Accepted Manuscript Evidence of Perturbations of the Cytokine Network in Preterm Labor Roberto Romero, MD, D.Med.Sci, Jean-Charles Grivel, PhD, Adi L. Tarca, PhD, Piya Chaemsaithong, MD, Zhonghui Xu, MSc, Wendy Fitzgerald, BS, Sonia S. Hassan, MD, Tinnakorn Chaiworapongsa, MD, Leonid Margolis, PhD PII:
S0002-9378(15)00787-5
DOI:
10.1016/j.ajog.2015.07.037
Reference:
YMOB 10551
To appear in:
American Journal of Obstetrics and Gynecology
Received Date: 28 May 2015 Revised Date:
26 June 2015
Accepted Date: 21 July 2015
Please cite this article as: Romero R, Grivel J-C, Tarca AL, Chaemsaithong P, Xu Z, Fitzgerald W, Hassan SS, Chaiworapongsa T, Margolis L, Evidence of Perturbations of the Cytokine Network in Preterm Labor, American Journal of Obstetrics and Gynecology (2015), doi: 10.1016/j.ajog.2015.07.037. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT
Evidence of Perturbations of the Cytokine Network in Preterm Labor
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Roberto Romero, MD, D.Med.Sci1-4, Jean-Charles Grivel, PhD6,7, Adi L. Tarca, PhD1,5, Piya Chaemsaithong, MD1,5, Zhonghui Xu, MSc1,5, Wendy Fitzgerald, BS6, Sonia S. Hassan, MD1,5, Tinnakorn Chaiworapongsa, MD1,5, Leonid Margolis, PhD6
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Presented as a poster presentation at Mott Center Scientific Retreat April 28-29, 2015 at The Atheneum Suite Hotel, Downtown/Greektown Detroit, 1000 Brush Avenue, Detroit, MI, 48226
39 40 41 42 43 44 45
Jean-Charles Grivel Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar P.O. Box 26999 Doha, Qatar e-mail:
[email protected]
RI PT
1
1
M AN U
SC
Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI, USA 2 Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA 3 Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA 4 Department of Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI, USA 5 Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA 6 Section on Intercellular Interactions, Program on Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA 7 Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
Conflict of Interest: The authors declare no conflicts of interest.
TE D
Acknowledgement: This research was supported, in part, by the Perinatology Research Branch, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services (NICHD/NIH); and, in part, with Federal funds from NICHD, NIH under Contract No. HHSN275201300006C.
Address correspondence to:
AC C
EP
Roberto Romero, MD, D. Med. Sci. Perinatology Research Branch, NICHD, NIH, DHHS Wayne State University/Hutzel Women's Hospital 3990 John R, Box 4, Detroit, MI 48201, USA Telephone: (313) 993-2700 Fax: (313) 993-2694 e-mail:
[email protected]
1
ACCEPTED MANUSCRIPT
1 2 3
Abstract
4
persuasive evidence of causality for spontaneous preterm labor/delivery. Previous studies about
5
the behavior of cytokines in preterm labor have been largely based on the analysis of the
6
behavior of each protein independently. Emerging evidence indicates that the study of biological
7
networks can provide insight into the pathobiology of disease, and improve biomarker discovery.
8
The goal of this study is to characterize the inflammatory-related proteins network in the
9
amniotic fluid in patients with preterm labor.
M AN U
SC
RI PT
Objective: Intra-amniotic infection/inflammation is the only mechanism of disease with
Materials and Methods: A retrospective cohort study was conducted, and included women with
11
singleton pregnancies who presented with spontaneous preterm labor and intact membranes
12
(n=135). These patients were classified according to the results of amniotic fluid culture, broad-
13
range polymerase chain reaction coupled with electrospray ionization mass spectrometry
14
(PCR/ESI-MS), and amniotic fluid concentration of interleukin (IL)-6 into the following groups:
15
1) those without intra-amniotic inflammation (n=85); 2) those with microbial-associated intra-
16
amniotic inflammation (n=15); and 3) those with intra-amniotic inflammation without detectable
17
bacteria (n=35). Amniotic fluid concentrations of 33 inflammatory-related proteins
18
determined using a multiplex bead array assay.
19
Results: 1) Patients with preterm labor and intact membranes who had microbial-associated
20
intra-amniotic inflammation had a higher amniotic fluid inflammatory-related protein
21
concentration correlation than those without intra-amniotic inflammation (113 perturbed
22
correlations). IL-1β, IL-6, MIP-1α, and IL-1α were the most connected nodes (highest degree) in
23
this differential correlation network (degree of 20, 16, 12, and 12, respectively); 2) patients with
were
AC C
EP
TE D
10
2
ACCEPTED MANUSCRIPT
sterile intra-amniotic inflammation had correlation patterns of inflammatory-related proteins that
2
were both increased and decreased when compared to those without intra-amniotic inflammation
3
(50 perturbed correlations). IL-1α, MIP-1α, and IL-1β were the most connected nodes in this
4
differential correlation network (degrees of 12, 10, and 7, respectively); and 3) there were more
5
coordinated inflammatory-related protein concentrations in the amniotic fluid of women with
6
microbial-associated intra-amniotic inflammation than in those with sterile intra-amniotic
7
inflammation (60 perturbed correlations), with IL-4 and IL-33 having the largest number of
8
perturbed correlations (degree of 15 and 13, respectively).
9
Conclusion: We report for the first time an analysis of the inflammatory-related protein network
10
in spontaneous preterm labor. Patients with preterm labor who had microbial-associated intra-
11
amniotic inflammation had more coordinated amniotic fluid inflammatory-related proteins than
12
either those with sterile intra-amniotic inflammation or those without intra-amniotic
13
inflammation. The correlations were also stronger in patients with sterile intra-amniotic
14
inflammation than in those without intra-amniotic inflammation. The findings herein could be of
15
value in the development of biomarkers of preterm labor.
16
Keywords: chemokine, prematurity, biomarker, chorioamnionitis, correlation network, intra-
17
amniotic infection, interactome, network analysis, sterile inflammation
SC
M AN U
TE D
EP
AC C
18
RI PT
1
3
ACCEPTED MANUSCRIPT
1
Introduction Preterm birth is the leading cause of neonatal morbidity and mortality worldwide 1-7, and
3
occurs after the spontaneous onset of preterm labor in two-thirds of cases 8. Accumulating
4
evidence suggests that preterm parturition is a syndrome caused by multiple pathologic processes
5
9, 10
6
decline in progesterone action
7
senescence
8
amniotic infection (also termed microbial-associated intra-amniotic inflammation: presence of
9
microorganisms in the amniotic cavity and intra-amniotic inflammation) has been causally linked
10
to spontaneous preterm delivery 18. Indeed, at least one of every four preterm infants is born to a
11
mother with an intra-amniotic infection that is largely subclinical 18.
including intrauterine infection
, vascular disease
29-32
,
uterine overdistension
, breakdown of maternal-fetal tolerance 54-60
SC
, and other pathologic processes yet to be discovered
44-50
,
33-38
,
decidual
. Of these, intra-
M AN U
51-53
39-43
9-28
RI PT
2
The amniotic cavity is normally sterile, but microorganisms can gain access to the lower
TE D
12
10, 11, 18, 61
genital tract through an ascending pathway
14
proposed as well (hematogenous dissemination from distant sites, such as the oral cavity)
15
Bacteria and their products can elicit an intra-amniotic inflammatory response after they are
16
recognized by pattern recognition receptors
17
79-126
18
including prostaglandins 146-152 and proteases 100, 105, 153-172.
and chemokines
24, 73-78
, although other pathways have been
and induce the production of cytokines
90, 93, 95, 97, 103, 104, 106, 113, 119, 126-145
AC C
19
EP
13
62-72
.
14, 27,
and other inflammatory mediators
Although intra-amniotic inflammation has traditionally been attributed to microorganisms 173, 174
20
and their products, such as lipopolysaccharide (LPS)
21
(175, lipoglycans
22
intra-amniotic inflammation do not have microorganisms identified by cultivation methods or
25, 176-178
, lipoteichoic acid or peptidoglycans
, or others, it has now become clear that a subgroup of patients with
4
ACCEPTED MANUSCRIPT
1
molecular microbiologic techniques to identify bacteria or viruses
2
term “sterile intra-amniotic inflammation” to refer to this condition.
179-185
. We have coined the
Previous studies about the behavior of cytokines in spontaneous labor at term and
4
preterm labor have been based on data derived from bioassays for these molecules, and specific
5
individual immunoassays
6
integrated and interdependent networks of cells and molecules
7
networks, rather than individual cells/molecules, is considered necessary to improve the
8
understanding of the pathophysiology of disease
9
characterize the behavior of the inflammatory-related protein network in the amniotic fluid of
10
women in preterm labor, according to the presence/absence of intra-amniotic inflammation and
11
microorganisms in the amniotic cavity.
12
Materials and Methods
13
Study population
. Since biological functions are the expression of , the study of biological
SC
193-197
193-197
. The objective of this study was to
TE D
M AN U
27, 98, 105, 182-184, 186-192
RI PT
3
A cohort of women with singleton pregnancies who presented with spontaneous preterm
15
labor and intact membranes (n=135) was selected from the clinical database and Bank of
16
Biological Samples maintained by Wayne State University, the Detroit Medical Center, and the
17
Perinatology Research Branch of the Eunice Kennedy Shriver National Institute of Child Health
18
and Human Development (NICHD). The inclusion criteria were: 1) singleton gestation; 2)
19
transabdominal amniocentesis performed between 20 and 35 weeks of gestation prior to the
20
rupture of the chorioamniotic membranes; 3) absence of chromosomal or structural fetal
21
anomalies; and 4) sufficient amniotic fluid for molecular microbiologic studies. These patients
AC C
EP
14
5
ACCEPTED MANUSCRIPT
1
were included in prior studies which provide descriptions of microbiologic studies, amniotic
2
fluid IL-6 concentration, and high mobility group box-1 (HMGB-1)
3
written informed consent, and the use of biological specimens and clinical data for research
4
purposes was approved by the Institutional Review Boards of NICHD and Wayne State
5
University.
6
Clinical definitions
RI PT
. Each patient provided
SC
7
184
Microbial invasion of the amniotic cavity (MIAC) was defined according to the results of AF culture and PCR/ESI-MS (Ibis® Technology - Athogen, Carlsbad, CA)
9
amniotic inflammation was diagnosed when the AF IL-6 concentration was ≥ 2.6 ng/ml
M AN U
8
179, 180, 198, 199
. Intra-
27, 98, 105,
10
181-184, 186, 187, 189, 190
11
IL-6, patients with preterm labor with intact membranes were classified into three groups: Group
12
1 included those without intra-amniotic inflammation (n=85); Group 2 consisted of those with
13
microbial-associated intra-amniotic inflammation (combination of MIAC and intra-amniotic
14
inflammation) (n=35); and Group 3 included those with intra-amniotic inflammation without
15
detectable microorganisms (an elevated AF IL-6 concentration without evidence of
16
microorganisms in the amniotic cavity using both cultivation and molecular methods) (n=15).
17
The patients with the presence of microorganism in the amniotic cavity but without intraamniotic
18
inflammation were classified into Group 3 (no intraamniotic inflammation) since the presence of
19
such microorganisms may represent contamination.
AC C
EP
TE D
. Based on the results of AF cultures, PCR/ESI-MS and AF concentrations of
20
Spontaneous preterm labor was diagnosed by the presence of at least two regular uterine
21
contractions every 10 minutes associated with cervical changes in patients with a gestational age
6
ACCEPTED MANUSCRIPT
between 20 and 36 6/7 weeks. Preterm delivery was defined as birth prior to the 37th week of
2
gestation.
3
Multiplex determination of inflammatory-related proteins
4
RI PT
1
Amniotic fluid concentrations of 33 inflammatory-related proteins
were determined
using a multiplex bead array assay developed by the investigators (see Table 1 for the complete
6
list of analytes). The mediators are cytokines (chemokines are a subset of cytokines), and we also
7
included the prototypic alarmin, HMBG-1, which is elevated in cases of sterile intra-amniotic
8
inflammation
9
microbial protein, lactoferrin
calgranulin A and C 201
200
, which are anti-microbial peptides, and the anti-
M AN U
184
SC
5
. All capture antibodies were purchased from R&D Systems
(Minneapolis, MN) with the exception of the capture antibodies for IL-4 and IL-10 (Biolegend,
11
San Diego), IL-12 p70 (Becton Dickinson, New Jersey), IL-18 (eBiosciences, San Diego),
12
Lactoferrin (Abcam, Massachusetts). Individual Luminex bead sets (Luminex, Riverside, CA)
13
were coupled to inflammatory-related protein
14
manufacturer’s recommendations. Conjugated beads were washed and kept at 4°C until use. The
15
standards for each analyte were purchased from R&D systems [with the exception of Calgranulin
16
A (USBiological, Massachusetts), HGMB-1 and Lactoferrin (Abcam, Massachusetts)], and
17
resuspended at concentrations ranging from 50 µg/ml to 8 ng/ml and diluted serially 1:3 to
18
generate standard curves. Detection antibodies were purchased from R&D Systems as
19
biotinylated affinity purified goat polyclonal antibodies, or from BioLegend (IL-10), Becton
20
Dickinson (IL-12), eBiosciences (IL-18), Abcam (Lactoferrin) and ThermoFisher (HGMB-1).
21
Biotinylated detection antibodies were used at twice the concentrations recommended for a
22
classical ELISA. All assay procedures were performed in assay buffer containing PBS
-specific capture antibodies according to the
AC C
EP
TE D
10
7
ACCEPTED MANUSCRIPT
supplemented with 1% normal mouse serum (GIBCO BRL), 1% normal goat serum (GIBCO
2
BRL), and 20 mM Tris-HCl (pH 7.4). The assays were run using 2000 beads per set of each of
3
33 inflammatory-related proteins measured per well in a total volume of 50µL. Samples were
4
diluted in assay buffer and run in duplicates at two dilutions 1:2 and 1:32. A total of 50µL of
5
each amniotic fluid sample was added to the well and incubated overnight at 4°C in a Millipore
6
Multiscreen plate (Millipore, Billerica, MA). The liquid was then aspirated using a BioPlex Pro
7
II plate washer (Bio-rad, Hercules, CA), and the plates were washed twice with 200µL of assay
8
buffer. The beads were then resuspended in 50µL of assay buffer containing biotinylated
9
polyclonal antibodies against the measured inflammatory-related proteins for 30 minutes at
10
room temperature. The plates were washed twice with PBS, the beads were resuspended in 50µL
11
of assay buffer, and 50µL of a 16 µg/mL solution of streptavidin-PE (Molecular Probes, Eugene,
12
OR) was added to each well. The plates were read on a Luminex-100 platform. For each bead set
13
of the 33 tested, a minimum of 100 beads was collected. The median fluorescence intensity of
14
these beads was recorded for each bead and was used for analysis with the Bioplex Manager
15
software (version 6.1; Bio-Rad) using a 5-parameter (5P) regression algorithm. The assay
16
characteristics are described in Table 1.
17
Statistical analysis
SC
M AN U
TE D
EP
AC C
18
RI PT
1
The goal of the statistical analysis was to: 1) assess the differences in analyte
19
concentration among groups; 2) determine if pairwise analyte correlations were different among
20
groups; and 3) build the network of significantly perturbed correlations and identify highly
21
connected nodes and network modules.
8
ACCEPTED MANUSCRIPT
Demographics data analysis: The Kolmogorov-Smirnov test was used to test whether the
2
distribution of continuous variables was normal. Chi-square or Fisher’s exact tests were used for
3
comparisons of proportions. Kruskal-Wallis and the Mann-Whitney U tests were used to
4
compare median concentrations of analytes between and among groups. Statistical analysis of
5
demographics data was performed using SPSS 19 (IBM Corp, Armonk, NY, USA). A p value <
6
0.05 was considered statistically significant.
SC
RI PT
1
Analysis of the difference in concentrations among groups: Analyte concentration data
8
was log (base 2) transformed to improve normality of the data distribution. To test for
9
differential analyte concentration between groups, a linear model was fit to the analyte
10
concentration using the group indicator (e.g. no intra-amniotic inflammation vs. sterile intra-
11
amniotic inflammation) and gestational age as predictors. Significant p values for the group
12
coefficient were adjusted using the Benjamini & Hochberg method over all 33 analytes to
13
compute q-values 202. Significance of differences in concentration was determined based on a q-
14
value <0.1 and fold change >1.5.
TE D
M AN U
7
Differential correlation analysis: The goal of this analysis was to test whether the
16
correlation of concentrations between each possible pair of analytes (e.g. IL-1α and IL-6; IL-1α
17
and IL-33, etc.) was different among groups, while adjusting for the effect of gestational age.
18
Adjustment for gestational age was performed to account for differences in the duration of
19
pregnancy at the time of amniocentesis between groups. A linear model was fit to the log
20
transformed data of each analyte as a function of gestational age using samples in each group
21
separately. The residuals (actual value – fitted value) were then used to compute Pearson
22
correlations for each pair of analytes within each group of patients. Since these correlations were
AC C
EP
15
9
ACCEPTED MANUSCRIPT
determined from data adjusted for a covariate (gestational age), these correlations are also called
2
partial correlations. To test for differences in partial correlations between groups, the partial
3
correlations were first converted into an intermediary variable z, using Fisher’s transformation.
4
Under the null hypothesis (partial correlations are equal between groups) the standardized
5
differences in z values between groups were assumed to follow a standard normal distribution.
6
Significant differences in partial correlations were considered to be present when the p-value was
7
<0.01, and the magnitude of correlation differences was at least 0.2. The rationale for using more
8
stringent criteria is that when testing 528 differential correlations simultaneously, one would
9
expect in average 528 x 0.05=26.4 positive differential correlation due to chance alone (false
10
positives). When using a criteria of p<0.01, the number of false positives would be reduced to 5
11
(528 x 0.01). The additional requirement that the magnitude of differential correlation be >0.2
12
reduces even further the number of false positives, as differential correlations with higher
13
magnitude are less likely to be observed due to chance aloneNetwork analysis: A network was
14
constructed for each between-group comparison (e.g. sterile intra-amniotic inflammation vs. no
15
intra-amniotic inflammation) by linking/connecting the analytes with a significantly different
16
correlation between the respective groups. For each node (analyte) in the network, we calculated
17
the degree and the average absolute difference in correlations. While the first metric gives the
18
number of links (significantly perturbed correlations) of a given node to all others, the latter
19
describes the typical between-groups change in correlation (regardless of direction). The network
20
was further analyzed to identify modules (groups of analytes) so that analytes (network nodes)
21
within modules are more connected with others within the same module than would be expected
22
by chance 203.
23
Results
AC C
EP
TE D
M AN U
SC
RI PT
1
10
ACCEPTED MANUSCRIPT
1
Demographic characteristics The characteristics of the study population stratified by the presence or absence of
3
microorganisms in the amniotic cavity and intra-amniotic inflammation were the subject of a
4
detailed report in this Journal 184. Briefly, the frequencies of sterile intra-amniotic inflammation,
5
microbial-associated intra-amniotic inflammation, and no intra-amniotic inflammation were 26%
6
(35/135), 11% (15/135), and 63% (85/135), respectively. The most frequent microorganisms
7
identified in the amniotic cavity were Ureaplasma spp. Patients with sterile and microbial-
8
associated intra-amniotic inflammation had significantly lower median gestational age at
9
delivery (interquartile range: IQR) than those without intra-amniotic inflammation [25 (23-32)
10
weeks, 26 (23-32) weeks vs. 32 (29-33) weeks; each p< 0.001] (Table 2). There was no
11
significant difference in the median gestational age at delivery between patients with microbial-
12
associated intra-amniotic inflammation and those with sterile intra-amniotic inflammation
13
(p=0.6) (Table 2). The amniotic fluid inflammatory response [IL-6, white blood cell count
14
(WBC)] was significantly greater in microbial-associated intra-amniotic inflammation than in
15
sterile intra-amniotic inflammation [amniotic fluid IL-6 median (IQR): microbial-associated
16
intra-amniotic inflammation of 96 (17-266) ng/ml vs. sterile intra-amniotic inflammation: 12 (5-
17
21) ng/ml; p < 0.001; median WBC counts (IQR): 295 (2-960) cell/mm3 vs. 3 (1-17) cell/mm3,
18
p=0.002] (Table 2). Our study was conducted before the publications of studies reporting that
19
vaginal progesterone reduces the rate of preterm delivery and neonatal morbidity, and thus, none
20
of our patients received vaginal progesterone.
21
Inflammatory-related protein concentrations among subgroup of preterm labor with intact
22
membranes
AC C
EP
TE D
M AN U
SC
RI PT
2
11
ACCEPTED MANUSCRIPT
Sterile intra-amniotic inflammation vs. no intra-amniotic inflammation: The geometric mean
2
amniotic fluid concentration for all 33 inflammatory-related analytes was higher in patients with
3
sterile intra-amniotic inflammation than in those without intra-amniotic inflammation (fold
4
change range 1.1-11.4). The differences were significant for 27 of the 33 analytes (q-value<0.1
5
and fold change >1.5; Table 3). The largest fold changes were observed for IL-6 and IL-8 (10.6
6
and 11.4, respectively).
7
Microbial-associated intra-amniotic inflammation vs. no intra-amniotic inflammation: The
8
geometric mean amniotic fluid concentration for all 33 inflammatory-related analytes was
9
significantly higher in patients with microbial-associated intra-amniotic inflammation than in
10
those without intra-amniotic inflammation (q value < 0.1, and fold change > 1.5; Table 3). IL-6,
11
IL-8, and MIP-1β had the largest magnitude of change (fold changes: 115.4, 106, and 64.8,
12
respectively) (Table 3).
13
Microbial-associated intra-amniotic inflammation vs. sterile intra-amniotic inflammation:
14
Patients with microbial-associated intra-amniotic inflammation had higher concentrations of
15
inflammatory-related proteins than those with sterile intra-amniotic inflammation, with fold
16
changes that ranged from 2.3-12.3 for all 33 analytes (Table 3). The fold changes for MIP-1β,
17
MIP-1α, IL-1β, IL-6, and IL-8 were approximately 10 (Table 3).
18
Differential correlation and network analysis
SC
M AN U
TE D
EP
AC C
19
RI PT
1
Differences in the correlation patterns of pairs of analytes were assessed among all three
20
groups of patients (See Figure 1A) for an illustration. Below are the detailed results of this
21
analysis for each pairwise comparison.
12
ACCEPTED MANUSCRIPT
1
Sterile intra-amniotic inflammation vs. no intra-amniotic inflammation The inflammatory-related protein differential correlation network between the sterile
3
intra-amniotic inflammation and no intra-amniotic inflammation groups is displayed in Figure
4
2A. Of the 33 analytes, 28 had at least one correlation that was significantly perturbed in patients
5
with of sterile intra-amniotic inflammation compared to that of patients without intra-amniotic
6
inflammation. The perturbed correlations between pairs of analytes are represented by lines in
7
Figure 2. Among 50 perturbed correlations shown in this figure, 33 were positive (increased
8
correlation) and 17 were negative (decreased correlation). The number of perturbed correlations
9
(degree) was the largest for IL-1α, MIP-1α, and IL-1β (12, 10, and 7, respectively). The average
10
absolute difference in correlation ranged from 0.28 (for HMGB-1) to 0.61 (Calgranulin-A) which
11
indicates a considerable magnitude of differential correlation between groups. For example, the
12
correlation between IL-1β and MIP-1α was -0.28 (p=0.01) in the group without intra-amniotic
13
inflammation, but it was reversed to 0.61 (p<0.001) in the group with sterile intra-amniotic
14
inflammation (absolute difference in correlation of 0.61-(-0.28) =0.89, p<0.001) (Supplementary
15
File 1). Of the three modules identified in this network, the MIP-1α and IL-1β module included
16
analytes with larger differences in concentration and higher degree, than those in the other two
17
modules. IL-1α and CXCL-9/MIG had the largest degree in the second and third modules,
18
respectively.
19
Microbial-associated intra-amniotic inflammation vs. no intra-amniotic inflammation
AC C
EP
TE D
M AN U
SC
RI PT
2
20
The network of inflammatory-related protein differential correlations between patients
21
with microbial-associated intra-amniotic inflammation and those without intra-amniotic
22
inflammation is shown in Figure 2B. Of the 33 analytes, 31 had at least one correlation that was 13
ACCEPTED MANUSCRIPT
significantly perturbed in microbial-associated intra-amniotic inflammation, compared to no
2
intra-amniotic inflammation. Similar to the comparison between sterile intra-amniotic
3
inflammation and no intra-amniotic inflammation, IL-1β and MIP-1α belonged to the same
4
module, while IL-1α belonged to a different module. However, in contrast to the comparison
5
between the group with sterile intra-amniotic inflammation and the group without intra-amniotic
6
inflammation, the degree of IL-1β was the largest in this network (degree=20). The total number
7
of perturbed correlations (n=113) in this comparison (microbial-associated intra-amniotic
8
inflammation vs. no intra-amniotic inflammation) was larger than in the previous comparison
9
(n=50; sterile intra-amniotic inflammation vs. no intra-amniotic inflammation; Figure 2A). All
10
perturbed correlations were increased in this comparison (as denoted by the red lines in Figure
11
2B), while this was only the case for some of the perturbed correlations in the contrast described
12
in Figure 2A.
13
Microbial-associated intra-amniotic inflammation vs. sterile intra-amniotic inflammation
TE D
M AN U
SC
RI PT
1
There were 60 perturbed (all increased) correlations in microbial-associated intra-
15
amniotic inflammation compared to sterile intra-amniotic inflammation (Figure 2C). IL-4 and
16
IL-33 had the largest number of disrupted correlations (degrees are 15 and 13, respectively), each
17
of these two analytes belonging to a different module.
AC C
18
EP
14
Since the frequency with which patients received glucocorticoids in the group with sterile
19
intra-amniotic inflammation was lower than in the other two groups (see Table 1), we
20
determined whether steroid administration could have been a confounder in the differential
21
expression and differential correlation analyses. Since no significant association was found
14
ACCEPTED MANUSCRIPT
between analyte concentration and steroid administration in any of the three groups, we
2
concluded that steroid administration was not a confounding factor in these analyses.
3
Discussion
4
Principal findings of the study: 1) Patients with preterm labor and intact membranes who had
5
microbial-associated intra-amniotic inflammation had a higher amniotic fluid inflammatory-
6
related protein concentration correlation than those without intra-amniotic inflammation. IL-1β,
7
IL-6, MIP-1α, and IL-1α were highly connected nodes (highest degree) in this differential
8
correlation network; 2) patients with sterile intra-amniotic inflammation had correlation patterns
9
of inflammatory-related proteins that were both increased and decreased when compared to those
10
without intra-amniotic inflammation. IL-1α, MIP-1α, and IL-1β were the most connected nodes
11
in this differential correlation network; and 3) there were more coordinated inflammatory-related
12
protein concentrations in the amniotic fluid of women with microbial-associated intra-amniotic
13
inflammation than in those with sterile intra-amniotic inflammation. IL-4 and IL-33 had the
14
largest number of perturbed correlations with other inflammatory-related proteins in the
15
differential correlation network. These observations provide evidence that the inflammatory-
16
related protein network behaves differently in women with preterm labor according to the
17
presence or absence of intra-amniotic inflammation and/or microorganisms.
