Excess Gibbs free energies of methylcyclohexane + benzene, + methylbenzene, and + ethylbenzene at 303.15 and 323.15 K

Excess Gibbs free energies of methylcyclohexane + benzene, + methylbenzene, and + ethylbenzene at 303.15 and 323.15 K

M-1371 J. Chem. Thermodvnamics 1982, 14, 6899693 Excess Gibbs free energies of methylcyclohexane + benzene, + methylbenzene, and + ethylbenzene at 3...

251KB Sizes 4 Downloads 84 Views

M-1371 J.

Chem. Thermodvnamics 1982, 14, 6899693

Excess Gibbs free energies of methylcyclohexane + benzene, + methylbenzene, and + ethylbenzene at 303.15 and 323.15 DHARAM RAJWANT

V. S. JAIN,” S. SIDHU

SURAJ

Department

of Chemistry, Panjah

B. SAINI,

K

and

University, Chandigarh-160014.

India

(Received 20 October 1981; in revised fbrm 29 January 1982) Vapour pressures p as functions of mole fraction x for methylcyclohexane + benzene. + methylbenzene. and + ethylbenzene are reported at 303.15 and 323.15 K. Excess Gibbs energies obtained by Barker’s method are also reported: they are positive in all cases. The temperature coefficients of GE are negative. The results have been discussed in terms of the effect of substitution of an alkyl group in the benzene ring.

I. Introduction In continuation to our work”-” on the thermodynamics of binary mixtures, we report in this paper excess Gibbs energies GE for methylcyclohexane + benzene. + methylbenzene, and + ethylbenzene calculated from vapour pressuresobtained at 303.15 and 323.15 K.

2. Experimental Vapour pressuresof the pure liquids and of their binary mixtures were measured by static manometry described elsewhere.(8’ The mercury cut-offs and glass stop-cocks were replaced by high-vacuum teflon stop-cocks. The liquid mixture was stirred by meansof a waterproof magnetic stirrer submerged in the inner water thermostat. The temperature of the liquid mixture was controlled to within f0.005 K by use of a double thermostat. Mole fractions are believed to be within ~0.0005 and the pressureswithin ~0.006 kPa. Methylcyclohexane (B.D.H.; L.R.), benzene (B.D.H.; A.R.), methylbenzene (B.D.H. ; A.R.), and ethylbenzene (B.D.H. ; L.R.) were purified following reference 9. Only the middle fraction of the double distillate was used, after drying over molecular sieves. The purity of the chemicals was checked by measuring their densities and vapour pressures. A numerical comparison of our results with the best literature values is given in table 1. * To whom 0021

the correspondence

4614/82/070689+05

$02,00/O

should

be addressed. (‘ 1982 Academic

Press Inc. (London)

Limited

690

D. V. S. JAIN, TABLE

1. Densities

S. B. SAINI.

(1 and vapour

AND

pressure

R. S. SIDHU p of the pure compounds p/kPa

~(303.15

K)/(kg.m-“)

303.15

K

323.15

K

Component

Obs.

Lit.

Obs.

Lit.6.d

Obs.

Lit.b.d

Benzene Methylbenzene Ethylbenzene Methylcyclohexane

868.44 857.8 858.3 760.73

868.4" 857.7b 858.1'

15.905 4.882 1.692 7.797

15.910 4.888 1.682

36.166 12.354 4.716 18.497

36.168 12.281 4.687 18.448

’ Reference

15.

’ Reference

9.

’ Reference

16.

d Reference

10

3. Results and discussion Vapour pressures p for each of the three binary mixtures at 303.15 and 323.15 K and over the complete mole-fraction x range are tabulated in table 2. The excess Gibbs energies G” and the activity coefficients ,h were deduced from p(x) using Barker’s method.“” The values of GE and its uncertainty at (x = 0.5) thus obtained are given in table 2, and GE(x) curves at 303.15 K are plotted in figure 1. Similar curves were obtained at 313.15 and 323.15 K and are therefore, not included in figure 1. Figure 2 shows J(x) at 303.15 and 323.15 K respectively. The second virial coefficients B and molar volumes V, used in calculations are listed in table 3; B values were estimated from critical quantities. ‘13) The coefficients gi used to express the composition dependence of GE : GE/RT = x( 1 -x)

i

gi(2x - 1)‘.

(1)

i=O

where x is the mole fraction of c-C6H, ,CH,, are given in table 4 which also includes

_ 240 7 a E 5 160 \ “u 80

0.

