Exp-function method for constructing explicit and exact solutions of a lattice equation

Exp-function method for constructing explicit and exact solutions of a lattice equation

Available online at www.sciencedirect.com Applied Mathematics and Computation 199 (2008) 242–249 www.elsevier.com/locate/amc Exp-function method for...

138KB Sizes 1 Downloads 41 Views

Available online at www.sciencedirect.com

Applied Mathematics and Computation 199 (2008) 242–249 www.elsevier.com/locate/amc

Exp-function method for constructing explicit and exact solutions of a lattice equation Sheng Zhang Department of Mathematics, Bohai University, Jinzhou 121000, PR China

Abstract In this paper, the Exp-function method is use to obtain explicit and exact solutions of a lattice equation. As a result, some new generalized solitonary solutions with parameters are obtained. Taking full advantages of the generalized solitonary solutions, some known solitary wave solutions reported in open literature are derived as special cases. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful new method for discrete nonlinear evolution equations in mathematical physics. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Exp-function method; Generalized solitonary solutions; Nonlinear evolution equations; Lattice equation

1. Introduction Seeking exact solutions of nonlinear evolution equations (NLEEs) is of important significance in mathematical physics and becomes one of the most exciting and extremely active areas of research investigation. In the past several decades, many effective methods for obtaining exact solutions of NLEEs have been presented, such as inverse scattering method [1], Hirota’s bilinear method [2], Backlund transformation [3], Painleve´ expansion [4], sine–cosine method [5], homogenous balance method [6], homotopy perturbation method [7–9], variational method [10–14], Adomian decomposition method [15], tanh-function method [16–21], algebraic method [22–25], Jacobi elliptic function expansion method [26–29], F-expansion method [30–37], auxiliary equation method [38–41] and so on. Recently, He and Wu [42] proposed the Exp-function method to obtain exact solutions of NLEEs. The basic idea of the Exp-function method was proposed in He’s monograph [43]. The solution procedure of this method, by the help of Matlab or Mathematica, is of utter simplicity and this method has been successfully applied to many kinds of NLEEs [44–57]. The Exp-function method leads to not only generalized solitonary solutions but also periodic solutions. Taking full advantages of the generalized solitonary solutions, we can recover some known solutions gained by the most existing methods such as Adomian decomposition method,

E-mail address: [email protected] 0096-3003/$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2007.09.051

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

243

tanh-function method, algebraic method, Jacobi elliptic function expansion method, F-expansion method, auxiliary equation method and others. Since the work of Fermi et al. in the 1950s [58], the investigation of exact solutions of nonlinear differentialdifference equations (DDEs) has played a crucial role in the modelling of many phenomena in different fields which include condensed matter physics, biophysics and mechanical engineering. We can also encounter such systems in numerical simulation of soliton dynamics in high energy physics where they arise as approximations of continuum models. Unlike difference equations which are fully discretized, DDEs are semi-discretized with some (or all) of their spacial variables discretized while time is usually kept continuous [54]. The present paper is motivated by the desire to extend the Exp-function method to a lattice equation, which reads dun ¼ ða þ bun þ cu2n Þðun1  unþ1 Þ; dt

ð1Þ

where un = u(n, t), n 2 Z, which contains Hybrid lattice equation, mKdV lattice equation and modified Volterra lattice equation as special cases [59]. 2. Exact solutions of the lattice equation Using the transformation U n ðgn Þ ¼ un ðtÞ;

gn ¼ n  d þ ct þ g0 ;

where d and c are constants to be determined later, and g0 is the phase, then Eq. (1) becomes   cU 0n ¼ a þ bU n þ cU 2n ðU n1  U nþ1 Þ: According to the Exp-function method, we suppose Pg N ¼f aN expðN gn Þ U n ¼ Pq ; M¼p bM expðMgn Þ

ð2Þ

ð3Þ

ð4Þ

where f, g, p and q are positive integers which are unknown to be further determined, aN and bM are unknown constants. Eq. (8) can be re-written in an alternative form [44] as follows Un ¼

af expðf gn Þ þ    þ ag expðggn Þ ; expðpgn Þ þ    þ bq expðqgn Þ

ð5Þ

then we have af expðfdÞ expðf gn Þ þ    þ ag expðgdÞ expðdgn Þ ; expðpdÞ expðpgn Þ þ    þ bq expðqdÞ expðqgn Þ af expðfdÞ expðf gn Þ þ    þ ag expðgdÞ expðdgn Þ : ¼ expðpdÞ expðpgn Þ þ    þ bq expðqdÞ expðqgn Þ