18
The study of protein networks in health and disease
SC
M AN U
TE D
EP
AC C
19
RI PT
1
Cytokines are organized in complex and redundant networks. Therefore their study
20
requires a global analysis of the entire network rather than a catalogue of changes in
21
concentrations of individual cytokines. Such a network analysis was developed in the current
15
ACCEPTED MANUSCRIPT
1
study for cytokine network in preterm labor with intact membranes. In biology, networks can be
2
used to represent knowledge about genes and gene products by providing a flexible and detailed
3
description of biological functions and gene interactions. For instance, the Gene Ontology
4
vocabulary assigns genes and gene products to molecular functions, biological processes and
5
cellular components, and can be depicted as a graph in which the set of genes annotated to a
6
certain term (node) is a subset of those annotated to its parent nodes. Similarly, the Kyoto
7
Encyclopedia of Genes and Genomes (KEGG)
8
representing knowledge on the molecular interaction networks for metabolism, cellular
9
processes, human disease, etc. The advantage of representing such knowledge in graph format,
10
rather than as lists of gene products, is to allow for improved interpretation of expression
11
changes from omics studies. For example, some pathway analysis methods based on observed
12
gene expression changes between a disease and control group would treat differential expression
13
of interconnected genes in the pathway as more relevant in terms of the relationship to the
14
disease than the differential expression of non-connected genes.
RI PT
SC
maintains manually-drawn pathway maps
M AN U
TE D
15
205
204
The study of biological networks is now emerging as an important discipline: network 206
medicine, due to the availability of omics data
17
samples are often highly correlated and their pairwise relations can be conveniently described
18
using a network representation. The term “interactome” is often used to describe all physical
19
interactions among cellular components. By necessity, knowledge of the interactome is
20
incomplete at this time; however, there is evidence that disease-disease relationships can be
21
uncovered by exploring an incomplete interactome
22
patterns may form complexes, belong to the same pathways, or participate in regulatory and
23
signaling circuits. A “guilt-by-association” approach can be used to guide the typical differential
. RNA and protein expression profiles across
AC C
EP
16
197
. Molecules with similar expression
16
ACCEPTED MANUSCRIPT
1
expression analysis task by not relying exclusively on gene level differential expression
2
statistics, but also considering the evidence from neighboring genes in the co-expression network
3
207
4
network analyses by replacing each highly connected network module with a module
5
representative
6
performance 206, 208.
hence
reducing
redundancy
and
improving
prediction
SC
meta-molecule,
RI PT
. Similarly, outcome prediction from high-dimensional gene expression data can benefit from
The study of co-expression networks of molecules profiled with low- or high-throughput
8
technologies has been proposed as a complementary approach to the simple description of
9
differential abundance/expression analyses between conditions and clinical states
M AN U
7
209-211
.
10
Information extracted from correlation network analysis has been shown to improve disease
11
classification
12
differences in network organization between patients with breast cancer who were alive after
13
follow-up versus those who died from disease allowed identification of key hub genes (highly
14
connected nodes) whose predictive performance was better than the one derived from
15
commercially available genomic breast cancer diagnostic tests
16
oncogenes have emerged from studies of gene regulatory networks
17
co-expression network in plasma has provided new insights into the pathophysiology of chronic
18
fatigue syndrome by discovering distinct cytokine communities or modules recognizable as pre-
19
programmed immune functional components in this disease
20
biological pathways have been derived from research conducted on adult subjects or in cultured
21
cells, and hence are not specific to the biology of pregnancy or parturition. Therefore the
22
discovery of functionally-related network modules allows expanding upon existing repositories
and identify potential therapeutic targets
218-223
. For instance, assessing the
AC C
EP
TE D
212-217
210
216
215
. Moreover, candidate
. Studies of the cytokine
. The current repositories of
17
ACCEPTED MANUSCRIPT
1
of biological pathways (e.g. KEGG, Reactome
2
between different diseases and conditions.
224
), enabling determination of the connection
In conclusion, network analysis can be used to: 1) prioritize differentially expressed
4
molecules by identifying those with very different correlation environments between conditions,
5
and 2) characterize functionally relevant modules of such molecules. Moreover, the disruption of
6
normal correlations between cytokine may be a pathological factor itself, apart from the changes
7
in concentration of individual cytokines that can be negligible.
8
Inflammatory-related protein network connectivity in microbial-associated intra-amniotic
9
inflammation
M AN U
SC
RI PT
3
Patients with preterm labor and intact membranes who had microbial-associated intra-
11
amniotic inflammation had increased correlations of inflammatory-related proteins in the
12
amniotic cavity when compared to either those without intra-amniotic inflammation or with
13
sterile intra-amniotic inflammation. Previous studies of protein network analysis show that
14
tracking local network changes can be useful in prioritizing candidate proteins, compared to
15
traditional differential expression analysis on individual protein [182-184]. In the current study,
16
amniotic fluid IL-1β, IL-6, MIP-1α, and IL-1α had the strongest change in expression
17
coordination with other inflammatory proteins, while IL-6, IL-8, and MIP-1β were the top
18
ranked proteins when the absolute concentrations among groups were examined. Therefore, the
19
information obtained from a simple comparison of mean concentrations is different from that
20
derived from the differential correlation analysis.
AC C
EP
TE D
10
18
ACCEPTED MANUSCRIPT
IL-1β
1
225-228
, IL-6
229-231
, MIP-1α
232-238
, and IL-1α
239, 240
are potent pro-inflammatory
cytokines which can be upregulated by microbial and non-microbial products. Such proteins are
3
produced by different cells such as macrophages, lymphocytes, neutrophils, dendritic cells, etc.
4
Upregulation of expression occurs during leukocyte recruitment, production of prostaglandins
5
and matrix degrading enzymes, all of which have been implicated in the mechanisms of labor 18,
6
24, 241
7
intra-amniotic infection
79, 82, 242
8
concentrations of IL-1β
79, 81, 94, 109, 243, 244
9
and IL-1α
. IL-1β was the first cytokine discovered to play a role in preterm labor associated with
, IL-6
SC
81, 83, 242, 247
. We and other investigators have reported that amniotic fluid 14, 86-88, 94, 95, 109, 189, 244, 245
, MIP-1α
113, 138, 140, 246
,
were significantly higher in women with preterm labor who had intra-
M AN U
10
RI PT
2
amniotic infection than in those who did not.
The cytokine network is complex, and the nature of the interactions among its members
12
depends on many factors, such as the cell types, disease states (normal vs. sterile inflammation
13
vs. infection), duration of the insult, and experimental models (in vitro vs in vivo)
14
example, IL-1β can upregulate the gene expression of TNFα, IL-1β, IL-6, MIP-1α, and IL-8,
15
while it down-regulates TGF-β1 gene expression
16
inflammatory-related protein network connectivity in women with microbial-associated intra-
17
amniotic inflammation is denser and coordinated than in those with sterile inflammation or
18
without intra-amniotic inflammation. We argue that network analysis provides deeper insight
19
into understanding the pathophysiological mechanisms of intra-amniotic infection/inflammation
20
in preterm labor, as well as identifying potentially relevant modules of cytokines that correspond
21
to distinct disease pathways in preterm labor. Also, in practice, such an approach may help to
22
minimize the number of individual cytokines measured in order to characterize pathologic states,
227, 240, 249
248
. For
. Our observations show that the
AC C
EP
TE D
11
19
ACCEPTED MANUSCRIPT
since some elements of the network may have key roles in the regulation of the entire
2
network/modules.
3
Inflammatory-related protein network connectivity in sterile intra-amniotic inflammation
4
RI PT
1
We have previously reported that sterile intra-amniotic inflammation was present in a 182, 184
5
subset of patients with preterm labor with intact membranes
6
membranes
7
intra-amniotic inflammation is clinically significant because it is a risk factor for impending
8
preterm delivery and neonatal morbidity 183, 184.
183
, and clinical chorioamnionitis at term
185
. Sterile
SC
, a sonographic short cervix
M AN U
181
, preterm prelabor rupture of
Inducers of sterile intra-amniotic inflammation in preterm labor remain to be determined.
10
“Danger signals” resulting from cellular stress or necrotic cells may engage damage-associated
11
molecular patterns (DAMPs), which can, in turn, activate signals such as the receptor for
12
advanced glycation end products (RAGE) and stimulate an intra-amniotic inflammatory
13
response
14
(HMGB-1)
15
without intra-amniotic inflammation. Moreover, among women with sterile inflammation, those
16
with a concentration of HMGB-1 > 8.55 ng/mL have a shorter interval to delivery than those
17
with lower concentrations of this alarmin
18
condition. Indeed, IL-1α, an alarmin previously reported in amniotic fluid, can induce labor in
19
pregnant animals
20
been recently proposed 252-254.
186, 250, 251
. The concentrations of the prototypic alarmin, high mobility group box-1
, is higher in patients with sterile intra-amniotic inflammation than in those
AC C
EP
184
TE D
9
83, 242, 247
184
, suggesting that alarmins are involved in this
. A role for the inflammasome in parturition and preterm labor has
20
ACCEPTED MANUSCRIPT
In the current study, amniotic fluid IL-6 and IL-8 were the top two ranked inflammatory-
2
related proteins in the differential expression analysis. Yet, in the differential network analysis,
3
amniotic fluid IL-1α, MIP-1α, and IL-1β are the main cytokines involved in sterile intra-
4
amniotic inflammation. Interestingly, the amniotic fluid IL-1α concentration changed only
5
moderately (fold change=1.7; q-value=0.06). IL-1α is a dual-function cytokine constitutively
6
expressed in resting cells under homeostatic condition
7
role in sterile inflammation, as it exclusively secreted during necrosis as an alarm signal and is
8
part of the danger-associated molecular patterns (DAMPs) model
9
of IL-1α to pregnant animals can induce preterm labor and delivery, an effect that is abrogated
. This cytokine plays a major
SC
239, 255-257
RI PT
1
. The administration
M AN U
239, 258-262
83
by pre-treatment with the IL-1 natural receptor antagonist
. The finding that IL-1α is a key
11
cytokine derived from network analysis in patients with sterile intra-amniotic inflammation
12
supports the concept that top ranked proteins derived from network connectivity analysis are
13
informative in premature labor.
14
Network analysis of sterile vs. microbial-associated intra-amniotic inflammation
TE D
10
The differential correlation network analysis between microbial-associated and sterile
16
intra-amniotic inflammation identified IL-4 and IL-33 as highly connected nodes (highest
17
degree). Similarly to IL-1α, IL-33 is a “dual-function” cytokine with both a nuclear factor and
18
an “alarmin” activity 263, 264. It is released predominantly during cell injury and can activate cells
19
of both the innate and adaptive immune system (i.e. T cells, B cells, macrophages, mast cells)
20
on a manner that is context dependent
21
ST2L, IL-33 is capable to produce Th2 associated cytokines
22
reported that the median amniotic fluid soluble ST2 concentration and mRNA expression of
AC C
EP
15
263-266
. IL-33 is the ligand for ST2 267-271
267
. Upon binding to
. We have previously
21
ACCEPTED MANUSCRIPT
1
ST2 in chorioamniotic membranes were lower in preterm labor with intra-amniotic infection
2
and acute histologic chorioamnionitis than in those without these conditions, respectively
3
Moreover, umbilical cord sST2 concentrations are 6.7 fold higher in neonates with FIRS than in
4
those without FIRS
5
suggest that IL-33 plays a role in microbial-associated intra-amniotic inflammation.
. These observations combined with the results from the current study
IL-4 is a multifunctional pleiotropic cytokine
6
.
274, 275
RI PT
273
272
, and mediates the Th2 immune
response 274-282. It is known to be important for the regulation of cell proliferation, apoptosis and
8
gene expression in various cells such as lymphocytes, macrophages and endothelial cells
9
281, 282
M AN U
SC
7
. It has been reported that amniotic fluid
283
274-279,
and maternal plasma IL-4 concentrations
284
are significantly higher in patients with preterm labor and chorioamnionitis than in those
11
without these complications. The role of IL-4 in preterm labor is incompletely understood, and
12
our findings justify further studies.
13
Conclusion
TE D
10
We report for the first time the analysis of the inflammatory-related protein network in
15
the amniotic fluid of patients with spontaneous preterm labor and intact membranes. Patients
16
with microbial-associated intra-amniotic inflammation had a more coordinated amniotic fluid
17
inflammatory-related protein network than either those with sterile intra-amniotic inflammation
18
or absent intra-amniotic inflammation. The inflammatory-related protein
19
denser in patients with sterile intra-amniotic inflammation than in those without intra-amniotic
20
inflammation. IL-1α was the top-ranked protein derived from this approach, and is involved in
21
sterile intra-amniotic inflammation. Our findings support the concept that the analysis of
22
correlation patterns provides an alternative method to prioritize candidate proteins as disease
AC C
EP
14
network was also
22
ACCEPTED MANUSCRIPT
biomarkers, and improves the understanding of disease mechanisms. A perturbation of the
2
relationship among cytokines/inflammatory related proteins in normal pregnancy may be an
3
important factor in complications of pregnancy, even if the absolute changes in concentrations of
4
particular cytokines/inflammatory related proteins are small. Future studies are required to
5
determine
6
diagnostic/classification performance in the preterm labor syndrome.
candidate
proteins
derived
from
this
approach
can
improve
SC
whether
RI PT
1
AC C
EP
TE D
M AN U
7
23
ACCEPTED MANUSCRIPT
Figure Legends
2
Figure 1. Differential correlation analysis. The figure shows log2 concentration (pg/ml) of IL-1β
3
(left panel) and MIP1α (middle panel) as a function of gestational age at amniocentesis in
4
patients with microbial-associated intra-amniotic inflammation (red) and those without intra-
5
amniotic inflammation (black). A linear model was fit to the log2 concentration of each analyte
6
as a function of gestational age in each group and residuals were used to compute partial
7
correlations between analytes (right panel). The partial correlation of residuals was positive and
8
significant in the microbial-associated intra-amniotic inflammation group but negative and
9
significant in patients without intra-amniotic inflammation, resulting in a significant differential
SC
correlation between groups.
11
M AN U
10
RI PT
1
Figure 2 Network of perturbed inflammatory related protein concentration correlations between
13
groups of preterm labor with intact membranes. Each node (sphere) represents one of the 33
14
analytes, with a link (line) between two nodes representing a significantly perturbed correlation.
15
The node color represents the direction of concentration change (red=increased; blue=decreased;
16
white=no change in the first group compared to the second/reference group of the comparison).
17
The color of links gives the direction of correlation change (red = increased correlation; blue =
18
decreased correlation) while the type of line denotes the nature of the link (solid line= within
19
module link; dashed line= cross-module link). Thick radial lines separate the modules as well as
20
the set of unconnected nodes, as labeled in the Figure. The numbers inside/outside the dotted
21
black circle represent the node degree/average absolute difference in correlations.
AC C
EP
TE D
12
24
ACCEPTED MANUSCRIPT
Figure 2A: Network of perturbed inflammatory-related protein concentration correlations
2
between sterile intra-amniotic inflammation and no intra-amniotic inflammation.
3
Figure 2B: Network of perturbed inflammatory-related protein concentration correlations
4
between microbial-associated intra-amniotic inflammation and no intra-amniotic inflammation.
5
Figure 2C: Network of perturbed
6
between
7
inflammation.
inflammatory-related protein
intra-amniotic
inflammation
concentration correlations
and
sterile
intra-amniotic
SC
microbial-associated
RI PT
1
M AN U
8
AC C
EP
TE D
9
25
ACCEPTED MANUSCRIPT
References
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
1. BECK S, WOJDYLA D, SAY L, BETRAN AP, MERIALDI M, REQUEJO JH, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization. 2010;88(1):31-8. 2. LIU L, JOHNSON HL, COUSENS S, PERIN J, SCOTT S, LAWN JE, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151-61. 3. BLENCOWE H, COUSENS S, OESTERGAARD MZ, CHOU D, MOLLER AB, NARWAL R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162-72. 4. MWANIKI MK, ATIENO M, LAWN JE, NEWTON CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012;379(9814):445-52. 5. MURRAY CJ, VOS T, LOZANO R, NAGHAVI M, FLAXMAN AD, MICHAUD C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-223. 6. MANUCK TA, SHENG X, YODER BA, VARNER MW. Correlation between initial neonatal and early childhood outcomes following preterm birth. American journal of obstetrics and gynecology. 2014;210(5):426 e1-9. 7. MANUCK TA, VARNER MW. neonatal and childhood outcomes following early vs later preterm premature rupture of membranes (PPROM). American journal of obstetrics and gynecology. 2014;211(3):308.e1-e.e6. 8. GOLDENBERG RL, CULHANE JF, IAMS JD, ROMERO R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75-84. 9. ROMERO R, DEY SK, FISHER SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760-5. 10. ROMERO R, ESPINOZA J, KUSANOVIC JP, GOTSCH F, HASSAN S, EREZ O, et al. The preterm parturition syndrome. BJOG : an international journal of obstetrics and gynaecology. 2006;113 Suppl 3:17-42. 11. ROMERO R, MAZOR M. Infection and preterm labor. Clinical obstetrics and gynecology. 1988;31(3):553-84. 12. ROMERO R, MAZOR M, WU YK, SIRTORI M, OYARZUN E, MITCHELL MD, et al. Infection in the pathogenesis of preterm labor. Seminars in perinatology. 1988;12(4):262-79. 13. ROMERO R, SIRTORI M, OYARZUN E, AVILA C, MAZOR M, CALLAHAN R, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. American journal of obstetrics and gynecology. 1989;161(3):817-24. 14. ROMERO R, AVILA C, SANTHANAM U, SEHGAL PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. The Journal of clinical investigation. 1990;85(5):1392-400. 15. ROMERO R, AVILA C, BREKUS CA, MOROTTI R. The role of systemic and intrauterine infection in preterm parturition. Annals of the New York Academy of Sciences. 1991;622:355-75. 16. GIBBS RS, ROMERO R, HILLIER SL, ESCHENBACH DA, SWEET RL. A review of premature birth and subclinical infection. American journal of obstetrics and gynecology. 1992;166(5):1515-28. 17. GOMEZ R, ROMERO R, EDWIN SS, DAVID C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infectious disease clinics of North America. 1997;11(1):135-76.
AC C
EP
TE D
M AN U
SC
RI PT
1
26
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
18. ROMERO R, GOMEZ R, CHAIWORAPONGSA T, CONOSCENTI G, KIM JC, KIM YM. The role of infection in preterm labour and delivery. Paediatric and perinatal epidemiology. 2001;15 Suppl 2:41-56. 19. GONCALVES LF, CHAIWORAPONGSA T, ROMERO R. Intrauterine infection and prematurity. Mental retardation and developmental disabilities research reviews. 2002;8(1):3-13. 20. ROMERO R, ESPINOZA J, CHAIWORAPONGSA T, KALACHE K. Infection and prematurity and the role of preventive strategies. Seminars in neonatology : SN. 2002;7(4):259-74. 21. ROMERO R, ESPINOZA J, GONCALVES LF, KUSANOVIC JP, FRIEL LA, NIEN JK. Inflammation in preterm and term labour and delivery. Seminars in fetal & neonatal medicine. 2006;11(5):317-26. 22. ROMERO R, GOTSCH F, PINELES B, KUSANOVIC JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutrition reviews. 2007;65(12 Pt 2):S194-202. 23. ROMERO R, LOCKWOOD CJ. Pathogenesis of Spontaneous Preterm Labor. In: Creasy RK, Resnik R, Iams JD, Lockwood CJ, Moore TR, editors. Creasy and Resnik's Maternal-Fetal Medicine: Principles and Practice. Sixth Edition ed. Philadelphia: Saunders Elsevier; 2009. 24. AGRAWAL V, HIRSCH E. Intrauterine infection and preterm labor. Seminars in fetal & neonatal medicine. 2012;17(1):12-9. 25. KACEROVSKY M, PLISKOVA L, BOLEHOVSKA R, SKOGSTRAND K, HOUGAARD DM, TSIARTAS P, et al. The impact of the microbial load of genital mycoplasmas and gestational age on the intensity of intraamniotic inflammation. American journal of obstetrics and gynecology. 2012;206(4):342 e1-8. 26. RUBENS CE, SADOVSKY Y, MUGLIA L, GRAVETT MG, LACKRITZ E, GRAVETT C. Prevention of preterm birth: Harnessing science to address the global epidemic. Science translational medicine. 2014;6(262):262sr5. 27. COMBS CA, GRAVETT M, GARITE TJ, HICKOK DE, LAPIDUS J, PORRECO R, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. American journal of obstetrics and gynecology. 2014;210(2):125 e1- e15. 28. ALLEN-DANIELS MJ, SERRANO MG, PFLUGNER LP, FETTWEIS JM, PRESTOSA MA, KOPARDE VN, et al. Identification of a gene in Mycoplasma hominis associated with preterm birth and microbial burden in intra-amniotic infection. American journal of obstetrics and gynecology. 2015. 29. ARIAS F, KNIGHT AB, TOMICH PB. A retrospective study on the effects of steroid administration and prolongation of the latent phase in patients with preterm premature rupture of the membranes. American journal of obstetrics and gynecology. 1986;154(5):1059-63. 30. KIM YM, BUJOLD E, CHAIWORAPONGSA T, GOMEZ R, YOON BH, THALER HT, et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. American journal of obstetrics and gynecology. 2003;189(4):1063-9. 31. ANANTH CV, SMULIAN JC, VINTZILEOS AM. Ischemic placental disease: maternal versus fetal clinical presentations by gestational age. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2010;23(8):887-93. 32. BROSENS I, PIJNENBORG R, VERCRUYSSE L, ROMERO R. The "Great Obstetrical Syndromes" are associated with disorders of deep placentation. American journal of obstetrics and gynecology. 2011;204(3):193-201. 33. HILL LM, BRECKLE R, THOMAS ML, FRIES JK. Polyhydramnios: ultrasonically detected prevalence and neonatal outcome. Obstetrics and gynecology. 1987;69(1):21-5. 34. LUDMIR J, SAMUELS P, BROOKS S, MENNUTI MT. Pregnancy outcome of patients with uncorrected uterine anomalies managed in a high-risk obstetric setting. Obstetrics and gynecology. 1990;75(6):906-10.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
27
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
35. PHELAN JP, PARK YW, AHN MO, RUTHERFORD SE. Polyhydramnios and perinatal outcome. Journal of perinatology : official journal of the California Perinatal Association. 1990;10(4):347-50. 36. SHYNLOVA O, DOROGIN A, LYE SJ. Stretch-induced uterine myocyte differentiation during rat pregnancy: involvement of caspase activation. Biology of reproduction. 2010;82(6):1248-55. 37. SHYNLOVA O, KWONG R, LYE SJ. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction. 2010;139(1):247-53. 38. WALDORF KM, SOORANNA S, GRAVETT M, PAOLELLA L, NGO L, TSAI J, et al. Acute Uterine Stretch Induces an Inflammatory “Pulse” in Amniotic Fluid and Maternal Plasma Followed by Preterm Labor in Nonhuman Primates. Reproductive Sciences. 2014;21(3):96A. 39. CONDON JC, HARDY DB, KOVARIC K, MENDELSON CR. Up-regulation of the progesterone receptor (PR)-C isoform in laboring myometrium by activation of nuclear factor-kappaB may contribute to the onset of labor through inhibition of PR function. Mol Endocrinol. 2006;20(4):764-75. 40. SHYNLOVA O, TSUI P, JAFFER S, LYE SJ. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. European journal of obstetrics, gynecology, and reproductive biology. 2009;144 Suppl 1:S2-10. 41. TAN H, YI L, ROTE NS, HURD WW, MESIANO S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. The Journal of clinical endocrinology and metabolism. 2012;97(5):E719-30. 42. OKABE H, MAKINO S, KATO K, MATSUOKA K, SEKI H, TAKEDA S. The effect of progesterone on genes involved in preterm labor. Journal of reproductive immunology. 2014;104-105:80-91. 43. PATEL B, ELGUERO S, THAKORE S, DAHOUD W, BEDAIWY M, MESIANO S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Human reproduction update. 2015;21(2):155-73. 44. KIM MJ, ROMERO R, KIM CJ, TARCA AL, CHHAUY S, LAJEUNESSE C, et al. Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. Journal of immunology (Baltimore, Md : 1950). 2009;182(6):3919-27. 45. KIM CJ, ROMERO R, KUSANOVIC JP, YOO W, DONG Z, TOPPING V, et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2010;23(7):1000-11. 46. LEE J, ROMERO R, XU Y, KIM JS, TOPPING V, YOO W, et al. A signature of maternal anti-fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, anti-human leukocyte antigen antibodies, and C4d. PloS one. 2011;6(2):e16806. 47. LEE J, ROMERO R, CHAIWORAPONGSA T, DONG Z, TARCA AL, XU Y, et al. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol. 2013;70(4):265-84. 48. LEE J, ROMERO R, XU Y, MIRANDA J, YOO W, CHAEMSAITHONG P, et al. Detection of anti-HLA antibodies in maternal blood in the second trimester to identify patients at risk of antibody-mediated maternal anti-fetal rejection and spontaneous preterm delivery. Am J Reprod Immunol. 2013;70(2):16275. 49. WEGORZEWSKA M, NIJAGAL A, WONG CM, LE T, LESCANO N, TANG Q, et al. Fetal intervention increases maternal T cell awareness of the foreign conceptus and can lead to immune-mediated fetal demise. Journal of immunology (Baltimore, Md : 1950). 2014;192(4):1938-45.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
28
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
50. ROMERO R, CHAEMSAITHONG P, KORZENIEWSKI SJ, KIM CJ, KIM SJ, GOTSCH F, et al. Elevated Amniotic fluid Concentrations of CXCL-10 Without IL-6 is a Biomarker for Chronic Placental Inflammatory Lesions and Preterm Delivery Am J Obstet Gynecol (in preparation). 2015. 51. HIROTA Y, DAIKOKU T, TRANGUCH S, XIE H, BRADSHAW HB, DEY SK. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. The Journal of clinical investigation. 2010;120(3):803-15. 52. BURNUM KE, HIROTA Y, BAKER ES, YOSHIE M, IBRAHIM YM, MONROE ME, et al. Uterine deletion of Trp53 compromises antioxidant responses in the mouse decidua. Endocrinology. 2012;153(9):4568-79. 53. CHA J, HIROTA Y, DEY SK. Sensing senescence in preterm birth. Cell cycle (Georgetown, Tex). 2012;11(2):205-6. 54. FARINA A, LESHANE ES, ROMERO R, GOMEZ R, CHAIWORAPONGSA T, RIZZO N, et al. High levels of fetal cell-free DNA in maternal serum: a risk factor for spontaneous preterm delivery. American journal of obstetrics and gynecology. 2005;193(2):421-5. 55. PETRAGLIA F, IMPERATORE A, CHALLIS JR. Neuroendocrine mechanisms in pregnancy and parturition. Endocrine reviews. 2010;31(6):783-816. 56. JAKOBSEN TR, CLAUSEN FB, RODE L, DZIEGIEL MH, TABOR A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenatal diagnosis. 2012;32(9):840-5. 57. KRAMER MS, LYDON J, GOULET L, KAHN S, DAHHOU M, PLATT RW, et al. Maternal stress/distress, hormonal pathways and spontaneous preterm birth. Paediatric and perinatal epidemiology. 2013;27(3):237-46. 58. SURESH A, SUBEDI K, KYATHANAHALLI C, JEYASURIA P, CONDON JC. Uterine endoplasmic reticulum stress and its unfolded protein response may regulate caspase 3 activation in the pregnant mouse uterus. PloS one. 2013;8(9):e75152. 59. CHA J, BARTOS A, EGASHIRA M, HARAGUCHI H, SAITO-FUJITA T, LEISHMAN E, et al. Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions. The Journal of clinical investigation. 2013;123(9):4063-75. 60. PHILLIPPE M. Cell-free fetal DNA--a trigger for parturition. The New England journal of medicine. 2014;370(26):2534-6. 61. KIM MJ, ROMERO R, GERVASI MT, KIM JS, YOO W, LEE DC, et al. Widespread microbial invasion of the chorioamniotic membranes is a consequence and not a cause of intra-amniotic infection. Laboratory investigation; a journal of technical methods and pathology. 2009;89(8):924-36. 62. OFFENBACHER S, LIEFF S, BOGGESS KA, MURTHA AP, MADIANOS PN, CHAMPAGNE CM, et al. Maternal periodontitis and prematurity. Part I: Obstetric outcome of prematurity and growth restriction. Annals of periodontology / the American Academy of Periodontology. 2001;6(1):164-74. 63. BOGGESS KA, MADIANOS PN, PREISSER JS, MOISE KJ, JR., OFFENBACHER S. Chronic maternal and fetal Porphyromonas gingivalis exposure during pregnancy in rabbits. American journal of obstetrics and gynecology. 2005;192(2):554-7. 64. NEWNHAM JP, SHUB A, JOBE AH, BIRD PS, IKEGAMI M, NITSOS I, et al. The effects of intraamniotic injection of periodontopathic lipopolysaccharides in sheep. American journal of obstetrics and gynecology. 2005;193(2):313-21. 65. OFFENBACHER S, BOGGESS KA, MURTHA AP, JARED HL, LIEFF S, MCKAIG RG, et al. Progressive periodontal disease and risk of very preterm delivery. Obstetrics and gynecology. 2006;107(1):29-36. 66. XIONG X, BUEKENS P, FRASER WD, BECK J, OFFENBACHER S. Periodontal disease and adverse pregnancy outcomes: a systematic review. BJOG : an international journal of obstetrics and gynaecology. 2006;113(2):135-43.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
29
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
67. HAN YW, IKEGAMI A, BISSADA NF, HERBST M, REDLINE RW, ASHMEAD GG. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J Clin Microbiol. 2006;44(4):1475-83. 68. LEON R, SILVA N, OVALLE A, CHAPARRO A, AHUMADA A, GAJARDO M, et al. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. Journal of periodontology. 2007;78(7):1249-55. 69. FARDINI Y, CHUNG P, DUMM R, JOSHI N, HAN YW. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infection and immunity. 2010;78(4):1789-96. 70. HASEGAWA-NAKAMURA K, TATEISHI F, NAKAMURA T, NAKAJIMA Y, KAWAMATA K, DOUCHI T, et al. The possible mechanism of preterm birth associated with periodontopathic Porphyromonas gingivalis. Journal of periodontal research. 2011;46(4):497-504. 71. KIM AJ, LO AJ, PULLIN DA, THORNTON-JOHNSON DS, KARIMBUX NY. Scaling and root planing treatment for periodontitis to reduce preterm birth and low birth weight: a systematic review and metaanalysis of randomized controlled trials. Journal of periodontology. 2012;83(12):1508-19. 72. USIN MM, MENSO J, RODRIGUEZ VI, GONZALEZ A, TABARES S, PARODI R, et al. Association between maternal periodontitis and preterm and/or low birth weight infants in normal pregnancies. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014:1-5. 73. HARGREAVES DC, MEDZHITOV R. Innate sensors of microbial infection. Journal of clinical immunology. 2005;25(6):503-10. 74. HIRSCH E, WANG H. The molecular pathophysiology of bacterially induced preterm labor: insights from the murine model. Journal of the Society for Gynecologic Investigation. 2005;12(3):145-55. 75. ILIEVSKI V, LU SJ, HIRSCH E. Activation of toll-like receptors 2 or 3 and preterm delivery in the mouse. Reprod Sci. 2007;14(4):315-20. 76. ILIEVSKI V, HIRSCH E. Synergy between viral and bacterial toll-like receptors leads to amplification of inflammatory responses and preterm labor in the mouse. Biology of reproduction. 2010;83(5):767-73. 77. GILLAUX C, MEHATS C, VAIMAN D, CABROL D, BREUILLER-FOUCHE M. Functional screening of TLRs in human amniotic epithelial cells. Journal of immunology (Baltimore, Md : 1950). 2011;187(5):2766-74. 78. TRIANTAFILOU M, DE GLANVILLE B, ABOKLAISH AF, SPILLER OB, KOTECHA S, TRIANTAFILOU K. Synergic activation of toll-like receptor (TLR) 2/6 and 9 in response to Ureaplasma parvum & urealyticum in human amniotic epithelial cells. PloS one. 2013;8(4):e61199. 79. ROMERO R, BRODY DT, OYARZUN E, MAZOR M, WU YK, HOBBINS JC, et al. Infection and labor. III. Interleukin-1: a signal for the onset of parturition. American journal of obstetrics and gynecology. 1989;160(5 Pt 1):1117-23. 80. ROMERO R, PARVIZI ST, OYARZUN E, MAZOR M, WU YK, AVILA C, et al. Amniotic fluid interleukin-1 in spontaneous labor at term. The Journal of reproductive medicine. 1990;35(3):235-8. 81. ROMERO R, MAZOR M, BRANDT F, SEPULVEDA W, AVILA C, COTTON DB, et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992;27(34):117-23. 82. ROMERO R, MAZOR M, BRANDT F, SEPULVEDA W, AVILA C, COTTON DB, et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. American journal of reproductive immunology. 1992;27(3-4):117-23.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
30
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
83. ROMERO R, TARTAKOVSKY B. The natural interleukin-1 receptor antagonist prevents interleukin1-induced preterm delivery in mice. American journal of obstetrics and gynecology. 1992;167(4 Pt 1):1041-5. 84. HILLIER SL, WITKIN SS, KROHN MA, WATTS DH, KIVIAT NB, ESCHENBACH DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstetrics and gynecology. 1993;81(6):941-8. 85. MITCHELL MD, CHANG MC, CHAIWORAPONGSA T, LAN HY, HELLIWELL RJ, ROMERO R, et al. Identification of 9alpha,11beta-prostaglandin F2 in human amniotic fluid and characterization of its production by human gestational tissues. The Journal of clinical endocrinology and metabolism. 2005;90(7):4244-8. 86. ROMERO R, SEPULVEDA W, KENNEY JS, ARCHER LE, ALLISON AC, SEHGAL PB. Interleukin 6 determination in the detection of microbial invasion of the amniotic cavity. Ciba Foundation symposium. 1992;167:205-20; discussion 20-3. 87. ROMERO R, YOON BH, KENNEY JS, GOMEZ R, ALLISON AC, SEHGAL PB. Amniotic fluid interleukin6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993;30(2-3):167-83. 88. ROMERO R, YOON BH, MAZOR M, GOMEZ R, DIAMOND MP, KENNEY JS, et al. The diagnostic and prognostic value of amniotic fluid white blood cell count, glucose, interleukin-6, and gram stain in patients with preterm labor and intact membranes. American journal of obstetrics and gynecology. 1993;169(4):805-16. 89. ROMERO R, YOON BH, MAZOR M, GOMEZ R, GONZALEZ R, DIAMOND MP, et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. American journal of obstetrics and gynecology. 1993;169(4):839-51. 90. ALLBERT JR, NAEF RW, 3RD, PERRY KG, JR., MAGANN EF, WHITWORTH NS, MORRISON JC. Amniotic fluid interleukin-6 and interleukin-8 levels predict the success of tocolysis in patients with preterm labor. Journal of the Society for Gynecologic Investigation. 1994;1(4):264-8. 91. YOON BH, ROMERO R, KIM CJ, JUN JK, GOMEZ R, CHOI JH, et al. Amniotic fluid interleukin-6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. American journal of obstetrics and gynecology. 1995;172(3):960-70. 92. STALLMACH T, HEBISCH G, JOLLER H, KOLDITZ P, ENGELMANN M. Expression pattern of cytokines in the different compartments of the feto-maternal unit under various conditions. Reproduction, fertility, and development. 1995;7(6):1573-80. 93. YOON BH, JUN JK, ROMERO R, PARK KH, GOMEZ R, CHOI JH, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. American journal of obstetrics and gynecology. 1997;177(1):19-26. 94. ARNTZEN KJ, KJOLLESDAL AM, HALGUNSET J, VATTEN L, AUSTGULEN R. TNF, IL-1, IL-6, IL-8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. Journal of perinatal medicine. 1998;26(1):17-26. 95. HSU CD, MEADDOUGH E, AVERSA K, HONG SF, LU LC, JONES DC, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intra-amniotic infection. American journal of obstetrics and gynecology. 1998;179(5):1267-70. 96. YOON BH, ROMERO R, KIM KS, PARK JS, KI SH, KIM BI, et al. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. American journal of obstetrics and gynecology. 1999;181(4):773-9.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
31
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
97. YOON BH, ROMERO R, PARK JS, KIM CJ, KIM SH, CHOI JH, et al. Fetal exposure to an intraamniotic inflammation and the development of cerebral palsy at the age of three years. American journal of obstetrics and gynecology. 2000;182(3):675-81. 98. YOON BH, ROMERO R, MOON JB, SHIM SS, KIM M, KIM G, et al. Clinical significance of intraamniotic inflammation in patients with preterm labor and intact membranes. American journal of obstetrics and gynecology. 2001;185(5):1130-6. 99. YOON BH, ROMERO R, MOON JB, OH SY, HAN SY, KIM JC, et al. The frequency and clinical significance of intra-amniotic inflammation in patients with a positive cervical fetal fibronectin. American journal of obstetrics and gynecology. 2001;185(5):1137-42. 100. YOON BH, OH SY, ROMERO R, SHIM SS, HAN SY, PARK JS, et al. An elevated amniotic fluid matrix metalloproteinase-8 level at the time of mid-trimester genetic amniocentesis is a risk factor for spontaneous preterm delivery. American journal of obstetrics and gynecology. 2001;185(5):1162-7. 101. ROGERS BB, ALEXANDER JM, HEAD J, MCINTIRE D, LEVENO KJ. Umbilical vein interleukin-6 levels correlate with the severity of placental inflammation and gestational age. Human pathology. 2002;33(3):335-40. 102. MAZZUCCHELLI I, AVANZINI MA, CIARDELLI L, PAGANI S, GRECO R, BELLONI C, et al. Human amniotic fluid cells are able to produce IL-6 and IL-8. Am J Reprod Immunol. 2004;51(3):198-203. 103. HOLST RM, MATTSBY-BALTZER I, WENNERHOLM UB, HAGBERG H, JACOBSSON B. Interleukin-6 and interleukin-8 in cervical fluid in a population of Swedish women in preterm labor: relationship to microbial invasion of the amniotic fluid, intra-amniotic inflammation, and preterm delivery. Acta obstetricia et gynecologica Scandinavica. 2005;84(6):551-7. 104. JACOBSSON B, MATTSBY-BALTZER I, HAGBERG H. Interleukin-6 and interleukin-8 in cervical and amniotic fluid: relationship to microbial invasion of the chorioamniotic membranes. BJOG : an international journal of obstetrics and gynaecology. 2005;112(6):719-24. 105. KIM KW, ROMERO R, PARK HS, PARK CW, SHIM SS, JUN JK, et al. A rapid matrix metalloproteinase-8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. American journal of obstetrics and gynecology. 2007;197(3):292 e1-5. 106. HOLST RM, LAURINI R, JACOBSSON B, SAMUELSSON E, SAVMAN K, DOVERHAG C, et al. Expression of cytokines and chemokines in cervical and amniotic fluid: relationship to histological chorioamnionitis. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2007;20(12):885-93. 107. BRYANT-GREENWOOD GD, YAMAMOTO SY, SADOWSKY DW, GRAVETT MG, NOVY MJ. Relaxin stimulates interleukin-6 and interleukin-8 secretion from the extraplacental chorionic cytotrophoblast. Placenta. 2009;30(7):599-606. 108. YONEDA S, SHIOZAKI A, YONEDA N, SHIMA T, ITO M, YAMANAKA M, et al. Prediction of exact delivery time in patients with preterm labor and intact membranes at admission by amniotic fluid interleukin-8 level and preterm labor index. The journal of obstetrics and gynaecology research. 2011;37(7):861-6. 109. MARCONI C, DE ANDRADE RAMOS BR, PERACOLI JC, DONDERS GG, DA SILVA MG. Amniotic fluid interleukin-1 beta and interleukin-6, but not interleukin-8 correlate with microbial invasion of the amniotic cavity in preterm labor. Am J Reprod Immunol. 2011;65(6):549-56. 110. BAMBERG C, FOTOPOULOU C, LINDER M, ROEHR CC, DUDENHAUSEN JW, HENRICH W, et al. Mid-trimester amniotic fluid concentrations of the proinflammatory cytokines IL-6, IL-8, TNF-alpha, and lipopolysaccharide binding protein in normal pregnancies: a prospective evaluation according to parity, gestational age, and fetal gender. Journal of perinatal medicine. 2011;39(4):403-9. 32
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
111. OGGE G, ROMERO R, LEE DC, GOTSCH F, THAN NG, LEE J, et al. Chronic chorioamnionitis displays distinct alterations of the amniotic fluid proteome. The Journal of pathology. 2011;223(4):553-65. 112. PARK JC, KIM DJ, KWAK-KIM J. Upregulated amniotic fluid cytokines and chemokines in emergency cerclage with protruding membranes. Am J Reprod Immunol. 2011;66(4):310-9. 113. KACEROVSKY M, CELEC P, VLKOVA B, SKOGSTRAND K, HOUGAARD DM, COBO T, et al. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PloS one. 2013;8(3):e60399. 114. KACEROVSKY M, MUSILOVA I, JACOBSSON B, DRAHOSOVA M, HORNYCHOVA H, JANKU P, et al. Vaginal fluid IL-6 and IL-8 levels in pregnancies complicated by preterm prelabor membrane ruptures. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014:1-7. 115. COBO T, JACOBSSON B, KACEROVSKY M, HOUGAARD DM, SKOGSTRAND K, GRATACOS E, et al. Systemic and local inflammatory response in women with preterm prelabor rupture of membranes. PloS one. 2014;9(1):e85277. 116. KACEROVSKY M, MUSILOVA I, HORNYCHOVA H, KUTOVA R, PLISKOVA L, KOSTAL M, et al. Bedside assessment of amniotic fluid interleukin-6 in preterm prelabor rupture of membranes. American journal of obstetrics and gynecology. 2014;211(4):385 e1-9. 117. CIERNY JT, UNAL ER, FLOOD P, RHEE KY, PRAKTISH A, OLSON TH, et al. Maternal inflammatory markers and term labor performance. American journal of obstetrics and gynecology. 2014;210(5):447 e1-6. 118. KACEROVSKY M, MUSILOVA I, ANDRYS C, HORNYCHOVA H, PLISKOVA L, KOSTAL M, et al. Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. American journal of obstetrics and gynecology. 2014;210(4):325 e1- e10. 119. SAITO S, KASAHARA T, KATO Y, ISHIHARA Y, ICHIJO M. Elevation of amniotic fluid interleukin 6 (IL-6), IL-8 and granulocyte colony stimulating factor (G-CSF) in term and preterm parturition. Cytokine. 1993;5(1):81-8. 120. ROMERO R, MANOGUE KR, MITCHELL MD, WU YK, OYARZUN E, HOBBINS JC, et al. Infection and labor. IV. Cachectin-tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. American journal of obstetrics and gynecology. 1989;161(2):336-41. 121. CASEY ML, COX SM, BEUTLER B, MILEWICH L, MACDONALD PC. Cachectin/tumor necrosis factoralpha formation in human decidua. Potential role of cytokines in infection-induced preterm labor. The Journal of clinical investigation. 1989;83(2):430-6. 122. ROMERO R, MAZOR M, SEPULVEDA W, AVILA C, COPELAND D, WILLIAMS J. Tumor necrosis factor in preterm and term labor. American journal of obstetrics and gynecology. 1992;166(5):1576-87. 123. GULATI S, BHATNAGAR S, RAGHUNANDAN C, BHATTACHARJEE J. Interleukin-6 as a predictor of subclinical chorioamnionitis in preterm premature rupture of membranes. Am J Reprod Immunol. 2012;67(3):235-40. 124. BHAT G, PELTIER MR, SYED TA, DROBEK CO, SAADE G, MENON R. Fetal membrane biomarker network diversity and disease functions induced by intra-amniotic pathogens. Am J Reprod Immunol. 2013;69(2):124-33. 125. LE RAY I, MACE G, SEDIKI M, LIRUSSI F, RIETHMULLER D, LENTZ N, et al. Changes in maternal blood inflammatory markers as a predictor of chorioamnionitis: a prospective multicenter study. Am J Reprod Immunol. 2015;73(1):79-90. 126. YONEDA S, SHIOZAKI A, ITO M, YONEDA N, INADA K, YONEZAWA R, et al. Accurate Prediction of the Stage of Histological Chorioamnionitis before Delivery by Amniotic Fluid IL-8 Level. Am J Reprod Immunol. 2015;73(6):568-76. 33
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
127. ROMERO R, CESKA M, AVILA C, MAZOR M, BEHNKE E, LINDLEY I. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition. American journal of obstetrics and gynecology. 1991;165(4 Pt 1):813-20. 128. CHEROUNY PH, PANKUCH GA, ROMERO R, BOTTI JJ, KUHN DC, DEMERS LM, et al. Neutrophil attractant/activating peptide-1/interleukin-8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. American journal of obstetrics and gynecology. 1993;169(5):1299-303. 129. PUCHNER T, EGARTER C, WIMMER C, LEDERHILGER F, WEICHSELBRAUN I. Amniotic fluid interleukin-8 as a marker for intraamniotic infection. Archives of gynecology and obstetrics. 1993;253(1):9-14. 130. DUDLEY DJ, TRAUTMAN MS, MITCHELL MD. Inflammatory mediators regulate interleukin-8 production by cultured gestational tissues: evidence for a cytokine network at the chorio-decidual interface. The Journal of clinical endocrinology and metabolism. 1993;76(2):404-10. 131. TANAKA Y, NARAHARA H, TAKAI N, YOSHIMATSU J, ANAI T, MIYAKAWA I. Interleukin-1beta and interleukin-8 in cervicovaginal fluid during pregnancy. American journal of obstetrics and gynecology. 1998;179(3 Pt 1):644-9. 132. LAHAM N, BRENNECKE SP, RICE GE. Interleukin-8 release from human gestational tissue explants: effects of gestation, labor, and chorioamnionitis. Biology of reproduction. 1999;61(3):823-7. 133. DOWD J, LAHAM N, RICE G, BRENNECKE S, PERMEZEL M. Elevated interleukin-8 concentrations in cervical secretions are associated with preterm labour. Gynecologic and obstetric investigation. 2001;51(3):165-8. 134. WITT A, BERGER A, GRUBER CJ, PETRICEVIC L, APFALTER P, HUSSLEIN P. IL-8 concentrations in maternal serum, amniotic fluid and cord blood in relation to different pathogens within the amniotic cavity. Journal of perinatal medicine. 2005;33(1):22-6. 135. YONEDA S, SAKAI M, SASAKI Y, SHIOZAKI A, HIDAKA T, SAITO S. Interleukin-8 and glucose in amniotic fluid, fetal fibronectin in vaginal secretions and preterm labor index based on clinical variables are optimal predictive markers for preterm delivery in patients with intact membranes. The journal of obstetrics and gynaecology research. 2007;33(1):38-44. 136. ATHAYDE N, ROMERO R, MAYMON E, GOMEZ R, PACORA P, ARANEDA H, et al. A role for the novel cytokine RANTES in pregnancy and parturition. American journal of obstetrics and gynecology. 1999;181(4):989-94. 137. MENON R, BHAT G, SAADE GR, SPRATT H. Multivariate adaptive regression splines analysis to predict biomarkers of spontaneous preterm birth. Acta obstetricia et gynecologica Scandinavica. 2014;93(4):382-91. 138. ROMERO R, GOMEZ R, GALASSO M, MUNOZ H, ACOSTA L, YOON BH, et al. Macrophage inflammatory protein-1 alpha in term and preterm parturition: effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol. 1994;32(2):108-13. 139. DUDLEY DJ, SPENCER S, EDWIN S, MITCHELL MD. Regulation of human decidual cell macrophage inflammatory protein-1 alpha (MIP-1 alpha) production by inflammatory cytokines. Am J Reprod Immunol. 1995;34(4):231-5. 140. DUDLEY DJ, HUNTER C, MITCHELL MD, VARNER MW. Elevations of amniotic fluid macrophage inflammatory protein-1 alpha concentrations in women during term and preterm labor. Obstetrics and gynecology. 1996;87(1):94-8. 141. CHAIWORAPONGSA T, ROMERO R, TOLOSA JE, YOSHIMATSU J, ESPINOZA J, KIM YM, et al. Elevated monocyte chemotactic protein-1 in amniotic fluid is a risk factor for pregnancy loss. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
34
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2002;12(3):159-64. 142. JACOBSSON B, HOLST RM, WENNERHOLM UB, ANDERSSON B, LILJA H, HAGBERG H. Monocyte chemotactic protein-1 in cervical and amniotic fluid: relationship to microbial invasion of the amniotic cavity, intra-amniotic inflammation, and preterm delivery. American journal of obstetrics and gynecology. 2003;189(4):1161-7. 143. ESPLIN MS, ROMERO R, CHAIWORAPONGSA T, KIM YM, EDWIN S, GOMEZ R, et al. Monocyte chemotactic protein-1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intra-amniotic infection. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2005;17(6):365-73. 144. DIAMOND AK, SWEET LM, OPPENHEIMER KH, BRADLEY DF, PHILLIPPE M. Modulation of monocyte chemotactic protein-1 expression during lipopolysaccharide-induced preterm delivery in the pregnant mouse. Reprod Sci. 2007;14(6):548-59. 145. SHYNLOVA O, TSUI P, DOROGIN A, LYE SJ. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. Journal of immunology (Baltimore, Md : 1950). 2008;181(2):1470-9. 146. ROMERO R, EMAMIAN M, WAN M, QUINTERO R, HOBBINS JC, MITCHELL MD. Prostaglandin concentrations in amniotic fluid of women with intra-amniotic infection and preterm labor. American journal of obstetrics and gynecology. 1987;157(6):1461-7. 147. ROMERO R, WU YK, MAZOR M, HOBBINS JC, MITCHELL MD. Amniotic fluid 5hydroxyeicosatetraenoic acid in preterm labor. Prostaglandins. 1988;36(2):179-89. 148. ROMERO R, WU YK, MAZOR M, HOBBINS JC, MITCHELL MD. Amniotic fluid prostaglandin E2 in preterm labor. Prostaglandins, leukotrienes, and essential fatty acids. 1988;34(3):141-5. 149. ROMERO R, WU YK, MAZOR M, OYARZUN E, HOBBINS JC, MITCHELL MD. Amniotic fluid arachidonate lipoxygenase metabolites in preterm labor. Prostaglandins, leukotrienes, and essential fatty acids. 1989;36(2):69-75. 150. MAZOR M, WIZNITZER A, MAYMON E, LEIBERMAN JR, COHEN A. Changes in amniotic fluid concentrations of prostaglandins E2 and F2 alpha in women with preterm labor. Israel journal of medical sciences. 1990;26(8):425-8. 151. LEE SE, PARK IS, ROMERO R, YOON BH. Amniotic fluid prostaglandin F2 increases even in sterile amniotic fluid and is an independent predictor of impending delivery in preterm premature rupture of membranes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2009;22(10):880-6. 152. HONG JS, ROMERO R, LEE DC, THAN NG, YEO L, CHAEMSAITHONG P, et al. Umbilical cord prostaglandins in term and preterm parturition. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2015:1-9. 153. VADILLO-ORTEGA F, HERNANDEZ A, GONZALEZ-AVILA G, BERMEJO L, IWATA K, STRAUSS JF, 3RD. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. American journal of obstetrics and gynecology. 1996;174(4):1371-6. 154. ATHAYDE N, EDWIN SS, ROMERO R, GOMEZ R, MAYMON E, PACORA P, et al. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. American journal of obstetrics and gynecology. 1998;179(5):1248-53.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
35
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
155. ATHAYDE N, ROMERO R, GOMEZ R, MAYMON E, PACORA P, MAZOR M, et al. Matrix metalloproteinases-9 in preterm and term human parturition. The Journal of maternal-fetal medicine. 1999;8(5):213-9. 156. MAYMON E, ROMERO R, PACORA P, GERVASI MT, BIANCO K, GHEZZI F, et al. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. American journal of obstetrics and gynecology. 2000;183(4):914-20. 157. MAYMON E, ROMERO R, PACORA P, GERVASI MT, EDWIN SS, GOMEZ R, et al. Matrilysin (matrix metalloproteinase 7) in parturition, premature rupture of membranes, and intrauterine infection. American journal of obstetrics and gynecology. 2000;182(6):1545-53. 158. MAYMON E, ROMERO R, PACORA P, GOMEZ R, ATHAYDE N, EDWIN S, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. American journal of obstetrics and gynecology. 2000;183(1):94-9. 159. PARK JS, ROMERO R, YOON BH, MOON JB, OH SY, HAN SY, et al. The relationship between amniotic fluid matrix metalloproteinase-8 and funisitis. American journal of obstetrics and gynecology. 2001;185(5):1156-61. 160. ANGUS SR, SEGEL SY, HSU CD, LOCKSMITH GJ, CLARK P, SAMMEL MD, et al. Amniotic fluid matrix metalloproteinase-8 indicates intra-amniotic infection. American journal of obstetrics and gynecology. 2001;185(5):1232-8. 161. MAYMON E, ROMERO R, CHAIWORAPONGSA T, BERMAN S, CONOSCENTI G, GOMEZ R, et al. Amniotic fluid matrix metalloproteinase-8 in preterm labor with intact membranes. American journal of obstetrics and gynecology. 2001;185(5):1149-55. 162. MAYMON E, ROMERO R, CHAIWORAPONGSA T, KIM JC, BERMAN S, GOMEZ R, et al. Value of amniotic fluid neutrophil collagenase concentrations in preterm premature rupture of membranes. American journal of obstetrics and gynecology. 2001;185(5):1143-8. 163. MAYMON E, ROMERO R, PACORA P, GOMEZ R, MAZOR M, EDWIN S, et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. Journal of perinatal medicine. 2001;29(4):308-16. 164. HELMIG BR, ROMERO R, ESPINOZA J, CHAIWORAPONGSA T, BUJOLD E, GOMEZ R, et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intra-amniotic infection. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2002;12(4):237-46. 165. MOON JB, KIM JC, YOON BH, ROMERO R, KIM G, OH SY, et al. Amniotic fluid matrix metalloproteinase-8 and the development of cerebral palsy. Journal of perinatal medicine. 2002;30(4):301-6. 166. PARK KH, CHAIWORAPONGSA T, KIM YM, ESPINOZA J, YOSHIMATSU J, EDWIN S, et al. Matrix metalloproteinase 3 in parturition, premature rupture of the membranes, and microbial invasion of the amniotic cavity. Journal of perinatal medicine. 2003;31(1):12-22. 167. BIGGIO JR, JR., RAMSEY PS, CLIVER SP, LYON MD, GOLDENBERG RL, WENSTROM KD. Midtrimester amniotic fluid matrix metalloproteinase-8 (MMP-8) levels above the 90th percentile are a marker for subsequent preterm premature rupture of membranes. American journal of obstetrics and gynecology. 2005;192(1):109-13. 168. NIEN JK, YOON BH, ESPINOZA J, KUSANOVIC JP, EREZ O, SOTO E, et al. A rapid MMP-8 bedside test for the detection of intra-amniotic inflammation identifies patients at risk for imminent preterm delivery. American journal of obstetrics and gynecology. 2006;195(4):1025-30. 169. PARK CW, LEE SM, PARK JS, JUN JK, ROMERO R, YOON BH. The antenatal identification of funisitis with a rapid MMP-8 bedside test. Journal of perinatal medicine. 2008;36(6):497-502. 36
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
170. LEE J, LEE SM, OH KJ, PARK CW, JUN JK, YOON BH. Fragmented forms of insulin-like growth factor binding protein-1 in amniotic fluid of patients with preterm labor and intact membranes. Reprod Sci. 2011;18(9):842-9. 171. KIM SM, LEE JH, PARK CW, PARK JS, JUN JK, YOON BH. One third of early spontaneous preterm delivery can be identified by a rapid matrix metalloproteinase-8 (MMP-8) bedside test at the time of mid-trimester genetic amniocentesis (Abstract 556). American journal of obstetrics and gynecology. 2015;212(1):S277. 172. PARK SH, KIM SA. The value of the genedia MMP-8 rapid test for diagnosing intraamniotic infection/inflammation and predicting adverse pregnancy outcomes in women with preterm premature rupture of membranes (Abstract 322). American journal of obstetrics and gynecology. 2015;212(1):S174. 173. ROMERO R, KADAR N, HOBBINS JC, DUFF GW. Infection and labor: the detection of endotoxin in amniotic fluid. American journal of obstetrics and gynecology. 1987;157(4 Pt 1):815-9. 174. ROMERO R, ROSLANSKY P, OYARZUN E, WAN M, EMAMIAN M, NOVITSKY TJ, et al. Labor and infection. II. Bacterial endotoxin in amniotic fluid and its relationship to the onset of preterm labor. American journal of obstetrics and gynecology. 1988;158(5):1044-9. 175. KAJIKAWA S, KAGA N, FUTAMURA Y, KAKINUMA C, SHIBUTANI Y. Lipoteichoic acid induces preterm delivery in mice. Journal of pharmacological and toxicological methods. 1998;39(3):147-54. 176. SMITH PF. Lipoglycans from mycoplasmas. Critical reviews in microbiology. 1984;11(2):157-86. 177. KACEROVSKY M, PLISKOVA L, BOLEHOVSKA R, MUSILOVA I, HORNYCHOVA H, TAMBOR V, et al. The microbial load with genital mycoplasmas correlates with the degree of histologic chorioamnionitis in preterm PROM. American journal of obstetrics and gynecology. 2011;205(3):213 e1-7. 178. MUSILOVA I, PLISKOVA L, KUTOVA R, HORNYCHOVA H, JACOBSSON B, KACEROVSKY M. Ureaplasma species and Mycoplasma hominis in cervical fluid of pregnancies complicated by preterm prelabor rupture of membranes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014:1-7. 179. DIGIULIO DB, ROMERO R, AMOGAN HP, KUSANOVIC JP, BIK EM, GOTSCH F, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culturebased investigation. PloS one. 2008;3(8):e3056. 180. DIGIULIO DB, ROMERO R, KUSANOVIC JP, GOMEZ R, KIM CJ, SEOK KS, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. 2010;64(1):38-57. 181. ROMERO R, MIRANDA J, CHAEMSAITHONG P, CHAIWORAPONGSA T, KUSANOVIC JP, DONG Z, et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014:1-16. 182. ROMERO R, MIRANDA J, CHAIWORAPONGSA T, CHAEMSAITHONG P, GOTSCH F, DONG Z, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014;71(4):330-58. 183. ROMERO R, MIRANDA J, CHAIWORAPONGSA T, CHAEMSAITHONG P, GOTSCH F, DONG Z, et al. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014:1-17.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
37
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
184. ROMERO R, MIRANDA J, CHAIWORAPONGSA T, KORZENIEWSKI SJ, CHAEMSAITHONG P, GOTSCH F, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458-74. 185. ROMERO R, MIRANDA J, KUSANOVIC JP, CHAIWORAPONGSA T, CHAEMSAITHONG P, MARTINEZ A, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques Journal of perinatal medicine. 2015;43(1):19-36. 186. ROMERO R, CHAIWORAPONGSA T, ALPAY SAVASAN Z, XU Y, HUSSEIN Y, DONG Z, et al. Damageassociated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2011;24(12):1444-55. 187. GERVASI MT, ROMERO R, BRACALENTE G, EREZ O, DONG Z, HASSAN SS, et al. Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. Journal of perinatal medicine. 2012;40(4):329-43. 188. LEE SY, PARK KH, JEONG EH, OH KJ, RYU A, KIM A. Intra-amniotic infection/inflammation as a risk factor for subsequent ruptured membranes after clinically indicated amniocentesis in preterm labor. Journal of Korean medical science. 2013;28(8):1226-32. 189. ROMERO R, KADAR N, MIRANDA J, KORZENIEWSKI SJ, SCHWARTZ AG, CHAEMSAITHONG P, et al. The diagnostic performance of the Mass Restricted (MR) score in the identification of microbial invasion of the amniotic cavity or intra-amniotic inflammation is not superior to amniotic fluid interleukin-6. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014;27(8):757-69. 190. CHAEMSAITHONG P, ROMERO R, KORZENIEWSKI SJ, DONG Z, YEO L, HASSAN SS, et al. A point of care test for the determination of amniotic fluid interleukin-6 and the chemokine CXCL-10/IP-10. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014:1-10. 191. CHAEMSAITHONG P, ROMERO R, KORZENIEWSKI SJ, MARTINEZ-VAREA A, DONG Z, YOON BH, et al. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2015:1-11. 192. CHAEMSAITHONG P, ROMERO R, KORZENIEWSKI SJ, MARTINEZ-VAREA A, DONG Z, YOON BH, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2015:1-8. 193. OLTVAI ZN, BARABASI AL. Systems biology. Life's complexity pyramid. Science. 2002;298(5594):763-4. 194. BARABASI AL, OLTVAI ZN. Network biology: understanding the cell's functional organization. Nature reviews Genetics. 2004;5(2):101-13. 195. KLEMM K, BORNHOLDT S. Topology of biological networks and reliability of information processing. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(51):18414-9. 38
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
196. DONG J, HORVATH S. Understanding network concepts in modules. BMC systems biology. 2007;1:24. 197. MENCHE J, SHARMA A, KITSAK M, GHIASSIAN SD, VIDAL M, LOSCALZO J, et al. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015;347(6224):1257601. 198. DIGIULIO DB, GERVASI M, ROMERO R, MAZAKI-TOVI S, VAISBUCH E, KUSANOVIC JP, et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based methods. Journal of perinatal medicine. 2010;38(5):503-13. 199. DIGIULIO DB, GERVASI MT, ROMERO R, VAISBUCH E, MAZAKI-TOVI S, KUSANOVIC JP, et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. Journal of perinatal medicine. 2010;38(5):495-502. 200. ESPINOZA J, CHAIWORAPONGSA T, ROMERO R, EDWIN S, RATHNASABAPATHY C, GOMEZ R, et al. Antimicrobial peptides in amniotic fluid: defensins, calprotectin and bacterial/permeability-increasing protein in patients with microbial invasion of the amniotic cavity, intra-amniotic inflammation, preterm labor and premature rupture of membranes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2003;13(1):2-21. 201. PACORA P, MAYMON E, GERVASI MT, GOMEZ R, EDWIN SS, YOON BH, et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. American journal of obstetrics and gynecology. 2000;183(4):904-10. 202. BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. . Journal of the Royal Statistical Society Series B. 1995;57:289-300. 203. NEWMAN ME. Finding community structure in networks using the eigenvectors of matrices. Physical review E, Statistical, nonlinear, and soft matter physics. 2006;74(3 Pt 2):036104. 204. ASHBURNER M, BALL CA, BLAKE JA, BOTSTEIN D, BUTLER H, CHERRY JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 2000;25(1):25-9. 205. OGATA H, GOTO S, SATO K, FUJIBUCHI W, BONO H, KANEHISA M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic acids research. 1999;27(1):29-34. 206. HORVATH S, DONG J. Geometric interpretation of gene coexpression network analysis. PLoS computational biology. 2008;4(8):e1000117. 207. SAHA A, TAN AC, KANG J. Automatic context-specific subnetwork discovery from large interaction networks. PloS one. 2014;9(1):e84227. 208. WINTER C, KRISTIANSEN G, KERSTING S, ROY J, AUST D, KNOSEL T, et al. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS computational biology. 2012;8(5):e1002511. 209. TEJERA E, BERNARDES J, REBELO I. Preeclampsia: a bioinformatics approach through proteinprotein interaction networks analysis. BMC systems biology. 2012;6:97. 210. BRODERICK G, FUITE J, KREITZ A, VERNON SD, KLIMAS N, FLETCHER MA. A formal analysis of cytokine networks in chronic fatigue syndrome. Brain, behavior, and immunity. 2010;24(7):1209-17. 211. LISCO A, INTROINI A, MUNAWWAR A, VANPOUILLE C, GRIVEL JC, BLANK P, et al. HIV-1 imposes rigidity on blood and semen cytokine networks. Am J Reprod Immunol. 2012;68(6):515-21. 212. SEGAL E, FRIEDMAN N, KAMINSKI N, REGEV A, KOLLER D. From signatures to models: understanding cancer using microarrays. Nature genetics. 2005;37 Suppl:S38-45. 213. KIEFER DG, KEELER SM, RUST OA, WAYOCK CP, VINTZILEOS AM, HANNA N. Is midtrimester short cervix a sign of intraamniotic inflammation? American journal of obstetrics and gynecology. 2009;200(4):374 e1-5.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
39
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
214. KEELER SM, KIEFER DG, RUST OA, VINTZILEOS A, ATLAS RO, BORNSTEIN E, et al. Comprehensive amniotic fluid cytokine profile evaluation in women with a short cervix: which cytokine(s) correlates best with outcome? American journal of obstetrics and gynecology. 2009;201(3):276 e1-6. 215. SLAVOV N, DAWSON KA. Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(11):4079-84. 216. TAYLOR IW, LINDING R, WARDE-FARLEY D, LIU Y, PESQUITA C, FARIA D, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature biotechnology. 2009;27(2):199-204. 217. KIEFER DG, KEELER SM, RUST O, CHOW SS, CRAIG ME, PELTIER MR, et al. Amniotic fluid inflammatory score is associated with pregnancy outcome in patients with mid trimester short cervix. American journal of obstetrics and gynecology. 2012;206(1):68 e1-6. 218. YILDIRIM MA, GOH KI, CUSICK ME, BARABASI AL, VIDAL M. Drug-target network. Nature biotechnology. 2007;25(10):1119-26. 219. KITANO H. A robustness-based approach to systems-oriented drug design. Nature reviews Drug discovery. 2007;6(3):202-10. 220. ARAUJO RP, LIOTTA LA, PETRICOIN EF. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nature reviews Drug discovery. 2007;6(11):871-80. 221. HOPKINS AL. Network pharmacology: the next paradigm in drug discovery. Nature chemical biology. 2008;4(11):682-90. 222. ALTIERI DC. Survivin, cancer networks and pathway-directed drug discovery. Nature reviews Cancer. 2008;8(1):61-70. 223. GUO NL, WAN YW. Network-based identification of biomarkers coexpressed with multiple pathways. Cancer informatics. 2014;13(Suppl 5):37-47. 224. JOSHI-TOPE G, GILLESPIE M, VASTRIK I, D'EUSTACHIO P, SCHMIDT E, DE BONO B, et al. Reactome: a knowledgebase of biological pathways. Nucleic acids research. 2005;33(Database issue):D428-32. 225. LOPPNOW H, WERDAN K, REUTER G, FLAD HD. The interleukin-1 and interleukin-1 converting enzyme families in the cardiovascular system. European cytokine network. 1998;9(4):675-80. 226. TATO CM, CUA DJ. SnapShot: Cytokines I. Cell. 2008;132(2):324, e1. 227. DINARELLO CA. A clinical perspective of IL-1beta as the gatekeeper of inflammation. European journal of immunology. 2011;41(5):1203-17. 228. TURNER MD, NEDJAI B, HURST T, PENNINGTON DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et biophysica acta. 2014;1843(11):2563-82. 229. HELFGOTT DC, MAY LT, STHOEGER Z, TAMM I, SEHGAL PB. Bacterial lipopolysaccharide (endotoxin) enhances expression and secretion of beta 2 interferon by human fibroblasts. The Journal of experimental medicine. 1987;166(5):1300-9. 230. PANG G, COUCH L, BATEY R, CLANCY R, CRIPPS A. GM-CSF, IL-1 alpha, IL-1 beta, IL-6, IL-8, IL-10, ICAM-1 and VCAM-1 gene expression and cytokine production in human duodenal fibroblasts stimulated with lipopolysaccharide, IL-1 alpha and TNF-alpha. Clinical and experimental immunology. 1994;96(3):437-43. 231. JUNG HC, ECKMANN L, YANG SK, PANJA A, FIERER J, MORZYCKA-WROBLEWSKA E, et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. The Journal of clinical investigation. 1995;95(1):55-65. 232. WOLPE SD, DAVATELIS G, SHERRY B, BEUTLER B, HESSE DG, NGUYEN HT, et al. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. The Journal of experimental medicine. 1988;167(2):570-81. 40
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
233. SAUKKONEN K, SANDE S, CIOFFE C, WOLPE S, SHERRY B, CERAMI A, et al. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. The Journal of experimental medicine. 1990;171(2):439-48. 234. CHRISTMAN JW, BLACKWELL TR, COWAN HB, SHEPHERD VL, RINALDO JE. Endotoxin induces the expression of macrophage inflammatory protein 1 alpha mRNA by rat alveolar and bone marrowderived macrophages. American journal of respiratory cell and molecular biology. 1992;7(4):455-61. 235. ROT A, KRIEGER M, BRUNNER T, BISCHOFF SC, SCHALL TJ, DAHINDEN CA. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. The Journal of experimental medicine. 1992;176(6):1489-95. 236. ALAM R, FORSYTHE PA, STAFFORD S, LETT-BROWN MA, GRANT JA. Macrophage inflammatory protein-1 alpha activates basophils and mast cells. The Journal of experimental medicine. 1992;176(3):781-6. 237. WANG JM, SHERRY B, FIVASH MJ, KELVIN DJ, OPPENHEIM JJ. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes. Journal of immunology (Baltimore, Md : 1950). 1993;150(7):3022-9. 238. SCHALL TJ, BACON K, CAMP RD, KASPARI JW, GOEDDEL DV. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. The Journal of experimental medicine. 1993;177(6):1821-6. 239. RIDER P, CARMI Y, VORONOV E, APTE RN. Interleukin-1alpha. Seminars in immunology. 2013;25(6):430-8. 240. GARLANDA C, DINARELLO CA, MANTOVANI A. The interleukin-1 family: back to the future. Immunity. 2013;39(6):1003-18. 241. ELOVITZ MA, BARON J, PHILLIPPE M. The role of thrombin in preterm parturition. American journal of obstetrics and gynecology. 2001;185(5):1059-63. 242. ROMERO R, MAZOR M, TARTAKOVSKY B. Systemic administration of interleukin-1 induces preterm parturition in mice. American journal of obstetrics and gynecology. 1991;165(4 Pt 1):969-71. 243. COX SM, CASEY ML, MACDONALD PC. Accumulation of interleukin-1beta and interleukin-6 in amniotic fluid: a sequela of labour at term and preterm. Human reproduction update. 1997;3(5):517-27. 244. YOON BH, ROMERO R, JUN JK, PARK KH, PARK JD, GHEZZI F, et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. American journal of obstetrics and gynecology. 1997;177(4):825-30. 245. JACOBSSON B, MATTSBY-BALTZER I, ANDERSCH B, BOKSTROM H, HOLST RM, NIKOLAITCHOUK N, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta obstetricia et gynecologica Scandinavica. 2003;82(5):42331. 246. KEELAN JA, WANG K, CHAIWORAPONGSA T, ROMERO R, MITCHELL MD, SATO TA, et al. Macrophage inhibitory cytokine 1 in fetal membranes and amniotic fluid from pregnancies with and without preterm labour and premature rupture of membranes. Molecular human reproduction. 2003;9(9):535-40. 247. ROMERO R, SEPULVEDA W, MAZOR M, BRANDT F, COTTON DB, DINARELLO CA, et al. The natural interleukin-1 receptor antagonist in term and preterm parturition. American journal of obstetrics and gynecology. 1992;167(4 Pt 1):863-72. 248. OPPENHEIM JJ, FELDMANN M. Introduction to the role of cytokines in innate host defense and adaptive immunity. In: Oppenheim JJ, Feldmann M, editors. Cytokine reference A compendium of cytokines and other mediators of host defense: Academic Press 41
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
2001. p. 1-20. 249. DINARELLO CA. IL-1β In: Oppenheim JJ, Feldmann M, Durum SK, Hirano T, Vilcek J, Nicola NA, editors. Cytokine Reference A compendium of cytokines and other mediators of host defense: Academic Press; 2001. p. 357-8. 250. CHEN GY, NUNEZ G. Sterile inflammation: sensing and reacting to damage. Nature reviews Immunology. 2010;10(12):826-37. 251. ROMERO R, CHAIWORAPONGSA T, SAVASAN ZA, HUSSEIN Y, DONG Z, KUSANOVIC JP, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2012;25(6):558-67. 252. GOTSCH F, ROMERO R, CHAIWORAPONGSA T, EREZ O, VAISBUCH E, ESPINOZA J, et al. Evidence of the involvement of caspase-1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2008;21(9):605-16. 253. JAISWAL MK, AGRAWAL V, MALLERS T, GILMAN-SACHS A, HIRSCH E, BEAMAN KD. Regulation of apoptosis and innate immune stimuli in inflammation-induced preterm labor. Journal of immunology (Baltimore, Md : 1950). 2013;191(11):5702-13. 254. LAPPAS M. Caspase-1 activation is increased with human labour in foetal membranes and myometrium and mediates infection-induced interleukin-1beta secretion. Am J Reprod Immunol. 2014;71(2):189-201. 255. KONG J, GRANDO SA, LI YC. Regulation of IL-1 family cytokines IL-1alpha, IL-1 receptor antagonist, and IL-18 by 1,25-dihydroxyvitamin D3 in primary keratinocytes. Journal of immunology (Baltimore, Md : 1950). 2006;176(6):3780-7. 256. DINARELLO CA. Immunological and inflammatory functions of the interleukin-1 family. Annual review of immunology. 2009;27:519-50. 257. BERSUDSKY M, LUSKI L, FISHMAN D, WHITE RM, ZIV-SOKOLOVSKAYA N, DOTAN S, et al. Nonredundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut. 2014;63(4):598-609. 258. MATZINGER P. Tolerance, danger, and the extended family. Annual review of immunology. 1994;12:991-1045. 259. SEONG SY, MATZINGER P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature reviews Immunology. 2004;4(6):469-78. 260. EIGENBROD T, PARK JH, HARDER J, IWAKURA Y, NUNEZ G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. Journal of immunology (Baltimore, Md : 1950). 2008;181(12):8194-8. 261. KONO H, KARMARKAR D, IWAKURA Y, ROCK KL. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. Journal of immunology (Baltimore, Md : 1950). 2010;184(8):4470-8. 262. RIDER P, KAPLANOV I, ROMZOVA M, BERNARDIS L, BRAIMAN A, VORONOV E, et al. The transcription of the alarmin cytokine interleukin-1 alpha is controlled by hypoxia inducible factors 1 and 2 alpha in hypoxic cells. Frontiers in immunology. 2012;3:290. 263. CHACKERIAN AA, OLDHAM ER, MURPHY EE, SCHMITZ J, PFLANZ S, KASTELEIN RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. Journal of immunology (Baltimore, Md : 1950). 2007;179(4):2551-5.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
42
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
264. LU J, KANG J, ZHANG C, ZHANG X. The role of IL-33/ST2L signals in the immune cells. Immunology letters. 2015;164(1):11-7. 265. SCHIERING C, KRAUSGRUBER T, CHOMKA A, FROHLICH A, ADELMANN K, WOHLFERT EA, et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature. 2014;513(7519):564-8. 266. SATTLER S, LING GS, XU D, HUSSAARTS L, ROMAINE A, ZHAO H, et al. IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. Journal of autoimmunity. 2014;50:107-22. 267. TOMINAGA S, JENKINS NA, GILBERT DJ, COPELAND NG, TETSUKA T. Molecular cloning of the murine ST2 gene. Characterization and chromosomal mapping. Biochimica et biophysica acta. 1991;1090(1):1-8. 268. SCHMITZ J, OWYANG A, OLDHAM E, SONG Y, MURPHY E, MCCLANAHAN TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479-90. 269. ALLAKHVERDI Z, SMITH DE, COMEAU MR, DELESPESSE G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. Journal of immunology (Baltimore, Md : 1950). 2007;179(4):2051-4. 270. MOULIN D, DONZE O, TALABOT-AYER D, MEZIN F, PALMER G, GABAY C. Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine. 2007;40(3):216-25. 271. PECARIC-PETKOVIC T, DIDICHENKO SA, KAEMPFER S, SPIEGL N, DAHINDEN CA. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood. 2009;113(7):1526-34. 272. STAMPALIJA T, CHAIWORAPONGSA T, ROMERO R, TARCA AL, BHATTI G, CHIANG PJ, et al. Soluble ST2, a modulator of the inflammatory response, in preterm and term labor. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2014;27(2):111-21. 273. STAMPALIJA T, ROMERO R, KORZENIEWSKI SJ, CHAEMSAITHONG P, MIRANDA J, YEO L, et al. Soluble ST2 in the fetal inflammatory response syndrome: in vivo evidence of activation of the antiinflammatory limb of the immune response. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2013;26(14):1384-93. 274. NELMS K, KEEGAN AD, ZAMORANO J, RYAN JJ, PAUL WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annual review of immunology. 1999;17:701-38. 275. LUZINA IG, KEEGAN AD, HELLER NM, ROOK GA, SHEA-DONOHUE T, ATAMAS SP. Regulation of inflammation by interleukin-4: a review of "alternatives". Journal of leukocyte biology. 2012;92(4):75364. 276. CHOMARAT P, BANCHEREAU J. Interleukin-4 and interleukin-13: their similarities and discrepancies. International reviews of immunology. 1998;17(1-4):1-52. 277. MURATA T, OBIRI NI, PURI RK. Structure of and signal transduction through interleukin-4 and interleukin-13 receptors (review). International journal of molecular medicine. 1998;1(3):551-7. 278. MUELLER TD, ZHANG JL, SEBALD W, DUSCHL A. Structure, binding, and antagonists in the IL-4/IL13 receptor system. Biochimica et biophysica acta. 2002;1592(3):237-50. 279. KELLY-WELCH AE, HANSON EM, BOOTHBY MR, KEEGAN AD. Interleukin-4 and interleukin-13 signaling connections maps. Science. 2003;300(5625):1527-8. 280. LI-WEBER M, KRAMMER PH. Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nature reviews Immunology. 2003;3(7):534-43.
AC C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
43
ACCEPTED MANUSCRIPT
281. KELLY-WELCH A, HANSON EM, KEEGAN AD. Interleukin-4 (IL-4) pathway. Science's STKE : signal transduction knowledge environment. 2005;2005(293):cm9. 282. LAPORTE SL, JUO ZS, VACLAVIKOVA J, COLF LA, QI X, HELLER NM, et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell. 2008;132(2):259-72. 283. DUDLEY DJ, HUNTER C, VARNER MW, MITCHELL MD. Elevation of amniotic fluid interleukin-4 concentrations in women with preterm labor and chorioamnionitis. American journal of perinatology. 1996;13(7):443-7. 284. GARGANO JW, HOLZMAN C, SENAGORE P, THORSEN P, SKOGSTRAND K, HOUGAARD DM, et al. Mid-pregnancy circulating cytokine levels, histologic chorioamnionitis and spontaneous preterm birth. Journal of reproductive immunology. 2008;79(1):100-10.