FIGURE 1. Dependence of excess Gibbs energy GE on composition (1 -x)C,H,; n. (1 -x)C,H,CH,; v. (1 -x)C,H,C,H,.

at 303.15

K. xc-C,H,,CH,

+ :

GE FOR TABLE P kPa

x

2. Vapour

GE J,mol-’

METHYLCYCLOHEXANE

x

-

pressure

p, excess Gibbs

P

GE

kPa

J.mol-’

{xc-C6H1,CH, 0 0.0814 0.1251 0.1940

15.905 15.743 15.692 15.397

0

119 170 234

0.2680 0.3402 0.3942 0.4477

15.059 14.681 14.337 13.996

+ AN energy

x

+ (1 -x)&H61 282 311 321 324

0.4967 0.5483 0.6073 0.6697

ALKYL

GE, and uncertainty P kPa

691

BENZENE

GE J.mol-’

at 303.15

&GE

x

P

GE

kPa

J.rnol.-’

K

13.642 13.192 12.756 12.072

319 308 287 258

0.7417 0.8290 0.9062 1

11.343 10.215 9.231 7.797

216 153 89 0

GGE(x = 0.5 ): {xc-C6H,,CH, 0

0.0817 0.1256 0.1953

36.166 35.789 35.433 34.801

0

108 154 210

0.2702 0.3434 0.3982 0.4524

33.856 33.087 32.260 31.444

+ (1 -x)&H,; 251 274 282 282

0.5019 0.5540 0.6133 0.6758

at 323.15

6

K

30.627 29.576 28.466 27.178

277 266 248 222

0.1475 0.8336 0.9092 1

25.542 23.331 21.253 18.497

186 133 77 0

GGE(x = 0.5): (xc-C6HIICH, 0 0.079 1 0.1091 0.2450 0.3127

4.882 5.345 5.817 6.142 6.395

0 66 130 173 203

0.3772 0.4199 0.4364 0.4683 0.4738

0 0.0784 0.1681 0.2437 0.3112

12.354 13.307 14.261 14.956 15.513

0 60 118 158 185

0.3758 0.4185 0.4358 0.4670 0.4732

0 0.0672 0.1476 0.2218

1.692 2.294 2.934 3.474

0 59 116 157

0.2989 0.3670 0.4354 0.5049

0 0.0658 0.1451 0.2187

4.716 5.980 7.345 8.527

0 48 96 132

0.2954 0.3634 0.4320 0.5018

6.615 6.746 6.817 6.882 6.915

{XC-C6H,,CH3 15.968 16.256 16.435 16.568 16.648

(xc-C,HIICH, 3.984 4.408 4.800 5.209

{xc-C,H,,CH, 9.679 10.643 11.571 12.495

+(I 223 232 235 238 238

-x)C6HSCH,I 0.5173 0.5683 0.6285 0.6972 0.7762

+ (1 -x)C,H,CH,i 204 213 216 219 220 +(1 188 207 218 222

0.5166 0.5675 0.6276 0.6964 0.7754 -x)C6H,C2H,) 0.5655 0.6477 0.7349 0.8230

+ (1 -x)C,H,C,H,i 160 178 189 193

0.5629 0.6457 0.7336 0.8224

at 303.15

K

7.030 7.155 7.279 7.406 7.553

239 235 224 202 166

at 323.15 16.893 17.164 17.440 17.716 18.013 at 303.15 5.528 5.981 6.434 6.902 at 323.15 13.254 14.259 15.348 16.340

0.8576 0.9308 1

5

7.651

116

1.739

61

7.803 GGE(x

0

= 0.5):

4.5

K 221 218 208 189 156

0.8570 0.9304 1

18.241 18.408 18.533 6G”(x

110 58 0

= 0.5):

4

K 219 205 178 136

0.9041 1

7.309 7.797 6G”(x

= 0.5):

83 0 6

K 191 179 154 116

0.9039 1

17.351 18.497

70 0

GGE(.x = 0.5):

4

the qi’s at 313.15 K calculated from the measured p and x at this temperature. The standard deviations o(p) are given in the last column of table 4. As far as we are aware the vapour pressures only for (methylcyclohexane + ethylbenzene) have been reported earlier. The value of GE(x = 0.5) from the present study (203 J.mol-’ at 313.15 K) is in fair agreement with the (195 J.moll’ at 313.15 K) reported by Funk et al. (ii) We report the results at 303.15 and 323.15 K also. It can be seen from table 2 that GE for all the three mixtures is positive at all the three temperatures and over the complete mole-fraction range. The curves for GE(x)

D. V. S. JAIN. S. B. SAINI. AND R. S. SIDHU

692

(b)

-0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

x FIGURE 2. Dependence of activity coefficients on composition at (a) 303.15 K and (b) 323.15 K. xc-&HiiCH, + : -3 (1 -x)C,H,; - - -, (l-x)C,H,CHJ; -. - .. (1 -x)C 6H 5C 2H 5

