J. Chem. Thermodynamics 1999, 31, 1231–1246 Article No. jcht.1999.0532 Available online at http://www.idealibrary.com on
Excess thermodynamic properties of binary and ternary mixtures containing methyl 1,1-dimethylethyl ether (MTBE), n-heptane, and methanol at T = 313.15 K Jos´e J. Segovia, Mar´ıa C. Mart´ın, C´esar R. Chamorro, and ˜ ana Miguel A. Villaman´ Laboratorio de Termodin´amica, Depto. Ingenier´ıa Energ´etica y Fluidomec´anica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid, Spain
(Vapour + liquid) equilibrium of {methyl 1,1-dimethylethyl ether (MTBE) + n-heptane + methanol}, {methyl 1,1-dimethylethyl ether (MTBE) + methanol}, and (methanol + n-heptane) have been measured at T = 313.15 K. The data reduction by Barker’s method provides correlations for the excess molar Gibbs energy G E m using the Margules equation for the binary systems, and the Wohl expansion for the ternary. The Wilson, NRTL, and UNIQUAC models have been applied successfully to both the binary and ternary systems E for the same ternary reported here. Using literature data of the excess molar enthalpy Hm E for mixture measured at T = 313.15 K, we have calculated the excess molar entropy Sm c 1999 Academic Press the system at the same temperature. KEYWORDS: VLE data; correlations; excess Gibbs energy; excess properties; binary mixtures; ternary mixtures
1. Introduction Methyl 1,1-dimethylethyl ether, designated by the abbreviation MTBE (methyl tert-butyl ether) is at present the most important blending agent in the formulation of gasoline because of its antiknocking effect and for being an environmentally friendly chemical, and easy to synthesize at low cost. MTBE is obtained by the catalytic reaction of methanol and isobutene. In its synthesis, the methanol/isobutene ratio is limited by the formation of an azeotrope between MTBE and the unreacted methanol. In the subsequent distillation process, it is obtained as a bottoms product in which methanol has always been found as an impurity. The third added compound, n-heptane, represents the hydrocarbons in the gasoline. a To whom correspondence should be addressed.
0021–9614/99/081231 + 16 $30.00/0
c 1999 Academic Press
1232
J. J. Segovia et al.
This work is part of a research program on the thermodynamic characterization of ternary mixtures containing oxygenated additives (ethers and alcohols), and different types of hydrocarbons (paraffins, cycloparaffins, aromatics, oleffins). In previous studies,(1–7) we have investigated binary and ternary systems containing MTBE and/or the hydrocarbons benzene, cyclohexane, n-heptane, and 1-hexene at T = 313.15 K. Here, (MTBE + nheptane + methanol), and the binary (MTBE + methanol) and (methanol + n-heptane) at T = 313.15 K form the object of the present work.
2. Experimental procedure All the chemicals used were purchased from Fluka Chemie AG and were of the highest purity available, chromatography quality reagents (of the series puriss. p.a.) with a mole fraction purity > 0.995 for MTBE and n-heptane, and a mole fraction purity > 0.998 for methanol. All liquids were degassed prior to measurements using a modified distillation method based on the technique of Van Ness and Abbott,(8) under reduced pressure generated by a double stage rotatory pump assuring p = 0.5 Pa. The mole fraction purities of the chemicals were checked by gas chromatography and were found to be: >0.999 for methyl 1,1-dimethylethyl ether and methanol, and >0.998 for n-heptane. A static {(vapour + liquid)equilibrium} (VLE) apparatus consisting of an isothermal total pressure cell has been employed for measuring the (vapour + liquid) equilibrium of the binary and ternary mixtures. The technique, developed by Van Ness and coworkers,(9, 10) has been successfully implemented by one of the present authors,(11) and is described elsewhere.(1) A diagram of the apparatus is shown in figure 1. Positive displacement pumps of 100 ml capacity (Ruska, mod. 2200-801) equipped with piston injectors were used to inject known volumes of degassed components into a cell immersed in a high-precision water bath (Hart Scientific model 6020) assuring a temperature stability of ±0.5 mK, and thermostatted at T = 313.15 K. The pump resolution is 0.01 ml, and the resulting uncertainty in the volume injected is ±0.03 ml. The cell is a cylindrical stainless steel vessel with a capacity of about 180 ml, and is provided with an externally-operated magnetic stirrer. Initially, about 50 ml of one component are injected into the evacuated cell and the vapour pressure is recorded. The second and third components are then injected in appropriate proportions so as to achieve a desired composition. The total mass injected is determined from the volume differences corresponding to the initial and final positions of the pistons, the temperature of the injectors, and the densities of the injected components. The uncertainty in the mole fraction is estimated to be less than ±5 · 10−4 . The total vapour pressure for the ternary mixture is obtained by adding a third component to a binary mixture at a fixed temperature. Six runs (dilution lines) were carried out starting with a binary mixture with the mole fraction of one component close to x = (0.3, or 0.7), and adding the third component up to a mole fraction of x = 0.5. The temperature was measured by a calibrated standard PRT-100 (SDL model 5385/100) connected to an a.c. resistance bridge (ASL model F250) with a temperature resolution of 1 mK. The estimated uncertainty of the temperature measurement is ±10 mK. The pressure was measured using a differential pressure cell provided with an indicator (Ruska
1233
23.0 ºC
5 012505
10
6
10 Pa
8
Vacuum
9
7
30
45.0 ºC
15
20
20
7
3
1
40.00 ºC
5
6 Pa
10
Vacuum
2
4
2
4
2
4
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
FIGURE 1. Schematic diagram of the static VLE apparatus: 1, equilibrium cell; 2, piston injectors; 3, thermostatted bath; 4, flasks; 5, temperature indicators; 6, pressure gauge; 7, differential pressure cell; 8, variable volume pressure controller; 9, temperature controller; 10, vacuum gauge.
