Excess enthalpies of mixing methane with methanol, n-heptane, toluene and methylcyclohexane at 255.4 and 310.9 K and 13.8 MPa

Excess enthalpies of mixing methane with methanol, n-heptane, toluene and methylcyclohexane at 255.4 and 310.9 K and 13.8 MPa

ILUlOPml [QUIUHIA ELSEVIER Fluid Phase Equilibria 114 (1996) 161- 174 Excess enthalpies of mixing methane with methanol, n-heptane, toluene and meth...

555KB Sizes 0 Downloads 60 Views

ILUlOPml [QUIUHIA ELSEVIER

Fluid Phase Equilibria 114 (1996) 161- 174

Excess enthalpies of mixing methane with methanol, n-heptane, toluene and methylcyclohexane at 255.4 and 310.9 K and 13.8 MPa J.L. Oscarson a,*, j . y . Coxam b, S.E. Gillespie ~, R.M. Izatt c a Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA b Laboratoire de Thermodynamique et Gdnie Chemique, Universitd Blaise Pascal, 63177 Aubibre Cedex, France c Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA

Received 5 January 1995; accepted 18 June 1995

Abstract Excess molar enthalpies, H E, have been measured for methane with methanol, n-heptane, toluene, and methylcyclohexane at 310.9 and 255.4 K and at 13.8 MPa. Four ternary systems were also studied. These included (methane + (88.2% toluene + 11.8% methanol)), (methane + (93.4% toluene + 6.6% methanol)), (methane +(87.8% methylcyclohexane + 12.2% methanol)), and (methane + (93.8% methylcyclohexane + 6.2% methanol)). The H E values have been fitted using an ordinary Redlich-Kister equation and a linear least-squares method over the one-phase and the two-phase regions, respectively. A modified Redlich-Kister equation was used to fit H E values for (methane + n-heptane). The solubility of methane in the liquid phase has been determined from the plot of H E VS. the mole fraction. Keywords: Experimental; Excess enthalpies; Data thermal; Data VLE

1. I n t r o d u c t i o n Heat o f mixing, H E, data for methane with hydrocarbons are o f interest for calculations needed for process optimization in the natural gas industry. Methanol is used in the gas industry to inhibit the formation o f hydrates in transporting and processing natural gas, as well as to r e m o v e water and acid gases from unprocessed gases. Only limited information about the thermodynamic properties of these systems is available. The H E data were measured using an isothermal flow calorimeter at 255.4 and 310.9 K and 13.8 MPa. At these temperature and pressure conditions methane is in a supercritical state and the hydrocarbons are in the liquid state. Values of H E for (methane + methanol), (methane + n-heptane), (methane + toluene), (methane + methylcyclohexane) together with (methane + (88.2% toluene

* Corresponding author. Tel.: 801 378 6243; Fax.: 801 378 7799. 0378-3812/96/$15.00 © 1996ElsevierScienceB.V. All rights reserved SSDI 0378-3812(95)02813-7

J.L. Oscarson et al./Fluid Phase Equilibria 114 (1996) 161-174

162 + 11.8%

methanol)),

(methane

clohexane

+ 12.2%

methanol)),

reported.

The

one-phase

H E values

region

and

(methane

+ n-heptane)

behavior

has been

the two-phase phase

have

a linear where

discussed

region

equilibrium

+ (93.4% and been

least squares a modified

has been

using

when

methanol)),

method

from

(methane

methylcyclohexane an ordinary

over

equation

physical,

+ (87.8%

+6.2%

Redlich-Kister

the two-phase

Redlich-Kister

of chemical,

determined

values,

+ 6.6%

+ (93.8%

curve-fitted

in terms

literature

toluene

(methane

was

region used.

methylcy-

methanol)) equation

over

for all systems The

enthalpy

except

of mixing

and structural

effects.

The composition

the plot of H E vs. mole

fraction

and compared

available.

The

agreement

is better

are the

of with

than 2%.

2. Experimental The 1986a).

isothermal The

flow

mixing

calorimeter

tubing

used

is made

has

been

of hastelloy-C.

described A water

(Christensen and

50%

(water

et al.,

1976;

+ glycol)

Ott

mixture

et al., were

Table l E x c e s s m o l a r e n t h a l p i e s ( H E) for ( x m e t h a n e + ( 1 - x ) m e t h a n o l ) H E (j t o o l - i ) x

0.0088 0.0175 0.0323 0.0426 0.0528 0.0625 0.0817 0.0910 0.1003 0.1177 0.1347 0.0062 0.0087 0.0230 0.0319 0.0319 0.0319 0.0616 0.0619 0.0805 0.0896 0.0900 0.0900 0.1148 0.1155 0.1155

Exp a 2 5 5 . 4 K, 13.8 M P a 0 -7 -22 - 29 - 47 - 56 - 70 - 79 - 91 - 110 - 117 310.9 K, 13.8 M P a - 5 - 9 -21 -34 -30 -27 -64 - 72 - 91 - 101 - 101 - 96 - 97 - 96 - 106

H E (j m o l - 1) Calc b

X

Exp

-5.8 - 12.0 -23.6 - 32.3 - 41.5 - 50.7 - 70.1 - 80.1 - 90.5 - 110.7 - 124.2

0.1514 0.2106 0.2379 0.3078 0.4008 0.5009 0.6008 0.7007 0.8006 0.9003 0.9475

- 121 - 112 - 110 - 99 - 85 - 72 - 54 - 40 - 26 - 12 - 4

- 121.7 - 113.0 - 109.0 - 98.6 - 84.9 - 70.1 - 55.3 - 40.5 - 25.8 - 11.0 - 4.1

- 5.8 - 8.2 - 22.5 -31.8 -31.8 -31.8 -65.5 - 65.9 - 88.7 - 100.3 - 100.8 - 100.8 - 115.9 - 115.7 - 115.7

0.1160 0. 1165 0.1273 0.1409 0.1415 0.1415 0.1416 0.1652 0.1875 0.1876 0.2087 0.2289 0.2289 0.2480 0.2662

-

-

a E s t i m a t e d uncertainties are ± 5 J m o l - 1 , Eq. 2 over r e g i o n s specified in T a b l e 10.

b

a

110 109 115 105 115 102 103 - 99 - 93 -93 - 89 - 85 - 82 - 79 - 75

Calc b

115.6 115.4 I 11.8 107.4 107.2 107.2 107.2 - 99.4 - 92.1 -92.1 - 85.1 - 78.5 - 78.5 - 72.2 - 66.3

H E values were calculated u s i n g Eq. 1 over regions specified in Table 9 and

J.L. Oscarson et al. / Fluid Phase Equilibria 114 (1996) 161-174 Table

163

2

Excess

molar

enthalpies

(H E) for (x

methane+(1-

x) n-heptane)

H z (Jmol-l) x

H E (Jmol

Exp a

Calc b

i)

x

Exp

a

Calc b

255.4 K, 13.8MPa 0.0226

- 2

0.0545

-

-44 101

16.7

0.3076

- 352

--371.1

- 44.9

0.3542

- 454

- 430.8

-95.9

0.4070

- 483

- 499.1

-54.5

0.4464

- 559

- 552.3

0.1014

-

0.1475

-147

0.2051

- 236

- 233.4

0.5020

- 637

- 630.1

0.2507

- 295

- 296.0

0.5478

- 691

- 689.7

0.2530

- 307

- 299.1

0.6019

- 729

- 729.4

0.3073

- 369

- 370.7

310.9 K, 13.8MPa 0.0196

- 25

- 27.0

0.2184

- 354

- 348.8

0.0384

- 53

- 54.4

0.2421

- 396

- 387.0 - 421.7

0.0736

-

109

-

108.7

0.2643

- 430

0.0739

-

112

-

109.2

0.2844

- 451

- 452.1

0.1065

-

162

-

162.2

0.3229

-499

- 507.4

0.1226

-

198

-

189.0

0.3585

- 557

- 554.1

0.1372

- 216

- 213.4

0.3887

- 577

- 589.7

0.1664

- 257

- 262.6

0.4181

- 618

- 620.0

0.1926

- 309

- 306.4

0.4429

- 656

- 641.5

,~.b S e e f o o t n o t e s Table Excess

in T a b l e

1.

3 molar

enthalpies

(H E) for (x

(j

HE x

mol

methane

+ (1 -

x) toluene)

l)

Exp a

HE (j mol Calc b

X

Exp a

i) Calc

b

255.4 K, 13.8 MPa 0.0128

4

3.6

0.2403

9

7.6

0.0257

10

6.8

0.2757

0

0.7

0,0319

10

8.2

0.3191

0.0394

11

9.7

0.3500

-

16

-

17.3

0.0808

16

15.8

0.3545

-

11

-

11.9

0.1001

19

17.3

0.4127

-

11

-

10.7

0.1409

17

17.9

0.4505

-

11

-

0.1701

16

16.5

0.4989

- 9

- 9.0

0.1898

15

14.8

0.7008

- 5

- 5. I

0.2093

10

12.4

0.8241

- 3

- 2.6

0.2194

14

11.0

0.9036

2

0.2300

5

9.3

- 9

- 9.3

10.0

-

1. I

310.9 K, 13.8 MPa 0.0552

-

13.5

0.1791

-59

-60.2

0.0802

- 22

- 21.3

0.1887

- 64

- 64.4

0.0805

- 22

- 21.4

0.2253

- 82

- 81.3

0.0983

- 29

- 27.5

0.2587

- 96

0.1042

- 29

- 29.7

0.2595

- 97

0.1486

- 47

- 47.1

:,.b S e e f o o t n o t e s

12

in T a b l e

-

1.

J.L. Oscarson et al./Fluid Phase Equilibria 114 (1996) 161-174

164

Table 4 Excess molar enthalpies

(H E) for ( x

methane

+ (1-

x)methylcyclohexane)

H E (J m o l - 1) x

Exp

H E (J m o l - l)

a

Calc

255.4 K, 13.8

b

x

Exp

a

Calc b

MPa

0.0435

- 30

- 37.2

0.3986

- 468

0.0568

- 59

- 50.0

0.3996

- 485

- 476.8

0.0885

- 92

- 83.2

0.4985

- 584

- 572.8 - 573.6

130

-

- 475.7

0.1363

-

138.8

0.4996

- 574

0.2019

- 228

- 222.4

0.6010

- 472

- 473.4

0.2026

- 242

- 223.3

0.6020

- 476

- 472.3

0.2256

- 238

- 253.8

0.7067

- 356

- 355.2

0.2403

- 263

- 273.5

0.7991

- 250

- 251.9

0.3026

- 349

- 356.5

0.7998

- 247

- 251.1

0.3035

- 362

- 357.7

0.9060

-

-

0.3516

- 406

- 419.5

310.9 K, 13.8 0.0415

136

132.4

MPa

- 89

- 74.5

0.2378

- 369

- 378.1

0.0648

-

130

-

115.0

0.2575

- 430

- 402.9

0.0798

-

152

-

14 0 . 6

0.2586

- 405

- 404.3

0.1218

-

197

- 209.7

0.2941

- 442

- 445.8

0.1477

- 265

- 250.3

0.2950

- 452

- 446.8

0.1485

- 232

- 251.5

0.4098

- 554

- 549.7

0.1722

- 284

- 287.2

0.4109

- 527

- 550.4

0.2181

-340

-352.1

a.b See footnotes in Table

1.

used as bath fluids for the experiments at 310.9 K and 255.4 K, respectively. The bath temperatures were set and monitored with a Hart model 1006 platinum resistance thermometer calibrated against a Rosemount thermometer (ITS 68). The pressure was read from a 20 MPa 3D Instrument Inc. gauge with 0.25 of 1% accuracy. The back pressure regulator used to control the pressure provided a constant pressure within less than 0.1 MPa fluctuations. Alphagaz 99.9 mass per cent pure methane was used without further purification. Aldrich Reagent Grade n-heptane, methylcyclohexane, toluene and Aldrich Spectranalized methanol were stored over 0.3 nm molecular sieves to remove water and degassed for 10 min in an ultrasonic bath before use. The volumetric flow rates were converted to mass flow rates and to mole fractions using the densities of the pure components at 298.15 K and 13.8 MPa estimated as follows. The densities of methane were calculated using an equation of state (Sievers and Schulz, 1980). Densities for C 7 hydrocarbons were estimated using the densities at 298.15 K and 0.101 MPa (Handbook of Chemistry and Physics, 1993) and the isothermal compressibilities at 298.15 K of pure n-heptane (Handbook of Chemistry and Physics, 1993), methylcyclohexane (Wilhelm et al., 1979) and toluene (Riddick et al., 1986). Densities of methanol were calculated using an equation of state for the liquid (Machado and Streett, 1983). Concerning the systems (methane + (88.2% toluene + 11.8% methanol)), (methane + (93.4% toluene + 6.6% methanol)), (methane+ (87.8% methylcyclohexane + 12.2% methanol)), and (methane+ (93.8% methylcyclohexane + 6.2% methanol)) the binary mixtures containing methanol were made before entering the mixing cell. The heat of mixing methane with the liquid mixtures was then measured. The densities of

165

J.L. Oscarson et al. / Fluid Phase Equilibria 114 (1996) 161-174

Table 5 Excess molar enthalpies ( H E) for ( x methane + (1 - x) (88.2% toluene + 11.8% methanol)) H E (j mol 1)

H E (j m o l - 1) x

Exp '~

Calc b

255.4 K, 13.8 MPa 3.7 3 5.6 5 6.9 8 8.8 9 9.9 12 10.4 14 9.4 13 8.1 10 6.3 11 4.2 5 - 2.7 - 11 - 4.8 - 10 -4.8 - 14 310.9 K, 13.8 MPa - 12.7 - 15 - 12.8 - 10 - 25.7 - 25 - 25.9 - 30 - 38.4 - 35 -47.6 -54 - 50.5 - 49 - 50.8 - 49 -61.8 -58

0.0201 0.0330 0.0435 0.0639 0.0835 0.1022 0.1408 0.1605 0.1793 0.1973 0.2430 0.2545 0.2548 0.0511 0.0515 0.0973 0.0979 0.1392 0.1683 0.1773 0.1783 0.2123

x

Exp a

Calc b

0.3128 0.3533 0.4504 0.5004 0.5604 0.6455 0.7014 0.7445 0.8999 0.8310 0.9291 0.9425

-

-

0.2444 0.2456 0.2739 0.2753 0.3016 0.3016 0.3269 0.3502

- 71 - 76 - 84 - 90 - 80 -81 - 76 - 66

14 20 15 13 - 9 - 6 - 4 0 0 5 1I 10

16.8 20.7 15.6 13.0 - 9.9 - 5.4 - 2.5 - 0.3 7.8 4.2 9.4 10.1

- 72.2 - 72.6 - 81.6 - 82.1 - 81.2 -81.2 - 73.8 - 67.(11

,~.b See footnotes in Table 1.

the liquid mixtures were estimated using a linear combination values for ethanol-water

obtained from this calorimeter

v a l u e s r e p o r t e d b y ( O t t e t al., 1 9 8 6 b ) . T h e u n c e r t a i n t y systems

than for liquid-liquid

constant known temperature

systems

± 5% or 5 J mol-1,

in t h e p u m p

whichever

in the measured

h e a t s is g r e a t e r f o r g a s - l i q u i d

due to the difficulty of delivering

flow rate. The amount

or pressure

of pure liquid densities. Heat of mixing

were within 2 per cent of the ethanol-water

of gaseous much

more

reactant delivered

the gaseous

reactant

at a

changes with any fluctuation

so than in a liquid. The estimated

uncertainty

in is

is g r e a t e r .

3. Results and discussion The toluene),

H E data for the binary and

(methane+

ternary systems (methane methanol)),

(methane

systems

(methane

methylcyclohexane)

+ methanol),

are reported

+ (88.2% toluene + 11.8% methanol)),

+ (87.8%

methylcyclohexane

+ 12.2%

(methane

in Tables

+ n-heptane),

1-4.

(methane methanol)),

+

The

(93.4% and

(methane

H E data

+

for the

toluene + 6.6%

(methane

+ (93.8%

J.L. Oscarson et al./Fluid Phase Equilibria 114 (1996) 161-174

166

Table 6 Excess molar enthalpies ( H E) for ( x methane+(1 - x)) (93.4% toluene +6.6% methanol) H E (j mol - J) Exp a

x 0.0235 0.0326 0.0430 0.0631 0.0729 0.0743 0.1010 0.1442 0.1826 0.2017 0.2192 0.0338 0.0530 0.0775 0.1007 0.1438 0.1829 0.2187 0.2187

Calc b

255.4 K, 13.8 MPa 5 5.6 6 7.4 7 9.2 12 12.0 12 13.0 11 13.1 14 14.8 16 14.6 17 11.7 10 9.4 7 6.8 310.9 K, 13.8 MPa - 5 - 6.2 - 9 - 10.6 - 17 - 17.0 - 26 - 23.9 - 36 - 38.5 - 59 - 53.3 - 65 - 67.8 - 67 - 67.8

x

H E (j mol - a) Exp a

Calc b

0.2313 0.2509 0.2520 0.3087 0.3188 0.3958 0.4835 0.6518 0.8179 0.8999

6 3 - 5 - 10 - 16 - 13 - 10 - 3 - 3 7

4.8 1.2 1.0 - 14.3 - 14.0 - 11.4 -8.4 - 2.7 3.0 5.7

0.2514 0.2514 0.2815 0.3093 0.3350 0.3589

-

-

84 82 85 82 77 74

91.3 91.3 86.4 81.9 77.8 77.1

a,b See footnotes in Table 1.

