Excitation of helium by protons and electrons

Excitation of helium by protons and electrons

Physica 42 (1969) 245-261 EXCITATION 0 North-Holland Publishing Co., Amsterdam OF HELIUM BY PROTONS AND ELECTRONS J. VAN DEN BOS* FOM-Instituut ...

897KB Sizes 0 Downloads 188 Views

Physica 42 (1969) 245-261

EXCITATION

0 North-Holland

Publishing

Co., Amsterdam

OF HELIUM BY PROTONS AND ELECTRONS J. VAN DEN BOS*

FOM-Instituut

VOOYAtoom-

en Molecuulfysica,

Received

Amsterdam,

Nederland

1 July 1968

synopsis Generalized oscillator strengths and cross sections for excitation of helium by protons and electrons have been calculated using Born approximation. Transitions from the ground state to all n = 2, 3, 4 singlet states have been considered, including some sub-state transitions. Three types of ground state wave functions have been employed : the one-parameter Hylleraas function, an exponential fit to the Hartree-Fock function, and a variationally determined Eckart function. The final states are linear combinations of products of hydrogenic wave functions. It is shown that the different wave function combinations give rise to largely different excitation functions, but that the combination with HF gives, except for nlS, results that complete favourable with results obtained using much more accurate wave function combinations.

1. Ivztrodz4ction Collisional excitation of helium has been considered theoretically by many authors. Most results are given in the form of excitation cross sections but some also gave generalized oscillator strengths or related quantities (see table I). Others only calculated oscillator strengths in the limit of zero momentum transfer (see table II). Usually the electron has been taken as the impinging particle, but also some calculations are available with a proton as the projectile. For electron kinetic energies from a few hundred eV upwards, the proton cross sections in the Born approximation may be obtained from the electron cross sections by comparing projectiles of equal velocity. For lower electron energies one may apply an approximate relationship between proton and electron energies one may apply an approximate relationship between proton and electron cross sections derived by Bates and Griffingl). For too low energies, however, this relationship breaks down. In this paper we present cross sections for excitation of helium by electrons and by protons. The results for the two projectiles are derived independently. * Present address: Institute of Computational Lincoln, Nebraska, USA. 245

Sciences, University

of Nebraska,

246

J. VAN DEN BOS TABLE I

Theoretical work on excitation of helium in the Born or related approximations Author

Approximation

Ground state used

H H H, HF, VE VE -

3iD-5iD,

Born Born Born Born Born Ochkur

HF

e e

3iD-6iD,

Born

Hyll.-6 par.

e

25-5000 eV

e

25-100 eV 40-260 eV

Final state

Massey and Mohr is) Altshuler 13914) Fox 15) Fox is) Lassettre 17) Ochkur and Brattsevis) Bell et al. 19) Percival and Seatonss) Rothensteinei) Moiseiwitsch and Stewart 22) Bell 23)

2rS, 3iS, 3iD-5iD, 2is, zip, 21%10% 3rD 21s 2iP-5iP, 4iF, 5iF 2lP-6rP, 2is, 31s

2rP-5iP, 4iF 31P

Projectile

Energy range

e

100-400 122-871 20-250 23-180 20-400 30-500

e

e e

eV eV eV eV eV eV

3iD 2iP

Born 2nd Born

H H

2iP 21P. 31P

Born Born, Distortion

H HF

10-1000 keV

Born Born

VE H

25-375 keV 10-1000 keV

Kim, Inokuti26)

3rD, 4iD 2iP-5iP, 3iD-5rD, 4rF 2is, 3is, 21P, 3iP

Born

Hyll.-53 par.

Bell et al. 27)

2iP-6rP,

Born

Hyll.-6 par

McDowell and Pluta 24) Gaillard 25)

3iD-6iD

The excitation of all upper states with principal 3, 4 has been considered.

quantum

e

3-600 keV

Born region P

10-2000 keV

number n = 2,

2. Theory With reference to the well-known quantity optical oscillator strength, Bethes) defined the generalized oscillator strength fin(K), for a collisioninduced transition from a state i to a state n, as 171

fin(K)

=

q$ I
eiK*rf IYi(Yl . . . Y,)>12,

(1)

where AE stands for the difference in energy between states i and n, K is the transferred momentum, ul, the initial state of the atom, ul, the final state and rj the electron coordinate of electron j. The summation is carried out over all electrons in the atom. All quantities are in atomic units, these units being employed throughout this paper unless otherwise mentioned. Taking the polar axis along K (K r = Kz)implies that only wave functions with Am = 0 (m stands for the magnetic quantum number) contribute to l

EXCITATION

OF HELIUM

BY

PROTONS

AND

ELECTRONS

247

TABLE IIa Values

of lim & K-+0

f0 12

fA

f2

ftl

12

Wave functions

21s

3%

21P

4%

H-BE

0.0268

0.0140

0.0674

L-BE

0.0558

0.0249

0.0116

B J-BE

0.0611

0.0266

0.0123

H-MYH

0.172

L-MYH

0.259

B J-MYH

0.269

VE-MYH

0.351

31P

H-GC

0.0523

L-GC

0.0728

B J-GC

0.0745

VE-GC

0.0879

41P

31D

41F

41D

H-E

0.187

0.0545

0.0228

0.315-2

0.172-2

0.222-4

L-E

0.280

0.0751

0.0320

0.801-2

0.419-2

0.100-3

BJ-E

0.290

0.0767

0.0340

0.907-2

0.469-2

0.1273

VE-E

0.376

0.0896

0.0352

0.192-l

0.932-2

0.495-3

eq. (1) ; the generalized oscillator strength is now only a function of the magnitude of K. Using this simplification (which was employed by us in most cases) the cross section for the mentioned transition is JLI,, 4X fnW cw

bn = -

AEvs

K

s



where we now have dropped the index i because only transitions from the ground state are further considered. In eq. (2) v denotes the initial velocity of the projectile and = Kzmx mill

M 2Mv= -

2AE rf 2Mv2 Jl

-

E];

M denotes the mass of the projectile. In the case of proton impact the limits of integration in eq. (2) may, to an entirely satisfactory approximation, be replaced by K,,, = CO and Kmin = AElv, down to 1 keV proton energy. The error in this approximation was shown to be maximally less than 1%. This simplification leads to the same final equations as the impact parameter treatment a+. 3. Wave fzmctions The general form of the final state wave functions %h

r2) =

$

hd2,

~1) W+Z)

+

9h(2,

~2)

used is given by:

~f(rl)l,

J. VAN DEN BOS

248

TABLE IIb Values of lim ri K-0

f0n.

fit Authors

21s

Altshuler I r3, 14) 0.0366 0.0557 Altshuler II l3, 14) Lassettre and Jones 30) Skerbele and Lassettre 31) 0.099 0.13 Garstang 32) 0.032 Foxr5); H 0.0715 Foxr5); HF 0.112 Fox is) ; VE Heideman and Vriens 33) 0.155 Kim and Inokuti26) 0.0836 Schiff and Pekeris 34) Dalgarno and Stewart 35) Skerbele and Lassettre 36) Moustafa Moussa 37) 0.11 Boersch et al. 3*) Weiss 39) Bell et al. 119) Bell et al. 1119) McDowell and Stauffer40) HI H II HF I HF II VE Correlated closed shell Correlated open shell

4%

3%

2iP

3iP

0.191 0.268 0.268

0.0564 0.0753

fA 4rP

3iD

4iD

0.021

0.043 0.0170

0.072

0.031 0.959-Z

0.276 0.275 0.268 0.270 0.276 0.288 0.299

0.0734 0.0746 0.0730 0.0730 0.0766 0.0732 0.0767 0.0788

0.0304 0.0300 0.0280 0.0359 0.0303 0.0311 0.0319 0.315-Z 0.567-Z 0.825-Z 0.903-Z 1.95 -2 0.333-Z 0.828-Z

0.172-Z 0.302-Z 0.419-Z 0.459-Z 1.01 -2 0.544-Z

where N is a normalization constant. Apart from the exceptions mentioned below the function yf(r) was taken equal to vf( 1, r), where the functions ~(2, r) are hydrogenic eigenstates with charge 2. In the case of final states 2P and 3P the variationally determined wave functions given by Morse et al. 5) and Goldberg et al. 6) were used, viz.

(5)

with c = 5Alj.4, A = l/(1 + Z/2/4,

N& = ,~7/(25As -

25A + 15/2), 2 = 0.97

EXCITATION

OF HELIUM

BY

PROTONS

AND

ELECTRONS

249

and ,u = 0.325. Where eqs. (4) and (5) have been employed the results are labelled by MYH ans GC, resp. In the case of 2S, 3S, 4s hydrogenic wave functions have been employed, but in order to insure orthogonality to the ground state involved, the first node of the function has been shifted purposely; these results are labelled by BE (Van den Bos-Eckart). All other results are labelled by E (Eckart). Three initial (ground) state wave functions have been used, viz. I.

pt =

m4(f%

71) m&,

a =

r2),

27/16.

(6)

Results employing this ground state are denoted by H (Hylleraas exp. 1). 11. yg =

#o(r1) 90@2)

with

Me =

J$ (e-ay

+ q e-or).