TABLE 3. Molar volumes V, and second virial coefficients B calculated from Berthelot’s equation for the pure components

Component

v,/(cm3 mol-i) 303.15 323.15 K

GHs GH,CH, CHCH 6 52 5 c-&H,iCH,

107.42 123.70 129.07

89.94

- B/(cm’ mol - i ) 303.15 K 323.15 K

92.11 109.80

1317 1840

1150 1610

126.32 132.08

2385

2087

1963

1715

TABLE 4. Parameters gi fitting equation (1) and standard deviation a(p) T/K

90

91

$72

Np)lkPa

xc-C,H, ,CH, + (1 -x)C,H, 303.15 313.15 323.15

0.5053 0.4460 0.4127

-0.1311

-0.1090 -0.1134

xc-C,H,,CH, 303.15 313.15 323.15

0.3540 0.3285

303.15 313.15 323.15

0.3517 0.3119 0.2879

0.3799

xc-C6H,,CH,

+ (1 -x)&H&H, - 0.0068 - 0.0086 -0.0143

0.0217 0.0301 0.0423

-0.0174 -0.0114 -0.0113

+ (1 -x)C 6H 5C 2H 5 - 0.0043 0.0375 -0.0081 0.0267 -0.0063 0.0093

0.027 0.020 0.047

0.008 0.013 0.020 0.009 0.011 0.016

GE FOR METHYLCYCLOHEXANE

+ AN ALKYL

BENZENE

693

for all the three mixtures are more or less symmetrical around x = 0.5. Low positive GE{(l -x)C,H, + xc-C,H,,CH,], GE{(l -x)&H&H, + XC-C6H11CH3i and GE{(l - x)C,HJ,H, + xc-C6H, rCH3j are indicative of weak interactions between components. From GE(x) in figure 1 one observes that the introduction of a methyl or ethyl group in an aromatic ring results in a decrease of GE. The same effect is observed when the GE’s are compared with those for corresponding mixtures containing cyclohexane instead of methylcyclohexane. Similar observations have been made by Diaz-Peiia et ,1.(14’ for methylcyclohexane + o-, + m-, and + p-xylene. The temperature coefficients of GE for all the three mixtures is negative, being particularly large in magnitude methylcyclohexane + benzene. Financial

assistance to R.S.S. from CSIR, New Delhi, is gratefully acknowledged.

REFERENCES 1. Jain. D. V. S.; Wadi, R. K.; Saini, S. B.; Puri, K. J. Chem. Thermodynamics 1978, 10, 707. 2. Jain. D. V. S. ; Saini, S. B. ; Chaudhry, V. India J. Chem. 1979. 18A. 198. 3. Jain. D. V. S.; Wadi, R. K.; Saini, S. B.; Singh, J. Indian J. Chem. 1978, 16A, 561. 4. Jain, D. V. S.; Wadi, R. K.; Saini, S. B. Indian J. Chem. 1979, 17A, 400. 5. Jain, D. V. S.; Saini, S. B.; Bajaj, S. K. Indian J. Chem. 1980, 19A. 1007. 6. Jain, D. V. S.; Wadi, R. K.; Saini, S. B. Indian J. Tech. 1981, 19, 167. 7. Jain, D. V. S.; Wadi, R. K.; Saini, S. B. J. Chem. Thermodynumics 1981, 13, 903. 8. Jain, D. V. S. ; Gupta, V. K. ; Lark, B. S. Indiun J. Chem. 1970, 8, 815. 9. Riddick, J. A.; Bunger, W. B. Organic Solvents: Physicul Properties and Methods of Purificution. 3rd Edition. Wiley-Interscience: New York. 1970. 10. Diaz-Peiia, M.; Crespo-Colin, A.; Compostizo, A.; Escudero, I. J. Chem. Eng. Data 1980, 25. 17. 11. Funk, E. W. ; Chai, F. C.; Prausnitz, J. M. J. Chem. Eng. Duru 1972, 17. 24. 12. Barker, J. A. Aust. J. Chem. 1953, 6, 207. 13. Kudchadker, A. P.; Alani, G. H.; Zwolinski. B. J. Chem. Rev. 1968, 68, 659. 14. Diaz-Peiia, M.; Compostizo, A.; Crespo-Colin, A. J. Chem. Thermodynumics 1979, 11. 447. 15. Deshpande. D. D.; Ckwal, S. L. J. Chem. Sot. Fura& Trans. I 1972,68, 1059. 16. Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds. Elsevier: Amsterdam. Volume 1. 1950; Volume 2. 1965.