U n1 ¼

ð6Þ

U nþ1

ð7Þ

In order to determine values of f and p, we balance the linear term of highest order in Eq. (3) with the highest order nonlinear term [42]. By simple calculation, we have U 0n ¼

c1 exp½ðp þ f Þgn  þ    c2 expð2pgn Þ þ   

ð8Þ

and U 2n U n1 ¼

c3 expð3f gn Þ þ    c3 exp½ð3f  pÞgn  þ    ¼ ; c4 expð3pgn Þ þ    c4 expð2pgn Þ þ   

ð9Þ

where ci are determined coefficients only for simplicity. Balancing highest order of Exp-function in Eqs. (8) and (9), we have f þ p ¼ 3f  p;

ð10Þ

244

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

which leads to the result p ¼ f:

ð11Þ

Similarly to determine values of g and q, we balance the linear term of lowest order in Eq. (3)    þ d 1 exp½ðg þ qÞgn     þ d 2 expð2qgn Þ

U 0n ¼

ð12Þ

and U 2n U n1 ¼

   þ d 3 expð3ggn Þ    þ d 3 exp½ð3g  qÞgn  ¼ ;    þ d 4 expð3qgn Þ    þ d 4 expð2qgn Þ

ð13Þ

where di are determined coefficients only for simplicity. Balancing lowest order of Exp-function in Eqs. (12) and (13), we have ðg þ qÞ ¼ ð3g  qÞ;

ð14Þ

which leads to the result g ¼ q:

ð15Þ

We can freely choose the values of f and g, but the final solution does not strongly depend upon the choice of values of f and g [42,44]. For simplicity, we set p = f = 1 and g = q = 1, then Eqs. (5)–(7) become Un ¼ U n1 U nþ1

a1 expðgn Þ þ a0 þ a1 expðgn Þ ; expðgn Þ þ b0 þ b1 expðgn Þ a1 expðdÞ expðgn Þ þ a0 þ a1 expðdÞ expðgn Þ ; ¼ expðdÞ expðgn Þ þ b0 þ b1 expðdÞ expðgn Þ a1 expðdÞ expðgn Þ þ a0 þ a1 expðdÞ expðgn Þ : ¼ expðdÞ expðgn Þ þ b0 þ b1 expðdÞ expðgn Þ

ð16Þ ð17Þ ð18Þ

Substituting Eqs. (16)–(18) into Eq. (3), and using Mathematica, equating to zero the coefficients of all powers of exp(jgn) (j = 0, ±1, ±2, . . .) yields a set of algebraic equations for a1, a0, a1, b0, b1 and c. Solving the system of algebraic equations by use of Mathematica, we obtain the following results: Case 1 2

a1 ¼ 0; b1 ¼

a0 ¼

b0 a½1 þ expðdÞ ; b expðdÞ

a1 ¼ 0;

b20 fac½1 þ expð2dÞ þ expðdÞðb2  2acÞg b2 ½1 þ expðdÞ

2

b0 ¼ b0 ; c¼

;

ð19Þ

a½1  expð2dÞ : expðdÞ

ð20Þ

Case 2 a1 ¼

b½1 þ expðdÞ  ½1 þ expðdÞ  b0

2c½1 þ expðdÞ

ð21Þ

;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b½1 þ expðdÞ  ½1 þ expðdÞ b2  4ac

a0 ¼  b0 ¼ b 0 ;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac

;

2c½1 þ expðdÞ b1 ¼ 0;



½1 þ expðdÞðb2  4acÞ : c½1 þ expðdÞ

a1 ¼ 0;

ð22Þ ð23Þ

Case 3 a1 ¼

b½1 þ expðdÞ  ½1 þ expðdÞ 2c½1 þ expðdÞ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac

;

ð24Þ

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

 b1 a0 ¼ 0;

a1 ¼ 

b0 ¼ 0;

b1 ¼ b1 ;

245

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b½1 þ expð2dÞ  ½1 þ expð2dÞ b2  4ac



ð25Þ

;