The parameters are chosen such that $0 closely fits the Hartree-Fock wave function’). Two sets of parameters have been presented. The first by Lowdins) has (II= 1.455799, p = 2or,7 = 0.60 and Ni, = 1.48423; results employing this set will be denoted by HF(L). The second set has been given by Byron and Joachains) and has a = 1.41, /l = 2.61,~ = 0.799 and Nr, = = 1.302525; results with this set will be labelled HF(B J). III. !P$= 5

bls(l/t~l) 9%3(&r2)

+

m3(&r1)

w3(y,

r2)l.

This is a variationally determined wave function by Eckartia). The parameters are givenil) by y = 2.1832 and 6 = 1.1886. Results with this wave function will be denoted by VE. 4. Calculations

and reszclts

All expressions for generalized oscillator strengths and cross sections could be evaluated analytically. The complete expressions have been publised elsewhere 2%29). In th’is section we present some numerical and graphical results for generalized oscillator strengths and cross sections, together with results of other workers. 4.1. Generalized oscillator strengths. For small momentum transfer the generalized oscillator strength fn(K) can be expanded in powers of K2 (see ref. 2)) as follows : b(K)

= /: + /AK2 + f:K4

+ . . .,

(9)

250

J. VAN

DEN

B’S

TABLE IIIa Generalized

oscillator

strengths

as a function

for 4rP where

of Kz using as the ground HF(L)

f(K)lK2

Ks 21s

f(K) 4%

31s

state HF(B J), except

is employed.

fWlK2

2iP

31P

41P

f (W/K4 4rD

3iD

4iF

0

0.61 l-l

0.266-l

0.123-l

0.269

0.745-l

0.320-l

0.907-2

0.469-2

0.127-3

0.05

0.565-l

0.249-l

0.115-l

0.248

0.700-l

0.303-I

0.797-2

0.416-2

0.106-3

0.10

0.523-l

0.233-l

0.108-l

0.230

0.658-l

0.287-l

0.702-2

0.369-2

0.887-4

0.20

0.449-l

0.204-I

0.950-2

0.197

0.581-l

0.257-l

0.548-2

0.293-2

0.30

0.388-l

0.179-l

0.836-2

0.170

0.514-l

0.230-l

0.432-2

0.233-2

0.630-4 0.452-4 0.328-4

0.40

0,336-l

0.157-l

0.737-2

0.147

0.455-I

0.206-l

0.342-2

0.187-2

0.50

0.292-l

0.139-l

0.651-2

0.127

0.403-l

0,185-l

0.273-2

0.15 l-2

0.241-4

0.60

0,255-l

0,122-l

0.575-2

0.111

0.357-l

0.166-l

0.219-2

0.122-2

0.178-4

0.70

0.223-l

0.108-l

0.510-2

0.970-l

0.318-l

0.149-l

0.177-2

0.997-3

0.133-4

0.80

0.196-l

0.959-2

0.453-2

0.851-l

0.283-l

0.134-l

0.144-2

0.817-3

0.100-4

0.90

0.173-l

0.852-2

0.403-2

0.749-l

0.252-l

0.121-l

0.118-2

0.672-3

0.762-5

1.00

0.153-l

0.758-2

0.359-2

0.661-l

0,225-l

0.109-l

0.970-3

0.556-3

0.584-5

1.20

0.120-t

0.604-2

0.286-2

0.519-l

0.181-l

0.884-2

0.665-3

0.385-3

0.350-5

1.50

0.854-2

0.436-2

0.207-2

0.368-l

0.131-l

0.656-2

0.390-3

0.229-3

0.169-5

2.00

0.505-2

0.262-2

0.125-2

0.218-l

0.800-2

0.410-2

0.174-3

0.103-3

0.567-6

2.40

0.343-2

0.180-2

0.858-3

0.148-l

0.553-2

0.287-2

0.963-4

0.578-4

0.256-6

2.80

0.239-2

0.126-2

0.603-3

0.391-2

0.206-2

0.558-4

0.337-4

0.123-6

3.20

0.171-2

0.903-3

0.432-3

0.103-l 0.737-2

0.282-2

0.124-2

0.659-3

0.315-3

0.537-2

0.207-2

0.336-4 0.209-4

0.204-4 0.127-4

0.625-7

3.60

0.150-2 0. I1 l-2

0.332-7

4.00

0.920-3

0.489-3

0.234-3

0.398-2

0.154-2

0.832-3

0.134-4

0.819-5

0.183-7

TABLE IIIb Generalized

oscillator

strengths

as a function

formulation,

f(K) present

of Kz for different

II + velocity

groups;

for 2iP

Kim and Inokutise)

work

I + length

formulation

Bell et al. 19)