methylcyclohexane

+ 6 . 2 % m e t h a n o l ) ) a r e r e p o r t e d in T a b l e s 5 - 8 .

r e g i o n h a v e b e e n f i t t e d to t h e m o d i f i e d R e d l i c h - K i s t e r

T h e H E v a l u e s in t h e o n e - p h a s e

equation

N Y'~ C . ( 1 - 2 x ) n HE(Jmol-')=x(1-x)

n=OM 1 +

(1)

E Dm(1m=l

2x)m

w h e r e x is t h e m o l e f r a c t i o n o f m e t h a n e in t h e m i x t u r e s . T h e R e d l i c h - K i s t e r and standard deviations

C, and D m parameters

s a r e g i v e n in T a b l e 9 a l o n g w i t h t h e m o l e f r a c t i o n r e g i o n s f o r w h i c h t h e

equation applies. The modified Redlich-Kister an o r d i n a r y R e d l i c h - K i s t e r

e q u a t i o n w a s u s e d to fit ( m e t h a n e + n - h e p t a n e ) w h i l e

equation was used for the remaining systems. In the two-phase region the

H E v a l u e s w e r e f i t t e d to t h e e q u a t i o n

(2)

HE=Ao+AIx

T h e A n p a r a m e t e r s f o r E q . (2) a n d s t a n d a r d d e v i a t i o n s s a r e g i v e n in T a b l e 10 a l o n g w i t h t h e m o l e fraction regions for which

the equation

applies. The

experimental

and calculated

H E values are

p l o t t e d v s . t h e m e t h a n e m o l e f r a c t i o n x in F i g s . 1 - 8 . T h e s o l u b i l i t i e s o f m e t h a n e in t h e l i q u i d p h a s e have been determined

from the curves. The basis for this determination

is that, w h e n a r e g i o n o f

J.L. Oscarson et al. / Fluid Phase Equilihria 114 (1996) 161-174 Table

167

7

Excess molar enthalpies

( H E) f o r ( x

H E (j tool x

methane

x) (87.8%

methylcyclohexane

1)

+ 12.2% HE

Exp a 255.4

+ (1 -

Calc

6

(j

tool

methanol)) i)

x

E x p '~

Calc

b

- 445.9

K, 13.8 MPa

0.0526

- 42

- 43. l

0.3997

- 436

0.0561

- 50

- 46.3

0.4500

- 521

- 495.6

0.0999

- 99

- 89.9

0.4996

- 527

- 536. I

0.1508

-

14 6 . 7

0.5997

- 400

- 405.4

0.2033

- 210

146

- 209.9

0.703(/

- 288

- 295.2

0.2497

- 269

- 267.7

0.7998

-

194

-

0.3007

-321

-331.2

0.8498

-

127

-

0.3522

- 391

- 393.0

0.8999

- 73

- 85.3

- 268.8

310.9

-

K, 13.8

192.0 138.7

MPa

0.0308

- 53

- 42.3

0.2037

- 284

0.0598

- 98

- 82.0

0.2234

- 294

- 292.2

0.0870

-

130

-

118.8

0.2412

- 317

- 312.8

0.(/870 0.1128

-

108

-

118.8

0.2422

- 321

- 313.9

-

154

-

153.2

0.2761

-330

-351.2

0.1371

-

163

-

185.1

0.3092

-399

-385.1

0.1371

-

188

-

185.1

0.3092

-404

-385.1

0.1378

- 205

-

186.0

0.3371

- 383

- 411.6

0.1378

-

-

186.0

0.3384

-416

0.1602

- 218

- 214.8

0.3900

- 450

- 455.6

0.1820

- 241

- 242.2

0.3900

- 466

- 455.6

0.2027

- 266

- 267.6

~'~' S e e

footnotes in

155

Table

412.8

1.

immiscibility exists, the H E v s . x curve is linear. The composition of the two-phase region is then given by the intersection of the curve with the linear regions. The negative H E values observed for the systems (methane + methanol), (methane + n-heptane), (methane + methylcyclohexane) and (methane + (methylcyclohexane + methanol)) result from the condensation of the supercritical methane into the liquid phase. The H E regions with curvature correspond to a single liquid phase and H E regions with a straight line correspond to a (vapor + liquid) phase equilibrium where the composition of each phase is fixed. Measurements in the single vapor phase region were not possible due to high flow rates necessary for the gas. Mixing problems occur when high flow rates are used for the gas. For (methane + methanol) the curve represented in Fig. 1 shows a phase separation for methane mole fractions 0.10 and 0.13 at temperatures 310.9 K and 255.4 K, respectively. These results agree with those found by Hong et al. (1987), i.e., 0.1018 and 0.1224 at 310 and 250 K, respectively. The H E values are lower than those where the pure liquid is less associated. Heat of mixing data for (methane + toluene) vs. methane mole fraction represented in Fig. 3 show at 255.4 K positive or low negative values before the phase split. This results from the competition between the exothermic effect due to the condensation of gaseous methane into liquid toluene and the endothermic effect of breaking rr-Tr interactions in pure toluene. At 310.9 K, these aromatic interactions are weaker and the measured H E values are slightly negative. The methane mole fraction where two phases appear is