2c½1 þ expð2dÞ ½1 þ expð2dÞðb2  4acÞ : 2c½1 þ expð2dÞ

ð26Þ

Case 4 a1 ¼

b½1 þ expðdÞ  ½1 þ expðdÞ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac

; a0 ¼ a0 ; 2c½1 þ expðdÞ  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 a0 c½1 þ expðdÞ b½1 þ expðdÞ  ½1 þ expðdÞ b2  4ac

a1 ¼

b1 ¼ 

a20 c2 ½1 þ expðdÞ

2

2

½1 þ expðdÞ ðb2  4acÞ

ð28Þ

;

2c½1 þ expðdÞ2

b0 ¼ 0;

ð27Þ



;

½1 þ expðdÞðb2  4acÞ : c½1 þ expðdÞ

ð29Þ

Case 5 a1 ¼ 

b ; 2c

b0 ¼ 0;

a0 ¼ a0 ;

b1 ¼ 

a1 ¼

2a20 bc expð2dÞ 2

½1 þ expð2dÞ ðb2  4acÞ

4a20 c2 expð2dÞ ½1 þ expð2dÞ2 ðb2  4acÞ

;



ð30Þ

;

½1 þ expð2dÞðb2  4acÞ : 4c expðdÞ

ð31Þ

Case 6 a1 ¼ a1 ; a1 ¼ b1 ¼

a0 ¼

b0 fa½1 þ expðdÞ2 þ a1 b½1  expðdÞ þ expð2dÞ þ a21 c½1 þ expð2dÞg ; expðdÞðb þ 2a1 cÞ

ð32Þ

a1 b20 fc½a þ a1 ðb þ a1 cÞ þ c expð2dÞ½a þ a1 ðb þ a1 cÞ þ expðdÞ½b2 þ 2a1 bc þ 2cða þ a21 cÞg 2

½1 þ expðdÞ ðb þ 2a1 cÞ

2

b20 fc½a þ a1 ðb þ a1 cÞ þ c expð2dÞ½a þ a1 ðb þ a1 cÞ þ expðdÞ½b2 þ 2a1 bc þ 2cða þ a21 cÞg

b0 ¼ b 0 ;

2

½1 þ expðdÞ ðb þ 2a1 cÞ c¼

2

½1 þ expð2dÞ½a þ a1 ðb þ a1 cÞ : expðdÞ

;

;

ð33Þ ð34Þ ð35Þ

Substituting Cases 1–6 into Eq. (16) respectively, and using Eq. (2), we obtain the following generalized solitonary solutions of Eq. (1): b0 a½1þexpðdÞ2 b expðdÞ

un ¼ expðgn Þ þ b0 þ

b20 fac½1þexpð2dÞþexpðdÞðb2 2acÞg 2

b ½1þexpðdÞ

t þ g0 . where gn ¼ n  d þ a½1expð2dÞ expðdÞ pffiffiffiffiffiffiffiffiffiffi ffi 2 un ¼

b½1þexpðdÞ½1þexpðdÞ 2c½1þexpðdÞ

b 4ac

2



expðgn Þ 

b0 b½1þexpðdÞ½1þexpðdÞ

expðgn Þ þ b0 2

4acÞ where gn ¼ n  d þ ½1þexpðdÞðb t þ g0 . c½1þexpðdÞ

ð36Þ

; expðgn Þ

2c½1þexpðdÞ

pffiffiffiffiffiffiffiffiffiffi ffi 2 b 4ac

;

ð37Þ

246

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

un ¼

b½1þexpðdÞ½1þexpðdÞ 2c½1þexpðdÞ

pffiffiffiffiffiffiffiffiffiffi ffi 2 b 4ac



expðgn Þ 

b1 b½1þexpð2dÞ½1þexpð2dÞ

pffiffiffiffiffiffiffiffiffiffi ffi 2 b 4ac

2c½1þexpð2dÞ

expðgn Þ

expðgn Þ þ b1 expðgn Þ

ð38Þ

;

2

4acÞ where gn ¼ n  d þ ½1þexpð2dÞðb t þ g0 . 2c½1þexpð2dÞ

un ¼

b½1þexpðdÞ½1þexpðdÞ 2c½1þexpðdÞ

pffiffiffiffiffiffiffiffiffiffi ffi 2 b 4ac



expðgn Þ þ a0 þ

a20 c½1þexpðdÞ b½1þexpðdÞ½1þexpðdÞ

pffiffiffiffiffiffiffiffiffiffi ffi 2 b 4ac

2c½1þexpðdÞ2

expðgn Þ

a20 c2 ½1þexpðdÞ2 2 2

expðgn Þ  ½1þexpðdÞ

ðb

;