1234
J. J. Segovia et al.
models 2413-705 and 2416-711, respectively). When atmospheric air balances the vapour pressure of the cell, a Bourdon-fused quartz precision pressure gauge (Texas Instruments model 801) provided with a capsule indicates the pressure with an estimated uncertainty of ±5 Pa for the 125 kPa pressure range.
3. Results and correlations The use of the measuring technique described above allows a static equilibrium between the phases, assuring a true thermodynamic equilibrium. Direct sampling, particularly of the vapour phase, upsets the equilibrium, the mass of the vapour in the cell being very small; yet an appreciable mass must be withdrawn to yield an amount of condensate suitable for accurate analysis. However, as a consequence of Duhem’s theorem, sampling of the phases is, in fact, not necessary. Given a set of equilibrium (x, p) data at constant T , thermodynamics allows the calculation of the y values. Thus, the vapour phase need not be sampled, and the resulting data are thermodynamically consistent per se.(12–14) The data reduction of the binary and ternary mixtures has been performed using Barker’s method(15) according to well-established procedures.(16, 17) A developed computer program described elsewhere(1) has been used to implement the technique. The non-ideality of the vapour phase is taken into account by the virial equation of state, truncated at the second term. The second virial coefficients have been calculated by the Hayden O’Connell method(18) using the coefficients given by Dymond et al.(19) The following mixtures: {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 ) CH3 OH}, {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH}, and {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 } have been measured at T = 313.15 K. The data of the ternary mixture are adequately correlated by the three-parameter Wohl expansion,(20) equation (1): g123 = G Em /RT = g12 + g13 + g23 + (C0 + C1 x1 + C2 x2 )x1 x2 x3 ,
(1)
G Em
where is the excess molar Gibbs energy, R is the universal gas constant, and T is temperature, which also includes the parameters of the corresponding binaries gi j , according to equation (2). The adjustable parameters C0 , C1 , and C2 are found by regression of the ternary data. Correlations for the gi j are given by a six-parameter Margules equation(21) of the following form: gi j = G Em /RT = {A ji xi + Ai j x j − (λ ji xi + λi j x j )xi x j + (η ji xi + ηi j x j )xi2 x 2j }xi x j . (2) The binary and ternary systems have also been correlated using the Wilson,(22) NRTL,(23) and UNIQUAC(24) models, whose respective excess Gibbs energy expressions are given by the following equations: ! X X E G m /RT = − xi ln x j Ai j , (3) i
G Em /RT
=
X i
xi
j
X j
A ji G ji x j
,
X k
!
G ki xk ,
(4)
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
1235
TABLE 1. Average values used for the reduction of the data for the experimental vapour pressures pis , the molar volumes ViL , and the second virial coefficients Bii and Bi j for the pure compounds investigated in this work, and corresponding literature values at T = 313.15 K CH3 OC(CH3 )2 CH3 (1)
CH3 OH (2)
CH3 (CH2 )5 CH3 (3)
pis /(kPa)
59.907
35.475
12.331
pis /(kPa)
59.830a
35.434e
12.300a
59.942b
34.982 f
12.343c
59.909c
35.445g
12.338d
59.924d
12.334h 12.335i
ViL /(cm3 · mol−1 ) Bii /(cm3 · mol−1 ) Bi j (13)/(cm3 · mol−1 ) Bi j (12)/(cm3 · mol−1 ) Bi j (23)/(cm3 · mol−1 )
122 j
41e
150i
−1426k
−1963k
−2520k
−1857k −830k
−1857k −830k −633k
−633k
a Calculated from the Antoine equation using constants reported by Reid et al.(31) b Calculated from the Antoine equation using constants reported by Ambrose et al.(32) c Reported by Lozano et al.(1) d Reported by Lozano et al.(2) e Calculated from the An-
toine equation using constants reported in TRC.(33) f Reported by Mullins et al.(25) g Reported by Toghiani et al.(26) h Reported by G´oral.(34) i Reported in TRC.(35) j Reported by Jangkamolkulchal et al.(36) k Calculated by Hayden et al.(18) from Dymond et al.(19)
G Em /RT
=
X i
xi ln(ϕi /xi ) + z/2
X i
qi xi ln(ϑi /qi ) −
X i
qi xi ln
X
!
