MATHEMATICAL AND COMPUTER MODELLING PERGAMON
Mathematical and Computer Modelling 36 (2002) 1211-1219 www.elsevier.com/locate/mcm
E x i s t e n c e o...
Mathematical and Computer Modelling 36 (2002) 1211-1219 www.elsevier.com/locate/mcm
E x i s t e n c e of C h a o s in E v o l u t i o n E q u a t i o n s Y A N G U A N G C . L1 School of Mathematics, Institute for Advanced Study Princeton, NJ 08540, U.S.A.
(Received August 2001; revised and accepted August 2002) A b s t r a c t - - F o r a general evolution equation with a Silnikov homoclinic orbit, Smale horseshoes are constructed with the tools of [1] and in the same way as in [1]. The linear part of the evolution equation has a finite number of unstable modes. For evolution equations with infinitely many linearly unstable modes, the problem is still open. (~ 2002 Elsevier Science Ltd. All rights reserved. 1. I N T R O D U C T I O N In recent years, t h e e x i s t e n c e of chaos in p a r t i a l differential e q u a t i o n s has b e e n e s t a b l i s h e d [1-3]. T h e s e s t u d i e s set up a scheme for a t t a c k i n g p r o b l e m s on chaos in P D E s . T h e t y p e of chaos s t u d i e d in t h e s e works is t h e so-called h o m o c l i n i c chaos g e n e r a t e d in a n e i g h b o r h o o d of a h o m o c l i n i c o r b i t . T w o t y p e s of h o m o c l i n i c o r b i t s have b e e n s t u d i e d . O n e t y p e is t h e so-called t r a n s v e r s a l h o m o c l i n i c o r b i t [4]. T h e o t h e r t y p e is t h e so-called Silnikov h o m o c l i n i c o r b i t , which is n o n t r a n s v e r s a l [1-3]. For l o w e r - d i m e n s i o n a l a n d general f i n i t e - d i m e n s i o n a l s y s t e m s , Silnikov s t u d i e d t h e s y m b o l i c d y n a m i c s s t r u c t u r e s in t h e n e i g h b o r h o o d s of such h o m o c l i n i c o r b i t s [5-8]. In [9] a n d [1], we have d e v e l o p e d a different c o n s t r u c t i o n of S m a l e h o r s e s h o e s in t h e n e i g h b o r h o o d of a Silnikov h o m o c l i n i c o r b i t . T h e a d v a n t a g e s of our c o n s t r u c t i o n s have b e e n fully a d d r e s s e d in [1,9]. In t h i s note, we generalize t h e c o n s t r u c t i o n in [1] t o m o r e g e n e r a l e v o l u t i o n e q u a t i o n s w i t h finitely m a n y l i n e a r l y u n s t a b l e modes. For e v o l u t i o n e q u a t i o n s w i t h infinitely m a n y linearly u n s t a b l e m o d e s , t h e p r o b l e m is still open. 2.
THE
SET-UP
Consider the evolution equation =
+
(1)
w h e r e L is a linear o p e r a t o r which is c o n s t a n t in t i m e , a n d :N is t h e n o n l i n e a r t e r m . Following are t h e a s s u m p t i o n s for t h e setup. ( A 1 ) u = 0 is a saddle and the linear operator L has only point spectrum a s follows: