M-1371 J.
Chem. Thermodvnamics 1982, 14, 6899693
Excess Gibbs free energies of methylcyclohexane + benzene, + methylbenzene, and + ethylbenzene at 303.15 and 323.15 DHARAM RAJWANT
V. S. JAIN,” S. SIDHU
SURAJ
Department
of Chemistry, Panjah
B. SAINI,
K
and
University, Chandigarh-160014.
India
(Received 20 October 1981; in revised fbrm 29 January 1982) Vapour pressures p as functions of mole fraction x for methylcyclohexane + benzene. + methylbenzene. and + ethylbenzene are reported at 303.15 and 323.15 K. Excess Gibbs energies obtained by Barker’s method are also reported: they are positive in all cases. The temperature coefficients of GE are negative. The results have been discussed in terms of the effect of substitution of an alkyl group in the benzene ring.
I. Introduction In continuation to our work”-” on the thermodynamics of binary mixtures, we report in this paper excess Gibbs energies GE for methylcyclohexane + benzene. + methylbenzene, and + ethylbenzene calculated from vapour pressuresobtained at 303.15 and 323.15 K.
2. Experimental Vapour pressuresof the pure liquids and of their binary mixtures were measured by static manometry described elsewhere.(8’ The mercury cut-offs and glass stop-cocks were replaced by high-vacuum teflon stop-cocks. The liquid mixture was stirred by meansof a waterproof magnetic stirrer submerged in the inner water thermostat. The temperature of the liquid mixture was controlled to within f0.005 K by use of a double thermostat. Mole fractions are believed to be within ~0.0005 and the pressureswithin ~0.006 kPa. Methylcyclohexane (B.D.H.; L.R.), benzene (B.D.H.; A.R.), methylbenzene (B.D.H. ; A.R.), and ethylbenzene (B.D.H. ; L.R.) were purified following reference 9. Only the middle fraction of the double distillate was used, after drying over molecular sieves. The purity of the chemicals was checked by measuring their densities and vapour pressures. A numerical comparison of our results with the best literature values is given in table 1. * To whom 0021
the correspondence
4614/82/070689+05
$02,00/O
should
be addressed. (‘ 1982 Academic
Press Inc. (London)
Limited
690
D. V. S. JAIN, TABLE
1. Densities
S. B. SAINI.
(1 and vapour
AND
pressure
R. S. SIDHU p of the pure compounds p/kPa
~(303.15
K)/(kg.m-“)
303.15
K
323.15
K
Component
Obs.
Lit.
Obs.
Lit.6.d
Obs.
Lit.b.d
Benzene Methylbenzene Ethylbenzene Methylcyclohexane
868.44 857.8 858.3 760.73
868.4" 857.7b 858.1'
15.905 4.882 1.692 7.797
15.910 4.888 1.682
36.166 12.354 4.716 18.497
36.168 12.281 4.687 18.448
’ Reference
15.
’ Reference
9.
’ Reference
16.
d Reference
10
3. Results and discussion Vapour pressures p for each of the three binary mixtures at 303.15 and 323.15 K and over the complete mole-fraction x range are tabulated in table 2. The excess Gibbs energies G” and the activity coefficients ,h were deduced from p(x) using Barker’s method.“” The values of GE and its uncertainty at (x = 0.5) thus obtained are given in table 2, and GE(x) curves at 303.15 K are plotted in figure 1. Similar curves were obtained at 313.15 and 323.15 K and are therefore, not included in figure 1. Figure 2 shows J(x) at 303.15 and 323.15 K respectively. The second virial coefficients B and molar volumes V, used in calculations are listed in table 3; B values were estimated from critical quantities. ‘13) The coefficients gi used to express the composition dependence of GE : GE/RT = x( 1 -x)
i
gi(2x - 1)‘.
(1)
i=O
where x is the mole fraction of c-C6H, ,CH,, are given in table 4 which also includes
_ 240 7 a E 5 160 \ “u 80
0.
FIGURE 1. Dependence of excess Gibbs energy GE on composition (1 -x)C,H,; n. (1 -x)C,H,CH,; v. (1 -x)C,H,C,H,.
at 303.15
K. xc-C,H,,CH,
+ :
GE FOR TABLE P kPa
x
2. Vapour
GE J,mol-’
METHYLCYCLOHEXANE
x
-
pressure
p, excess Gibbs
P
GE
kPa
J.mol-’
{xc-C6H1,CH, 0 0.0814 0.1251 0.1940
15.905 15.743 15.692 15.397
0
119 170 234
0.2680 0.3402 0.3942 0.4477
15.059 14.681 14.337 13.996
+ AN energy
x
+ (1 -x)&H61 282 311 321 324
0.4967 0.5483 0.6073 0.6697
ALKYL
GE, and uncertainty P kPa
691
BENZENE
GE J.mol-’
at 303.15
&GE
x
P
GE
kPa
J.rnol.-’
K
13.642 13.192 12.756 12.072
319 308 287 258
0.7417 0.8290 0.9062 1
11.343 10.215 9.231 7.797
216 153 89 0
GGE(x = 0.5 ): {xc-C6H,,CH, 0
0.0817 0.1256 0.1953
36.166 35.789 35.433 34.801
0
108 154 210
0.2702 0.3434 0.3982 0.4524
33.856 33.087 32.260 31.444
+ (1 -x)&H,; 251 274 282 282
0.5019 0.5540 0.6133 0.6758
at 323.15
6
K
30.627 29.576 28.466 27.178
277 266 248 222
0.1475 0.8336 0.9092 1
25.542 23.331 21.253 18.497
186 133 77 0
GGE(x = 0.5): (xc-C6HIICH, 0 0.079 1 0.1091 0.2450 0.3127
4.882 5.345 5.817 6.142 6.395
0 66 130 173 203
0.3772 0.4199 0.4364 0.4683 0.4738
0 0.0784 0.1681 0.2437 0.3112
12.354 13.307 14.261 14.956 15.513
0 60 118 158 185
0.3758 0.4185 0.4358 0.4670 0.4732
0 0.0672 0.1476 0.2218
1.692 2.294 2.934 3.474
0 59 116 157
0.2989 0.3670 0.4354 0.5049
0 0.0658 0.1451 0.2187
4.716 5.980 7.345 8.527
0 48 96 132
0.2954 0.3634 0.4320 0.5018
6.615 6.746 6.817 6.882 6.915
{XC-C6H,,CH3 15.968 16.256 16.435 16.568 16.648
(xc-C,HIICH, 3.984 4.408 4.800 5.209
{xc-C,H,,CH, 9.679 10.643 11.571 12.495
+(I 223 232 235 238 238
-x)C6HSCH,I 0.5173 0.5683 0.6285 0.6972 0.7762
+ (1 -x)C,H,CH,i 204 213 216 219 220 +(1 188 207 218 222
0.5166 0.5675 0.6276 0.6964 0.7754 -x)C6H,C2H,) 0.5655 0.6477 0.7349 0.8230
+ (1 -x)C,H,C,H,i 160 178 189 193
0.5629 0.6457 0.7336 0.8224
at 303.15
K
7.030 7.155 7.279 7.406 7.553
239 235 224 202 166
at 323.15 16.893 17.164 17.440 17.716 18.013 at 303.15 5.528 5.981 6.434 6.902 at 323.15 13.254 14.259 15.348 16.340
0.8576 0.9308 1
5
7.651
116
1.739
61
7.803 GGE(x
0
= 0.5):
4.5
K 221 218 208 189 156
0.8570 0.9304 1
18.241 18.408 18.533 6G”(x
110 58 0
= 0.5):
4
K 219 205 178 136
0.9041 1
7.309 7.797 6G”(x
= 0.5):
83 0 6
K 191 179 154 116
0.9039 1
17.351 18.497
70 0
GGE(.x = 0.5):
4
the qi’s at 313.15 K calculated from the measured p and x at this temperature. The standard deviations o(p) are given in the last column of table 4. As far as we are aware the vapour pressures only for (methylcyclohexane + ethylbenzene) have been reported earlier. The value of GE(x = 0.5) from the present study (203 J.mol-’ at 313.15 K) is in fair agreement with the (195 J.moll’ at 313.15 K) reported by Funk et al. (ii) We report the results at 303.15 and 323.15 K also. It can be seen from table 2 that GE for all the three mixtures is positive at all the three temperatures and over the complete mole-fraction range. The curves for GE(x)
D. V. S. JAIN. S. B. SAINI. AND R. S. SIDHU
692
(b)
-0
0.2
0.4
0.6
0.8
1 0
0.2
0.4
0.6
0.8
1
x FIGURE 2. Dependence of activity coefficients on composition at (a) 303.15 K and (b) 323.15 K. xc-&HiiCH, + : -3 (1 -x)C,H,; - - -, (l-x)C,H,CHJ; -. - .. (1 -x)C 6H 5C 2H 5
TABLE 3. Molar volumes V, and second virial coefficients B calculated from Berthelot’s equation for the pure components
Component
v,/(cm3 mol-i) 303.15 323.15 K
GHs GH,CH, CHCH 6 52 5 c-&H,iCH,
107.42 123.70 129.07
89.94
- B/(cm’ mol - i ) 303.15 K 323.15 K
92.11 109.80
1317 1840
1150 1610
126.32 132.08
2385
2087
1963
1715
TABLE 4. Parameters gi fitting equation (1) and standard deviation a(p) T/K
90
91
$72
Np)lkPa
xc-C,H, ,CH, + (1 -x)C,H, 303.15 313.15 323.15
0.5053 0.4460 0.4127
-0.1311
-0.1090 -0.1134
xc-C,H,,CH, 303.15 313.15 323.15
0.3540 0.3285
303.15 313.15 323.15
0.3517 0.3119 0.2879
0.3799
xc-C6H,,CH,
+ (1 -x)&H&H, - 0.0068 - 0.0086 -0.0143
0.0217 0.0301 0.0423
-0.0174 -0.0114 -0.0113
+ (1 -x)C 6H 5C 2H 5 - 0.0043 0.0375 -0.0081 0.0267 -0.0063 0.0093
0.027 0.020 0.047
0.008 0.013 0.020 0.009 0.011 0.016
GE FOR METHYLCYCLOHEXANE
+ AN ALKYL
BENZENE
693
for all the three mixtures are more or less symmetrical around x = 0.5. Low positive GE{(l -x)C,H, + xc-C,H,,CH,], GE{(l -x)&H&H, + XC-C6H11CH3i and GE{(l - x)C,HJ,H, + xc-C6H, rCH3j are indicative of weak interactions between components. From GE(x) in figure 1 one observes that the introduction of a methyl or ethyl group in an aromatic ring results in a decrease of GE. The same effect is observed when the GE’s are compared with those for corresponding mixtures containing cyclohexane instead of methylcyclohexane. Similar observations have been made by Diaz-Peiia et ,1.(14’ for methylcyclohexane + o-, + m-, and + p-xylene. The temperature coefficients of GE for all the three mixtures is negative, being particularly large in magnitude methylcyclohexane + benzene. Financial
assistance to R.S.S. from CSIR, New Delhi, is gratefully acknowledged.
REFERENCES 1. Jain. D. V. S.; Wadi, R. K.; Saini, S. B.; Puri, K. J. Chem. Thermodynamics 1978, 10, 707. 2. Jain. D. V. S. ; Saini, S. B. ; Chaudhry, V. India J. Chem. 1979. 18A. 198. 3. Jain. D. V. S.; Wadi, R. K.; Saini, S. B.; Singh, J. Indian J. Chem. 1978, 16A, 561. 4. Jain, D. V. S.; Wadi, R. K.; Saini, S. B. Indian J. Chem. 1979, 17A, 400. 5. Jain, D. V. S.; Saini, S. B.; Bajaj, S. K. Indian J. Chem. 1980, 19A. 1007. 6. Jain, D. V. S.; Wadi, R. K.; Saini, S. B. Indian J. Tech. 1981, 19, 167. 7. Jain, D. V. S.; Wadi, R. K.; Saini, S. B. J. Chem. Thermodynumics 1981, 13, 903. 8. Jain, D. V. S. ; Gupta, V. K. ; Lark, B. S. Indiun J. Chem. 1970, 8, 815. 9. Riddick, J. A.; Bunger, W. B. Organic Solvents: Physicul Properties and Methods of Purificution. 3rd Edition. Wiley-Interscience: New York. 1970. 10. Diaz-Peiia, M.; Crespo-Colin, A.; Compostizo, A.; Escudero, I. J. Chem. Eng. Data 1980, 25. 17. 11. Funk, E. W. ; Chai, F. C.; Prausnitz, J. M. J. Chem. Eng. Duru 1972, 17. 24. 12. Barker, J. A. Aust. J. Chem. 1953, 6, 207. 13. Kudchadker, A. P.; Alani, G. H.; Zwolinski. B. J. Chem. Rev. 1968, 68, 659. 14. Diaz-Peiia, M.; Compostizo, A.; Crespo-Colin, A. J. Chem. Thermodynumics 1979, 11. 447. 15. Deshpande. D. D.; Ckwal, S. L. J. Chem. Sot. Fura& Trans. I 1972,68, 1059. 16. Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds. Elsevier: Amsterdam. Volume 1. 1950; Volume 2. 1965.