Ks

BJ-MYH

0.0

0.2691

0.2902

0.2754

0.2756

0.2882

0.2985

0.25

0.1828 0.6608-l 0.3982-2

0.1983 0.7270-l 0.4502-l

0.1859 0.6542-l 0.3448-2

0.1859

0.1973 0.7162-l 0.3991-2

0.2035 0.7412-l 0.4634-2

1.0 4.0

I

BJ-E

I

I

f(K)/Kz present Ks

II

0.6540-l 0.3431-2

for 3iD Bell et aZ.19)

work

BJ-E

I

I

I

0

0.9067-2

0.860-2

0.01 0.25

0.8835-2 0.4861-2

0.8399-2 0.4764-2

1.0 4.0

0.9697-3 0.1340-4

0.9980-3 0.1355-4

II

0.9147-2 0.5064-2 0.1004-2 0.1330-4

II

EXCITATION

OF HELIUM

BY PROTONS

AND ELECTRONS

f,(K)

f,(K)

K2

K*

I

0.06

I

1 ‘s-z’s

251

1

‘s-3

‘s

0.015

1

1 ‘s -4

‘s

0.030

0.06

\

\ \

\ .

1

1

0.5

-

1

I

0.5

1.0

1.0

K’

Fig. 1. Generalized oscillator strengths for is-1s transitions in He. this work Kim and Inokutiss) K,I ---a -- Lassettre et al. so) experimental , f,(K)

, ‘s-2 ‘p

O.‘O it

-it

I

0

I 0

, f,(K)

f,(K)

I

I

a5

1.0

1 ‘s-3

‘p -

ao4

1 ‘s -4

il

BJ-GC

I

I

Fbl

‘P

L-E

I

I

I

0.5

1.0

I

2

a5

I

1.0

-K

Fig. 2. Generalized oscillator strengths for iS-iP transitions in He. ___ this work. A Lassettre et aZ.30) experimental. v Heideman and Vriensss) experimental. Theoretical results of Kim and Inokutiss) almost coincide with our B J-MYH curve for 2iP and B J-GC curve for 3iP. Experimental data of Vriens et al. 3s) for 2rP coincide with theoretical data of ref. 26.

J. VAN DEN BOS fno 0.020

K2

a010

-I

I \

BJ-E Y

\ \

I I

-i-

\

1.0

a5 ----K

0

2

Fig. 3, Generalized oscillator strengths for %-1D and 1S-lF transitions in He.

where j”, is the usual optical oscillator strength (the superscript is often omitted). For optically non-allowed transitions /l = 0, for the limit K = 0. In table IIa we present our values for the first non-vanishing expansion coefficients in the limit of K = 0. In table IIb we present values of other groups. The 1abeIs I and II denote length and velocity formulation, resp.; where no label occurs the length formulation is meant. In table IIIa numerical values for the generalized oscillator strength as a function of Ks have been given only for the ground state HF(B J) (except in the 4P case where HF(L) has been given). This choice was made because as can be seen from table II this is in general the ground state which produces results very well comparable with the results using accurate but complicated ground states. This choice is supported by even more arguments when we cross sections compare cross sections (see below). The nS excitation are, however, an exception to this, but have been given with BJ for oscillator reasons of conformity. In figs. 1-3 we present generalized strengths and compare with experiment and some other theoretical results. In figs. 2 and 3 results of Kim and lnokuti26), Lassettre and Jonesao) and Bell et al. 19) have been omitted, because they almost coincide with our curves. An illustration of the good agreement of our calculations with the more extended ones of Kim and Inokuti26) (with 53 parameters Hylleraas wave functions) and of Bell et ~2.19) (with a six parameter ground state Hylleraas wave function) is given in table IIIb for 2iP and 3iD. These groups used both the length and velocity formulation of the matrix element. Kim and Inokuti26) obtained agreement better than 1% between both calculations.

EXCITATION

OF HELIUM

BY

PROTONS

AND

ELECTRONS

253

TABLE IVa Excitation except

cross sections

in units zag for e on He using HF(B J) ground

in the case of 4rP HF(L),

and as final state wave

functions

state wave functions,

BE for niS, MYH

for 21P

GC for 3iP and E for the remainder 21s

E(eV)

