasundar i and Kulothungan, 2014) Nonacosane, ethyl hexadecanoate (Siddiqui et al., 2005)
Fruit is eaten in raw
1
0.0 1
1.5 8
*
Flavonoid, carotenoid, terpenoid and triterpene
Previou s reports for compar ison*** 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21●, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20■, 21Δ, 22Δ, 23Δ, 24Δ, 25■, 26Δ, 27■, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34Δ, 35Δ, 36Δ 1∆, 2●, 3■, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
form to cure vomiti ng and nausea
(Guti´errez al., 2008)
et
5 4
Punica granatum L. SAS-S-28
Lythrace ae
Anar
Shru b/C
Kanhat i Garden /G
Peel s
Deco ction
Half cup decoct ion of peels is used to cure fever once a day
4
0.0 6
6.3 4
Triterpenoids, steroids, glycosides, saponins, alkaloids, flavonoids, tannins (Bhandary et al., 2012)
5 5
Pupalia lappacea (L) Juss. SAS-S-07
Amarant haceae
Gol puth kanda
Herb /W
Jabah /F.L.
Leav es
Deco ction
1 glass decoct ion of leaves is used to
1 0
0.1 5
15. 8
Stearic acid,stigmaster ol. (Felix et al., 2008).
Previou s reports for compar ison*** 9●, 10Δ, 11■, 12Δ, 13■, 14Δ, 15■, 16Δ, 17■, 18Δ, 19Δ, 20●, 21Δ, 22■, 23■, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31●, 32Δ, 33●, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33●, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13■,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
cure fever thrice a day
5 6
Ricinus communis L. SAS-S-70
Euphorbi aceae,
Arind,
5 7
Saccharum officinarum L. SAS-S-57
Poaceae
Gana
Shru b/W
Khewa /F.L.
Herb /C
Jahlar/ A.F.
Seed s
Ste m
Seeds oil
Oil massa ge is effecti ve in curing fever
1
0.0 1
1.5 8
Steroids, saponins, alkaloids, flavonoids, and glycosides (Jena et al., 2012)
Juice
1 glass juice is taken thrice a day to cure fever
1
0.0 1
1.5 8
Phenolics, flavonoids, triterpenoids (Feng et al., 2014)
Previou s reports for compar ison*** 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21●, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1■, 2●, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9●, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16■, 17Δ, 18●, 19●, 20●, 21●, 22Δ, 23Δ, 24Δ, 25Δ, 26●, 27Δ, 28●, 29Δ, 30Δ, 31■, 32Δ, 33●, 34Δ, 35●, 36Δ 1∆, 2∆, 3∆, 4■, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13●, 14Δ, 15Δ, 16Δ, 17Δ,
S r. N o.
Plant name**
5 8
Salvadora persica L. SAS-S-61
Salvador aceae
5 9
Senna italica Mill. SAS-S-42
Fabaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Peelu
Tree /W
Angah /F.L.
Leav es
Deco ction
1 cup decoct ion of leaves is used for vomiti ng thrice a day
Ghora wal
Herb /W
Kufri /F.L.
Leav es
Deco ction
Half cup decoct ion of leaves is used for fever twice a day
F C
RF C*
PR K*
Phytochemical constituents
1
0.0 1
1.5 8
Lignin glycosides (Ohtani et al., 1992); rutin and quercetin (Abdel Wahab et al., (1990); Salvadourea (Ray et al. 1975); benzylisothiocy anate (Al bagieh et al., 1990); Salvadoricine (Malik et al., 1987)
3
0.0 4
4.7 6
Alkaloids, saponins,glycos idessteroids, lavonoids (Dabai et al., 2012)
*
Previou s reports for compar ison*** 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28●, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20●, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ,
S r. N o.
Plant name**
6 0
Sesbania sesban (L.) Merr. SAS-S-47
Fabaceae
6 1
Solanum incanum L. SAS-S-02
Solanace ae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Janter
Herb /W
Ochhal i /F.L.
Leav es
Infusi on
1 cup infusi on of fresh leaves is used to cure fever
Kanda ri
Herb /W
Kanhat i Garden / /F.L.
Who le plant
Deco ction
Half glass decoct ion of whole plant is used agains t vomiti ng and fever once a day
F C
RF C*
PR K*
Phytochemical constituents
2
0.0 3
3.1 7
Alkaloids carbohydrates protein phytosterol (Mythili et al., 2012).