ð39Þ

expðgn Þ 4acÞ

2

4acÞ t þ g0 . where gn ¼ n  d þ ½1þexpðdÞðb c½1þexpðdÞ 2a2 bc expð2dÞ

un ¼

0  2cb expðgn Þ þ a0 þ ½1þexpð2dÞ expðgn Þ 2 2 ðb 4acÞ

4a2 c2 expð2dÞ

ð40Þ

;

0 expðgn Þ expðgn Þ  ½1þexpð2dÞ 2 2 ðb 4acÞ

2

4acÞ t þ g0 . where gn ¼ n  d þ ½1þexpð2dÞðb 4c expðdÞ

un ¼

a1 expðgn Þ þ expðgn Þ þ b0 þ

where gn ¼ n  d 

b0 fa½1þexpðdÞ2 þa1 b½1expðdÞþexpð2dÞþa21 c½1þexpð2dÞg expðdÞðbþ2a1 cÞ

b20 fc½aþa1 ðbþa1 cÞþc

þ a1 expðgn Þ

2

expð2dÞ½aþa1 ðbþa1 cÞþexpðdÞ½b þ2a1 bcþ2cðaþa21 cÞg ½1þexpðdÞ2 ðbþ2a1 cÞ2

½1þexpð2dÞðaþa1 ðbþa1 cÞÞ t expðdÞ

;

ð41Þ

expðgn Þ

þ g0 , a1 is determined in Eq. (33).

To our knowledge, above obtained generalized solitonary solutions are new, they have not been reported in literature yet. Furthermore, if we set the parameters in above generalized solitonary solutions as special values, some known solitary wave solutions can be recovered. For example, setting b0 = 1 in Eq. (37) we obtain b un ¼   2c

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac 2c



g d tanh tanh n ; 2 2

 2 tanh d2 t þ g0 . where gn ¼ n  d þ b 4ac c Setting b0 = 1 in Eq. (37) we obtain qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g b2  4ac b d un ¼   tanh coth n 2c 2 2 2c or

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



g g b2  4ac d d n tanh tanh tanh coth n ;  2 2 4 4 4c 4c d  b2 4ac where gn ¼ n  d þ c tanh 2 t þ g0 . pffiffiffiffiffiffiffiffiffiffiffi  b2 4ac½1þexpð2dÞ Setting a0 ¼ in Eq. (39) we have c½1þexpðdÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



g g b2  4ac b2  4ac b d d n tanh tanh un ¼   coth csch n ;  2c 2 2 2 2 2c 2c d  b2 4ac where gn ¼ n  d þ c tanh 2 t þ g0 . b un ¼   2c

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac

ð42Þ

ð43Þ

ð44Þ

ð45Þ

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

Setting a0 ¼

i

pffiffiffiffiffiffiffiffiffiffi ffi 2

b 4ac½1þexpð2dÞ c½1þexpðdÞ

247

in Eq. (39) we have

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



g b2  4ac b d g d tanh tanh tanh n  i sech n ; un ¼   2c 2 2 2c 2c 2 2 d  b2 4ac where gn ¼ n  d þ c tanh 2 t þ g0 . pffiffiffiffiffiffiffiffiffiffiffi  b2 4ac½1þexpð2dÞ Setting a0 ¼ in Eq. (40) we get 2c expðdÞ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi g g b2  4ac b2  4ac b sinhðdÞ tanh n  sinhðdÞ coth n ; un ¼   2c 2 2 4c 4c

ð46Þ

ð47Þ

or un ¼ 

b  2c

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac 2c

sinhðdÞcschðgn Þ;

ð48Þ

2

where gn ¼ n  d þ b 4ac sinhðdÞt þ g0 . 2c pffiffiffiffiffiffiffiffiffiffi ffi i b2 4ac½1þexpð2dÞ Setting a0 ¼ in Eq. (40) we get 2c expðdÞ b un ¼   i 2c

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi b2  4ac 2c

sinhðdÞsechðgn Þ;