RI PT
1 2 3 4 5 6 7 8 9 10 11
AC C
EP
TE D
M AN U
SC
12
44
ACCEPTED MANUSCRIPT
SC
M AN U
TE D
EP
IL-1α IL-1β IL-2 IL-4 IL-6 IL-7 IL-8 IL-10 IL-12 IL-13 IL-15 IL-16 IL-18 IL-33 Calgranulin A Calgranulin C Eotaxin GM-CSF GRO-α HMGB-1 IFN-γ IP-10 I-TAC Lactoferrin M-CSF MCP-1
Lower limit of detection (pg/mL) 0.98 0.88 3.49 30 0.37 0.37 0.95 0.37 0.37 0.37 0.37 20 0.34 88 25.4 1128 0.27 0.27 72.7 6000 6.60 237 8.50 6.39 0.99 2.81
AC C
Analyte
RI PT
Table 1. Analytes and their detection ranges
MIG or CXCL-9 MIP-1α MIP-1β MIP-3α RANTES TGF-β
64.2 10.661 10.661 5513 2.758 7.422
TNF-α
0.818
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
IFN-γ: interferon gamma; IL: interleukin; IP-10: interferon gamma-induced protein 10; GM-CSF: granulocyte macrophage colony-stimulating factor; MCSF: macrophage colony-stimulating factor, Gro-α/CXCL1: C-X-C motif ligand 1; HMGB-1: high-mobility group protein 1; ITAC/ CXCL11: Interferon-inducible Tcell alpha chemoattractant/C-X-C motif ligand 11; MDC: macrophage-derived chemokine; MIP: macrophage inflammatory protein; MIG: Monokine induced by gamma interferon; MCP: monocyte chemoattractant protein-1; RANTES: regulated on activation, normal T cell expressed and secreted; TNF: tumor necrosis factor, TARC: thymus and activation-regulated chemokine
ACCEPTED MANUSCRIPT
Table 2. Clinical and demographic characteristics of the study population. Sterile intra-amniotic inflammation (n=35)
p value (no intra-amniotic inflammation vs. sterile intra-amniotic inflammation)
Microbialassociated intraamniotic inflammation (n=15)
24 (20 – 30)
p value (no intra-amniotic inflammation vs. microbial associated intra-amniotic inflammation) 0.7
p value (sterile intra-amniotic inflammation vs. microbial associated intra-amniotic inflammation) 0.4
Maternal age (years)
23 (20 – 26)
23 (20 – 26.2)
0.8
BMI (kg/m2)
23 (20 – 29)
23 (20 – 32)
0.6
27 (23 – 37)
0.04
0.2
Frequency of sonographic short cervix
16.5% (14/85)
11.8% (10/85)
0.04
20% (3/15)
0.35
0.9
Antenatal corticosteroid administration
45% (37/82)*
20% (7/35)
0.012
46.7% (7/15)
1
0.06
Gestational age at amniocentesis (weeks) AF white blood cells (cells/mm3)
32 (29 – 33)
25 (23 – 32)
<0.001
26 (23 – 32)
0.006
0.83
1 (0 – 5)
3 (1 – 17)
0.007
295 (2 – 960)
<0.001
0.018
AF glucose (mg/dL)
29 (24 – 34)
22 (18 – 28)
0.001
11 (10 – 20)
<0.001
0.002
0.8 (0.5 – 1.1)
12 (5 – 21)
<0.001
96 (17 – 266)
<0.001
<0.001
36 (34 – 38)
27 (24 – 32)
<0.001
26 (24 – 33)
<0.001
0.64
Composite neonatal morbidity
11% (9)
68% (24)
<0.001
67% (10)
<0.001
1.0
Acute placental inflammation¥
22.5% (18/80)
61% (19/31)
<0.001
79% (11/14)
<0.001
0.14
58% (18/31)
<0.001
79% (11/14)
<0.001
0.04
0.06
57% (8/14)
<0.001
0.26
21% (17/80)
Funisitis
13% (10/80)
AC C
Acute histologic chorioamnionitis
SC
M AN U
TE D
Gestational age at delivery (weeks)
EP
AF interleukin-6 (ng/mL)
29% (9/31)
RI PT
No intra-amniotic inflammation (n=85)
Data presented as median (interquartile) and percentage and (n); AF: amniotic fluid; BMI: body mass index. Acute placental inflammation: acute histologic chorioamnionitis and/or acute funisitis, Composite neonatal morbidity: the presence of respiratory distress syndrome, bronchopulmonary dysplasia, grade III or IV intraventricular hemorrhage, periventricular leukomalacia, proven neonatal sepsis, and necrotizing enterocolitis or perinatal mortality. ¥ Placenta acute inflammation was calculated over a total of 125 specimens. * Data were not available in 3 patients
ACCEPTED MANUSCRIPT
RI PT
Table 3: Amniotic fluid inflammatory-related protein concentrations in subgroups of patients with preterm labor and intact membranes
Microbial associated intra-amniotic inflammation vs. Sterile intra-amniotic inflammation Fold Change p-value q-value
Fold Change
p-value
q-value
Fold Change
p-value
q-value
IL-8
11.4
0.000
0.000
106.0
0.000
0.000
9.3
0.000
0.000
IL-6
10.6
0.000
0.000
115.4
0.000
0.000
10.9
0.000
0.000
MIP1-β
5.3
0.000
0.000
64.8
0.000
0.000
12.3
0.000
0.000
M AN U
Proteins
Microbial associated intra-amniotic inflammation vs. No intra-amniotic inflammation
SC
Sterile intra-amniotic inflammation vs. No intra-amniotic inflammation
MCP-1
3.8
0.000
0.000
18.5
0.000
0.000
4.8
0.000
0.000
MIP1-α
3.4
0.000
0.000
39.8
0.000
0.000
11.6
0.000
0.000
Calgranulin C
3.1
0.000
0.000
12.0
0.000
0.000
3.9
0.000
0.000
IL-1β
2.8
0.002
0.006
30.6
0.000
0.000
11.1
0.000
0.000
2.5
0.001
0.002
MIP3-α
2.5
0.000
0.000
Gro-α/CXCL1
2.4
0.000
0.000
Calgranulin A
2.1
0.003
0.007
IL-10
2.1
0.001
0.004
MIG
1.8
0.003
ITAC/CXCL11
1.8
0.000
IP-10/CXCL-10
1.8
0.020
IL-1α
1.7
0.047
IL-12
1.7
TNF-α
1.7
IL-16 IL-2
6.6
0.000
0.000
2.6
0.010
0.010
10.9
0.000
0.000
4.4
0.000
0.000 0.000
TE D
RANTES
0.000
0.000
3.6
0.000
0.000
0.000
7.2
0.000
0.000
12.9
0.000
0.000
6.3
0.000
0.000
0.007
4.6
0.000
0.000
2.5
0.001
0.001
0.001
4.6
0.000
0.000
2.6
0.000
0.000
0.028
4.0
0.000
0.000
2.3
0.017
0.017
0.060
11.0
0.000
0.000
6.6
0.000
0.000
0.010
0.019
6.6
0.000
0.000
3.9
0.000
0.000
0.008
0.016
7.7
0.000
0.000
4.6
0.000
0.000
1.6
0.003
0.007
5.3
0.000
0.000
3.2
0.000
0.000
1.6
0.037
0.051
5.3
0.000
0.000
3.3
0.000
0.000
IL-13
1.6
0.013
0.023
4.6
0.000
0.000
2.9
0.000
0.000
IL-15
1.6
0.014
0.023
4.4
0.000
0.000
2.8
0.000
0.000
GMCSF
1.5
0.058
0.068
5.3
0.000
0.000
3.4
0.000
0.000
IFN-ɤ
1.5
0.013
0.023
6.1
0.000
0.000
4.0
0.000
0.000
HMGB-1
1.5
0.072
0.082
7.4
0.000
0.000
4.9
0.000
0.000
AC C
EP
8.7
15.2
TGF-β
1.5
0.016
0.024
4.2
0.000
0.000
2.8
0.000
0.000
MCSF
1.5
0.050
0.061
5.6
0.000
0.000
3.8
0.000
0.000
ACCEPTED MANUSCRIPT
1.5
0.155
0.165
5.1
0.000
0.000
3.5
0.001
0.001
Eotaxin
1.4
0.014
0.023
4.3
0.000
0.000
3.0
0.000
0.000
Lactoferrin
1.4
0.039
0.051
3.5
0.000
0.000
2.4
0.000
0.000
IL-7
1.4
0.076
0.084
5.0
0.000
0.000
3.6
0.000
0.000
IL-33
1.1
0.629
0.649
3.5
0.001
0.001
3.1
0.003
0.003
IL-18
1.1
0.698
0.698
2.5
0.000
0.000
2.4
0.000
0.000
RI PT
IL-4
AC C
EP
TE D
M AN U
SC
IFN-γ: interferon gamma; IL: interleukin; IP-10: interferon gamma-induced protein 10; GM-CSF: granulocyte macrophage colony-stimulating factor; MCSF: macrophage colony-stimulating factor, Gro-α/CXCL1: C-X-C motif ligand 1; HMGB-1: high-mobility group protein 1; ITAC/ CXCL11: Interferon-inducible Tcell alpha chemoattractant/C-X-C motif ligand 11; MDC: macrophage-derived chemokine; MIP: macrophage inflammatory protein; MIG: Monokine induced by gamma interferon; MCP: monocyte chemoattractant protein-1; RANTES: regulated on activation, normal T cell expressed and secreted; TNF: tumor necrosis factor, TARC: thymus and activation-regulated chemokine
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
ACCEPTED MANUSCRIPT
ACCEPTED MANUSCRIPT
EP
TE D
M AN U
SC
RI PT
No intra-amniotic inflamation Microbial associated intra-amniotic inflammation Sterile intra-amniotic inflammation Microbial associated intra-amniotic inflammation Sterile andintra-amniotic no intra-amniotic inflammation inflammation vs. noSterile intra-amniotic intra-amniotic inflammation inflammation vs. Microbial associated intra-amniotic infl Differentialpcorrelation Differentialpcorrelation Differentialpcorrelation N ρ p value q value N ρ p value q value N ρ p value q value value q value value q value value q value 85 0.19 0.078 0.09 15 0.95 0.000 0.000 35 0.64 0.000 0.000 0.76 0.000 0.000 0.449 0.01 0.08 -0.312 0.00 0.04 83 -0.28 0.010 0.01 15 0.87 0.000 0.000 34 0.61 0.000 0.001 1.16 0.000 0.000 0.893 0.00 0.00 -0.264 0.07 0.22 85 0.46 0.000 0.00 15 0.97 0.000 0.000 35 0.71 0.000 0.000 0.51 0.000 0.000 0.254 0.06 0.26 -0.256 0.00 0.03 85 0.78 0.000 0.00 15 0.99 0.000 0.000 35 0.93 0.000 0.000 0.21 0.000 0.001 0.148 0.00 0.06 -0.058 0.01 0.11 83 -0.28 0.010 0.01 15 0.82 0.000 0.001 34 0.37 0.034 0.055 1.11 0.000 0.001 0.653 0.00 0.04 -0.454 0.03 0.15 85 0.65 0.000 0.00 15 0.97 0.000 0.000 35 0.89 0.000 0.000 0.32 0.000 0.001 0.232 0.00 0.05 -0.087 0.03 0.15 83 0.20 0.076 0.09 15 0.92 0.000 0.000 34 0.65 0.000 0.000 0.72 0.000 0.002 0.451 0.01 0.08 -0.268 0.03 0.15 85 -0.20 0.073 0.09 15 0.81 0.000 0.001 35 0.34 0.052 0.078 1.01 0.000 0.002 0.532 0.01 0.10 -0.476 0.03 0.15 85 0.26 0.015 0.02 15 0.92 0.000 0.000 35 0.19 0.270 0.316 0.66 0.000 0.002 -0.070 0.73 0.87 -0.727 0.00 0.02 85 0.41 0.000 0.00 15 0.94 0.000 0.000 35 0.59 0.000 0.001 0.53 0.000 0.002 0.184 0.24 0.46 -0.348 0.00 0.05 85 -0.31 0.004 0.01 15 0.75 0.002 0.004 33 0.20 0.264 0.311 1.05 0.000 0.003 0.512 0.02 0.12 -0.543 0.03 0.15 85 -0.12 0.280 0.30 15 0.82 0.000 0.001 35 0.66 0.000 0.000 0.94 0.000 0.003 0.783 0.00 0.00 -0.158 0.30 0.49 85 -0.05 0.670 0.69 15 0.84 0.000 0.001 35 0.08 0.640 0.670 0.89 0.000 0.003 0.130 0.54 0.73 -0.757 0.00 0.03 85 -0.01 0.936 0.94 15 0.85 0.000 0.000 35 0.61 0.000 0.000 0.86 0.000 0.003 0.617 0.00 0.02 -0.241 0.12 0.30 85 0.04 0.735 0.75 14 0.87 0.000 0.000 35 0.63 0.000 0.000 0.83 0.000 0.004 0.597 0.00 0.02 -0.238 0.10 0.27 83 0.40 0.000 0.00 15 0.93 0.000 0.000 34 0.62 0.000 0.000 0.54 0.000 0.004 0.228 0.14 0.38 -0.307 0.01 0.08 85 -0.38 0.000 0.00 15 0.67 0.009 0.013 33 -0.25 0.173 0.221 1.05 0.000 0.005 0.135 0.49 0.68 -0.913 0.00 0.05 85 -0.07 0.501 0.53 15 0.81 0.000 0.001 35 0.14 0.416 0.462 0.88 0.000 0.005 0.218 0.30 0.53 -0.666 0.01 0.06 80 0.51 0.000 0.00 15 0.94 0.000 0.000 32 0.42 0.017 0.029 0.43 0.000 0.006 -0.090 0.60 0.77 -0.518 0.00 0.02 85 0.73 0.000 0.00 15 0.97 0.000 0.000 35 0.90 0.000 0.000 0.24 0.000 0.006 0.168 0.01 0.10 -0.070 0.07 0.22 85 0.15 0.181 0.20 15 0.87 0.000 0.000 35 0.58 0.000 0.001 0.72 0.000 0.006 0.435 0.01 0.12 -0.286 0.06 0.21 85 0.15 0.179 0.20 14 0.88 0.000 0.000 35 0.60 0.000 0.001 0.73 0.000 0.006 0.450 0.01 0.10 -0.282 0.06 0.21 85 0.45 0.000 0.00 15 0.93 0.000 0.000 35 0.53 0.001 0.003 0.48 0.000 0.007 0.084 0.60 0.77 -0.398 0.00 0.05 83 0.23 0.038 0.05 14 0.89 0.000 0.000 34 0.90 0.000 0.000 0.66 0.000 0.007 0.667 0.00 0.00 0.002 0.98 0.99 83 -0.26 0.019 0.02 15 0.70 0.005 0.008 34 0.20 0.271 0.316 0.96 0.000 0.008 0.457 0.03 0.18 -0.507 0.06 0.20 85 0.07 0.555 0.58 14 0.85 0.000 0.001 33 0.32 0.073 0.102 0.78 0.000 0.008 0.256 0.22 0.44 -0.528 0.01 0.10 85 0.63 0.000 0.00 15 0.95 0.000 0.000 35 0.54 0.001 0.002 0.32 0.000 0.008 -0.089 0.52 0.71 -0.414 0.00 0.02 85 0.37 0.001 0.00 15 0.91 0.000 0.000 35 0.15 0.399 0.446 0.54 0.001 0.009 -0.220 0.26 0.48 -0.757 0.00 0.02 85 0.13 0.237 0.26 15 0.85 0.000 0.001 35 0.59 0.000 0.001 0.71 0.001 0.010 0.462 0.01 0.09 -0.253 0.11 0.29 85 0.29 0.007 0.01 14 0.90 0.000 0.000 35 0.74 0.000 0.000 0.60 0.001 0.011 0.443 0.00 0.04 -0.159 0.16 0.35 85 0.56 0.000 0.00 15 0.94 0.000 0.000 35 0.86 0.000 0.000 0.38 0.001 0.012 0.302 0.00 0.04 -0.079 0.22 0.42 85 0.64 0.000 0.00 15 0.95 0.000 0.000 35 0.86 0.000 0.000 0.31 0.001 0.012 0.224 0.01 0.10 -0.091 0.12 0.30 85 0.63 0.000 0.00 15 0.95 0.000 0.000 35 0.61 0.000 0.000 0.32 0.001 0.012 -0.023 0.86 0.94 -0.339 0.00 0.04 85 -0.21 0.061 0.07 15 0.70 0.005 0.008 35 0.14 0.425 0.470 0.91 0.001 0.012 0.347 0.10 0.32 -0.560 0.04 0.16 83 0.13 0.227 0.25 15 0.84 0.000 0.001 34 0.37 0.033 0.053 0.70 0.001 0.012 0.238 0.23 0.46 -0.465 0.02 0.12 85 0.68 0.000 0.00 15 0.96 0.000 0.000 35 0.81 0.000 0.000 0.28 0.001 0.012 0.133 0.15 0.38 -0.147 0.03 0.15 83 -0.13 0.257 0.28 15 0.74 0.003 0.005 34 0.54 0.001 0.003 0.86 0.001 0.013 0.667 0.00 0.02 -0.195 0.34 0.52 85 0.10 0.366 0.39 15 0.82 0.000 0.001 35 0.36 0.039 0.061 0.72 0.001 0.013 0.255 0.20 0.43 -0.467 0.02 0.15 85 0.64 0.000 0.00 15 0.95 0.000 0.000 35 0.64 0.000 0.000 0.31 0.001 0.013 0.002 0.98 0.99 -0.304 0.00 0.05 83 -0.08 0.460 0.49 15 0.75 0.002 0.004 34 0.22 0.208 0.255 0.83 0.001 0.013 0.308 0.15 0.38 -0.526 0.03 0.16 85 0.70 0.000 0.00 15 0.96 0.000 0.000 35 0.71 0.000 0.000 0.26 0.001 0.013 0.008 0.94 0.97 -0.249 0.00 0.05 83 0.40 0.000 0.00 15 0.90 0.000 0.000 34 0.56 0.001 0.002 0.50 0.001 0.013 0.157 0.34 0.57 -0.342 0.02 0.12 85 0.28 0.010 0.01 15 0.87 0.000 0.000 34 0.32 0.072 0.102 0.59 0.001 0.014 0.037 0.85 0.94 -0.553 0.00 0.06 85 0.17 0.126 0.15 14 0.85 0.000 0.001 35 0.74 0.000 0.000 0.68 0.001 0.014 0.567 0.00 0.01 -0.115 0.38 0.56 85 -0.12 0.289 0.31 15 0.73 0.003 0.006 35 0.18 0.305 0.352 0.84 0.001 0.015 0.298 0.15 0.39 -0.545 0.04 0.16 85 0.16 0.138 0.16 15 0.83 0.000 0.001 35 0.68 0.000 0.000 0.67 0.001 0.015 0.515 0.00 0.04 -0.155 0.29 0.48 85 0.72 0.000 0.00 15 0.96 0.000 0.000 35 0.72 0.000 0.000 0.24 0.001 0.015 0.008 0.94 0.97 -0.235 0.00 0.06 83 0.31 0.004 0.01 15 0.87 0.000 0.000 34 0.48 0.004 0.009 0.56 0.001 0.016 0.171 0.34 0.57 -0.392 0.02 0.12 85 -0.14 0.188 0.21 15 0.71 0.005 0.008 35 0.10 0.591 0.627 0.85 0.001 0.016 0.240 0.25 0.48 -0.610 0.03 0.15 85 -0.02 0.880 0.89 15 0.76 0.002 0.003 35 0.02 0.888 0.904 0.78 0.002 0.017 0.042 0.84 0.94 -0.736 0.01 0.06 85 0.20 0.064 0.08 15 0.84 0.000 0.001 35 0.02 0.897 0.911 0.63 0.002 0.018 -0.180 0.39 0.61 -0.814 0.00 0.03 85 -0.18 0.093 0.11 15 0.67 0.008 0.012 35 0.01 0.977 0.980 0.86 0.002 0.018 0.190 0.36 0.58 -0.669 0.02 0.13 85 0.17 0.114 0.13 15 0.83 0.000 0.001 34 0.24 0.172 0.220 0.65 0.002 0.018 0.070 0.73 0.88 -0.583 0.01 0.08 85 0.34 0.002 0.00 15 0.87 0.000 0.000 35 0.64 0.000 0.000 0.54 0.002 0.018 0.298 0.06 0.25 -0.239 0.09 0.25 85 -0.34 0.002 0.00 15 0.57 0.033 0.038 33 -0.35 0.048 0.073 0.91 0.002 0.018 -0.015 0.94 0.97 -0.922 0.00 0.06 83 0.43 0.000 0.00 15 0.90 0.000 0.000 34 0.81 0.000 0.000 0.47 0.002 0.018 0.378 0.00 0.04 -0.090 0.34 0.52 85 -0.02 0.821 0.84 15 0.75 0.002 0.004 35 0.20 0.252 0.299 0.77 0.002 0.018 0.227 0.28 0.50 -0.546 0.03 0.15
AC C
Analyte pair IL10 MIP1a IL1b MIP1a MIP1a TNFa IL12 IL2 IL1a IL1b MIP1a MIP1b IL1b MIP1b IL1a IL6 Calgranulin C IL2 IL10 MIP1b IL4 MIP1a IL6 MIP1a HMGB1 IL18 IL1a MIP3a IL10 IL8 IL1b TNFa IL1a IL4 IL18 MCSF IL16 IL33 HMGB1 MCSF MIP1a MIP3a IL8 TNFa Groa/CXCL1 IL10 IL1b IL8 IL1b IL2 IL4 IL8 MIP1b TNFa Calgranulin C IL15 IL10 IL1a IL8 MIP1a IFNg IL1a IFNg IL2 Groa/CXCL1 MIP3a GMCSF IL6 IFNg IL1b IFNg IL12 IL1b MCP1 Calgranulin A HMGB1 ITAC/CXCL11 MCSF HMGB1 IL1b HMGB1 ITAC/CXCL11 Groa/CXCL1 IL1b MIP1b RANTES IL8 MIP3a IL2 IL6 IL1a Lactoferrin IL15 IL16 IL13 IL1b IL18 IL1a IL15 IL18 IL18 ITAC/CXCL11 IL18 IL2 IL6 RANTES IL10 IL6 IL2 IL4 IL1b IL6 IL15 IL6
ACCEPTED MANUSCRIPT
15 15 15 14 14 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15
0.90 0.85 0.90 0.82 0.79 0.83 0.84 0.91 0.70 0.93 0.91 0.66 0.71 0.72 0.89 0.95 0.81 0.81 0.67 0.95 0.81 0.77 0.82 0.63 0.70 0.93 0.61 0.89 0.93 0.96 0.72 0.70 0.82 0.65 0.96 0.96 0.96 0.61 0.96 0.91 0.86 0.86 0.88 0.82 0.81 0.73 0.63 0.97 0.79 0.89 0.68 0.95 0.67 0.93 0.87 0.92 0.91 0.79 0.85
0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.006 0.000 0.000 0.010 0.004 0.004 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.001 0.000 0.015 0.005 0.000 0.020 0.000 0.000 0.000 0.004 0.006 0.000 0.012 0.000 0.000 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.003 0.016 0.000 0.001 0.000 0.011 0.000 0.008 0.000 0.000 0.000 0.000 0.001 0.000
0.000 0.000 0.000 0.002 0.003 0.001 0.001 0.000 0.008 0.000 0.000 0.014 0.007 0.006 0.000 0.000 0.001 0.001 0.012 0.000 0.001 0.003 0.001 0.019 0.008 0.000 0.024 0.000 0.000 0.000 0.006 0.008 0.001 0.016 0.000 0.000 0.000 0.026 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.005 0.021 0.000 0.002 0.000 0.015 0.000 0.011 0.000 0.000 0.000 0.000 0.002 0.000
34 35 35 35 35 34 35 34 34 35 35 34 35 33 35 35 35 34 35 32 34 35 35 33 35 35 35 35 35 35 34 34 34 35 35 35 35 35 35 35 35 34 35 35 33 34 33 35 35 35 35 35 33 35 32 35 35 35 33
0.24 0.55 0.77 0.53 0.79 0.37 0.69 0.64 0.27 0.78 0.30 0.19 0.18 -0.37 0.42 0.73 0.69 0.53 0.48 0.47 0.14 0.43 0.54 0.30 0.26 0.83 0.24 0.74 0.71 0.87 0.33 0.23 0.34 0.09 0.61 0.90 0.94 0.42 0.90 0.73 0.65 0.40 0.81 0.55 0.47 0.34 -0.34 0.85 0.44 0.68 0.35 0.83 -0.33 0.77 0.13 0.77 0.75 0.40 0.17
0.187 0.001 0.000 0.001 0.000 0.036 0.000 0.000 0.124 0.000 0.080 0.284 0.304 0.036 0.012 0.000 0.000 0.001 0.004 0.008 0.449 0.011 0.001 0.094 0.131 0.000 0.168 0.000 0.000 0.000 0.060 0.188 0.054 0.625 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.020 0.000 0.001 0.007 0.057 0.056 0.000 0.009 0.000 0.040 0.000 0.069 0.000 0.471 0.000 0.000 0.020 0.364
0.235 0.002 0.000 0.003 0.000 0.057 0.000 0.000 0.165 0.000 0.111 0.330 0.352 0.057 0.022 0.000 0.000 0.003 0.008 0.015 0.491 0.019 0.002 0.129 0.173 0.000 0.217 0.000 0.000 0.000 0.087 0.235 0.081 0.658 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.033 0.000 0.002 0.013 0.083 0.083 0.000 0.016 0.000 0.062 0.000 0.098 0.000 0.512 0.000 0.000 0.034 0.411
0.45 0.58 0.45 0.69 0.73 0.61 0.59 0.40 0.80 0.36 0.39 0.82 0.77 0.76 0.44 0.26 0.62 0.64 0.80 0.24 0.63 0.69 0.60 0.81 0.76 0.29 0.82 0.44 0.31 0.20 0.73 0.75 0.59 0.77 0.19 0.19 0.16 0.78 0.16 0.33 0.45 0.45 0.41 0.57 0.55 0.66 0.74 0.11 0.57 0.37 0.73 0.19 0.70 0.26 0.41 0.30 0.32 0.55 0.45
0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.010
0.020 0.020 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.024 0.024 0.025 0.025 0.025 0.026 0.026 0.026 0.026 0.026 0.027 0.027 0.031 0.031 0.032 0.034 0.035 0.035 0.035 0.036 0.037 0.037 0.038 0.038 0.039 0.040 0.041 0.041 0.041 0.042 0.042 0.042 0.042 0.043 0.043 0.043 0.044 0.044
-0.212 0.278 0.325 0.396 0.720 0.140 0.436 0.135 0.381 0.207 -0.216 0.358 0.244 -0.329 -0.030 0.038 0.497 0.365 0.609 -0.248 -0.041 0.345 0.325 0.479 0.315 0.189 0.446 0.296 0.093 0.110 0.342 0.289 0.112 0.210 -0.149 0.126 0.140 0.594 0.094 0.151 0.238 -0.010 0.334 0.302 0.214 0.259 -0.225 -0.013 0.221 0.162 0.408 0.071 -0.304 0.095 -0.334 0.148 0.159 0.155 -0.233
RI PT
0.00 0.02 0.00 0.26 0.57 0.05 0.03 0.00 0.36 0.00 0.00 0.16 0.60 0.71 0.00 0.00 0.10 0.15 0.26 0.00 0.12 0.46 0.06 0.12 0.67 0.00 0.08 0.00 0.00 0.00 0.93 0.65 0.05 0.29 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.53 0.32 0.00 0.05 0.00 0.65 0.00 0.86 0.00 0.00 0.00 0.00 0.03 0.00
SC
0.000 0.011 0.000 0.236 0.543 0.038 0.022 0.000 0.334 0.000 0.000 0.136 0.574 0.694 0.000 0.000 0.083 0.130 0.235 0.000 0.107 0.437 0.047 0.105 0.643 0.000 0.062 0.000 0.000 0.000 0.923 0.630 0.041 0.265 0.000 0.000 0.000 0.123 0.000 0.000 0.000 0.000 0.000 0.024 0.019 0.500 0.294 0.000 0.042 0.000 0.628 0.000 0.845 0.000 0.000 0.000 0.000 0.027 0.000
M AN U
0.45 0.27 0.45 0.13 0.07 0.23 0.25 0.50 -0.11 0.57 0.52 -0.17 -0.06 -0.04 0.45 0.69 0.19 0.17 -0.13 0.72 0.18 0.09 0.22 -0.18 -0.05 0.65 -0.20 0.45 0.61 0.76 -0.01 -0.05 0.23 -0.12 0.76 0.77 0.80 -0.17 0.80 0.58 0.41 0.41 0.48 0.25 0.25 0.08 -0.12 0.87 0.22 0.52 -0.05 0.76 -0.02 0.67 0.47 0.62 0.59 0.24 0.40
TE D
85 85 85 85 85 85 85 83 83 85 85 83 85 85 85 85 85 83 85 80 85 85 85 85 85 85 85 85 85 85 83 83 83 85 85 85 85 85 85 85 85 85 85 85 85 83 85 85 85 85 85 85 85 85 80 85 85 85 85
EP
RANTES TNFa IL1a IL8 IL8 RANTES IL1a IL1b MCSF MIP1b IL12 IL1b IL18 IL4 Lactoferrin IL15 MCP1 IL1b IL1a IL33 RANTES MCSF IL6 MCP1 IL6 IFNg MIP1a MIP1a ITAC/CXCL11 TNFa IL1b IL1b RANTES IL18 MIP3a IL2 IL2 MIP1a IL7 IL2 IL6 RANTES TNFa IL8 MIP1b ITAC/CXCL11 MCSF IL16 IL6 MIP3a IP10 IL16 IL4 MCSF IL33 IL16 IFNg IL7 IL4
AC C
IL10 IL6 IL16 IL13 Calgranulin A MIP1a Eotaxin IL10 IL1b IL8 Calgranulin C GMCSF IL12 IL15 IL6 IFNg IL10 IL16 Calgranulin A Eotaxin MCP1 Calgranulin A IL16 IL4 IL12 HMGB1 IL18 Groa/CXCL1 IL2 IL10 IL12 IL15 IL1b GMCSF IL10 IL15 GMCSF IP10 Eotaxin IL16 Groa/CXCL1 Groa/CXCL1 IL1a Eotaxin IL4 IL1b IL4 IFNg IFNg IL6 IL8 Eotaxin HMGB1 IFNg IL15 IL12 GMCSF IL6 IL16
0.26 0.11 0.01 0.03 0.00 0.47 0.01 0.34 0.07 0.07 0.21 0.09 0.24 0.11 0.86 0.72 0.00 0.05 0.00 0.08 0.84 0.08 0.07 0.02 0.13 0.04 0.03 0.02 0.43 0.12 0.10 0.17 0.57 0.32 0.18 0.04 0.00 0.00 0.10 0.20 0.11 0.96 0.00 0.08 0.25 0.20 0.27 0.81 0.24 0.23 0.04 0.36 0.14 0.35 0.09 0.17 0.17 0.41 0.24
0.48 0.33 0.10 0.18 0.00 0.67 0.07 0.57 0.28 0.28 0.44 0.31 0.47 0.33 0.94 0.87 0.04 0.22 0.04 0.29 0.94 0.29 0.28 0.15 0.35 0.20 0.18 0.15 0.64 0.35 0.32 0.40 0.75 0.55 0.41 0.20 0.05 0.05 0.32 0.43 0.33 0.98 0.06 0.31 0.48 0.43 0.49 0.94 0.46 0.46 0.21 0.58 0.38 0.57 0.31 0.40 0.40 0.63 0.46
-0.663 -0.299 -0.124 -0.290 -0.006 -0.467 -0.155 -0.269 -0.423 -0.152 -0.607 -0.467 -0.530 -1.092 -0.469 -0.218 -0.127 -0.274 -0.193 -0.483 -0.673 -0.340 -0.277 -0.333 -0.441 -0.101 -0.372 -0.142 -0.220 -0.091 -0.389 -0.462 -0.477 -0.561 -0.343 -0.060 -0.024 -0.185 -0.067 -0.180 -0.215 -0.460 -0.072 -0.270 -0.340 -0.398 -0.968 -0.121 -0.347 -0.212 -0.325 -0.121 -1.001 -0.162 -0.740 -0.147 -0.160 -0.397 -0.684
0.00 0.07 0.22 0.12 0.97 0.02 0.27 0.03 0.10 0.09 0.00 0.09 0.04 0.00 0.00 0.01 0.40 0.14 0.40 0.00 0.01 0.11 0.12 0.22 0.08 0.16 0.18 0.21 0.03 0.09 0.11 0.08 0.02 0.05 0.00 0.20 0.47 0.47 0.13 0.08 0.13 0.01 0.46 0.14 0.08 0.10 0.00 0.01 0.09 0.09 0.21 0.06 0.00 0.07 0.00 0.12 0.12 0.06 0.00
0.03 0.22 0.41 0.30 0.98 0.13 0.46 0.15 0.27 0.25 0.03 0.25 0.18 0.02 0.06 0.10 0.57 0.31 0.57 0.02 0.06 0.28 0.30 0.41 0.25 0.34 0.37 0.40 0.15 0.26 0.28 0.24 0.15 0.19 0.03 0.39 0.62 0.62 0.31 0.25 0.30 0.10 0.62 0.31 0.25 0.26 0.05 0.09 0.25 0.25 0.40 0.22 0.03 0.22 0.03 0.30 0.30 0.21 0.05
ACCEPTED MANUSCRIPT
15 15 15 14 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15
0.89 0.94 0.86 0.75 0.89 0.60 0.89 0.84 0.88 0.79 0.52 0.60 0.86 0.88 0.74 0.84 0.84 0.89 0.84 0.70 0.86 0.64 0.83 0.73 0.76 0.86 0.80 0.77 0.86 0.92 0.91 0.91 0.69 0.63 0.78 0.87 0.81 0.89 0.83 0.81 0.77 0.77 0.79 0.80 0.89 0.90 0.93 0.92 0.80 0.87 0.66 0.71 0.81 0.93 0.92 0.54 0.83 0.91 0.72
0.000 0.000 0.000 0.003 0.000 0.024 0.000 0.000 0.000 0.001 0.057 0.022 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.005 0.000 0.014 0.000 0.003 0.002 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.006 0.015 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.010 0.004 0.001 0.000 0.000 0.045 0.000 0.000 0.004
0.000 0.000 0.000 0.005 0.000 0.029 0.000 0.001 0.000 0.002 0.063 0.027 0.000 0.000 0.006 0.001 0.001 0.000 0.001 0.008 0.000 0.019 0.001 0.005 0.003 0.000 0.001 0.003 0.000 0.000 0.000 0.000 0.009 0.019 0.002 0.000 0.001 0.000 0.001 0.001 0.003 0.003 0.002 0.002 0.000 0.000 0.000 0.000 0.001 0.000 0.014 0.007 0.002 0.000 0.000 0.050 0.001 0.000 0.006
35 35 35 35 32 33 32 35 35 35 33 35 34 33 35 35 35 34 35 35 34 35 35 35 32 34 32 35 35 35 34 35 35 35 32 35 35 35 32 34 35 35 34 35 33 35 35 35 35 34 35 35 35 35 35 35 32 35 34
0.52 0.89 0.75 0.42 0.24 -0.30 0.34 0.23 0.33 0.14 -0.45 0.31 0.42 0.04 0.52 0.53 0.79 0.57 0.79 0.50 0.52 0.25 0.69 0.76 0.25 0.49 0.14 0.52 0.61 0.63 0.65 0.76 0.45 0.24 0.14 0.68 0.66 0.74 -0.02 0.61 0.10 0.54 0.65 0.34 0.23 0.78 0.65 0.78 0.36 0.42 0.41 0.49 0.83 0.77 0.56 0.60 0.14 0.76 0.28
0.002 0.000 0.000 0.014 0.188 0.096 0.065 0.189 0.057 0.427 0.010 0.072 0.014 0.841 0.002 0.001 0.000 0.001 0.000 0.002 0.002 0.150 0.000 0.000 0.174 0.004 0.450 0.002 0.000 0.000 0.000 0.000 0.008 0.179 0.438 0.000 0.000 0.000 0.933 0.000 0.567 0.001 0.000 0.048 0.198 0.000 0.000 0.000 0.035 0.015 0.016 0.003 0.000 0.000 0.001 0.000 0.442 0.000 0.109
0.003 0.000 0.000 0.024 0.235 0.131 0.093 0.235 0.084 0.471 0.018 0.101 0.024 0.859 0.004 0.003 0.000 0.001 0.000 0.005 0.004 0.196 0.000 0.000 0.222 0.008 0.491 0.004 0.000 0.000 0.000 0.000 0.014 0.227 0.482 0.000 0.000 0.000 0.942 0.001 0.604 0.003 0.000 0.073 0.245 0.000 0.000 0.000 0.057 0.026 0.027 0.006 0.000 0.000 0.001 0.001 0.485 0.000 0.147
0.37 0.21 0.42 0.64 0.36 0.73 0.35 0.45 0.38 0.54 0.75 0.72 0.41 0.37 0.63 0.45 0.44 0.35 0.45 0.64 0.40 0.68 0.46 0.59 0.56 0.39 0.50 0.54 0.38 0.24 0.28 0.28 0.61 0.65 0.51 0.35 0.46 0.31 0.42 0.46 0.51 0.52 0.48 0.48 0.30 0.27 0.21 0.22 0.45 0.33 0.60 0.56 0.46 0.19 0.23 0.66 0.40 0.25 0.54
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.015 0.015 0.016 0.016 0.016 0.017 0.017 0.017 0.017 0.017 0.018 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.020 0.020 0.021 0.021 0.022 0.023 0.023 0.024 0.024 0.024 0.025 0.025 0.025
0.044 0.044 0.044 0.044 0.044 0.044 0.045 0.045 0.045 0.045 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.048 0.048 0.049 0.049 0.051 0.052 0.052 0.053 0.053 0.053 0.053 0.053 0.057 0.058 0.058 0.059 0.059 0.059 0.059 0.060 0.061 0.061 0.061 0.062 0.062 0.062 0.062 0.063 0.065 0.065 0.068 0.068 0.069 0.072 0.072 0.073 0.074 0.075 0.075 0.076 0.076
-0.001 0.159 0.312 0.301 -0.288 -0.164 -0.203 -0.160 -0.165 -0.119 -0.212 0.427 -0.021 -0.479 0.411 0.135 0.391 0.028 0.410 0.442 0.057 0.299 0.326 0.615 0.055 0.022 -0.157 0.290 0.127 -0.056 0.017 0.130 0.368 0.256 -0.121 0.158 0.313 0.162 -0.424 0.260 -0.162 0.289 0.336 0.023 -0.364 0.146 -0.065 0.084 0.012 -0.118 0.353 0.339 0.479 0.030 -0.120 0.713 -0.289 0.102 0.102
RI PT
0.00 0.00 0.00 0.32 0.00 0.24 0.00 0.00 0.00 0.02 0.04 0.32 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.61 0.00 0.69 0.00 0.21 0.10 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.49 0.87 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.18 0.00 0.00 0.00 0.32 0.00 0.00 0.12
SC
0.000 0.000 0.000 0.292 0.000 0.217 0.000 0.000 0.000 0.017 0.031 0.301 0.000 0.000 0.340 0.000 0.000 0.000 0.000 0.582 0.000 0.671 0.001 0.186 0.084 0.000 0.008 0.038 0.000 0.000 0.000 0.000 0.460 0.859 0.018 0.000 0.001 0.000 0.000 0.001 0.015 0.024 0.004 0.003 0.000 0.000 0.000 0.000 0.001 0.000 0.602 0.159 0.001 0.000 0.000 0.302 0.000 0.000 0.098
M AN U
0.52 0.74 0.44 0.12 0.53 -0.14 0.54 0.39 0.49 0.26 -0.24 -0.11 0.45 0.52 0.11 0.39 0.40 0.54 0.38 0.06 0.46 -0.05 0.36 0.15 0.20 0.47 0.30 0.23 0.48 0.68 0.63 0.63 0.08 -0.02 0.27 0.52 0.35 0.58 0.41 0.35 0.26 0.25 0.31 0.32 0.60 0.63 0.72 0.70 0.35 0.54 0.06 0.16 0.35 0.74 0.68 -0.11 0.43 0.65 0.18
TE D
85 85 85 85 80 85 80 85 85 85 85 85 85 85 85 85 85 83 85 85 85 85 85 85 80 83 80 85 85 85 83 85 85 85 80 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 80 85 85
EP
MIP3a IL7 IL7 IL8 IL33 IL4 IL4 GMCSF ITAC/CXCL11 IL18 IL4 IL2 TNFa Lactoferrin IL8 IL6 IL7 IL1b MIP1b MIP3a RANTES MCSF MIP1a MCP1 IL33 IL7 MCSF MIP3a MCP1 ITAC/CXCL11 MIP3a IL16 MIP3a IL6 IL33 IL16 IL2 ITAC/CXCL11 IL33 TGFb IL18 MIP1a TGFb IL1a IL4 MCSF MIP3a IL7 IL1a RANTES IL12 IL2 IL8 ITAC/CXCL11 TNFa MIP1a IL33 Lactoferrin RANTES
AC C
MIP1b IFNg IL2 IFNg IFNg IL12 IL33 Calgranulin C Calgranulin C IL16 GMCSF Calgranulin A RANTES IL4 IL16 Eotaxin IL1a Eotaxin IL6 IL2 IL7 IL6 Eotaxin IL6 IL1a IL1b IL33 MCP1 Groa/CXCL1 IL12 IL1b HMGB1 GMCSF HMGB1 IL2 GMCSF Eotaxin IL1a IL18 IL2 IFNg Lactoferrin IL1a Calgranulin C Eotaxin IL16 Lactoferrin IL16 Groa/CXCL1 MIP3a Calgranulin A IL10 IL6 IL16 Groa/CXCL1 Calgranulin A HMGB1 IL16 IL1a
1.00 0.02 0.02 0.12 0.12 0.43 0.25 0.40 0.34 0.56 0.26 0.04 0.90 0.01 0.03 0.42 0.00 0.85 0.00 0.02 0.72 0.15 0.03 0.00 0.79 0.89 0.45 0.11 0.39 0.64 0.89 0.23 0.06 0.22 0.57 0.24 0.04 0.16 0.04 0.11 0.43 0.10 0.04 0.90 0.04 0.16 0.56 0.37 0.95 0.47 0.07 0.07 0.00 0.74 0.35 0.00 0.15 0.33 0.61
1.00 0.13 0.12 0.35 0.35 0.64 0.48 0.62 0.57 0.75 0.49 0.20 0.96 0.12 0.17 0.63 0.04 0.94 0.04 0.14 0.87 0.38 0.17 0.00 0.92 0.96 0.65 0.33 0.61 0.80 0.96 0.46 0.25 0.44 0.75 0.46 0.20 0.40 0.20 0.33 0.64 0.32 0.19 0.96 0.20 0.39 0.75 0.59 0.98 0.67 0.29 0.28 0.01 0.88 0.57 0.01 0.38 0.56 0.78
-0.366 -0.049 -0.108 -0.336 -0.647 -0.896 -0.555 -0.612 -0.547 -0.654 -0.967 -0.291 -0.435 -0.845 -0.223 -0.313 -0.051 -0.318 -0.043 -0.196 -0.344 -0.385 -0.138 0.026 -0.508 -0.372 -0.659 -0.252 -0.258 -0.298 -0.260 -0.148 -0.242 -0.397 -0.634 -0.192 -0.150 -0.148 -0.849 -0.200 -0.672 -0.229 -0.144 -0.454 -0.661 -0.126 -0.276 -0.140 -0.440 -0.452 -0.251 -0.217 0.020 -0.160 -0.352 0.056 -0.686 -0.149 -0.433
0.02 0.35 0.36 0.14 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.28 0.02 0.00 0.30 0.07 0.66 0.03 0.72 0.37 0.04 0.16 0.35 0.87 0.04 0.03 0.01 0.20 0.08 0.01 0.03 0.14 0.29 0.15 0.01 0.14 0.34 0.18 0.00 0.24 0.01 0.24 0.38 0.04 0.00 0.19 0.01 0.11 0.04 0.01 0.31 0.32 0.87 0.06 0.01 0.81 0.00 0.14 0.08
0.12 0.53 0.54 0.31 0.03 0.06 0.05 0.06 0.06 0.08 0.05 0.48 0.12 0.02 0.49 0.22 0.77 0.15 0.81 0.55 0.16 0.34 0.53 0.91 0.16 0.15 0.08 0.40 0.25 0.10 0.16 0.31 0.49 0.33 0.10 0.31 0.52 0.37 0.03 0.43 0.08 0.43 0.56 0.16 0.03 0.39 0.10 0.29 0.16 0.09 0.49 0.51 0.91 0.21 0.08 0.88 0.05 0.31 0.25
ACCEPTED MANUSCRIPT
14 15 15 15 15 15 15 15 14 15 15 15 15 15 15 14 15 15 15 14 15 15 15 15 15 15 15 15 15 14 14 15 15 15 15 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15
0.74 0.64 0.87 0.95 0.77 0.76 0.87 0.84 0.76 0.70 0.70 0.86 0.60 0.71 0.83 0.71 0.76 0.87 0.82 0.69 0.89 0.68 0.88 0.80 0.96 0.81 0.59 0.85 0.74 0.79 0.74 0.73 0.88 0.65 0.81 0.87 0.85 0.91 0.92 0.75 0.77 0.78 0.82 0.77 0.81 0.70 0.93 0.86 0.69 0.85 0.84 0.72 0.88 0.65 0.75 0.92 0.95 0.70 0.81
0.004 0.015 0.000 0.000 0.001 0.002 0.000 0.000 0.002 0.005 0.005 0.000 0.023 0.004 0.000 0.007 0.001 0.000 0.000 0.009 0.000 0.008 0.000 0.001 0.000 0.000 0.027 0.000 0.002 0.001 0.003 0.003 0.000 0.013 0.001 0.000 0.000 0.000 0.000 0.003 0.001 0.001 0.000 0.001 0.000 0.006 0.000 0.000 0.007 0.000 0.000 0.004 0.000 0.017 0.002 0.000 0.000 0.006 0.000
0.006 0.019 0.000 0.000 0.003 0.004 0.000 0.001 0.005 0.008 0.008 0.000 0.028 0.007 0.001 0.010 0.003 0.000 0.001 0.013 0.000 0.011 0.000 0.001 0.000 0.001 0.032 0.000 0.005 0.003 0.006 0.006 0.000 0.017 0.001 0.000 0.001 0.000 0.000 0.006 0.003 0.002 0.001 0.003 0.001 0.008 0.000 0.000 0.010 0.000 0.001 0.006 0.000 0.021 0.004 0.000 0.000 0.008 0.001
34 35 34 34 33 35 35 34 35 33 35 35 35 32 34 32 33 35 35 35 35 35 35 35 35 34 35 34 35 35 35 35 34 35 35 35 35 34 35 34 35 35 35 35 33 35 35 32 35 35 35 32 35 35 35 35 35 32 34
0.37 0.48 0.63 0.81 0.08 0.49 0.56 0.49 0.44 0.08 0.59 0.47 0.30 0.14 0.60 0.09 0.18 0.73 0.23 0.43 0.92 0.40 0.59 0.25 0.89 0.34 0.56 0.55 0.69 0.69 0.48 0.56 0.73 0.30 0.56 0.89 0.69 0.65 0.78 0.32 0.58 0.66 0.34 0.66 0.47 0.49 0.84 0.34 0.48 0.53 0.64 0.15 0.70 0.47 0.58 0.89 0.95 0.10 0.49
0.035 0.004 0.000 0.000 0.676 0.003 0.001 0.004 0.010 0.665 0.000 0.005 0.082 0.445 0.000 0.613 0.333 0.000 0.188 0.011 0.000 0.018 0.000 0.149 0.000 0.055 0.001 0.001 0.000 0.000 0.004 0.001 0.000 0.088 0.001 0.000 0.000 0.000 0.000 0.070 0.000 0.000 0.051 0.000 0.006 0.003 0.000 0.058 0.004 0.001 0.000 0.414 0.000 0.005 0.000 0.000 0.000 0.575 0.004
0.057 0.008 0.000 0.000 0.700 0.006 0.001 0.008 0.018 0.692 0.001 0.010 0.113 0.488 0.001 0.647 0.380 0.000 0.235 0.020 0.000 0.030 0.001 0.195 0.000 0.082 0.001 0.002 0.000 0.000 0.009 0.002 0.000 0.121 0.001 0.000 0.000 0.000 0.000 0.099 0.001 0.000 0.076 0.000 0.011 0.006 0.000 0.085 0.008 0.003 0.000 0.460 0.000 0.009 0.001 0.000 0.000 0.612 0.008
0.54 0.60 0.32 0.14 0.47 0.48 0.31 0.37 0.50 0.53 0.53 0.33 0.60 0.52 0.36 0.54 0.45 0.30 0.38 0.55 0.25 0.53 0.28 0.39 0.11 0.38 0.58 0.32 0.45 0.41 0.47 0.46 0.26 0.53 0.37 0.28 0.33 0.20 0.19 0.46 0.41 0.40 0.34 0.41 0.35 0.48 0.16 0.29 0.48 0.29 0.30 0.45 0.25 0.53 0.40 0.16 0.11 0.44 0.32
0.026 0.026 0.027 0.027 0.028 0.028 0.028 0.028 0.028 0.030 0.030 0.030 0.031 0.032 0.033 0.033 0.034 0.034 0.034 0.035 0.036 0.036 0.037 0.038 0.038 0.039 0.039 0.041 0.042 0.042 0.042 0.043 0.044 0.044 0.044 0.044 0.045 0.045 0.045 0.045 0.046 0.046 0.046 0.046 0.047 0.047 0.047 0.047 0.048 0.049 0.050 0.050 0.050 0.051 0.058 0.060 0.062 0.062 0.063
0.078 0.079 0.080 0.080 0.081 0.081 0.081 0.081 0.081 0.086 0.086 0.086 0.086 0.089 0.091 0.091 0.092 0.093 0.093 0.095 0.096 0.096 0.100 0.100 0.100 0.102 0.102 0.106 0.108 0.108 0.108 0.109 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.112 0.112 0.112 0.112 0.112 0.114 0.114 0.116 0.116 0.116 0.119 0.133 0.138 0.141 0.141 0.143
0.169 0.442 0.073 0.004 -0.218 0.223 -0.007 0.020 0.174 -0.089 0.421 -0.057 0.306 -0.051 0.135 -0.071 -0.137 0.158 -0.210 0.291 0.281 0.252 -0.003 -0.161 0.038 -0.093 0.553 0.013 0.397 0.314 0.203 0.297 0.119 0.178 0.129 0.303 0.167 -0.060 0.044 0.035 0.214 0.277 -0.147 0.297 0.015 0.275 0.068 -0.226 0.273 -0.030 0.098 -0.112 0.075 0.355 0.236 0.125 0.108 -0.147 -0.006
RI PT
0.08 0.75 0.00 0.00 0.01 0.02 0.00 0.00 0.02 0.15 0.13 0.00 0.98 0.10 0.00 0.17 0.01 0.00 0.00 0.24 0.00 0.19 0.00 0.00 0.00 0.00 0.93 0.00 0.01 0.00 0.02 0.02 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.31 0.00 0.00 0.00 0.03 0.00
SC
0.070 0.732 0.000 0.000 0.007 0.013 0.000 0.000 0.016 0.126 0.116 0.000 0.981 0.087 0.000 0.146 0.004 0.000 0.000 0.213 0.000 0.170 0.000 0.000 0.000 0.000 0.926 0.000 0.008 0.000 0.012 0.016 0.000 0.278 0.000 0.000 0.000 0.000 0.000 0.009 0.001 0.000 0.000 0.001 0.000 0.045 0.000 0.000 0.061 0.000 0.000 0.018 0.000 0.285 0.001 0.000 0.000 0.025 0.000
M AN U
0.20 0.04 0.55 0.81 0.29 0.27 0.57 0.47 0.26 0.17 0.17 0.52 0.00 0.19 0.47 0.17 0.31 0.57 0.44 0.14 0.64 0.15 0.60 0.41 0.85 0.43 0.01 0.53 0.29 0.38 0.27 0.26 0.61 0.12 0.44 0.59 0.52 0.71 0.73 0.28 0.36 0.38 0.48 0.36 0.46 0.22 0.77 0.57 0.21 0.56 0.54 0.26 0.62 0.12 0.34 0.77 0.84 0.25 0.49
TE D
85 85 85 85 85 85 85 83 85 85 85 85 85 80 85 80 85 85 85 85 85 85 85 85 85 83 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 80 85 85 85 80 85 85 85 85 85 80 85
EP
TGFb MCP1 TGFb TGFb IL4 MIP3a ITAC/CXCL11 TGFb Lactoferrin ITAC/CXCL11 MIP1b Lactoferrin GMCSF MIP1a TGFb IL8 RANTES IL7 MCSF IL8 IL2 ITAC/CXCL11 IL7 HMGB1 IL15 Lactoferrin MCP1 RANTES Lactoferrin MCP1 IL8 Lactoferrin TGFb IL15 TNFa IL1a IL8 TGFb IL10 RANTES MIP3a MIP1a IL16 MIP1a IL4 MIP3a IFNg ITAC/CXCL11 IL10 MIP1b MIP3a IL33 MIP3a ITAC/CXCL11 MCP1 MCSF IL12 IL6 RANTES
AC C
IL8 IP10 HMGB1 IL7 IFNg MCSF GMCSF IL1b IL8 IL4 IP10 IL10 Calgranulin A IL33 MCSF IL33 IL4 IL10 Calgranulin C IL1a HMGB1 IL6 IL15 Calgranulin C IL12 IL1b Calgranulin A Eotaxin IL2 IL8 IL7 GMCSF IL16 Calgranulin A MCP1 HMGB1 Groa/CXCL1 IFNg Eotaxin IL8 HMGB1 IL13 Calgranulin C IL7 Groa/CXCL1 IL12 Eotaxin IL33 GMCSF Eotaxin IFNg GMCSF IL16 IL8 IL13 IL2 GMCSF IL33 IL13
0.39 0.02 0.60 0.96 0.29 0.21 0.96 0.90 0.35 0.68 0.02 0.72 0.14 0.81 0.37 0.75 0.50 0.19 0.26 0.13 0.00 0.19 0.98 0.39 0.45 0.61 0.00 0.93 0.01 0.03 0.26 0.09 0.30 0.38 0.41 0.00 0.21 0.60 0.63 0.86 0.19 0.07 0.40 0.05 0.93 0.13 0.35 0.19 0.14 0.84 0.48 0.59 0.53 0.06 0.15 0.05 0.00 0.49 0.97
0.61 0.15 0.77 0.98 0.53 0.44 0.98 0.96 0.57 0.83 0.12 0.87 0.37 0.94 0.59 0.88 0.69 0.42 0.48 0.36 0.00 0.42 0.99 0.61 0.65 0.78 0.05 0.97 0.10 0.18 0.48 0.31 0.54 0.59 0.63 0.02 0.43 0.77 0.79 0.94 0.42 0.28 0.62 0.23 0.97 0.36 0.57 0.42 0.37 0.94 0.67 0.77 0.72 0.26 0.38 0.22 0.06 0.69 0.98
-0.372 -0.156 -0.244 -0.137 -0.690 -0.262 -0.313 -0.349 -0.328 -0.620 -0.108 -0.388 -0.296 -0.568 -0.229 -0.614 -0.588 -0.140 -0.588 -0.259 0.030 -0.276 -0.283 -0.550 -0.069 -0.472 -0.024 -0.303 -0.054 -0.100 -0.269 -0.167 -0.144 -0.348 -0.240 0.023 -0.159 -0.261 -0.142 -0.426 -0.194 -0.122 -0.487 -0.111 -0.338 -0.203 -0.090 -0.515 -0.209 -0.320 -0.207 -0.566 -0.180 -0.175 -0.168 -0.032 0.000 -0.591 -0.327