1 6
0.2 5
25. 4
Saponin, oxalate and flavonoids (Auta et al., 2011)
*
Previou s reports for compar ison*** 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2■, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9●, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1■, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ,
S r. N o.
Plant name**
6 2
Sonchus oleraceus (L.) L. SAS-S-15
Asterace ae
6 3
Tamarindus indica L. SAS-S-23
Fabaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Dhodh ak
Herb /W
Sabhra l/ /F.L.
Leav es
Infusi on
1 cup infusi on of fresh leaves is used for fever twice a day
Imli
Tree /C
Naushe hra /G
Fruit and leav es
Infusi on
Half cup infusi on is taken thrice a day to cure fever
F C
RF C*
PR K*
Phytochemical constituents
6
0.0 9
9.5 2
Chicoric acid, chlorogenic acid and caftaric acid (Ou et al., 2013)
5
0.0 7
7.9 3
Saponin glycosides, alkaoids. (Abukakar al., 2008)
*
et
Previou s reports for compar ison*** 26Δ, 27Δ, 28●, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2■, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31●, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3■, 4■, 5, 6■, Δ 7 , 8Δ, 9Δ, 10Δ, 11Δ, 12■, 13■, 14■, 15Δ, 16■, 17Δ, 18Δ, 19Δ, 20●, 21Δ, 22Δ, 23Δ, 24●, 25Δ, 26●, 27Δ, 28Δ, 29Δ,
S r. N o.
Plant name**
6 4
Tinospora sinensis (Lour.) Merr.(syn.Tinosp ora cordifolia (Willd.) Miers) SAS-S-43
Menisper maceae
6 5
Trachyspermum ammi (L.) Sprague (syn. Carum copticum (L.) Benth. & Hook.f. ex Hiern) SAS-S-31
Apiaceae
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Gilu
Herb /W
Khabai ki /G
Leav es
Infusi on
Half cup infusi on of leaves is taken twice a day to cure vomiti ng
Ajwai n desi
Herb /W
Kanhat i village/ F.L.
Seed s
Deco ction
Take half cup of decoct ion of seeds to cure vomiti ng and poor appetit e
F C
RF C*
PR K*
Phytochemical constituents
3
0.0 4
4.7 6
Alkaloids, carbohydrates, tannins, phenols (Sivakumar et al., 2010)
4
0.0 6
6.3 4
α-thujene, αpinene Sabinene, βpinene, Carvacrol, Thymol (Goudarzi et al., 2011) Thujene, b-Pinene, pCymene (Khajeh et al., 2004)
*
Previou s reports for compar ison*** 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20Δ, 21Δ, 22Δ, 23Δ, 24●, 25Δ, 26Δ, 27■, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ,
S r. N o.
Plant name**
6 6
Vitex negundo L. SAS-S-29
6 7
6 8
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
Lamiacea e
Shru b/W
Sultan Mehdi /F.L.
Flo wer
Infusi on
Half glass infusi on of fresh leaves is used for fever and heada che.
Vitex trifolia L. SAS-S-30
Lamiacea e
Shru b/C
Naushe hra/G
flow er
Infusi on
Withania coagulans
Solanace ae
Herb /W
Khatw ai/
Fruit
Deco ction
Khamj eera
F C
RF C*
PR K*
Phytochemical constituents
4
0.0 6
6.3 4
Alkaloids, flavanoids, carbohydrates, glycosides and tannins (Aditya et al., 2014)
Half glass infusi on of fresh leaves is used for fever and heada che.
4
0.0 6
6.3 4
Alkaloids, saponins, flavanoids, carbohydrates and anthraquinone glycosides (Aditya et al., 2014)
1 glass
5
0.0 7
7.9 3
Alkaloids, steroids,
*
Previou s reports for compar ison*** 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21●, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34■, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26●, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ,
S r. N o.
Plant name**
Family
Local name
Hab it/ type
Withania somnifera Dunal SAS-S-16
7 0
Ziziphus jujuba Mill. (Syn.Ziziphus mauritiana Lam.) SAS-S-45
(L.)
Part (s) used
Mode of utiliz ation
/F.L.
(Stocks) Dunal SAS-S-24
6 9
Place of collecti on
Recip e
F C
RF C*
PR K*
Phytochemical constituents
*
decoct ion is used for fever twice a day
phenolic compounds, tannins, saponin, carbohydrates, proteins, amino acids and organic acids (Mathur et al., 2011)
Solanace ae
Asgan d
Herb /W
Sodhi/ /F.L.
Fruit
Deco ction
1 glass decoct ion is used for fever and vomiti ng twice a day
6
0.0 9
9.5 2
Tannins, and flavonoids (Uddin et al., 2012)
Rhamnac eae
Beri
Tree /W
Jabah /F.L.
Fruit
Powd er
Grind ed form of dried fruit is
2
0.0 3
3.1 7
Alkaloids, flavonoids, glycosides, phenols, saponins.
Previou s reports for compar ison*** 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ 1∆, 2∆, 3∆, 4Δ, 5Δ, 6■, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ, 12Δ, 13Δ, 14Δ, 15Δ, 16Δ, 17Δ, 18Δ, 19●, 20●, 21Δ, 22Δ, 23Δ, 24●, 25Δ, 26●, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36● 1∆, 2∆, 3■, 4Δ, 5Δ, 6Δ, 7Δ, 8Δ, 9Δ, 10Δ, 11Δ,
S r. N o.
Plant name**
Previou s * reports for compar ison*** used (Rathore et 12Δ, agains 13■, al.,2012) t 14Δ, vomiti 15Δ, ng and 16Δ, nausea 17Δ, 18Δ, 19Δ, 20Δ, 21Δ, 22Δ, 23Δ, 24Δ, 25Δ, 26Δ, 27Δ, 28Δ, 29Δ, 30Δ, 31Δ, 32Δ, 33Δ, 34Δ, 35Δ, 36Δ * * * FC ; Frequency citation, RFC ; Relative frequency of citation, PRK ; Percentage of respondents having knowledge about the use of plant species. **
Family
Local name
Hab it/ type
Place of collecti on
Part (s) used
Mode of utiliz ation
Recip e
F C
RF C*
PR K*
Phytochemical constituents
Bold written species high lights the plant reported for the malaria with no previous report.
***
(■)- Similar use, (●)- Dissimilar use, (∆) Use not reported
W; wild, C; cultivated, F.L; fallow land, A.F; agricultural field, G; garden 1= Nguta et al., 2010; 2= Namukobe et al., 2011; 3= Pierre et al., 2011; 4= Yetein et al., 2013; 5= Katuura et al., 2007; 6= Mesfin et al., 2012; 7= Stangeland et al., 2011; 8= Olowokudejo et al., 2008; 9= Ssegawa and Kasenene2007 10= Al-Adhroey et al., 2010; 11= Omosun et al., 2013; 12= Koudouvo et al., 2011; 13= Nadembega et al., 2011; 14= Tabuti, 2008; 15= Asase and Mensah, 2009; 16= Asase et al., 2005; 17= Asase et al., 2012; 18= Karunamoorthi and Hailu, 2014; 19= Parveen et al., 2007; 20= Upadhyay et al., 2010; 21= Jain et al., 2009; 22= Dike et al., 2012; 23= Rahmatullah et al., 2010; 24= Singh and singh, 2009; 25= Kamaraj et al., 2012 ; 26=Mahishi et al., 2005; 27=Prakash and Unnikrishnan, 2013 28=Megersa et al., 2013 29=Mavundza et al., 2011; 30=Randrianarivelojosia et al., 2003 31=Kaou et al., 2008 32=Agra et al., 2007 33=de Albuquerque et al., 2007 34=Shah et al., 2014; 35=Ajibesin et al., 2008; 36= Teklehaymanot and Giday, 2010.
Table 3.
Comparison of present study with previous reports at neighbouring and global level.