ð49Þ

2

where gn ¼ n  d þ b 4ac sinhðdÞt þ g0 . 2c It is easy to see that above solutions (42)–(49) contain all the solutions obtained from Cases 1–8 in [59]. From Cases 1–6 obtained in this paper we can also derive some other solitary wave solutions, we omit them here for simplicity. 3. Conclusion In this paper, the Exp-function method has been successfully used to obtain explicit and exact solutions of a lattice equation. As a result, some new generalized solitonary solutions with parameters are obtained. To our knowledge, these solutions have not been reported. It may be important to explain some physical phenomena. By setting the parameters as special values, some known solitary wave solutions reported in open literature are derived. It is shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful new method for some discrete nonlinear evolution equations in mathematical physics. Acknowledgements I would like to express my sincere thanks to referee for the valuable advice. This work was supported by the Natural Science Foundation of Educational Committee of Liaoning Province of China under Grant No. 2006022. References [1] M.J. Ablowitz, P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, New York, 1991. [2] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971) 1192–1194. [3] M.R. Miurs, Backlund Transformation, Springer, Berlin, 1978. [4] J. Weiss, M. Tabor, G. Carnevale, The Painleve´ property for partial differential equations, J. Math. Phys. 24 (1983) 522–526. [5] C.T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1996) 77–84. [6] M.L. Wang, Exact solutions for a compound KdV–Burgers equations, Phys. Lett. A 213 (1996) 279–287.

248

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

[7] M. El-Shahed, Application of He’s homotopy perturbation method to Volterra’s integro-differential equation, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 163–168. [8] J.H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 207– 208. [9] J.H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons Fract. 26 (2005) 695–700. [10] J.H. He, Variational iteration method—a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech. 34 (1999) 699–708. [11] J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000) 115–123. [12] J.H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fract. 19 (2004) 847–851. [13] J.H. He, Variational approach to (2+1)-dimensional dispersive long water equations, Phys. Lett. A 335 (2005) 182–184. [14] M.A. Abdou, On the variational iteration method, Phys. Lett. A. 366 (2007) 61–68. [15] T.A. Abassy, M.A. El-Tawil, H.K. Saleh, The solution of KdV and mKdV equations using Adomian pade approximation, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 327–340. [16] E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations, Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 221–234. [17] H.A. Abdusalam, On an improved complex tanh-function method, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 99–106. [18] S. Zhang, T.C. Xia, Symbolic computation and new families of exact non-travelling wave Solutions of (2+1)-dimensional Broer– Kaup equations, Commun. Theor. Phys. (Beijing, China) 45 (2006) 985–990. [19] S. Zhang, T.C. Xia, Symbolic computation and new families of exact non-travelling wave solutions of (3+1)-dimensional Kadomstev– Petviashvili equation, Appl. Math. Comput. 181 (2006) 319–331. [20] S. Zhang, Symbolic computation and new families of exact non-travelling wave solutions of (2+1)-dimensional Konopelchenko– Dubrovsky equations, Chaos Solitons Fract. 31 (2007) 951–959. [21] S.A. El-Wakil, M.A. Abdou, Modified extended tanh-function method for solving nonlinear partial differential equations, Chaos Solitons Fract. 31 (2007) 1256–1264. [22] J.Q. Hu, An algebraic method exactly solving two high-dimensional nonlinear evolution equations, Chaos Solitons Fract. 23 (2005) 391–398. [23] E. Yomba, The modified extended Fan sub-equation method and its application to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation, Chaos Solitons Fract. 27 (2006) 187–196. [24] S. Zhang, T.C. Xia, A further improved extended Fan sub-equation method and its application to the (3 + 1)-dimensional Kadomstev–Petviashvili equation, Phys. Lett. A 356 (2006) 119–123. [25] S. Zhang, T.C. Xia, Further improved extended Fan sub-equation method and new exact solutions of the (2+1)-dimensional Broer– Kaup–Kupershmidt equations, Appl. Math. Comput. 182 (2006) 1651–1660. [26] S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289 (2001) 69–74. [27] C.Q. Dai, J.F. Zhang, Jacobian elliptic function method for nonlinear differential-difference equations, Chaos Solitons Fract. 27 (2006) 1042–1047. [28] X.Q. Zhao, H.Y. Zhi, H.Q. Zhang, Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system, Chaos Solitons Fract. 28 (2006) 112–126. [29] M.A. Abdou, A. Elhanbaly, Construction of periodic and solitary wave solutions by the extended Jacobi elliptic function expansion method, Commun. Nonlinear Sci. Numer. Simul. 12 (2007) 1129–1247. [30] J.B. Liu, K.Q. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs, Chaos Solitons Fract. 22 (2004) 111– 121. [31] S. Zhang, New exact solutions of the KdV–Burgers–Kuramoto equation, Phys. Lett. A 358 (2006) 414–420. [32] S. Zhang, The periodic wave solutions for the (2+1)-dimensional Konopelchenko–Dubrovsky equations, Chaos Solitons Fract. 30 (2006) 1213–1220. [33] S. Zhang, The periodic wave solutions for the (2+1)-dimensional dispersive long water equations, Chaos Solitons Fract. 32 (2007) 847–854. [34] S. Zhang, Further improved F-expansion method and new exact solutions of Kadomstev–Petviashvili equation, Chaos Solitons Fract. 32 (2007) 1375–1383. [35] S. Zhang, T.C. Xia, A generalized F-expansion method and new exact solutions of Konopelchenko–Dubrovsky equations, Appl. Math. Comput. 183 (2006) 1190–1200. [36] S. Zhang, A generalized F-expansion method with symbolic computation exactly solving Broer–Kaup equations, Appl. Math. Comput. 189 (2007) 836–843. [37] M.A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos Solitons Fract. 31 (2007) 95–104. [38] S. Zhang, T.C. Xia, A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik–Novikov– Vesselov equations, J. Phys. A: Math. Theor. 40 (2007) 227–248. [39] S. Zhang, T.C. Xia, A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Phys. Lett. A 363 (2007) 356–360. [40] S. Zhang, A generalized new auxiliary equation method and its application to the (2+1)-dimensional breaking soliton equations, Appl. Math. Comput. 190 (2007) 510–516.