ϑ j A ji , (5)
j
P P where G ji = exp(−α ji A ji ), ϑi = qi xi / j q j x j , ϕi = ri xi / j r j x j , and z = 10. The values of the experimental vapour pressures pis , the molar liquid volumes ViL , and the second virial coefficients (Bii , Bi j ) of the pure compounds used in the calculations are indicated in table 1. Corresponding literature values of the vapour pressures are also reported in the table for comparison purposes. Tables 2 to 4 give the experimental values of the total pressure p, and the corresponding compositions of the liquid xi and vapour phases yi as reduced by the Margules equation for the binary mixtures, and the Wohl expansion for the ternary ones. The data correlation results for the binary systems reported here are summarized in table 5, including, for convenience, those of {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 (CH2 )5 CH3 }, which have been reported previously.(5) The table also contains the values of the adjustable parameters of the various models which yield the best results by using Barker’s method, the root mean square (r.m.s.d.) of the difference between the experimental and the calculated pressure, and the maximum value of this difference (max |1p|). For the ternary system, the results of the correlation are given in table 6. In table 7, we have compared
1236
J. J. Segovia et al. TABLE 2. Total pressure p for {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH} at T = 313.15 K, and at various compositions of the liquid x1 and vapour phases y1 x1
y1
p/kPa
x1
y1
p/kPa
0.0000
0.0000
35.476
0.4999
0.6319
64.476
0.0551
0.2155
43.099
0.5487
0.6516
65.148
0.0991
0.3177
47.747
0.5496
0.6520
65.160
0.1474
0.3949
51.755
0.5997
0.6722
65.695
0.1940
0.4492
54.783
0.6491
0.6927
66.065
0.2458
0.4954
57.431
0.6986
0.7148
66.270
0.2971
0.5317
59.529
0.7489
0.7398
66.289
0.3477
0.5615
61.169
0.7770
0.7555
66.196
0.3985
0.5873
62.516
0.8534
0.8080
65.433
0.4046
0.5902
62.661
0.9004
0.8513
64.435
0.4491
0.6104
63.590
0.9525
0.9159
62.562
0.4493
0.6105
63.599
1.0000
1.0000
59.891
0.4993
0.6316
64.456
TABLE 3. Total pressure p for {x1 CH3 OH+ (1 − x1 )CH3 (CH2 )5 CH3 } at T = 313.15 K, and at various compositions of the liquid x1 and vapour phases y1 x1
y1
p/kPa
x1
y1
p/kPa
0.0000
0.0000
12.336
0.8756
0.7465
45.563
0.0627
0.7123
41.695
0.9007
0.7496
45.352
0.0877
0.7249
43.191
0.9205
0.7566
45.009
0.0998
0.7280
43.594
0.9405
0.7716
44.361
0.1187
0.7313
44.167
0.9509
0.7850
43.785
0.1475
0.7346
44.745
0.9606
0.8026
43.029
0.1769
0.7376
45.085
0.9710
0.8296
41.912
0.2044
0.7401
45.367
0.9816
0.8703
40.289
0.2370
0.7426
45.520
0.9906
0.9211
38.368
0.9966
0.9677
36.574
1.0000
1.0000
35.448
miscibility gap
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
1237
TABLE 4. Total pressure p for {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K, and at various compositions of the liquid x1 and vapour phases y1 x1
x2
y1
y2
p/kPa
x1
x2
y1
y2
p/kPa
0.0000
0.0000
0.0000
0.0000
35.475
0.7060
0.0000
0.7183
0.0000
66.259
0.0271 0.0512
0.2837 0.2766
0.0465 0.0859
0.2374 0.2220
46.454 47.362
0.6875 0.6705
0.0263 0.0504
0.7007 0.6849
0.0102 0.0192
65.149 64.177
0.1012 0.1501
0.2621 0.2479
0.1610 0.2267
0.1938 0.1700
49.181 50.864
0.6241 0.5992
0.1163 0.1516
0.6426 0.6206
0.0423 0.0538
61.717 60.505
0.1999 0.2502
0.2334 0.2187
0.2865 0.3410
0.1489 0.1301
52.464 53.970
0.5629 0.5284
0.2033 0.2521