Speci es enlist ed only in study area
%age of speci es enlist ed in study area
%ag e of plant s with simil ar use
%age of dissimi lar uses
JIa
22.22
Speci es enlist ed only in align ed area 21
64
91.43
22.22
0
7.6
10
7.63
121
60
85.71
3.05
4.58
0
8
16.33
41
62
88.57
16.33
0
5.8 4 8.4 2
17
0
17
20.73
65
53
75.71
20.73
0
20
3
0
3
15
17
67
95.71
15
0
Ethiopia
27
8
0
8
29.63
19
62
88.57
29.63
0
Western Uganda
56
1
0
1
1.78
55
69
98.57
1.78
0
Olowokudejo et al., 2008 Ssegawa and Kasenene2007
Nigeria
110
3
4
7
6.36
103
63
90
2.73
3.64
Southern Uganda
186
3
6
9
4.83
177
61
87.14
1.61
3.22
10
Al-Adhroey et al., 2010
Malaysia
19
1
0
1
5.26
18
69
98.57
5.26
0
1.1 6
11
Omosun et al., 2013 Koudouvo et al., 2011
Southeast Nigeria Togo
21
6
0
6
28.57
15
64
91.42
28.57
0
52
7
0
7
13.46
45
63
90
13.46
0
8.2 1 6.9 3
Nadembega et al., 2011 Tabuti, 2008
Burkina Faso Uganda
190
13
5
18
9.47
172
52
74.28
6.84
2.63
27
8
0
8
29.63
19
62
88.57
29.62
0
Asase and Mensah, 2009 Asase et al., 2005
Southern Ghana Ghana
29
3
0
3
10.34
26
67
95.71
10.34
0
41
4
0
4
9.76
37
66
94.28
9.76
0
Asase et al., 2012 Karunamoorthi and Hailu, 2014 Parveen et al., 2007 Upadhyay et al., 2010
Southern Ghana Ethiopia
33
5
0
5
15.15
28
65
92.86
15.15
0
23
6
0
6
26.09
17
64
91.43
26.08
0
India
68
1
12
13
19.12
55
57
81.43
1.47
17.65
India
213
2
24
26
12.21
187
44
62.86
0.93
11.27
21
Jain et 2009
al.,
India
110
2
6
8
7.27
102
62
88.57
1.81
5.45
5.1 3
22
Dike 2012
al.,
22
4
0
4
18.18
18
66
94.28
18.18
0
5
23
Rahmatullah et al., 2010
South western Nigeria Banglade sh
50
2
0
2
4
48
68
97.14
4
0
1.7 5
24
Singh and singh, 2009
India
40
1
4
5
12.5
35
65
92.86
2.5
10
5.2 6
Sr . N o.
Reference
Region
No. of documen ted plants species
Plan ts with simil ar use
Plants with dissimi lar uses
No. of specie s comm on in both areas
%age of specie s comm on in both areas
1
Nguta et al., 2010
27
6
0
6
2
Namukobe et al., 2011 Pierre et al., 2011
Msambw eni, Kenya Uganda
131
4
6
Cameroo n
49
8
Yetein et al., 2013 Katuura et al., 2007
West Africa Western Uganda
82
Mesfin et al., 2012 Stangeland et al., 2011
3 4 5 6 7 8 9
12 13 14 15 16 17 18
19 20
et
16. 83 3.7 0 10. 95 0.8 1 4.4 0 3.9 3
8.7 3 10. 95 3.3 3 4.0 4 5.6 8 8
13. 13 12. 68
Speci es enlist ed only in study area
%age of speci es enlist ed in study area
%ag e of plant s with simil ar use
%age of dissimi lar uses
JIa
8.70
Speci es enlist ed only in align ed area 21
68
97.14
8.69
0
2.3 0
9
19.15
38
61
87.14
2.12
17.02
10
0
6
19.35
25
64
91.43
19.35
0
7.2 3
1
8
9
7.14
117
61
87.14
0.79
6.35
13
2
0
2
15.38
11
68
97.14
15.38
0
5.3 2 2.6 0
Madagas car
10
1
0
1
10
9
69
98.57
10
0
1.3 0
Africa
44
5
3
8
18.18
36
62
88.57
11.36
6.82
8.8 9
Agra et al., 2007 de Albuquerque et al., 2007 Shah et al., 2014
Brazil
121
1
5
6
4.96
115
64
91.43
0.83
4.13
Brazil
136
0
12
12
8.82
124
58
82.86
0
8.82
3.4 7 7.0 6
Pakistan
84
12
0
12
14.28
72
58
82.85
14.28
0
10. 17
Ajibesin et al., 2008 Teklehaymanot and Giday, 2010 Average
Nigeria
114
1
6
7
6.14
107
63
90
0.88
5.26
Ethiopia
80
0
3
3
3.75
77
67
95.71
0
3.75
4.2 9 2.1 3
68.19
4.16
3.11
7.27
12.9
60.91
62.72
89.6
10.3
3.07
Sr . N o.