0.12 0.52 0.09 0.05 0.01 0.21 0.04 0.05 0.14 0.03 0.59 0.03 0.28 0.04 0.16 0.03 0.02 0.25 0.01 0.29 0.62 0.26 0.05 0.02 0.15 0.03 0.92 0.07 0.75 0.53 0.22 0.41 0.23 0.19 0.18 0.78 0.26 0.03 0.12 0.08 0.30 0.47 0.02 0.51 0.08 0.36 0.21 0.01 0.36 0.05 0.17 0.04 0.16 0.48 0.38 0.60 1.00 0.03 0.09
0.30 0.65 0.25 0.18 0.08 0.40 0.17 0.20 0.31 0.15 0.72 0.15 0.47 0.16 0.34 0.15 0.12 0.44 0.08 0.48 0.74 0.44 0.20 0.11 0.32 0.15 0.95 0.22 0.84 0.67 0.42 0.58 0.42 0.38 0.37 0.86 0.45 0.15 0.30 0.25 0.49 0.62 0.12 0.65 0.24 0.54 0.40 0.08 0.54 0.20 0.36 0.16 0.34 0.63 0.56 0.73 1.00 0.16 0.25
ACCEPTED MANUSCRIPT
15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
0.71 0.79 0.87 0.43 0.66 0.79 0.73 0.86 0.91 0.91 0.93 0.81 0.70 0.85 0.75 0.87 0.74 0.76 0.57 0.70 0.71 0.81 0.73 0.84 0.74 0.71 0.89 0.77 0.61 0.63 0.68 0.73 0.71 0.72 0.95 0.70 0.82 0.85 0.60 0.74 0.84 0.80 0.89 0.72 0.62 0.94 0.79 0.72 0.69 0.90 0.86 0.92 0.81 0.87 0.84 0.79 0.63 0.81 0.90
0.004 0.001 0.000 0.121 0.014 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.002 0.000 0.003 0.001 0.032 0.005 0.005 0.000 0.003 0.000 0.003 0.004 0.000 0.001 0.026 0.015 0.007 0.003 0.004 0.004 0.000 0.005 0.000 0.000 0.030 0.002 0.000 0.001 0.000 0.004 0.018 0.000 0.001 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.017 0.000 0.000
0.007 0.002 0.000 0.126 0.018 0.002 0.005 0.000 0.000 0.000 0.000 0.001 0.008 0.001 0.004 0.000 0.005 0.003 0.037 0.008 0.007 0.001 0.005 0.001 0.005 0.007 0.000 0.003 0.031 0.019 0.010 0.006 0.007 0.007 0.000 0.008 0.001 0.000 0.035 0.005 0.001 0.002 0.000 0.006 0.022 0.000 0.002 0.006 0.009 0.000 0.000 0.000 0.001 0.000 0.001 0.002 0.021 0.001 0.000
35 32 35 35 35 33 35 35 35 35 35 35 35 35 34 35 34 35 35 34 35 34 35 35 35 34 32 35 35 35 35 32 35 35 35 34 34 35 35 35 35 35 35 32 34 35 35 35 35 35 35 35 34 35 35 35 35 35 35
0.52 0.19 0.89 0.24 0.36 0.15 0.35 0.58 0.90 0.53 0.91 0.65 0.59 0.71 0.45 0.39 0.45 0.33 0.23 0.32 0.49 0.43 0.36 0.38 0.51 0.22 0.36 0.27 0.35 0.32 0.54 0.08 0.52 0.20 0.82 0.47 0.42 0.65 0.25 0.60 0.68 0.36 0.72 0.00 0.32 0.91 0.72 0.60 0.59 0.91 0.77 0.62 0.71 0.80 0.72 0.61 0.50 0.51 0.82
0.002 0.317 0.000 0.171 0.038 0.421 0.041 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.008 0.022 0.009 0.057 0.182 0.068 0.004 0.013 0.037 0.025 0.002 0.224 0.049 0.124 0.043 0.067 0.001 0.686 0.001 0.258 0.000 0.006 0.015 0.000 0.160 0.000 0.000 0.038 0.000 0.980 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.002 0.000
0.004 0.362 0.000 0.219 0.059 0.466 0.063 0.001 0.000 0.003 0.000 0.000 0.001 0.000 0.015 0.037 0.017 0.084 0.229 0.098 0.007 0.024 0.059 0.041 0.005 0.271 0.073 0.165 0.066 0.096 0.002 0.707 0.003 0.306 0.000 0.011 0.026 0.000 0.207 0.000 0.000 0.060 0.000 0.980 0.099 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.005 0.000
0.43 0.35 0.24 -0.35 0.48 0.33 0.39 0.24 0.17 0.17 0.14 0.30 0.41 0.26 0.36 0.22 0.37 0.35 0.48 0.40 0.39 0.29 0.37 0.25 0.36 0.38 0.19 0.33 0.47 0.43 0.40 0.36 0.37 0.37 0.09 0.37 0.27 0.23 0.46 0.34 0.24 0.29 0.17 0.35 0.41 0.10 0.28 0.35 0.37 0.16 0.21 0.13 0.25 0.19 0.22 0.28 -0.22 0.25 0.15
0.064 0.065 0.068 0.069 0.070 0.072 0.073 0.074 0.075 0.075 0.076 0.077 0.078 0.078 0.079 0.080 0.081 0.082 0.083 0.084 0.084 0.085 0.085 0.086 0.086 0.086 0.089 0.089 0.090 0.092 0.093 0.095 0.097 0.097 0.097 0.099 0.099 0.099 0.100 0.100 0.100 0.101 0.104 0.104 0.108 0.108 0.108 0.109 0.109 0.113 0.114 0.116 0.117 0.118 0.119 0.119 0.119 0.121 0.121
0.143 0.144 0.151 0.154 0.155 0.159 0.160 0.161 0.162 0.163 0.164 0.165 0.166 0.166 0.167 0.168 0.170 0.171 0.173 0.174 0.174 0.175 0.175 0.176 0.176 0.176 0.180 0.180 0.181 0.183 0.185 0.188 0.190 0.190 0.190 0.193 0.193 0.193 0.193 0.193 0.193 0.194 0.197 0.198 0.203 0.203 0.203 0.203 0.203 0.211 0.211 0.214 0.215 0.216 0.216 0.216 0.217 0.219 0.219
0.230 -0.256 0.254 -0.541 0.174 -0.315 0.012 -0.042 0.155 -0.219 0.119 0.137 0.292 0.124 0.063 -0.257 0.079 -0.090 0.140 0.020 0.172 -0.093 -0.003 -0.208 0.133 -0.111 -0.348 -0.172 0.202 0.114 0.255 -0.291 0.186 -0.150 -0.039 0.137 -0.130 0.037 0.103 0.205 0.092 -0.155 0.001 -0.372 0.113 0.064 0.207 0.223 0.269 0.178 0.120 -0.171 0.150 0.115 0.094 0.099 -0.345 -0.047 0.060
RI PT
0.01 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.42 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SC
0.008 0.000 0.000 0.000 0.093 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.001 0.000 0.391 0.005 0.004 0.000 0.001 0.000 0.000 0.002 0.000 0.000 0.183 0.063 0.008 0.001 0.002 0.001 0.000 0.002 0.000 0.000 0.194 0.000 0.000 0.000 0.000 0.001 0.058 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M AN U
0.29 0.44 0.63 0.78 0.18 0.46 0.34 0.62 0.75 0.74 0.79 0.51 0.30 0.59 0.39 0.65 0.37 0.42 0.09 0.30 0.31 0.52 0.36 0.59 0.37 0.33 0.71 0.44 0.15 0.20 0.29 0.37 0.34 0.35 0.86 0.33 0.55 0.62 0.14 0.40 0.59 0.51 0.72 0.37 0.21 0.84 0.51 0.38 0.32 0.73 0.65 0.79 0.56 0.69 0.62 0.51 0.84 0.56 0.76
TE D
85 80 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 80 85 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85
EP
IL10 IL33 HMGB1 MIG IL8 IL7 MCP1 IL15 IL15 ITAC/CXCL11 IL1a MCSF IL12 IL16 RANTES Lactoferrin RANTES MIP1b MIP1a TGFb MCSF RANTES IL15 IFNg MIP3a TGFb IL7 IL18 IL8 MIP1b MCP1 RANTES IL6 IL7 ITAC/CXCL11 TGFb TGFb MIP3a IL8 GMCSF HMGB1 MIP1b TNFa MIP1b RANTES MCSF Lactoferrin ITAC/CXCL11 IL6 IL1a IL7 MIP3a TGFb ITAC/CXCL11 Lactoferrin Groa/CXCL1 MIP1a MIP1b MIP1b
AC C
HMGB1 IL12 GMCSF Calgranulin C HMGB1 IL4 Lactoferrin Eotaxin GMCSF IL15 GMCSF IL7 IL10 IL10 IL16 Groa/CXCL1 IFNg IL1a MIG MCP1 IL10 Lactoferrin IL10 Calgranulin C IL15 IL6 IL33 Eotaxin IL18 IL18 Eotaxin IL33 IL13 IL18 IFNg MIP1a RANTES IL7 IL15 Eotaxin Eotaxin Lactoferrin MIP3a IL33 IL2 IL12 IL15 Calgranulin A Calgranulin C IL12 IL12 Eotaxin IL12 IL7 IFNg Calgranulin A IL2 IL13 Groa/CXCL1
0.19 0.20 0.00 0.00 0.37 0.10 0.95 0.76 0.02 0.07 0.04 0.33 0.08 0.31 0.72 0.09 0.66 0.62 0.50 0.92 0.33 0.57 0.99 0.19 0.43 0.57 0.02 0.35 0.30 0.56 0.14 0.16 0.28 0.44 0.52 0.44 0.42 0.77 0.61 0.19 0.46 0.36 0.99 0.08 0.57 0.19 0.11 0.16 0.10 0.00 0.25 0.10 0.23 0.21 0.41 0.49 0.00 0.76 0.45
0.42 0.42 0.04 0.01 0.59 0.33 0.98 0.89 0.12 0.29 0.19 0.56 0.30 0.54 0.87 0.31 0.82 0.78 0.69 0.97 0.56 0.75 0.99 0.42 0.64 0.76 0.15 0.57 0.54 0.75 0.37 0.39 0.50 0.65 0.71 0.65 0.64 0.90 0.78 0.42 0.66 0.58 0.99 0.29 0.75 0.42 0.33 0.39 0.33 0.06 0.48 0.32 0.46 0.44 0.63 0.69 0.03 0.89 0.65
-0.196 -0.604 0.016 -0.193 -0.303 -0.645 -0.378 -0.283 -0.011 -0.385 -0.020 -0.165 -0.113 -0.134 -0.300 -0.480 -0.292 -0.435 -0.339 -0.378 -0.220 -0.385 -0.372 -0.459 -0.230 -0.495 -0.534 -0.501 -0.265 -0.317 -0.141 -0.652 -0.185 -0.516 -0.128 -0.235 -0.397 -0.195 -0.355 -0.136 -0.153 -0.441 -0.169 -0.725 -0.301 -0.035 -0.074 -0.122 -0.099 0.018 -0.089 -0.300 -0.102 -0.070 -0.125 -0.179 -0.127 -0.301 -0.086
0.36 0.01 0.84 0.53 0.25 0.01 0.11 0.07 0.86 0.01 0.72 0.30 0.58 0.32 0.17 0.01 0.19 0.06 0.24 0.13 0.32 0.06 0.11 0.02 0.27 0.06 0.00 0.03 0.33 0.23 0.52 0.02 0.39 0.05 0.06 0.30 0.05 0.18 0.22 0.47 0.29 0.04 0.14 0.01 0.26 0.49 0.62 0.53 0.63 0.78 0.45 0.02 0.48 0.49 0.35 0.31 0.59 0.11 0.33
0.54 0.10 0.90 0.67 0.44 0.08 0.28 0.22 0.91 0.07 0.81 0.49 0.71 0.50 0.35 0.08 0.38 0.21 0.43 0.31 0.50 0.20 0.29 0.12 0.46 0.20 0.05 0.16 0.52 0.42 0.65 0.12 0.56 0.18 0.20 0.49 0.18 0.37 0.42 0.63 0.48 0.17 0.31 0.09 0.45 0.64 0.74 0.67 0.74 0.86 0.61 0.11 0.63 0.64 0.53 0.49 0.72 0.28 0.51
ACCEPTED MANUSCRIPT
15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15
0.87 0.80 0.72 0.93 0.92 0.73 0.57 0.84 0.91 0.80 0.83 0.78 0.68 0.76 0.63 0.81 0.85 0.79 0.81 0.65 0.72 0.30 0.58 0.92 0.86 0.74 0.71 0.87 0.73 0.76 0.79 0.82 0.76 0.76 0.55 0.74 0.83 0.54 0.65 0.64 0.56 0.65 0.80 0.67 0.67 0.50 0.85 0.79 0.46 0.58 0.58 0.81 0.73 0.72 0.59 0.74 0.83 0.57 0.89
0.000 0.001 0.004 0.000 0.000 0.003 0.042 0.000 0.000 0.001 0.000 0.001 0.007 0.002 0.015 0.000 0.000 0.001 0.000 0.012 0.004 0.295 0.039 0.000 0.000 0.003 0.004 0.000 0.003 0.001 0.001 0.000 0.002 0.002 0.044 0.002 0.000 0.057 0.012 0.014 0.036 0.012 0.001 0.009 0.009 0.069 0.000 0.001 0.097 0.031 0.038 0.000 0.003 0.004 0.028 0.002 0.000 0.032 0.000
0.000 0.002 0.006 0.000 0.000 0.005 0.047 0.001 0.000 0.001 0.001 0.002 0.011 0.003 0.020 0.001 0.000 0.002 0.001 0.016 0.006 0.300 0.045 0.000 0.000 0.005 0.007 0.000 0.005 0.003 0.002 0.001 0.003 0.003 0.049 0.004 0.001 0.063 0.016 0.018 0.042 0.016 0.001 0.013 0.013 0.075 0.000 0.002 0.103 0.036 0.043 0.001 0.005 0.006 0.033 0.005 0.001 0.037 0.000
35 35 35 34 35 35 35 35 35 35 32 35 35 35 35 34 35 34 35 34 34 35 35 35 35 34 35 35 35 35 35 33 32 33 35 33 35 35 35 35 32 34 35 35 34 35 34 34 35 34 35 35 33 34 34 33 32 34 35
0.84 0.65 0.69 0.84 0.89 0.73 0.30 0.76 0.85 0.47 0.11 0.67 0.37 0.70 0.21 0.16 0.65 0.57 0.74 0.22 0.65 0.02 0.23 0.88 0.74 0.17 0.61 0.53 0.72 0.51 0.66 0.31 -0.02 0.49 0.01 -0.03 0.54 0.27 0.43 0.15 0.25 0.39 0.69 0.50 0.13 0.18 0.62 0.48 -0.08 0.36 0.34 0.78 0.21 0.16 0.32 0.21 0.11 0.42 0.58
0.000 0.000 0.000 0.000 0.000 0.000 0.081 0.000 0.000 0.006 0.557 0.000 0.030 0.000 0.222 0.359 0.000 0.001 0.000 0.217 0.000 0.911 0.190 0.000 0.000 0.343 0.000 0.001 0.000 0.002 0.000 0.085 0.922 0.005 0.964 0.869 0.001 0.120 0.011 0.411 0.180 0.024 0.000 0.003 0.471 0.304 0.000 0.005 0.668 0.038 0.048 0.000 0.251 0.387 0.069 0.249 0.558 0.016 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.113 0.000 0.000 0.011 0.596 0.000 0.049 0.000 0.270 0.407 0.000 0.002 0.000 0.265 0.000 0.923 0.236 0.000 0.000 0.390 0.000 0.003 0.000 0.004 0.000 0.118 0.932 0.009 0.969 0.886 0.002 0.160 0.019 0.458 0.228 0.039 0.000 0.006 0.512 0.352 0.000 0.009 0.693 0.060 0.073 0.000 0.298 0.436 0.099 0.297 0.597 0.027 0.001
0.18 0.27 0.33 0.11 0.12 0.31 0.42 0.20 0.13 0.24 0.21 0.25 0.33 0.27 0.35 0.22 0.19 0.24 0.22 0.33 0.29 0.43 0.38 0.10 0.16 0.26 0.28 0.15 0.27 0.24 0.22 0.19 0.24 0.24 0.35 0.25 0.18 0.36 0.30 0.30 0.33 0.29 0.19 0.28 0.27 0.34 0.15 0.20 0.35 0.31 0.33 0.18 0.23 0.24 0.30 0.22 0.16 0.30 0.11
0.122 0.123 0.125 0.128 0.133 0.137 0.140 0.143 0.144 0.144 0.148 0.150 0.154 0.154 0.156 0.160 0.161 0.162 0.163 0.163 0.170 0.170 0.172 0.173 0.174 0.182 0.184 0.185 0.187 0.188 0.188 0.189 0.191 0.193 0.198 0.199 0.199 0.203 0.205 0.209 0.210 0.219 0.221 0.222 0.223 0.227 0.227 0.228 0.228 0.228 0.230 0.231 0.231 0.232 0.237 0.241 0.243 0.243 0.246
0.219 0.220 0.223 0.228 0.235 0.242 0.246 0.250 0.252 0.252 0.257 0.260 0.265 0.266 0.267 0.274 0.275 0.275 0.275 0.275 0.284 0.284 0.287 0.287 0.289 0.301 0.303 0.304 0.306 0.306 0.306 0.307 0.309 0.312 0.318 0.319 0.319 0.323 0.326 0.331 0.332 0.345 0.347 0.349 0.349 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.353 0.360 0.364 0.366 0.366 0.369
0.149 0.117 0.292 0.022 0.085 0.304 0.152 0.120 0.073 -0.096 -0.506 0.148 0.017 0.212 -0.067 -0.431 -0.008 0.014 0.145 -0.095 0.214 0.149 0.034 0.061 0.041 -0.307 0.172 -0.185 0.258 -0.009 0.098 -0.323 -0.539 -0.037 -0.187 -0.529 -0.104 0.097 0.077 -0.194 0.019 0.030 0.071 0.103 -0.263 0.023 -0.086 -0.106 -0.188 0.099 0.088 0.146 -0.287 -0.320 0.037 -0.310 -0.562 0.144 -0.197
RI PT
0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.13 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.34 0.02 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00
SC
0.000 0.000 0.000 0.000 0.000 0.000 0.167 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.009 0.000 0.000 0.000 0.000 0.003 0.000 0.241 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.075 0.000 0.000 0.112 0.001 0.002 0.044 0.001 0.000 0.000 0.000 0.150 0.000 0.000 0.314 0.015 0.020 0.000 0.000 0.000 0.009 0.000 0.000 0.012 0.000
M AN U
0.69 0.53 0.39 0.81 0.80 0.42 0.15 0.64 0.77 0.56 0.62 0.53 0.35 0.49 0.28 0.60 0.66 0.55 0.59 0.32 0.43 -0.13 0.20 0.82 0.70 0.48 0.44 0.72 0.46 0.52 0.56 0.63 0.52 0.52 0.20 0.50 0.64 0.17 0.35 0.34 0.23 0.36 0.61 0.39 0.39 0.16 0.70 0.59 0.11 0.26 0.25 0.63 0.50 0.48 0.28 0.52 0.67 0.27 0.78
TE D
85 85 85 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 85 83 85 85 80 85 85
EP
IL1a MCSF IL1a TGFb IL12 MCSF MCSF IL7 MCSF MIP1b Lactoferrin MIP3a MIP1b IL7 IL18 TGFb IL10 TGFb IL12 RANTES TGFb IP10 MIG MCSF ITAC/CXCL11 TGFb Lactoferrin Groa/CXCL1 TNFa Lactoferrin IL16 IL4 IL33 IL6 MIG TGFb IL13 IL8 MCP1 Lactoferrin MCP1 RANTES Lactoferrin IL18 RANTES MIG TGFb TGFb MIG RANTES IL8 MIP1b IL4 MIG RANTES TNFa MIP3a RANTES Lactoferrin
AC C
IL15 Eotaxin IL13 IL13 HMGB1 Lactoferrin IL8 HMGB1 IL1a IL7 IL33 ITAC/CXCL11 MIG GMCSF Groa/CXCL1 Groa/CXCL1 IFNg IL15 Eotaxin IP10 GMCSF IL1a IL8 GMCSF Eotaxin MIP1b IL12 Eotaxin IL2 Calgranulin A Calgranulin A IL10 Groa/CXCL1 IL4 IL1a IL4 Groa/CXCL1 IL2 IL7 IL18 IL33 IL15 ITAC/CXCL11 Calgranulin C MIG MCP1 ITAC/CXCL11 Calgranulin A IL2 Calgranulin A IL12 MCP1 IL13 IL1b MCSF IL4 IL33 HMGB1 Eotaxin
0.08 0.40 0.05 0.75 0.15 0.03 0.45 0.27 0.30 0.54 0.01 0.27 0.93 0.11 0.74 0.01 0.95 0.92 0.21 0.63 0.15 0.48 0.87 0.30 0.69 0.10 0.26 0.14 0.05 0.95 0.45 0.05 0.01 0.82 0.37 0.01 0.45 0.63 0.66 0.33 0.93 0.87 0.56 0.54 0.18 0.91 0.47 0.49 0.37 0.61 0.65 0.16 0.12 0.09 0.85 0.09 0.00 0.44 0.07
0.30 0.61 0.21 0.88 0.38 0.17 0.65 0.49 0.54 0.73 0.07 0.49 0.97 0.34 0.88 0.12 0.98 0.97 0.44 0.79 0.38 0.67 0.95 0.53 0.84 0.33 0.48 0.38 0.24 0.98 0.65 0.22 0.08 0.94 0.59 0.08 0.65 0.79 0.82 0.56 0.97 0.95 0.75 0.73 0.42 0.96 0.67 0.68 0.59 0.77 0.80 0.39 0.35 0.31 0.94 0.31 0.04 0.65 0.29
-0.034 -0.149 -0.035 -0.090 -0.033 -0.004 -0.267 -0.085 -0.057 -0.336 -0.719 -0.107 -0.308 -0.056 -0.417 -0.649 -0.193 -0.224 -0.073 -0.429 -0.072 -0.282 -0.346 -0.041 -0.123 -0.569 -0.106 -0.335 -0.007 -0.249 -0.124 -0.514 -0.779 -0.274 -0.537 -0.775 -0.287 -0.268 -0.220 -0.494 -0.315 -0.257 -0.119 -0.172 -0.538 -0.318 -0.235 -0.306 -0.538 -0.214 -0.238 -0.033 -0.521 -0.562 -0.265 -0.532 -0.721 -0.158 -0.306
0.71 0.37 0.84 0.23 0.61 0.98 0.36 0.50 0.47 0.09 0.00 0.51 0.21 0.73 0.13 0.01 0.19 0.22 0.60 0.12 0.70 0.41 0.25 0.54 0.32 0.03 0.59 0.04 0.97 0.21 0.45 0.02 0.00 0.19 0.09 0.01 0.10 0.37 0.37 0.08 0.28 0.31 0.44 0.45 0.06 0.30 0.12 0.13 0.10 0.43 0.40 0.80 0.04 0.03 0.34 0.04 0.00 0.55 0.03
0.81 0.54 0.90 0.42 0.73 0.99 0.54 0.65 0.62 0.25 0.05 0.65 0.41 0.82 0.31 0.06 0.38 0.42 0.72 0.30 0.80 0.57 0.44 0.67 0.50 0.15 0.72 0.16 0.98 0.41 0.61 0.12 0.06 0.38 0.25 0.06 0.27 0.55 0.54 0.25 0.47 0.49 0.60 0.61 0.20 0.49 0.30 0.31 0.27 0.59 0.57 0.87 0.17 0.16 0.52 0.16 0.05 0.69 0.15
ACCEPTED MANUSCRIPT
15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
0.75 0.70 0.52 0.79 0.54 0.88 0.58 0.34 0.76 0.70 0.90 0.62 0.82 0.69 0.49 0.53 0.70 0.60 0.74 0.68 0.52 0.82 0.64 0.53 0.81 0.45 0.47 0.91 0.79 0.72 0.80 0.67 0.74 0.50 0.64 0.66 0.60 0.60 0.64 0.87 0.04 0.86 0.68 0.74 0.83 0.61 0.75 0.59 0.57 0.85 0.76 0.07 0.72 0.87 0.44 0.65 0.35 0.80 0.66
0.002 0.005 0.054 0.001 0.046 0.000 0.028 0.233 0.001 0.005 0.000 0.019 0.000 0.006 0.091 0.049 0.006 0.024 0.003 0.007 0.056 0.000 0.013 0.051 0.000 0.109 0.090 0.000 0.001 0.003 0.001 0.009 0.002 0.072 0.014 0.010 0.022 0.024 0.014 0.000 0.902 0.000 0.008 0.002 0.000 0.021 0.002 0.026 0.032 0.000 0.002 0.819 0.004 0.000 0.117 0.012 0.224 0.001 0.010
0.004 0.008 0.060 0.002 0.052 0.000 0.033 0.238 0.003 0.008 0.000 0.023 0.001 0.009 0.097 0.055 0.008 0.029 0.005 0.011 0.062 0.001 0.018 0.057 0.001 0.114 0.096 0.000 0.002 0.006 0.001 0.013 0.005 0.078 0.018 0.013 0.027 0.029 0.018 0.000 0.904 0.000 0.011 0.005 0.001 0.026 0.004 0.031 0.037 0.001 0.003 0.824 0.006 0.000 0.122 0.016 0.230 0.001 0.013
35 35 34 33 35 33 34 35 35 35 35 35 35 34 35 35 35 35 35 35 34 32 35 35 35 35 35 34 35 32 35 35 35 35 35 34 35 35 35 35 35 35 32 35 34 35 35 35 35 32 35 35 35 35 35 35 35 35 35
0.53 0.21 0.25 0.44 -0.11 0.22 0.31 0.30 0.70 0.09 0.91 0.15 0.56 0.24 0.22 0.52 0.68 0.40 0.58 0.20 0.29 0.35 0.27 0.56 0.69 0.53 0.15 0.84 0.53 0.21 0.65 0.75 0.73 0.25 0.63 0.33 0.47 0.64 0.38 0.88 0.27 0.88 0.07 0.57 0.39 0.38 0.75 0.36 0.71 0.56 0.16 -0.05 0.76 0.88 0.21 0.11 0.43 0.46 0.76
0.001 0.239 0.154 0.012 0.551 0.222 0.076 0.088 0.000 0.630 0.000 0.395 0.001 0.171 0.206 0.001 0.000 0.018 0.000 0.250 0.101 0.051 0.117 0.001 0.000 0.001 0.393 0.000 0.001 0.248 0.000 0.000 0.000 0.147 0.000 0.064 0.005 0.000 0.025 0.000 0.127 0.000 0.720 0.000 0.027 0.027 0.000 0.038 0.000 0.001 0.359 0.764 0.000 0.000 0.236 0.547 0.010 0.007 0.000
0.003 0.287 0.199 0.021 0.591 0.270 0.106 0.121 0.000 0.663 0.000 0.443 0.002 0.219 0.254 0.003 0.000 0.031 0.001 0.298 0.137 0.076 0.156 0.002 0.000 0.003 0.441 0.000 0.003 0.297 0.000 0.000 0.000 0.193 0.000 0.092 0.009 0.000 0.042 0.000 0.168 0.000 0.741 0.001 0.044 0.045 0.000 0.060 0.000 0.002 0.407 0.784 0.000 0.000 0.284 0.588 0.019 0.012 0.000
0.21 0.24 0.31 -0.10 0.30 0.11 0.28 0.34 0.19 0.22 0.09 0.26 0.14 0.22 0.31 0.28 0.21 0.25 0.19 0.22 0.28 0.14 0.23 -0.19 0.14 -0.21 0.28 0.07 0.15 0.18 0.14 0.20 0.16 -0.19 0.20 0.19 -0.15 0.21 -0.14 0.09 -0.27 0.09 0.18 0.15 0.10 -0.14 0.14 0.19 0.20 0.09 0.13 0.25 0.14 0.08 -0.18 0.16 -0.19 0.10 0.16
0.248 0.257 0.262 0.263 0.266 0.266 0.267 0.269 0.281 0.285 0.287 0.288 0.291 0.292 0.298 0.298 0.301 0.303 0.306 0.307 0.309 0.316 0.318 0.321 0.323 0.328 0.330 0.330 0.334 0.343 0.348 0.354 0.367 0.368 0.368 0.370 0.372 0.380 0.385 0.386 0.388 0.391 0.391 0.398 0.400 0.407 0.414 0.418 0.421 0.430 0.431 0.439 0.439 0.440 0.446 0.448 0.449 0.453 0.454