0.5892 0.5600
0.0698 0.0842
58.846 57.371
0.3044 0.3482
0.2029 0.1901
0.3942 0.4337
0.1121 0.0991
55.470 56.595
0.4936 0.4615
0.3014 0.3469
0.5310 0.5044
0.0982 0.1109
55.952 54.687
0.3998 0.4499
0.1751 0.1605
0.4772 0.5169
0.0853 0.0733
57.829 58.932
0.4239 0.3881
0.4002 0.4509
0.4732 0.4433
0.1256 0.1396
53.232 51.860
0.4997 0.0000
0.1459 1.0000
0.5544 0.0000
0.0625 1.0000
59.930 12.331
0.3526 1.0000
0.5011 0.0000
0.4133 1.0000
0.1537 0.0000
50.496 59.907
0.3023
0.6977
0.6908
0.3092
28.886
0.7008
0.2993
0.9089
0.0911
46.947
0.2728 0.2569
0.6296 0.5929
0.3525 0.3130
0.1920 0.1834
46.370 48.621
0.6849 0.6665
0.2925 0.2846
0.8328 0.7672
0.0865 0.0830
49.666 52.082
0.2416 0.2211
0.5574 0.5101
0.2894 0.2667
0.1802 0.1793
49.616 50.177
0.6304 0.5957
0.2692 0.2544
0.6811 0.6272
0.0793 0.0780
55.165 56.814
0.2118 0.1967
0.4887 0.4539
0.2580 0.2450
0.1795 0.1804
50.280 50.336
0.5606 0.5258
0.2394 0.2245
0.5883 0.5582
0.0780 0.0787
57.710 58.143
0.1817 0.1668
0.4192 0.3848
0.2328 0.2211
0.1816 0.1830
50.305 50.223
0.4916 0.4563
0.2099 0.1949
0.5338 0.5115
0.0798 0.0812
58.292 58.257
0.1512 0.0000
0.3489 0.0000
0.2089 0.0000
0.1844 0.0000
50.098 35.475
0.4221 0.3859
0.1802 0.1648
0.4914 0.4709
0.0829 0.0849
58.088 57.791
0.2960 0.2887
0.0000 0.0250
0.5310 0.4927
0.0000 0.0296
59.499 58.618
0.3508 0.0000
0.1498 1.0000
0.4509 0.0000
0.0871 1.0000
57.394 12.331
0.2818 0.2669
0.0489 0.0998
0.4616 0.4086
0.0522 0.0873
57.812 56.267
0.0269 0.0552
0.6903 0.6702
0.0340 0.0699
0.2471 0.2381
46.212 46.602
0.2520 0.2376
0.1506 0.1995
0.3675 0.3350
0.1116 0.1294
54.964 53.889
0.1005 0.1510
0.6381 0.6023
0.1264 0.1870
0.2232 0.2064
47.350 48.279
0.2227 0.2078
0.2500 0.3005
0.3057 0.2792
0.1447 0.1580
52.898 51.990
0.2011 0.2500
0.5666 0.5319
0.2443 0.2976
0.1902 0.1751
49.227 50.132
0.1933 0.1780
0.3494 0.4012
0.2552 0.2311
0.1697 0.1810
51.170 50.363
0.2999 0.3485
0.4965 0.4620
0.3500 0.3997
0.1605 0.1470
51.009 51.812
0.1633 0.1484
0.4504 0.5006
0.2093 0.1881
0.1906 0.1995
49.663 49.017
0.4004 0.4509
0.4252 0.3893
0.4517 0.5018
0.1332 0.1203
52.610 53.334
1.0000
0.0000
1.0000
0.0000
59.907
0.4999
0.3545
0.5499
0.1082
53.995
1238
J. J. Segovia et al.
Methanol (3)
60
55 50
65
45 40 MTBE (1)
30
20 Heptane (2)
FIGURE 2. Lines of constant total pressure p for {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K.
the results of {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH} with those found in the literature(25, 26) which have been reduced using a three-parameter Margules equation. E for the ternary We have also calculated the values of the excess molar entropy Sm E system using literature data for the excess molar enthalpy Hm at the same temperature of 313.15 K.(27) The resulting values are given in table 8. The miscibility gap of {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 } was predicted from (vapour + liquid) equilibria. All the miscibility limit values obtained from the different models are expressed in terms of the mole fraction of methanol in the liquid phase. They are presented in table 9, and compared with the few experimental results found in the literature.(28–30) The results for the ternary system are shown in figures 2 to 5. Constant pressure lines are shown in figure 2, constant excess molar Gibbs energy lines G Em in figure 3, and pressure and excess molar Gibbs energy surfaces in figures 4 and 5, respectively.