31s

4%

21P

4iP

3iP

4iD

3lD

4iF

25

0.299-l

0.9341

0.170-l

0.3203

0.527-2

0.132

0.303-l

0.585-2 0.121-l

0.747-3

0.328-l

0.893-2 0.123-l

0.323-2

30

0.126-2

0.638-3

0.350-5 0.659-5

35

0.319-l

0.127-l

0.555-2

0.152

0.366-l

0,149-l

0.144-2

0.748-3

0.735-5

40

0.302-l

0.122-l

0.543-2

0.162

0.150-2

0.786-3

0.739-5

0.264-l

0.110-l

0.490-2

0.169

0.400-l 0,425-l

0.163-l

50

0.174-l

0.147-2

0.775-3

0.682-5

70

0.206-l 0.152-I

0.868-2

0.391-2

0.164

0.417-l

0.171-l

0.127-2

0.674-3

0.544-5

100

0.648-2

0.293-2

0.147

0.376-l

0.154-l

0.101-2

0.535-3

0.402-5

150

0.106-l

0.452-2

0.205-2

0.123

0.315-l

0.128-l

0.735-3

0.390-3

0.276-5

0.305-3 0.212-3

0.140-5

200

0.807-2

0.347-2

0.158-2

0.105

0.271-l

0.110-l

0.574-3

300

0.548-2

0.236-2

0.107-2

0,828-l

0.213-l

0.862-2

0.399-3

500

0.333-2 0.224-2

0.144-2

0.6553

0.592-l

0.152-l

0.1313

0.845-6

0.440-3

0.445-t

0.114-l

0.615-2 0.461-2

0.247-3

0.966-3

0.167-3

0.888-l

0.564-6

750

0.209-5

1000

0.168-2

0.728-3

0.331-3

0.361-l

0.925-2

0.373-2

0.126-3

0.671-4

0.423-6

5000

0.339-3

0.147-3

0.669-4

0.102-l

0.262-2

0.105-2

0.257-l

0.137-4

0.847-7

10000

0.170-3

0.735-4

0.335-4

0.577-2

0.148-2

0.593-3

0.12994

0.684-5

0.423-7

TABLE IVb Excitation

cross sections I --f length

in units nai for e on He for different

formulation,

II + velocity

o(2rP) present

work

E (eV)

BJ-MYH

50

I

in 7rui Kim and Inokutise)

BJ-E

groups:

formulation

I

Bell et al. is)

I or11

I

II

0.169

0.185

0.169

0.182

0.187

100 500

0.147 0.592-l

0.160 0.642-l

0.147

0.158

0.164

0.605-l

0.635-l

0.656-l

1000

0.361-l

0.391-l

0.368-l

0.386-l

0.400-l

5000

0.102-I

0.11 l-1

0.105-l

0.110-l

0.113-l

(I (3iD) _A E (eV)

present

in rcui

work

BJ-MYH

I

Bell et al. is)

-

I

II

50

0.147-2

0.149-2

0.152-2

100 500

0.101-2 0.247-3

0.101-2 0.246-3

0.105-l 0.2563

1000

0.126-3

0.125-3

0.1303

5000

0.257-4

0.254-l

0.266-l

254

J. VAN

DEN

BOS

TABLE V Excitation except

cross sections

in units ,a;

in the case of 4lP HF(L)

for p on He using HF(B J) ground

and as final state wave

functions

state wave functions,

BE for nrS, MYH

for 2rP

and E for the remainder E(keV)