S. Zhang / Applied Mathematics and Computation 199 (2008) 242–249

249

[41] S. Zhang, New exact non-traveling wave and coefficient function solutions of the (2+1)-dimensional breaking soliton equations, Phys. Lett. A 368 (2007) 470–475. [42] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fract. 30 (2006) 700–708. [43] J.H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, Dissertation, De-Verlag im Internet GmbH, Berlin, 2006. [44] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Solitons Fract. 34 (2006) 1421–1429. [45] J.H. He, L.N. Zhang, Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Expfunction method, Phys. Lett. A, in press, doi:10.1016/j.physleta.2007.08.059. [46] X.H. Wu, J.H. He, Exp-function method and its application to nonlinear equations, Chaos Solitons Fract., in press, doi:10.1016/ j.chaos.2007.01.024. [47] S. Zhang, Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos Solitons Fract., in press, doi:10.1016/j.chaos.2006.11.014. [48] S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A 365 (2007) 448–453. [49] S. Zhang, Exp-function method for solving Maccari’s system, Phys. Lett. A, in press, doi:10.1016/j.physleta.2007.05.091. [50] S. Zhang, Exp-function method exactly solving a KdV equation with forcing term, Appl. Math. Comput., in press, doi:10.1016/ j.amc.2007.07.041. [51] S. Zhang, Exact solutions of a KdV equation with variable coefficients via Exp-function method, Nonlinear Dyn. (2007), doi:10.1007/ s11071-007-9251-0. [52] S.D. Zhu, Exp-function method for the hybrid-lattice system, Int. J. Nonlinear Sci. Numer. Simul. 8 (2007) 461–464. [53] S.D. Zhu, Exp-function method for the discrete mKdV lattice, Int. J. Nonlinear Sci. Numer. Simul. 8 (2007) 465–469. [54] S.D. Zhu, Discrete (2+1)-dimensional Toda lattice equation via Exp-function method, Phys. Lett. A (2007), doi:10.1016/j.physleta. 2007.07.085. [55] A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Phys. Lett. A 365 (2007) 213–219. [56] E. Yusufog˘lu, New solitonary solutions for modified forms of DP and CH equations using Exp-function method, Chaos Solitons Fract. (2007), doi:10.1016/j.chaos.2007.07.009. [57] F. Xu, Application of Exp-function method to symmetric regularized long wave (SRLW) equation, Phys. Lett. A (2007), doi:10.1016/ j.physleta.2007.07.035. [58] E. Fermi, J. Pasta, S. Ulam, Collected Papers of Enrico Fermi, Chicago University Press, Chicago, 1965. [59] G.C. Wu, T.C. Xia, A new method for constructing soliton solutins to differential-difference equation with symbolic computation, Chaos Solitons Fract., in press, doi:10.1016/j.chaos.2007.06.107.