4. Discussion The experimental data for {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 ) CH3 OH} have been correlated using the Wohl equation which is, in fact, an extension of the Margules equation to multicomponent systems, the Wilson, NRTL, and UNIQUAC models. The minimum value of the root mean square deviation (r.m.s.d.) of 1p, obtained with the Wilson equation, is 50 Pa, and the maximum difference between the calculated and experimental pressure (max |1p|) is 145 Pa. For the Wohl equation, the r.m.s.d. of 1p is 66 Pa, and max |1p| is 175 Pa. This ternary system shows a small miscibility gap near
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
1239
TABLE 5. Determined parameters of the models used for the binary subsystems of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K, together with the coordinates of the azeotrope (x1 azeotrope , and pazeotrope ). The 1p term is defined as the difference between the experimental and calculated pressure, and p ∗ is the total pressure in the miscibility gap {CH3 OC(CH3 )2 CH3 (1) + CH3 (CH2 )5 CH3 (2)} Three-parameter Margules
Wilson
A12 A21
0.23992 0.25871
0.98106 0.79215
λ12 = λ21 α12
0.04026
r.m.s.d.(1p)/kPa max |1p|/kPa
NRTL 0.29870 −0.04652
UNIQUAC 1.05933 0.88423
0.3 0.022 0.045
0.029 0.054
0.030 0.055
0.030 0.055
Three-parameter Margules
Wilson
NRTL
NRTL
UNIQUAC
A13
1.20342
0.53559
0.85085
0.8186
0.24295
A31 λ13 = λ31
1.30170 0.23729
0.43375
0.68683
0.6222
1.29835
α13 r.m.s.d.(1p)/kPa
0.019
0.043
0.5862 0.023
0.47 0.071
0.180
max |1p|/kPa x1 azeotrope
0.047 0.7304
0.074 0.7295
0.070 0.7309
0.130 0.7278
0.365 0.7224
pazeotrope
66.283
66.261
66.286
66.237
66.147
Five-parameter Margules
Six-parameter Margules
NRTL
NRTL
NRTL
UNIQUAC
A32 A23
3.56423 3.45311
3.62906 3.41015
2.33306 2.17340
2.52569 2.42938
2.60057 2.55347
1.00795 0.095361
λ32 λ23
6.15996 5.33419
6.98176 4.40200
η32 η23
8.58683 8.58683
11.87196 3.26489
α23 r.m.s.d. (1p)/kPa
0.118
0.094
0.4 1.230
0.426 0.528
0.4356 0.554
2.286
max |1p|/kPa x3 azeotrope
0.197 0.7324
0.128 0.7460
3.167 0.7316
1.536 0.7427
0.860 0.7468
5.158 0.7136
pazeotrope p∗
45.775 45.621
45.434 45.621
45.833 45.621
45.639 45.621
45.349 45.621
45.554 45.621
{CH3 OC(CH3 )2 CH3 (1) + CH3 OH (3)}
{CH3 (CH2 )5 CH3 (2) + CH3 OH (3)}
1240
J. J. Segovia et al. TABLE 6. Determined parameters of the models used for {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K. The 1p term is defined as the difference betweeen the experimental and calculated pressure Wohl
Wilson
NRTL
UNIQUAC
A12
0.95594
0.45356
0.91499
A21
0.81554 −0.18402
1.01804
A13
0.54119
0.86017
0.23663
A31
0.42609
0.67373
1.31642
A23
0.05350
2.52627
0.10556
A32
0.04913
2.71976
1.04691
C0
2.26929
C1
2.08933
C2
1.32963
α12
0.3
α13
0.5862
α23
0.4356
r.m.s.d. (1p)/kPa
0.066
0.050
0.122
0.363
max |1p|/kPa
0.175
0.145
0.635
1.580
TABLE 7. Determined parameters for the Margules equation for {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH} at T = 313.15 K, together with the coordinates of the azeotrope (x1 azeotrope , and pazeotrope ), and comparison with literature data
p1s /kPa
This work
Mullins et al. (1989)(25)
Toghiani et al. (1996)(26)
59.907
60.224
60.530
p3s /kPa
35.475
34.982
34.450
A13
1.20342
1.16824
1.19362
A31
1.30170
1.16042
1.25297
λ13 = λ31 r.m.s.d.(1p)/kPa
0.23729
0.04211
0.24337
0.019
0.571
0.077
max |1p|/kPa
0.047
1.233
0.179
x1 azeotrope
0.7304
0.7283
0.7358
pazeotrope
66.283
65.287
66.310
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
1241
TABLE 8. Excess thermodynamic functions for {x1 CH3 OC(CH3 )2 CH3 +x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K, and at various mole fractions xi . The excess molar Gibbs energy G E m is calculated by using the Wohl equation given in table 6, the excess molar E is taken from the literature,(27) and the excess molar entropy S E is calculated enthalpy Hm m E E from the thermodynamic relation G E m = Hm − T Sm x1
x2
−1 GE m /(J · mol )
E /(J · mol−1 ) Hm
E /(J · mol−1 ) T Sm
E /(J · mol−1 · K−1 ) Sm
0.6660
0.3340
141.01
332.00
190.99
0.61
0.6170 0.5718
0.3080 0.2855
449.46 670.81
585.40 699.90
135.94 29.09
0.43 0.09
0.5309 0.4935
0.2649 0.2464
829.48 942.11
746.50 764.30
−82.98 −177.81
−0.26 −0.57
0.4594 0.4280
0.2293 0.2137
1020.52 1073.24
759.90 744.70
−260.62 −328.54
−0.83 −1.05
0.3992 0.3724
0.1992 0.1859
1106.00 1123.68
725.10 702.20
−380.90 −421.48
−1.22 −1.35
0.3398 0.3032
0.1696 0.1513
1128.87 1113.76
667.50 619.40
−461.37 −494.36
−1.47 −1.58
0.2356 0.2356
0.1517 0.1175
1118.46 1027.30
552.30 512.30
−566.16 −515.00
−1.81 −1.64
0.1951 0.1602
0.0973 0.0800
937.67 836.19
439.20 372.60
−498.47 −463.59
−1.59 −1.48
0.1371 0.0970
0.0683 0.0484
754.33 585.95
323.00 237.10
−431.33 −348.85
−1.38 −1.11
0.0636 0.0352
0.0317 0.0176
414.76 245.57
160.60 91.50
−254.16 −154.07
−0.81 −0.49
0.0109 0.3000
0.0055 0.7000
80.89 129.64
25.10 296.00
−55.79 166.36
−0.18 0.53
0.2761 0.2687
0.6434 0.6260
587.36 700.98
671.70 736.50
84.34 35.52
0.27 0.11
0.2546
0.5931
887.58
810.60
−76.98
−0.25
0.2352 0.2177
0.5480 0.5073
1091.04 1229.88
850.50 860.70
−240.54 −369.18
−0.77 −1.18
0.2019 0.1874
0.4703 0.4367
1323.34 1383.91
869.60 855.10
−453.74 −528.81
−1.45 −1.69
0.1785 0.1620
0.4158 0.3776
1410.15 1437.16
838.80 811.10
−571.35 −626.06
−1.82 −2.00
0.1473 0.1219
0.3432 0.2841
1438.38 1390.79
789.20 712.50
−649.18 −678.29
−2.07 −2.17
0.1009 0.0917
0.2351 0.2136
1302.38 1248.65
642.50 613.60
−659.88 −635.05
−2.11 −2.03
0.0832 0.0680
0.1938 0.1586
1190.47 1064.55
580.60 467.60
−609.87 −596.95
−1.95 −1.91
0.0435 0.0289
0.1015 0.0674
789.06 573.40
390.60 392.30
−398.46 −181.10
−1.27 −0.58
1242
J. J. Segovia et al. TABLE 8—continued x1
x2
−1 GE m /(J · mol )
E /(J · mol·−1 ) Hm
E /(J · mol−1 ) T Sm
E /(J · mol−1 · K−1 ) Sm
0.0130
0.0301
283.46
150.90
−132.56
−0.42
0.0022
0.0053
53.17
38.90
−14.27
−0.05
0.6660
0.0000
704.33
378.00
−326.33
−1.04
0.6451
0.0323
747.03
436.70
−310.33
−0.99
0.6228
0.0658
787.31
538.40
−248.91
−0.79
0.5996
0.1005
824.15
568.30
−255.85
−0.82
0.5631
0.1553
871.70
649.00
−222.70
−0.71
0.5243
0.2135
908.38
724.50
−183.88
−0.59
0.4687
0.2969
936.74
788.60
−148.14
−0.47
0.4391
0.3413
940.59
815.30
−125.29
−0.40
0.4081
0.3878
936.48
835.40
−101.08
−0.32
0.3590
0.4615
913.12
836.00
−77.12
−0.25
0.3243
0.5135
884.58
829.50
−55.08
−0.18
0.2879
0.5681
843.48
812.60
−30.88
−0.10
0.2690
0.5964
817.78
797.20
−20.58
−0.07
0.2299
0.6552
753.35
756.80
3.45
0.01
0.1887
0.7170
670.10
692.70
22.60
0.07
0.1672
0.7491
620.35
651.20
30.85
0.10
0.1227
0.8160
497.67
552.70
55.03
0.18
0.0995
0.8508
423.69
497.20
73.51
0.23
0.0511
0.9233
242.62
345.40
102.78
0.33
0.0259
0.9611
130.58
228.00
97.42
0.31
0.3000
0.0000
646.88
180.00
−466.88
−1.49
0.2937
0.0225
735.65
238.30
−497.35
−1.59
0.2865
0.0463
821.55
325.60
−495.95
−1.58
0.2708
0.0985
985.09
467.20
−517.89
−1.65
0.2397
0.2020
1220.19
663.10
−557.09
−1.78
0.2090
0.3042
1356.53
768.10
−588.43
−1.88
0.2003
0.3332
1380.33
794.40
−585.93
−1.87
0.1814
0.3961
1411.09
824.10
−586.99
−1.87
0.1712
0.4303
1415.96
827.50
−588.46
−1.88
0.1487
0.5050
1398.37
812.40
−585.97
−1.87
0.1233
0.5896
1329.80
773.20
−556.60
−1.78
0.0943
0.6862
1184.71
707.10
−477.61
−1.53
0.0740
0.7538
1036.60
617.50
−419.10
−1.34
0.0609
0.7974
917.84
584.70
−333.14
−1.06
0.0422
0.8596
710.73
517.10
−193.63
−0.62
0.0220
0.9296
403.30
404.60
1.30
0.00
0.0134
0.9554
273.87
350.60
76.73
0.25
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
1243
Methanol (3)
1600 1400 1000
1200
600 800 400 200 MTBE (1)
Heptane (2)
FIGURE 3. Lines of constant excess molar Gibbs energy GE m {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K. p / kPa
for
70 60 50 40 30 20 10 MTBE (1) Methanol (3)
Heptane (2) FIGURE 4. Pressure surface p for {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 ) CH3 OH} at T = 313.15 K.
1244
J. J. Segovia et al. TABLE 9. Miscibility limits x1 , and x1∗ calculated with the models used in this work, and comparison with data found in the literature for {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 } at T = 313.15 K x1
x1∗
Margules (5-parameter)
0.2263
0.8714
Margules (6-parameter)
0.2088
0.6604
NRTL (α12 = 0.4)
0.1208
0.9060
NRTL (α12 = 0.426)
0.1397
0.8920
NRTL (α12 = 0.4356)
Miscible
Miscibility
UNIQUAC
0.1153
0.8934
Tusel-Langer et al.(28)
0.2248
0.8567
Tagliavini et al.(29)
0.2536
Kiser et al.(30)
0.8486 0.8462
E /(J·mol–1) Gm
2000 1800 1600 1400 1200 1000 800 600 400
Heptane (2)
200 Methanol (3)
MTBE (1) FIGURE 5. Excess molar Gibbs energy G E m surface for {x1 CH3 OC(CH3 )2 CH3 x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH} at T = 313.15 K.
+
VLE of {x1 CH3 OC(CH3 )2 CH3 + x2 CH3 (CH2 )5 CH3 + (1 − x1 − x2 )CH3 OH}
1245
{x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 } as has been determined by other authors.(28–30) We have not been able to make measurements in this region of the (vapour + liquid + liquid) equilibrium because the technique is not adequate for very low mole fractions. The pressure surface, figure 4, shows a maximum at 66.238 kPa which corresponds to the azeotrope {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH}, and a minimum at 12.331 kPa corresponding to the pressure of pure n-heptane. The excess molar Gibbs energy G Em of the ternary system (figures 3, and 5) shows a positive deviation from ideality, which increases always in the direction of the less ideal {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 }, and reaches a maximum value of 1672 J · mol−1 . The three-parameter Margules equation leads to the best results with a root mean square deviation of the pressure of 19 Pa for {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH}, and a maximum deviation of 47 Pa. The six-parameter Margules equation results in the best fit for {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 }, with an r.m.s.d. (1p) of 94 Pa, and a max |1p| of 128 Pa. The higher values found can be attributed to a large miscibility gap present in this system. Both binary systems exhibit a pronounced positive deviation from ideality. Both binary systems exhibit azeotropy. The compositions of the azeotropes as determined by the three- and six-parameter Margules equation are: x1 azeotrope = 0.7304, and pazeotrope = 66.283 kPa for {x1 CH3 OC(CH3 )2 CH3 + (1 − x1 )CH3 OH}, values close to the ones reported by Toghiani et al.,(26) namely: x1 azeotrope = 0.7358 and pazeotrope = 66.310 kPa, and x1 azeotrope = 0.74604, and pazeotrope = 45.434 kPa for {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 }. As for the prediction of the miscibility gap for {x1 CH3 OH + (1 − x1 )CH3 (CH2 )5 CH3 }, the values obtained with the five-parameter Margules equation are x1 = 0.2263, and x1∗ = 0.8714, and are close to the literature values: x1 = 0.2248, and x1∗ = 0.8567 (reported by Tusel-Langer et al.(28) ), x1 = 0.2536, and x1∗ = 0.8486 (Tagliavini et al.(29) ), and x1∗ = 0.8462 (Kiser et al.(30) ). Support for this work came from the DGICYT, Direcci´on General de Investigaci´on Cient´ıfica y T´ecnica of the Spanish Ministry of Education, Project PB95-0704, and from Junta de Castilla y Le´on (Consejer´ıa de Educaci´on y Cultura) project VA 42/96. REFERENCES 1. Lozano, L. M.; Montero, E. A.; Mart´ın, M. C.; Villama˜na´ n, M. A. Fluid Phase Equilib. 1995, 110, 219–230. 2. Lozano, L. M.; Montero, E. A.; Mart´ın, M. C.; Villama˜na´ n, M. A. Fluid Phase Equilib. 1997, 133, 155–162. 3. Segovia, J. J.; Mart´ın, M. C.; Chamorro, C. R.; Villama˜na´ n, M. A. Fluid Phase Equilib. 1997, 133, 163–172. 4. Segovia, J. J. Ph. D. Thesis, Department of Energy, University of Valladolid, Spain. 1997. 5. Segovia, J. J.; Mart´ın, M. C.; Chamorro, C. R.; Montero, E. A.; Villama˜na´ n, M. A. Fluid Phase Equilib. 1998, 152, 265–276. 6. Segovia, J. J.; Mart´ın, M. C.; Chamorro, C. R.; Villama˜na´ n, M. A. J. Chem. Eng. Data 1998, 43, 1014–1020. 7. Segovia, J. J.; Mart´ın, M. C.; Chamorro, C. R.; Villama˜na´ n, M. A. J. Chem. Eng. Data 1998, 43, 1021–1026. 8. Van Ness, H. C.; Abbott, M. M. Ind. Eng. Chem. Fundam. 1978, 17, 66–67.
1246
J. J. Segovia et al.
9. Gibbs, R. E.; Van Ness, H. C. Ind. Eng. Chem. Fundam. 1972, 11, 410–413. 10. DiElsi, D. P.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. J. Chem. Eng. Data 1978, 23, 242– 245. 11. Villama˜na´ n, M. A.; Allawi, A. J.; Van Ness, H. C. J. Chem. Eng. Data 1984, 29, 293–296. 12. Van Ness, H. C.; Abbott, M. M. Classical Thermodynamics of Nonelectrolyte Solutions:with applications to phase equilibria. McGraw-Hill: New York. 1982. 13. Van Ness, H. C. J. Chem. Thermodynamics 1995, 27, 113–134. 14. Van Ness, H. C. Pure Appl. Chem. 1995, 67, 859–872. 15. Barker, J. A. Aust. J. Chem. 1953, 6, 207–210. 16. Abbott, M. M.; Van Ness, H. C. AIChE J. 1975, 21, 62–71. 17. Abbott, M. M.; Floess, J. K.; Walsh, G. E.; Van Ness, H. C. AIChE J. 1975, 21, 72–76. 18. Hayden, J. G.; O’Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209–216. 19. Dymond, J. H.; Smith, E. B. The Virial Coefficients of Pure Gases and Mixtures—a critical compilation. Clarendon Press: Oxford. 1980. 20. Wohl, K. Chem. Eng. Prog. 1953, 49, 218. 21. Margules, M. Akad. Wiss. Wien, Math. Naturw. 1895, Kl. II, 104, 1243. 22. Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127–130. 23. Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135–144. 24. Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116–128. 25. Mullins, S. R.; Oehert, L. A.; Wileman, K. P.; Manley, D. B. AIChE Symp. Ser. 1989, No. 271, 85, 94–99. 26. Toghiani, R. K.; Toghiani, H.; Venkateswarlu, G. Fluid Phase Equilib. 1996, 122, 157–168. 27. Tusel-Langer, E.; Lichtenthaler, R. N. Ber. Bunsenges. Phys. Chem. 1991, 2, 145–152. 28. Tusel-Langer, E.; Garc´ıa-Alonso, J. M.; Villama˜na´ n, M. A.; Lichtenthaler, R. N. J. Solution Chem. 1991, 20, 153–163. 29. Tagliavini, G.; Arich, G. Rci. Sci. 1958, 28, 1902. 30. Kiser, R. W.; Johnson, G. D.; Sheltar, M. D. J. Chem. Eng. Data 1961, 6, 338. 31. Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids. Mc-Graw Hill: New York. 1987. 32. Ambrose, D.; Ellender, J. H.; Sprake, C. H. S.; Townsend, R. J. Chem. Thermodynamics 1976, 8, 165–178. 33. TRC Thermodynamic Tables—Non Hydrocarbons. Thermodynamics Research Center, The Texas A & M University System: College Station, TX. Vapour Pressures: Methanol: Table 232-1-(1.1000)-k. 1976;densities: Methanol: Table 23-2-1-(1.1000)-d. 1966. 34. G´oral, M. Fluid Phase Equilib. 1994, 102, 275–286. 35. TRC Thermodynamic Tables—Hydrocarbons. Thermodynamics Research Center, The Texas A & M University System: College Station, TX. Vapour Pressures: n-Heptane: Table 23-2(1.202)-k.1975; densities: n-Heptane: Table 23-2-(1.101)-d. 1973 36. Jangkamolkulchal, A.; Allerd, G. C.; Parrish, W. R. J. Chem. Eng. Data 1991, 36, 481–484. (Received 11 August 1998; in final form 14 April 1999)
WA 98/042