Reference
Region
No. of documen ted plants species
Plan ts with simil ar use
Plants with dissimi lar uses
No. of specie s comm on in both areas
%age of specie s comm on in both areas
25
Kamaraj et al., 2012
South India
23
2
0
2
26
Mahishi et al., 2005 Prakash and Unnikrishnan, 2013 Megersa et al., 2013 Mavundza et al., 2011
India
47
1
8
India
31
6
West Ethiopia South Africa
126
Randrianarivel ojosia et al., 2003 Kaou et al., 2008
27
28 29 30
31 32 33
34 35 36
6.2 5
JIa; Jaccard index (Similarity index)
Table 4. List of plant species reported in the study which are tested for anti-plasmodial activity in other regions of the world. Sr. No
Plant name
Part(s) used
Tested against
Extract used
1
Azadirachta indica A.Juss.
Leaves Leaves
P.f P.b P.f.
Aqueous Methanolic Ethanolic Aqueous Ethanolic
Leaf Bark
2
3
Calotropis procera (Aiton) W.T.Aiton Canna indica L.
Antiplas modial activity +
Region
Citations
Kenya
Kirira et al., 2006
+
Ethiopia
+
India
Flower
P.f
Ethanolic
+
India
Leaf
P.f
Aqueous Ethanolic
+
France
Mesfinet al., 2012 Ravikumaret al., 2012 Simonsen et al., 2001 M´enanet al., 2006
Sr. No
Plant name
Part(s) used
Tested against
4
Centella asiatica (L.) Urb.
Whole plant
P.f
5
Dysphania ambro sioides (L.) Mosyakin & Clemants Citrus limon (L.) Burm.f. Datura metel L.
6 7
Extract used
Antiplas modial activity
Region
Citations
Pentane Methanol Dichlorometha ne
+ +
Kenya
Irungu et al., 2007
P.f
Ethanolic
-
Peru
Kvist et al., 2006
P.f
Ethanolic
-
Peru
Leaf
P.f
Methanol
+
Fruit Leaf Stem Leave
P.f
Ethanolic
+
Dharmapuri regions of South India India
Kvist et al., 2006 Kamaraj et al., 2012
P.f
+
France
Kaouet al., 2008
+
Kamaraj et al., 2012
-
Dharmapuri regions of South India West tropical Africa Peru
8
Dodonaea viscosa Jacq.
9
Jatropha curcas L.
10
Lantana camara L.
Leaf
P.f
Dichlorometha ne methanol methanol/aque ous(1/1), H2O Ethyl acetate
11
Mangifera indica Wall.
Stem bark Cortex
P.f
Ethanolic
12
Ocimum americanum Auct. ex Benth.
Entire plant
P.f
13
Ocimum basilicum L.
14
Peganum harmala L.
15
Piper nigrum Beyr. ex Kunth
Leaf Stem Roots Flower Green parts Wood Seed
16
Solanum incanum Scheff. Tamarindus indica L. Tinospora cordifolia (Willd.) Miers ex Hook.f. & Thomson Withania somnifera (L.) Dunal
17 18
19
+
France
P.f
Dichlorometha ne methanol methanol/aque ous(1/1), Ethanolic
+
India
P.f
Ethanolic
+
India
P.f
ethyl acetate
+
root bark
P.f
+
Fruits
P.b
Water Methanol Aqueous
Dharmapuri regions of South India Kenya
+
Ethiopia
Stem
P.f
Ethanolic
+
India
Stem bark
P.f
Aqueous Methanolic
+
Kenya
P.f ;Plasmodium falciparum, P.b ; Plasmodium berghii antiplasmodial activity
Simonsen et al., 2001
Zirihiet al., 2005 Kvist et al., 2006 Kaouet al., 2008
Simonsen et al., 2001 Inbanesonet al., 2012 Simonsen et al., 2001 Kamaraj et al., 2012 Rukungaet al., 2009 Mesfinet al., 2012 Simonsen et al., 2001
Kirira et al., 2006
+; show antiplasmodial activity, - ; don’t show
Fig. 1 Map of study area
Fig. 2 Diversity of antimalarial plants in the study area
Fig.3. Part used of medicinal plants
Fig. 4 Mode of utilization of plants used