J.L. Oscarson et aL /Fluid Phase Equilibria 114 (1996) 161-174

168

Table 8 E x c e s s m o l a r e n t h a l p i e s ( H E) for ( x m e t h a n e + (1 - x ) (93.8% m e t h y l c y c l o h e x a n e + 6.2% m e t h a n o l ) ) H E (Jmol-l) x

Exp a

H E (Jmol-i) Calc b

x

Exp a

Calc b

255.4 K, 1 3 . 8 M P a 0.1044

- 117

- 112.4

0.5026

- 555

- 541.0

0.1481

- 168

- 165.0

0.5019

- 537

- 540.6

0.2041

- 234

- 234.3

0.6078

-449

- 447.7

0.2 527

- 291

-294.6

0.6992

- 342

- 343.6

0.3014

- 354

- 353.3

0.8027

- 224

- 225.8

0.3523

- 416

- 410.9

0.9029

- 115

- 111.7

-472

- 486.8 - 331.4

0.4293

310.9 K, 1 3 . 8 M P a 0.0321

- 52

- 48.0

0.2301

- 333

0.0623

-97

- 93.2

0.2493

- 351

- 356.0

0.0 906 0.1172

- 137 - 178

- 135.3 - 174.4

0.2849 0.2861

- 427 - 412

- 399.5 -400.9

0.1424

- 196

- 210.9

0.3173

- 432

- 436.3

0.1661

- 230

- 244.6

0.3469

- 456

-467.3

0.1669

- 241

- 245.7

0.3469

-475

-467.3

0.1895 0.2 099

- 278 - 308

- 277.1 - 304.7

0.3991 0.4050

- 548 -479

-515.2 -520.0

a.b See fo otnotes in Table 1. Table 9 C o e f f i c i e n t s C n, D m and s t a n d a r d d e v i a t i o n s s for l e a s t - s q u a r e s r e p r e s e n t a t i o n of H E (J m o l - ~ ) by Eq. (1) X

0<

x<0.10

0
T (K) CO (xmethane+(lx)methanol) 310.9 -2640.5

Cl

255.4

1820.7

-2458.3

S

1719.1

3 4

(x methane+(l - x)toluene) 0< 0<

x < 0.22 x < 0.33

0< 0<

x<0.41 x<0.51

310.9 255.4

-800.59 -237.07

609.78 536.80

1

3

(x methane+(1 - x)methylcyclohexane) 310.9 255.4

- 2370.5 2295.6

(x methane+(10< x<0.28 0< x<0.28

5423.9 1535.4

x)(88.2%toluene+

310.9 255.4

-560.87 -248.11

14 11

ll.8%methanol)) 332.61 453.83

4 5

(x methane+(1 - x)(93.4%toluene+6.6%methanol)) 0< 0<

x<0.26 x < 0.32

310.9 255.4

- 713.81 -253.78

563.15 522.88

(x methane+(l - x)(87.8%methylcyclohexane+ 0< x<0.39

310.9

0<

255.4 (xmethane+(1

x < 0.49

-

2067.4

12.2%methanol))

692.08

-2145.7 1431.7 x)(93.8%methylcyclohexane+6.2% 2314.0 821.14

0<

x < 0.41

310.9

0<

x<0.52

255.4 T(K)

- 2157.8

- 2509.2

0<

x<0.44

CO ( x m e t h a n e + ( 1 - x) n-heptane) 310.9 - 2690.3

0<

x<0.60

255.4

X

5 3 15 11 methanol)) 17

1208.3 Dj

8 D2

D3

0 4

1.0391

0.20604

0.99126

- 1.2235

1.1117

0.54549

- 2.5962 3.6327

8

13

169

J.L. Oscarson et a l . / Fluid Phase Equilibria 114 (1996) 161-174 Table 10 Coefficients A , a n d standard deviations s for l e a s t - s q u a r e s representation o f H E (J m o l - i ) T (K) 310.9 255.4 255.4 255.4 310.9 255.4 310.9 255.4 255.4 255.4

region ( x m e t h a n e + (1 0.10 < x < 0.99 0.13 < x < 0.99 ( x m e t h a n e + (1 0.33 < x < 0.99 ( x m e t h a n e + (1 0.51 < x < 0.99 ( x m e t h a n e + (1 0.28 < x < 0.99 0.28 < x < 0.99 ( x m e t h a n e + (1 0.26 < x < 0.99 0.32 < x < 0.99 ( x methane + ( 10.49 < x < 0.99 ( x m e t h a n e + (1 0.52 < x < 0.99

by Eq. (2)

Ao

Ai

s

- 144.04 - 144.12

263.36 147.82

9 3

x) methanol)

x ) toluene) - 18.903 19.756 x) methylcyclohexane) - 1145.4 1.1181 x ) (88.2% toluene + 11.8% m e t h a n o l ) - 169.43 292.54 -39.184 52.261 x ) 9 9 3 . 4 % toluene + 6.6% m e t h a n o l ) ) - 131.89 161.56 - 24.819 33.957 x ) (87.8% m e t h y l c y c l o h e x a n e + 12.2% m e t h a n o l ) ) - 1044.8 1066.3 x ) (93.8% m e t h y l c y c l o h e x a n e + 6.2% m e t h a n o l ) ) - 1139.7 1138.5

1 4 2 3 2 4 11 3

0.33 at 255.4 K. Chang and Kobayashi (1967a) report 0.3500 for the [methane + toluene] binary system at the same temperature. The same behavior was observed with the (methane + (toluene + methanol)) systems ( Figs. 5 and 6). The H E values measured for the (methane + 0

t

-50

g/ {

-100

-150

i

0.0

3' *o

I

0.2

i

I

/

i

0.4

i

0.6

0

I

0.8

1.0

X methane

Fig. 1. Plot o f H z for ( x m e t h a n e + (1 - x ) m e t h a n o l ) at 13.8 MPa; O , 310 K; z~, 255 K; - o v e r region specified in Table 9 and calculated u s i n g Eq. 2 o v e r region specified in T a b l e 10.

, calculated u s i n g Eq. 1

170

J.L. Oscarson et al./Fluid Phase Equilibria 114 (1996) 161-174 •

i



i

'

i

-200

E

A

311~~

-400

-600

-800

i

0.0

I

,

0.2

I

,

0.4 x

I

=

0.6

I

1.0

0.8

methane

Fig. 2. Plot of H E for ( x methane +(1 - x) n-heptane) at 13.8 MPa; ©, 310 K; A, 255 K; - 1 over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

50

.

i



I

i

i

,

I

,

i

, calculated using Eq.

i

A

o

-100

-150

, 0.0

0.2

0.4

I 0.6

x

~

I 0.8

,

1.0

methane

Fig. 3. Plot of H E for ( x m e t h a n e + ( l - x) toluene) at 13.8 MPa; C), 310 K; A, 255 K; - over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

, calculated using Eq. 1

J.L. Oscarson et al. / Fluid Phase Equilibria 114 (1996) 161-174

'

f

'

I

'

I

'

I

171

'

-200 K

E

-400

311K ~

~

0.2

0.4

-600 0.0

0.6

0.8

1.0

x methane

Fig. 4. Plot of H E for (x methane+(l - x) methylcyclohexane) at 13.8 MPa; O, 310 K; A, 255 K; - using Eq. 1 over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

, calculated

50

E

-50

311°K~ 0

-100

-150

=

0.0

I

0.2

=

I

,

0.4

I

0.6

i

I

0.8

J

1.0

x methane

Fig. 5. Plot of H E for (x methane+ ( 1 - x ) (88.2% toluene+ 11.8% methanol)) at 13.8 MPa; ©, 310 K; A, 255 K; - - , calculated using Eq. 1 over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

J.L. Oscarson et al. / Fluid Phase Equilibria 114 (1996) 161-174

172

50

,

"5 E "~ -50

,

,

311K

-100

i

- 150

I

0.0

i

f

0.2

i

I

0.4 x

I

i

0.6

i

0.8

1.0

methane

Fig. 6. Plot of H E for ( x m e t h a n e + ( 1 - x ) ( 9 3 . 4 % toluene+6.6% methanol)) at 13.8 MPa; O, 310 K; A, 255 K; - - , calculated using Eq. 1 over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