2%

3’S 1

21P

41s

31P

41P

3rD

4rD

4rF 0.98 l-6

5

0.422-

0.128-l

0.511-2

0.365-l

0.785-2

0.322-2

0.249-3

0.12 1-3

10

0.664-l

0.233-l

0.976-2

0.107

0.252-l

0.106-l

0.102-2

0.5153

0.527-5

15

0.701-l

0.261-l

0.112-l

0.157

0.386-l

0.162-l

0.165-2

0.850-3

0.912-5 0.113-4

20

0.674-l

0.260-l

0.113-l

0.189

0.472-l

0.198-i

0.203-2

0.106-2

30

0.584-l

0.234-l

0.103-l

0.220

0.558-l

0.233-l

0.231-2

0.122-2

0.125-4

50

0,438-l

0.181-l

0.809-2

0.229

0.587-l

0.244-l

0.221-2

0.117-2

0.109-4

70

0.345-l

0.145-l

0.650-2

0.219

0.564-l

0.233-l

0.194-2

0.103-2

0.902-5

100

0.261-l

0.110-1

0.497-2

0.200

0.515-l

0.212-l

0.160-2

0.849-3

0.692-5

150

0.184-t

0.786-2

0.356-2

0.171

0.442-t

0.181-l

0.121-2

0.644-3

0.489-5

200

0.142-l

0.610-2

0.276-2

0.150

0.387-l

0.158-l

0.970-3

0.5153

0.376-5

250

0.116-l

0.498-2

0.226-2

0.134

0.345-l

0.140-l

0.8073

0.4293

0.304-5

300

0.979-2

0.421-2

0.121

0.312-l

0.127-l

0.6913

0.367-3

0.255-5

0.893-l

0.229-l

0.931-t

0.437-3

0.232-3

0.171-5

0.562-l

0.144-l

0.583-l

0.227-2

0.121-3

0.776-6 0.388-6

500

0.602-2

0.259-2

0.191-2 0.118-2

1000

0.307-2

0.175-2

0.603-3

2000

0.155-2

0.6693

0.305-3

0.340-l

0.871-2

0.351-l

0.116-3

0.617-4

5000

0.622-3

0.269-3

0.123-3

0.167-l

0.428-2

0.172-2

0.470-4

0.250-4

0.155-6

10000 0.312-3

0.135-3

0.6 14-4

0.955-2

0.244-2

0.982-3

0.236-4

0.125-4

0.777-7

TABLE VI Sub-level

excitation

functions

cross sections

in units xat for p on He using HF(B J) ground

and as final state wave 21Pr

E(keV)

2rPs

5

0.280-l

0.438-2

0.134-3

10

0.760-l

0.155-l

0.4583

3rDe

functions

MYH

state wave

for 2rP and E for the remainder

3lDa

4rFc

4rFr

4rFa

0.520-4

0.645-5

0.3806

0.235-6

0.640-7

0.660-8

0.242-3

0.388-4

0.159-5

0.130-5

0.48 l-6

0.645-7

3rDl

4rFs

15

0.106

0.258-l

0.641-3

0.423-3

0.820-4

0.227-5

0.222-5

0.104-5

0.170-6

20

0.122

0.337-l

0.695-3

0.545-3

0.123-3

0.243-5

0.265-5

0.151-5

0.289-6

30

0.132

0.439-l

0.645-3

0.650-3

0.157-3

0.223-5

0.261-5

0.203-5

0.495-6

50

0.124

0.520-l

0.459-3

0.635-3

0.2413

0.171-5

0.177-5

0.213-5

0.725-6

70

0.111 0.934-l

0.540-l 0.530-l

0.334-3

0.550-3 0.431-3

0.257-3 0.253-3

0.139-5

100

0.108-5

0.115-5 0.665-6

0.187-5 0.145-5

0.805-6 0.810-6

150 200

0.731-l 0,599-l

0.492-l 0.452-l

0.301-3 0.222-3

0.229-3

0.761-6

0.355-6

0.970-6

0.740-6

0.119-3 0.995-4 0.867-4

0.204-3 0.183-3

0.568-6 0.441-6

0.247-6 0.200-6

0.690-6 0.515-6

0.655-6 0.559-6

0.137-3

0.165-3 0.119-3

0.352-6 0.175-6

0.231-3 0.154-3

250

0.507-l

0.416-l

300 500

0.440-l

0.386-I

1000

0.288-l 0.155-l

0.303-l 0.203-i

0.376-4

0.700-4 0.254-4

2000 5000

0.812-2 0.335-2

0,129-l 0.670-2

0.221-4 0.102-4

0.850-5 0.186-5

10000

0.170-2

0.393-2

0.541-5

0.560-6

0.608-4

0.172-3

0.645-4 0.385-4

0.591-7

0.166-4

0.330-8 0.877-9

0.860-5

0.179-7

0.175-6

0.399-6

0.525-6

0.134-6 0.915-7

0.183-6 0.570-6

0.369-6 0.210-6

0.565-7 0.261-7

0.163-7 0.289-8

0.113-6 0.471-7

0.138-7

0.750-9

0.239-7

EXCITATION

OF HELIUM

4.2. Cross sections.

BY PROTONS

AND ELECTRONS

255

From the expression eq. (2) and a closely related one

employing eq. (1) we derived analytical expressions for the cross sections to all nlm states with n = 2, 3, 4. In the limit of infinite energy one derives, as expected,‘a, N E-1, crp N E-1 log E and CT~N E-l. For the m sub-states more complicated relationships were found, viz. op,,, gdo> odZ> uf,,

of,

-

E-l,

(10)

E-2,

(11)

E-1 log E,

(12)

bd, N E-2 log E.

(13)

no,

af,

UP1N

N

One also finds that in the high energy limit cd, = #ode and uf, = $uf, and that excitation to sub-states with quantum numbers I, m vanishes for l-m odd compared with even Z---m sub-states (see also ref. 20, eq. (6.15)). Results for excitation cross sections due to proton and electron impact have been given in tables IV, V and VI for a range of energies, and in figs. 4-8 together with some theoretical results of other authors. For comparison with experiment see for instance refs. 37, 29 and 41. In table 1Vb we illusstrate the good agreement of our calculations with more extended ones of TABLE VII Polarization fractions of transitions induced by collisions of protons on helium. Calculated using HF(BJ) ground state E (keV) threshold 5 10 15 20 30 50 70 100 150 200 250 300 500 750

1000 2000 5000 10000 00

17 (2iP-1%) 1.00 0.73 0.66 0.61 0.57 0.50 0.41 0.35 0.28 0.20 0.14 0.10 0.07 -0.03 -0.09 -0.13 -0.23 - 0.33 - 0.40 - 1.00

II (3’D-2iP) 0.60 0.44 0.40 0.36 0.33 0.27 0.19 0.14 0.07 0.00 - 0.05 -0.09 -0.12 -0.19 -0.24 -0.27 -0.33 -0.38 -0.40 -0.43

J. VAN DEN BOS

256 aEe1(10 -

20 keV cmz/atom

--102aEe1 4xaiR

I -5 _.-._.-4

-3

LAttshuler I -2

-1

o-

I

,.11.,

0.05

0.1

.

* ,‘..‘I

0.2

,

Q5

I 1 0

1

2

3

45

-

E,,

in keV

Fig. 4. Cross sections for 2% excitation by electrons (u&l versus In &I). R is the Rydberg energy.

dE,,(10~20keV cm*/atom)

lo3 d E, 4lT&R

JBJ-BE LL -BE

7 -8

C-Kim, Inokuti

_,_._._.-J._.-.---.-.-

I

H-BE

2-

0,

a05

0.1

1,

3’s

/dzohr

I...,

-6

o2

I . ‘7’1 0.5

1 0 1

__c

2 E,\

3

45

in keV

Fig. 5. Cross sections for 3% excitation by electrons (uEel vem4.s In Eel).

EXCITATION

OF HELIUM

BY PROTONS

AND ELECTRONS

cl

G

1.2

2’P

aa

0.4

I

0.1

i

I

0.2

,

I

,

1

a5

1

2

5

_

1

10

E,, in keV

Fig. 6. Cross sections for 21P excitation by electrons (uE,J4xai versus In Eel). A -+ Altshuler’s velocity formulation, using H-E. x + Altshuler’s length formulation using H-E. UEe,Ml-20keVcrn*/atom 1

lo36 &,

4nae2R

-1

I-

-4

-2

o-8 . . ..l a05 0.1

I 02

3

‘Is*.., cl5

1 -

I 2

at,-0 3 45 E,, in keV

Fig. 7. Cross sections for 31D excitation by electrons (u&l vewus In Eel).

257

J. VAN DEN BOS

258 oEel(eVxao2)

‘OI l4'F x10'

I 1

1

25

5

I

100

-

-*----

-

10000 E.(eV)

I

1

1000

Fig. 8. Comparison of cross sections for excitation by electrons and protons, using BJ-E wave function combinations (u&l versus In E,l). For protons E,. = (m/M) Ep.

Kim and Inokutis6) and of Bell et al. 19) for excitation of helium by electrons to 21P and 3rD. As mentioned before (see section 4.1) our B J-BE cross sections for 2% and 31s deviate much from those of Kim and Inokuti (see figs. 4 and 5), where the simple asymptotic Whittaker functions employed by Fox15) are seen to give much better results (see also the second article of ref. 19). Polarization fractions have been calculated (see table VII) for 1P-1s and ID-1P transitions in the case of proton impact, by using the method of reference 20 and the cross sections of table VI. In fig. 9 we illustrate that the ground state wave function has not a great influence on the polarization fraction in the case of ID--1P transitions. 5. Con&&on The different types of wave functions employed are seen to give very different results for the generalized oscillator strengths and the excitation cross sections, but reasonably agreeing results for the polarization fractions. Comparison with more extended and more accurate calculations for oscil-

EXCITATION

OF HELIUM

BY PROTONS

259

AND ELECTRONS

-il6

1 I

5

10

I

I

100

10.000

1000 -

E,+ in keV

Fig. 9. The polarization fraction n of 31D-21P radiation in the case of excitation by protons.

lator strengths as well as for cross sections shows, however, that for the description of the excitation of nrP and lziD states from the ground state the HF(BJ) wave function for the ground state is a very good substitute. The reason for the exceptional behaviour of the lziS cross sections might well be due to the excited state wave functions for rtS which are e.g. not mutually orthogonal. In this case the simple asymptotic Whittaker functions employed by Foxis) are seen to give much better results when compared with the results of Kim and Inokutisa) which are claimed to be correct within a few percent. In order to find theoretical results which are valid below the Born region one has to take into account the coupling between states other than initial and final. These kinds of calculations using the simple wave functions which can be accepted according to the results above are in progress.

260

J. VAN DEN BOS

Acknowledgments. We arevery grateful to Dr. F. J. de Heer for the cooperation in preparing this paper for publication. We also acknowledge the valuable discussions and remarks from Drs. M. Inokuti and L. Vriens and from Professors J. Kistemaker and C. Joachain. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (Foundation for Fundamental Research on Matter) and was made possible by financial support from the Nederlandse Organisatie voor Zuiver-Wetenschappelijk Onderzoek (Netherlands Organization for the Advancement of Pure Research).