0.371 0.384 0.389 0.389 0.392 0.392 0.393 0.395 0.411 0.415 0.418 0.418 0.421 0.421 0.427 0.427 0.430 0.432 0.436 0.436 0.438 0.445 0.447 0.451 0.452 0.459 0.459 0.459 0.463 0.473 0.480 0.487 0.503 0.503 0.503 0.503 0.505 0.515 0.520 0.520 0.521 0.523 0.523 0.531 0.533 0.539 0.547 0.552 0.554 0.564 0.564 0.572 0.572 0.572 0.578 0.579 0.580 0.584 0.584
-0.007 -0.256 0.036 -0.455 -0.348 -0.545 0.012 0.297 0.119 -0.397 0.106 -0.212 -0.123 -0.226 0.041 0.268 0.190 0.061 0.028 -0.260 0.046 -0.331 -0.140 -0.161 0.022 -0.133 -0.043 -0.009 -0.112 -0.331 -0.015 0.279 0.148 -0.428 0.199 -0.145 -0.284 0.258 -0.394 0.096 -0.037 0.114 -0.431 -0.017 -0.342 -0.373 0.139 -0.041 0.337 -0.190 -0.468 0.126 0.188 0.087 -0.405 -0.375 -0.107 -0.243 0.253
RI PT
0.00 0.00 0.06 0.00 0.03 0.00 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SC
0.000 0.000 0.046 0.000 0.026 0.000 0.005 0.997 0.000 0.000 0.000 0.001 0.000 0.000 0.099 0.019 0.000 0.001 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.000 0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M AN U
0.54 0.46 0.22 0.89 0.24 0.77 0.30 0.00 0.58 0.48 0.81 0.36 0.68 0.47 0.18 0.26 0.49 0.34 0.55 0.46 0.25 0.68 0.41 0.72 0.67 0.66 0.19 0.84 0.64 0.54 0.66 0.47 0.58 0.68 0.44 0.47 0.76 0.38 0.78 0.78 0.30 0.76 0.50 0.59 0.73 0.75 0.61 0.40 0.38 0.76 0.63 -0.18 0.58 0.79 0.61 0.48 0.54 0.70 0.51
TE D
85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 85 80 85 85 85 85 85 85 80 85 85 85 85 85 85 85 85 85
EP
IFNg MCSF RANTES IL4 MIG MIP3a RANTES MCP1 MIP1a MIP3a MCSF Groa/CXCL1 Lactoferrin TGFb IL8 MIP1a TNFa IP10 MIP1a Lactoferrin RANTES IL33 IL2 Groa/CXCL1 MIP3a IL13 MIG TGFb IFNg IL33 TNFa IL6 Lactoferrin MCP1 IL2 RANTES MIP1a MIP1b MIP1a IL7 IP10 IL13 IL33 ITAC/CXCL11 TGFb MIP1a ITAC/CXCL11 TNFa IP10 TGFb MIG IP10 TNFa IL15 MCP1 IL15 IP10 IL16 MIG
AC C
Calgranulin A Groa/CXCL1 IL18 Calgranulin A HMGB1 IL4 IL12 IL18 IFNg IL18 IL15 GMCSF IL7 IL18 GMCSF Calgranulin C GMCSF IL13 IL16 Calgranulin C GMCSF IL10 Groa/CXCL1 Calgranulin C IL13 Calgranulin C IL6 Eotaxin Groa/CXCL1 Calgranulin A Lactoferrin Calgranulin A HMGB1 IL2 IL13 ITAC/CXCL11 MCSF Calgranulin A IL15 IL13 Calgranulin C IL10 Calgranulin C Groa/CXCL1 MIP3a GMCSF IL10 IP10 Groa/CXCL1 IL33 IL13 IL2 IL12 HMGB1 GMCSF Groa/CXCL1 Calgranulin A Groa/CXCL1 IP10
0.96 0.17 0.86 0.00 0.09 0.00 0.95 0.15 0.34 0.04 0.04 0.28 0.34 0.22 0.84 0.13 0.17 0.74 0.84 0.16 0.82 0.03 0.45 0.19 0.85 0.33 0.83 0.88 0.42 0.08 0.90 0.03 0.21 0.01 0.18 0.42 0.03 0.09 0.00 0.14 0.85 0.09 0.03 0.90 0.02 0.01 0.21 0.82 0.02 0.12 0.01 0.55 0.10 0.16 0.02 0.05 0.50 0.08 0.04
0.98 0.40 0.94 0.00 0.32 0.01 0.98 0.38 0.57 0.20 0.20 0.50 0.57 0.45 0.94 0.36 0.40 0.88 0.94 0.39 0.94 0.19 0.65 0.42 0.94 0.56 0.94 0.95 0.63 0.29 0.96 0.17 0.44 0.08 0.41 0.63 0.16 0.31 0.04 0.37 0.94 0.31 0.18 0.96 0.12 0.08 0.44 0.94 0.13 0.35 0.08 0.73 0.32 0.39 0.13 0.22 0.69 0.29 0.20
-0.218 -0.492 -0.270 -0.354 -0.647 -0.657 -0.270 -0.044 -0.067 -0.615 0.016 -0.467 -0.267 -0.446 -0.265 -0.010 -0.022 -0.194 -0.160 -0.477 -0.230 -0.468 -0.368 0.029 -0.118 0.082 -0.319 -0.079 -0.262 -0.511 -0.153 0.081 -0.012 -0.242 -0.004 -0.337 -0.132 0.046 -0.258 0.009 0.230 0.020 -0.610 -0.166 -0.446 -0.231 0.000 -0.235 0.138 -0.281 -0.597 -0.121 0.045 0.011 -0.229 -0.540 0.086 -0.347 0.096
0.28 0.06 0.36 0.09 0.04 0.00 0.33 0.89 0.68 0.03 0.80 0.10 0.12 0.09 0.40 0.97 0.90 0.46 0.41 0.08 0.43 0.03 0.17 0.91 0.43 0.76 0.31 0.33 0.17 0.05 0.35 0.64 0.94 0.42 0.98 0.19 0.60 0.83 0.31 0.92 0.50 0.82 0.03 0.40 0.03 0.38 1.00 0.38 0.50 0.09 0.02 0.73 0.78 0.89 0.46 0.06 0.77 0.08 0.57
0.47 0.21 0.54 0.25 0.17 0.03 0.51 0.93 0.78 0.15 0.87 0.28 0.30 0.25 0.57 0.98 0.94 0.62 0.58 0.24 0.59 0.15 0.36 0.94 0.59 0.84 0.49 0.51 0.36 0.19 0.53 0.75 0.96 0.58 0.99 0.38 0.72 0.89 0.50 0.95 0.65 0.88 0.16 0.57 0.15 0.55 1.00 0.56 0.65 0.25 0.12 0.82 0.86 0.93 0.62 0.21 0.86 0.24 0.71
ACCEPTED MANUSCRIPT
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
0.82 0.62 0.62 0.71 0.70 0.73 0.71 0.72 0.74 0.72 0.57 0.66 0.75 0.54 0.65 0.87 0.68 0.57 0.74 0.80 0.46 0.62 0.80 0.54 0.65 0.75 0.41 0.61 0.56 0.72 0.60 0.47 0.46 0.40 0.60 0.60 0.64 0.67 0.76 0.62 0.71 0.63 0.47 0.48 0.58 0.77 0.60 0.53 0.69 0.55 0.11 0.59 0.57 0.16 0.40 0.59 0.13 0.91 0.79
0.000 0.019 0.019 0.005 0.005 0.003 0.005 0.004 0.003 0.004 0.035 0.010 0.002 0.044 0.011 0.000 0.007 0.034 0.002 0.001 0.097 0.019 0.001 0.048 0.011 0.002 0.151 0.020 0.039 0.003 0.023 0.089 0.099 0.156 0.023 0.022 0.014 0.008 0.002 0.017 0.005 0.016 0.091 0.085 0.029 0.001 0.022 0.051 0.006 0.041 0.717 0.026 0.033 0.582 0.153 0.027 0.653 0.000 0.001
0.001 0.023 0.023 0.007 0.008 0.005 0.007 0.007 0.005 0.006 0.040 0.014 0.004 0.050 0.015 0.000 0.010 0.040 0.004 0.001 0.103 0.023 0.001 0.053 0.015 0.004 0.156 0.024 0.044 0.006 0.028 0.096 0.104 0.160 0.028 0.027 0.018 0.012 0.003 0.021 0.007 0.020 0.097 0.091 0.035 0.003 0.027 0.056 0.009 0.046 0.723 0.032 0.038 0.589 0.158 0.032 0.659 0.000 0.002
35 35 35 35 35 32 35 35 35 34 34 35 35 35 35 35 35 35 33 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 34 35 34 35 35 35 35 35 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35
0.70 0.26 0.52 0.74 0.67 0.46 0.69 0.36 0.40 -0.07 0.22 0.86 0.48 0.08 0.60 0.91 0.56 0.57 0.28 0.77 -0.20 0.08 0.82 0.08 0.66 0.64 -0.29 0.51 0.46 0.65 0.53 0.27 0.23 0.44 0.37 0.29 0.59 0.44 0.81 0.48 0.60 0.25 0.33 0.32 0.24 0.36 0.46 0.19 0.20 0.35 -0.12 0.53 0.18 0.01 0.40 0.18 -0.28 0.94 0.57
0.000 0.138 0.002 0.000 0.000 0.009 0.000 0.037 0.020 0.681 0.223 0.000 0.004 0.644 0.000 0.000 0.001 0.000 0.116 0.000 0.268 0.640 0.000 0.644 0.000 0.000 0.102 0.002 0.006 0.000 0.001 0.117 0.200 0.010 0.030 0.096 0.000 0.010 0.000 0.004 0.000 0.152 0.059 0.069 0.180 0.042 0.006 0.280 0.261 0.044 0.497 0.001 0.314 0.942 0.018 0.311 0.108 0.000 0.000
0.000 0.181 0.004 0.000 0.000 0.016 0.000 0.059 0.034 0.704 0.271 0.000 0.008 0.670 0.000 0.000 0.001 0.001 0.155 0.000 0.315 0.670 0.000 0.670 0.000 0.000 0.138 0.005 0.011 0.000 0.003 0.156 0.247 0.017 0.048 0.131 0.001 0.018 0.000 0.008 0.001 0.197 0.086 0.099 0.228 0.064 0.012 0.325 0.308 0.066 0.537 0.003 0.359 0.949 0.030 0.357 0.146 0.000 0.001
0.10 0.17 -0.13 0.14 0.14 0.13 0.13 0.13 0.11 0.12 0.16 -0.10 0.10 0.16 0.13 0.06 0.12 0.15 0.10 0.08 0.16 0.13 -0.06 0.14 0.12 0.09 0.16 0.12 0.13 0.09 0.12 0.14 -0.12 0.15 -0.10 0.12 0.11 0.10 0.08 0.11 0.09 0.10 -0.11 -0.11 0.11 0.07 0.10 0.11 0.08 0.11 0.14 0.10 0.10 0.14 0.12 0.10 0.13 0.03 0.05
0.456 0.457 0.459 0.465 0.472 0.479 0.486 0.489 0.504 0.510 0.517 0.519 0.523 0.531 0.534 0.538 0.542 0.544 0.546 0.547 0.561 0.565 0.567 0.569 0.570 0.571 0.577 0.577 0.581 0.587 0.589 0.592 0.600 0.602 0.603 0.603 0.609 0.617 0.619 0.625 0.626 0.631 0.631 0.637 0.642 0.643 0.644 0.646 0.647 0.648 0.658 0.658 0.658 0.662 0.669 0.670 0.682 0.684 0.690
0.584 0.584 0.585 0.591 0.599 0.606 0.614 0.616 0.634 0.640 0.646 0.647 0.652 0.660 0.662 0.665 0.668 0.669 0.670 0.670 0.685 0.689 0.690 0.690 0.690 0.690 0.694 0.694 0.697 0.703 0.703 0.705 0.712 0.712 0.712 0.712 0.718 0.725 0.726 0.731 0.731 0.734 0.734 0.739 0.742 0.742 0.742 0.742 0.742 0.742 0.749 0.749 0.749 0.752 0.758 0.758 0.769 0.770 0.775
-0.016 -0.188 -0.226 0.164 0.106 -0.144 0.118 -0.230 -0.229 -0.675 -0.190 0.095 -0.169 -0.306 0.079 0.088 0.001 0.154 -0.362 0.044 -0.497 -0.407 -0.037 -0.312 0.127 -0.025 -0.531 0.016 0.043 0.024 0.057 -0.052 -0.356 0.187 -0.324 -0.198 0.063 -0.139 0.125 -0.035 -0.022 -0.276 -0.252 -0.270 -0.238 -0.340 -0.043 -0.226 -0.411 -0.094 -0.085 0.043 -0.290 -0.009 0.123 -0.312 -0.281 0.050 -0.162
RI PT
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.00 0.86 0.01 0.00 0.99 0.00 0.00
SC
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.002 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.000 0.000 0.841 0.009 0.000 0.993 0.000 0.000
M AN U
0.72 0.45 0.74 0.57 0.56 0.61 0.58 0.59 0.63 0.60 0.41 0.76 0.65 0.39 0.53 0.82 0.56 0.42 0.65 0.72 0.30 0.49 0.86 0.39 0.54 0.66 0.25 0.49 0.42 0.63 0.48 0.33 0.58 0.25 0.70 0.49 0.53 0.57 0.69 0.52 0.62 0.53 0.58 0.59 0.47 0.70 0.50 0.42 0.61 0.44 -0.04 0.49 0.47 0.02 0.28 0.49 0.00 0.89 0.74
TE D
85 85 85 85 85 80 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 83 85 83 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85
EP
MIP3a TNFa MIP1a TNFa IL13 IL33 TNFa HMGB1 MIP1b TGFb RANTES ITAC/CXCL11 MIP1b MIP3a MCSF TNFa IL7 IL13 IL4 MIP1a MIG MIP1b IL13 MIP1b IL13 Eotaxin MIG MCP1 IP10 IL13 MIG IP10 MCP1 MCP1 MCP1 MIP1b IL1b MIP1b IL1b MCP1 TNFa IL12 MCP1 MCSF MIP1b TGFb MIP3a IL18 TNFa MIG MCSF IL10 MIP1b IP10 IP10 MIP1b IP10 IL2 IL7
AC C
Calgranulin A IL18 IL12 HMGB1 HMGB1 IL13 MCSF Groa/CXCL1 IL16 MIG Calgranulin C IL13 IFNg MIG IL13 Eotaxin Calgranulin A GMCSF IL18 MCP1 MCSF IL15 IFNg GMCSF IL12 Calgranulin A IL15 IL16 IL10 Calgranulin A Groa/CXCL1 Eotaxin IL15 Calgranulin C IL1a HMGB1 Calgranulin C ITAC/CXCL11 Calgranulin A IFNg IL15 Groa/CXCL1 IL12 MCP1 IL12 Lactoferrin Calgranulin C IL13 MIG ITAC/CXCL11 IP10 Calgranulin C MCSF HMGB1 IL6 IL2 IL15 IL1a Groa/CXCL1
0.88 0.31 0.07 0.17 0.41 0.36 0.35 0.15 0.14 0.00 0.32 0.18 0.23 0.12 0.58 0.09 0.99 0.33 0.03 0.64 0.02 0.03 0.54 0.11 0.34 0.83 0.01 0.92 0.80 0.85 0.72 0.79 0.04 0.31 0.03 0.27 0.66 0.37 0.18 0.82 0.87 0.12 0.13 0.10 0.19 0.02 0.79 0.24 0.02 0.60 0.68 0.78 0.12 0.97 0.51 0.09 0.17 0.16 0.17
0.95 0.54 0.28 0.40 0.63 0.58 0.57 0.39 0.37 0.01 0.56 0.41 0.46 0.35 0.76 0.31 1.00 0.56 0.17 0.80 0.12 0.18 0.73 0.34 0.57 0.94 0.10 0.97 0.93 0.94 0.87 0.92 0.20 0.55 0.17 0.49 0.82 0.59 0.41 0.94 0.95 0.35 0.35 0.33 0.42 0.15 0.92 0.46 0.12 0.77 0.84 0.91 0.35 0.98 0.70 0.31 0.40 0.39 0.40
-0.112 -0.357 -0.100 0.027 -0.031 -0.269 -0.013 -0.357 -0.343 -0.794 -0.348 0.196 -0.272 -0.462 -0.050 0.033 -0.118 0.007 -0.461 -0.037 -0.656 -0.535 0.019 -0.455 0.010 -0.115 -0.691 -0.108 -0.092 -0.070 -0.066 -0.197 -0.233 0.038 -0.227 -0.315 -0.044 -0.237 0.049 -0.140 -0.109 -0.379 -0.141 -0.162 -0.346 -0.409 -0.146 -0.340 -0.495 -0.204 -0.227 -0.057 -0.393 -0.148 0.002 -0.408 -0.412 0.025 -0.215
0.44 0.20 0.67 0.87 0.87 0.23 0.94 0.14 0.13 0.01 0.23 0.16 0.19 0.13 0.81 0.65 0.58 0.98 0.06 0.79 0.05 0.07 0.87 0.14 0.96 0.52 0.04 0.65 0.72 0.70 0.78 0.51 0.45 0.90 0.39 0.25 0.84 0.32 0.72 0.56 0.59 0.17 0.63 0.58 0.23 0.07 0.56 0.26 0.06 0.46 0.52 0.81 0.18 0.67 1.00 0.16 0.23 0.63 0.23
0.60 0.39 0.78 0.91 0.91 0.42 0.97 0.31 0.31 0.06 0.42 0.35 0.38 0.31 0.88 0.76 0.71 0.99 0.21 0.86 0.18 0.22 0.91 0.31 0.98 0.66 0.16 0.76 0.82 0.80 0.86 0.65 0.61 0.93 0.56 0.44 0.90 0.50 0.81 0.70 0.72 0.35 0.74 0.71 0.42 0.22 0.70 0.45 0.21 0.62 0.65 0.88 0.37 0.77 1.00 0.34 0.42 0.74 0.42
ACCEPTED MANUSCRIPT
15 15 15 15 15 15 15 15 15 15 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
0.45 0.65 0.49 0.50 0.25 0.74 0.60 0.82 0.06 0.60 0.49 0.52 0.50 0.85 0.46 0.70 0.42 0.46 0.63 0.67 0.85 0.52 0.44 0.62 0.59 0.63 0.31 0.46 0.25 0.68 0.62 0.63 0.49 0.58 0.72 0.36 -0.03 0.80 0.75 0.85 0.53 0.54 0.31 0.51 0.71 0.73 0.57 0.78 0.67 0.49 0.80 0.75 0.68 0.88 0.46 0.31 0.83 0.78
0.105 0.012 0.077 0.070 0.391 0.003 0.023 0.000 0.828 0.023 0.075 0.055 0.084 0.000 0.097 0.006 0.133 0.100 0.015 0.008 0.000 0.056 0.111 0.018 0.027 0.016 0.280 0.098 0.395 0.007 0.019 0.015 0.076 0.030 0.004 0.209 0.922 0.001 0.002 0.000 0.049 0.048 0.284 0.062 0.004 0.003 0.035 0.001 0.009 0.073 0.001 0.002 0.008 0.000 0.097 0.283 0.000 0.001
0.110 0.016 0.083 0.077 0.397 0.005 0.028 0.001 0.831 0.027 0.081 0.061 0.090 0.000 0.103 0.009 0.138 0.105 0.019 0.012 0.000 0.062 0.116 0.023 0.032 0.020 0.286 0.103 0.400 0.011 0.023 0.020 0.082 0.035 0.006 0.215 0.922 0.001 0.004 0.000 0.055 0.054 0.290 0.068 0.007 0.006 0.040 0.002 0.012 0.079 0.001 0.004 0.011 0.000 0.103 0.289 0.001 0.002
35 35 35 35 35 32 35 34 35 35 35 34 35 35 35 35 34 35 35 35 35 33 35 35 35 34 35 32 35 35 33 35 33 35 35 32 35 35 35 35 35 35 35 35 35 32 35 35 34 35 35 35 35 35 35 35 34 33
0.28 0.36 0.35 0.10 0.16 0.49 0.59 0.85 -0.12 0.49 0.00 0.23 0.55 0.91 -0.09 0.58 -0.04 -0.12 0.75 0.63 0.89 0.36 0.35 0.51 0.15 0.47 0.28 0.09 0.50 0.74 0.56 0.13 0.43 0.50 0.25 -0.04 -0.18 0.89 0.85 0.87 0.29 0.56 0.20 0.56 0.47 0.22 0.23 0.54 0.37 0.41 0.62 0.81 0.45 0.91 0.21 -0.19 0.73 0.46
0.109 0.037 0.042 0.583 0.363 0.005 0.000 0.000 0.512 0.003 0.979 0.207 0.001 0.000 0.600 0.000 0.823 0.497 0.000 0.000 0.000 0.040 0.045 0.002 0.410 0.006 0.109 0.633 0.003 0.000 0.001 0.478 0.014 0.003 0.162 0.818 0.310 0.000 0.000 0.000 0.091 0.001 0.264 0.001 0.005 0.245 0.182 0.001 0.035 0.015 0.000 0.000 0.008 0.000 0.226 0.270 0.000 0.008
0.147 0.058 0.065 0.619 0.411 0.009 0.001 0.000 0.551 0.007 0.980 0.254 0.002 0.000 0.634 0.001 0.842 0.537 0.000 0.000 0.000 0.062 0.069 0.005 0.458 0.011 0.147 0.664 0.006 0.000 0.002 0.519 0.025 0.006 0.209 0.838 0.357 0.000 0.000 0.000 0.125 0.002 0.311 0.001 0.009 0.294 0.229 0.002 0.056 0.026 0.000 0.000 0.015 0.000 0.273 0.316 0.000 0.014
-0.09 0.08 0.10 0.10 -0.11 0.06 -0.07 -0.03 0.11 -0.06 0.08 0.08 0.08 0.03 0.08 0.05 0.08 0.08 -0.05 0.05 0.03 0.07 0.07 0.05 0.05 0.04 0.06 0.05 -0.06 -0.03 0.03 0.03 0.04 0.03 0.02 0.04 0.04 0.02 -0.02 0.01 0.02 -0.02 0.03 -0.02 0.01 -0.01 0.02 0.01 0.01 -0.01 0.00 0.00 -0.01 0.00 0.01 0.01 0.00 0.00
0.696 0.696 0.699 0.705 0.712 0.720 0.721 0.730 0.734 0.735 0.746 0.760 0.765 0.766 0.766 0.768 0.769 0.775 0.775 0.779 0.780 0.786 0.787 0.792 0.810 0.832 0.841 0.842 0.844 0.867 0.874 0.880 0.884 0.890 0.893 0.896 0.898 0.898 0.912 0.920 0.924 0.928 0.928 0.937 0.939 0.940 0.941 0.945 0.953 0.957 0.971 0.973 0.975 0.978 0.982 0.982 0.991 0.991
0.779 0.779 0.780 0.786 0.791 0.798 0.798 0.807 0.808 0.808 0.819 0.832 0.834 0.834 0.834 0.834 0.834 0.837 0.837 0.839 0.839 0.843 0.843 0.846 0.864 0.885 0.892 0.892 0.893 0.916 0.921 0.925 0.928 0.933 0.933 0.933 0.933 0.933 0.947 0.952 0.954 0.955 0.955 0.961 0.961 0.961 0.961 0.963 0.969 0.971 0.984 0.984 0.984 0.986 0.986 0.986 0.991 0.991
-0.266 -0.211 -0.037 -0.303 -0.195 -0.185 -0.075 0.003 -0.072 -0.176 -0.403 -0.221 0.130 0.083 -0.476 -0.065 -0.382 -0.503 0.068 0.014 0.066 -0.090 -0.027 -0.059 -0.389 -0.119 0.029 -0.319 0.191 0.033 -0.027 -0.476 -0.023 -0.055 -0.450 -0.363 -0.109 0.101 0.086 0.030 -0.217 0.001 -0.084 0.033 -0.229 -0.523 -0.314 -0.229 -0.292 -0.092 -0.182 0.061 -0.237 0.031 -0.242 -0.497 -0.099 -0.320
RI PT
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.55 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
SC
0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.684 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.526 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000
M AN U
0.55 0.57 0.39 0.40 0.36 0.68 0.67 0.85 -0.05 0.67 0.41 0.45 0.42 0.82 0.38 0.64 0.34 0.38 0.69 0.62 0.83 0.45 0.37 0.57 0.54 0.59 0.25 0.41 0.30 0.71 0.59 0.60 0.45 0.55 0.70 0.32 -0.07 0.79 0.77 0.84 0.51 0.56 0.28 0.53 0.70 0.74 0.55 0.77 0.66 0.51 0.80 0.75 0.68 0.88 0.46 0.30 0.83 0.78
TE D
85 85 85 85 85 80 85 85 85 85 85 83 85 85 85 85 85 85 85 85 85 85 85 85 85 83 85 80 85 85 85 85 85 85 85 80 85 85 85 85 85 85 85 85 85 79 85 85 85 85 85 85 85 85 85 85 85 83
EP
MIG IL18 IL6 Lactoferrin IP10 TNFa MIP1a TNFa IP10 TNFa MIG IP10 IL8 TNFa MIG Lactoferrin TGFb MIG TNFa MIP1a IL13 IL4 IP10 IL15 MIG IL1b IP10 MIG ITAC/CXCL11 IL10 IP10 MIG MIG MCP1 MIG IP10 IP10 TNFa TNFa TNFa MIP3a MIP1b IP10 Calgranulin C Eotaxin IL33 MIG IL7 TGFb MCP1 MIP1a IL16 IL18 TNFa MIG MIG TGFb IL4
AC C
Calgranulin A IL10 IL18 IP10 IL18 IL33 HMGB1 TGFb IL12 Calgranulin C IL16 IL1b Calgranulin C IL7 Lactoferrin IL13 IP10 IL12 Calgranulin A ITAC/CXCL11 Eotaxin Calgranulin C IL7 IL13 IFNg IL18 IFNg IL33 IP10 Calgranulin A IL4 Eotaxin IL4 ITAC/CXCL11 IL7 IL33 GMCSF IL16 ITAC/CXCL11 IFNg IP10 Calgranulin C IL16 Calgranulin A Calgranulin C IL1b IL10 Calgranulin C Calgranulin C HMGB1 IL1a IL13 Calgranulin A IL13 IL18 GMCSF IL10 IL1b
0.12 0.20 0.84 0.12 0.32 0.20 0.56 0.96 0.73 0.20 0.04 0.24 0.42 0.11 0.02 0.62 0.06 0.01 0.50 0.91 0.22 0.62 0.88 0.69 0.03 0.44 0.88 0.12 0.28 0.75 0.85 0.01 0.89 0.72 0.00 0.09 0.60 0.10 0.24 0.59 0.22 1.00 0.67 0.82 0.09 0.00 0.07 0.05 0.06 0.58 0.07 0.45 0.09 0.47 0.19 0.02 0.23 0.01
0.35 0.43 0.94 0.35 0.55 0.43 0.75 0.98 0.88 0.43 0.21 0.46 0.63 0.33 0.13 0.78 0.27 0.12 0.69 0.96 0.44 0.78 0.95 0.85 0.18 0.65 0.95 0.35 0.50 0.88 0.94 0.08 0.96 0.87 0.06 0.31 0.77 0.32 0.46 0.77 0.44 1.00 0.83 0.94 0.31 0.03 0.29 0.22 0.25 0.76 0.29 0.65 0.31 0.67 0.42 0.12 0.46 0.10
-0.172 -0.289 -0.138 -0.400 -0.088 -0.242 -0.006 0.037 -0.181 -0.112 -0.486 -0.297 0.051 0.054 -0.555 -0.118 -0.462 -0.578 0.120 -0.038 0.040 -0.156 -0.099 -0.114 -0.442 -0.162 -0.031 -0.371 0.250 0.060 -0.060 -0.506 -0.060 -0.085 -0.471 -0.401 -0.151 0.086 0.101 0.021 -0.240 0.021 -0.111 0.052 -0.241 -0.512 -0.331 -0.238 -0.302 -0.079 -0.186 0.065 -0.231 0.033 -0.248 -0.503 -0.100 -0.318
0.57 0.26 0.63 0.20 0.79 0.26 0.98 0.73 0.61 0.65 0.13 0.32 0.85 0.48 0.09 0.57 0.16 0.08 0.51 0.85 0.63 0.58 0.74 0.63 0.13 0.51 0.92 0.25 0.40 0.73 0.80 0.08 0.83 0.73 0.06 0.24 0.66 0.38 0.41 0.82 0.40 0.93 0.74 0.84 0.28 0.05 0.25 0.21 0.23 0.78 0.27 0.63 0.32 0.65 0.42 0.14 0.46 0.12
0.71 0.45 0.74 0.40 0.87 0.45 0.99 0.82 0.73 0.76 0.31 0.50 0.90 0.63 0.25 0.71 0.35 0.24 0.65 0.90 0.74 0.71 0.82 0.74 0.31 0.65 0.95 0.44 0.57 0.82 0.87 0.24 0.89 0.82 0.21 0.43 0.77 0.56 0.58 0.88 0.57 0.96 0.82 0.89 0.47 0.18 0.44 0.41 0.42 0.86 0.46 0.74 0.51 0.76 0.58 0.31 0.62 0.30
ACCEPTED MANUSCRIPT
AC C
EP
TE D
M AN U
SC
RI PT
Microbial associated intra-amniotic inflammation