0

'

I

'

i

,

i

,

,

I

i

i

,

5K

-200

~.~

311K ~

%

~

-400

-600

,

0.0

I

0.2

~

I

0.4 0.6 x methane

I

0.8

1.0

Fig. 7. Plot of H E for ( x methane+(1 - x) (87.8% methylcyclohexane + 12.2% methanol)) at 13.8 MPa; O, 310 K; A, 255 K; - - , calculated using Eq. 1 over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

173

I.L. Oscarson et al. / Fluid Phase Equilibria 114 (1996) 161-174 '

I

'

I

'

I

'

I

i

I

'

I

i

-200

E

-400

o -600

i

0.0

I

0.2

i

[

,

0.4

0.6

0.8

1.0

x methane

Fig. 8. Plot of H E for (x methane+(l - x) (93.8% methylcyclohexane+6.2% methanol)) at 13.8 MPa; C), 310 K; A, 255 K; - - , calculated using Eq. 1 over region specified in Table 9 and calculated using Eq. 2 over region specified in Table 10.

(methylcyclohexane + methanol)) system were smaller than those for the binary system where smaller interaction forces exist. The phase splitting on the (methane + methylcyclohexane) plot in Fig. 4 appears for a methane mole fraction of 0.51 and can be compared with the value 0.4950 found by Chang and Kobayashi (1967b).

4. List of symbols

Ao Cn

coefficients in Eq. (2) coefficients in Eq. (1) O m coefficients in Eq. (1) H E excess molar enthalpy (J mol- l) s standard deviation T temperature (K) x mole fraction

Acknowledgements

This work was supported by the Gas Processors Association. J.Y. Coxam is grateful to the service des bourses de Recherche Scientifique et Technique de I'OTAN and the Fulbright Program for financial support.

174

J.L. Oscarson et aL / F l u i d Phase Equilibria 114 (1996) 161-174

References Chang, H.L. and Kobayashi, R., 1967a. Vapor-liquid equilibria of the methane-toluene system at low temperatures and high pressures. J. Chem. Eng. Data, 12: 517-520. Chang, H.L. and Kobayashi, R., 1967b. Vapor-liquid equilibria of the methane-methylcyclohexane system at low temperatures and high pressures. J. Chem. Eng. Data, 12: 520-523. Christensen, J.J., Hansen, L.D., Eatough, D.J., Izatt, R.M. and Hart, R.M., 1976. Isothermal high-pressure flow calorimeter. Rev. Sci. Instrum., 47: 730-734. CRC Handbook of Chemistry and Physics, 1993. Lide, D.R. (Editor), 74th edn., CRC Press, Boca Raton, FL. Hong, J.H., Malone, P.V., Jett, M.D. and Kobayashi, R., 1987. The measurement and interpretation of the fluid-phase equilibria of a normal fluid in a hydrogen bonding solvent: the methane-methanol system. Fluid Phase Equilibria, 38: 83-96. Machado, J.R.S. and Streett, W.B., 1983. Equation of state and thermodynamic properties of liquid methanol from 298 to 489 K and pressure to 1040 bar. J. Chem. Eng. Data, 28: 218-223. Ott, J.B., Stouffer, C.E., Cornett, G.V., Woodfield, B.F., Wirthlin, R.C., Christensen, J.J. and Deiters, U.K., 1986a. Excess enthalpies for (Ethanol+water) at 298.15 K and pressures 0.4, 5, 10, 15 MPa. J. Chem. Thermodyn., 18: 1-12. Ott, J.B., Comett, G.V., Stouffer, C.E., Woodfield, B.F., Guanquan, C. and Christensen, J.J., 1986b. Excess enthalpies for (Ethanol+water) at 323.15, 333.15, 348.15, and 373.15 K and from 0.4 and 15 MPa. J. Chem. Thermodyn., 18: 867-875. Riddick, J.A., Bunger, W.B. and Sakano, T.K., 1986. Organic Solvent, Physical Properties and Methods of Purification, 4th edn., Wiley, New York. Sievers, U. and Schulz, S., 1980. An equation of state for methane in the form of Bender's equation for temperatures between 91 K and 625 K and pressure up to 500 bar. Fluid Phase Equilibria, 5: 35-54. Wilhelm, E., Grolier, J.-P.E. and Karbalai Ghassemi, M.H., 1979. Molar heat capacity of binary liquid mixtures: 1,2-dichloroethane + cyclohexane and 1,2-dichloroethane and methylcyclohexane. Thermochim. Acta, 28: 59-69.