REFERENCES 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19)

20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30)

Bates, D. R. and Griffing, G., Proc. Phys. Sot. 56 (1953) 961. Bethe, H. A., Ann. Physik 5 (1930) 325. Crothers, D. S. F. and Holt, A. R., Proc. Phys. Sot. 88 (1966) 75. Van den Bos, J. and De Heer, F. J., Physica 34 (1967) 333. Morse, P. M., Young, L. A. and Haurwitz, E. S., Phys. Rev. 48 (1935) 948. Goldberg, L. and Clogston, A. M., Phys. Rev. 56 (1939) 696. Roothaan, C. C. J., Sachs, L. M. and Weiss, A. W., Rev. mod. Phys. 32 (1960) 186. Lowdin, P.-O., Phys. Rev. 90 (1953) 120. Byron, F. W. and Joachain, C. J., Phys. Rev. 146 (1966) 1. Eckart, C., Phys. Rev. 36 (1930) 878. Shull, H. and Liiwdin, P. O., J. them. Phys. 25 (1956) 1035. Massey, H. S. W. and Mohr, C. B. O., Proc. Roy. Sot. A140 (1933) 6 13. Altshuler, S., Phys. Rev. 89 (1953) 1093. Altshuler, S., Phys. Rev. 88 (1952) 992. Fox, M. A., Proc. Phys. Sot. 86 (1965) 789. Fox, M. A., Proc. Phys. Sot. 88 (1966) 65. Lassettre, E. N., J. them. Phys. 43 (1965) 4479. Ochkur, V. I. and Brattsev, V. F., Opt. and Spectr. (USA) 19 (1965) 274. Bell, K. L., Kennedy, D. J. and Kingston, A. E., J. Phys. B. (Proc. Phys. Sac.) 1 (1968) 204; Bell, K. L. and Kingston, A. E., J. Phys. B. 1 (1968) 526. Percival, I. C. and Seaton, M. J., Phil. Trans. Roy. Sot. A251 (1958) 113. Rothenstein, W., Proc. Phys. Sot. 57 (1954) 673. Moiseiwitsch, B. L. and Stewart, A. L., Proc. Phys. Sot. (London) A67 (1954) 1069. Bell, R. J., Proc. Phys. Sot. 78 (1961) 903. McDowell, M. R. C. and Pluta, K. M., Proc. Phys. Sot. 89 (1966) 733. Gaillard, M., C. R. Acad. Sci. Paris B263 (1966) 549. Kim, Y.-K. and Inokuti, M., Phys. Rev. 175 (1968) 176. Bell, K. L., Kennedy, D. J. and Kingston, A. E., J. Phys. B 1 (1968) 218. Van den Bos, J., Phys. Letters 24A (1967) 329. Van den Bos, J., Thesis, University of Amsterdam, 1967 and FOM-report no. 24274, 1968. Lassettre, E. N. and Jones, E. A., J. them. Phys. 40 (1964) 1218;

EXCITATION Lassettre,

OF HELIUM

E. N., Krasnow,

BY

PROTONS

M. E. and Silverman,

AND

ELECTRONS

S. M., J. them.

Phys.

261 40 (1964)

1242. 31)

Skerbele,

32) 33)

Garstang, Heideman,

A. M. and Lassettre,

34)

Schiff,

35)

Dalgarno,

36)

Skerbele,

37)

MoustafaMoussa,

38)

Boersch,

B. and Pekeris,

39)

Weiss,

40)

McDowell,

A. and Stewart,

45 (1966)

1077.

46 (1967)

2911.

Geiger, J. Res.

Rev.

A. L., Proc.

Phys.

Sot.

Collisions, 71A

M. R. C. and Stauffer,

A640. 76 (1960)

Phys.

B., Proc.

Nauka, (196’7)

1271.

J., Physica

V Int.

Leningrad

49.

40 (1964)

F. J. and Schutten,

J. and Schroder, NBS

134 (1964)

E. N., J. them.

H. R., De Heer,

and Atomic

A. W.,

Phys.

44 (1966) 1308. L., J. them. Phys.

C. L., Phys.

A. M. and Lassettre, H.,

Electronic

E. N., J. them.

R. H., J. them. Phys. H. G. M. and Vriens,

Conf.

40 (1969)

on the Physics

Van den Bos,

J., Winter,

of

1967, pp. 481.

163.

A. D., Phys.

Letters

12 (1964)

207 and Private

Communication. 41)

517.

G. and De Heer,

F. J., Physica

40 (1968) 357.