EXPERIMENTAL TRANSITIONS: TOTAL J. H: HAMILTON,
VALUES OF INTERNAL-CONVERSION AND K-SHELL COEFFICIENTS AND
A. V. RAMAYYA,
B. van NOOIJEN,
Physics Department, d Vanderbilt
a R. G. ALBRIDGE,
University,
S. C. PANCHOLI
COEFFICIENTS OF NUCLEAR L-SUBSHELL COEFFICIENT RATIOS
Nashville,
AND
E. F. ZGANJAR
b
Tennessee,
c
Physics Department, d Vanderbilt University, Nashville, Tennessee, and Nuclear Data Group, Oak Ridge National Laboratory~ e Oak Ridge, Tennessee, and J. M.
HOLLANDER,
Lawrence
V. S. SHIRLEY,
AND
C. M.
Radiation Laboratory, e Berkeley,
LEDERER
California
A tabulation is p r e s e n t e d of e x p e r i m e n t a l l y m e a s u r e d v a l u e s of i n t e r n a l - c o n v e r s i o n c o e f f i c i e n t s for the K - s h e l l , ~K, L - s u b s h e l l s ( m o s t l y r a t i o s only, LI:L2:L3) , and for all shells, (~total • R e s u l t s r e p o r t e d p r i o r to N o v e m b e r 1965, w h o s e u n c e r t a i n t i e s a r e ~ 25%, a r e l i s t e d and c o m p a r e d with t h e o r e t i cal values. cluded.
T r a n s i t i o n e n e r g i e s and spins and p a r i t i e s of i n i t i a l and final l e v e l s , when known, a r e in-
The t h e o r e t i c a l v a l u e s w e r e obtained f r o m c o m p u t e r i n t e r p o l a t i o n , and in s o m e c a s e s e x -
t r a p o l a t i o n , of the t a b l e s of Sliv and Band.
A b r i e f d i s c u s s i o n of the m e t h o d s of m e a s u r i n g c o n v e r s i o n
c o e f f i c i e n t s is given.
CONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
522
DISCUSSION O F E X P E R I M E N T A L METHODS . . . . . . . . . . . . . . .
523
POLICIES A D O P T E D FOR T A B L E 2 . . . . . . . . . . . . . . . . . . . . .
529
R E F E R E N C E S FOR INTRODUCTORY M A T E R I A L . . . . . . . . . . . .
531
SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . .
532
T A B L E 1.
C o n v e r s i o n - C o e f f i c i e n t Methods . . . . . . . . . . . . . . . .
534
'TABLE 2.
I n t e r n a l - C o n v e r s i o n C o e f f i c i e n t s O r d e r e d by A a n d Z . .
537
:REFERENCES FOR T A B L E 2 . . . . . . . . . . . . . . . . . . . . . . . . . T A B L E 3.
T r a n s i t i o n s with a t o r a K M e a s u r e d with an A c c u r a c y of 10% o r B e t t e r in O r d e r of I n c r e a s i n g E n e r g y . . . . . .
590 601
a NSF S e n i o r F o r e i g n S c i e n t i s t on l e a v e f r o m Delft T e c h n i c a l U n i v e r s i t y , Delft, The N e t h e r l a n d s . b P r e s e n t a d d r e s s : P h i l l i p s P e t r o l e u m C o . , Idaho F a l l s , Idaho. c P e r m a n e n t a d d r e s s : P h y s i c s D e p a r t m e n t , U n i v e r s i t y of Delhi, Delhi, India. d W o r k s u p p o r t e d in p a r t by a g r a n t f r o m t h e National S c i e n c e Foundation. e W o r k s u p p o r t e d by the A t o m i c E n e r g y C o m m i s s i o n . 521
HAMILTON et al. INTRODUCTION A n u c l e a r e l e c t r o m a g n e t i c t r a n s i t i o n f r o m an initial n u c l e a r state with e n e r g y Ei to a final state with en er g y E~ can take place by the e m i s s i o n of v - r a y s or of orbi t al atomic e l e c t r o n s called " i n t e r n a l c o n v e r s i o n e l e c t r o n s . " Above 1022 keV, i n t e r n a l - p a i r c r e a t i o n can occur but this p r o c e s s does not b e c o me appreciable until the e n e r g y is s e v e r a l MeV.
T h e r e a r e also h i g h e r - o r d e r competing p r o c e s s e s
in which the e n e r g y of the n u c l e a r t r a n s i t i o n is given to two photons or two e l e c t r o n s or a p h o t o n - e l e c tron pair.
The last t h r e e effects a r e e x t r e m e l y s m a l l in c o m p a r i s o n with the two p r i m a r y p r o c e s s e s
mentioned f i r s t .
The e n e r g y of the g a m m a r a y f r o m the t r a n s i t i o n is E 7 = Ei - E l , while that of the
c o n v er s io n e l e c t r o n s is Ece = E 7 - B I ( , L ' . . . , e l e c t r o n f r o m the K, /,, . . . shell.
where BIi ' L . . .
is the work r e q u i r e d to r e m o v e an
The r e c o i l energy of the nucleus has been neglected.
The i n t e r n a l -
c o n v e r s i o n coefficient of the transition, usually designated by a , is, by definition, the rat i o of the e l e c tr o n e m i s s i o n r a t e to g a m m a e m i s s i o n rate, that is (~ = Nce/N 7.
(Some authors use c for c o n v e r s i o n
coefficients and r e s e r v e ~ for e l e c t r i c multipoles and /~ for magnetic multipoles as defined below. ) P a r t i a l i n t e r n a l - c o n v e r s i o n coefficients a r e used in connection with e l e c t r o n e m i s s i o n f r o m specific shells; f o r example, a l l = NceL1/N 7 is the coefficient for the ejection of e l e c t r o n s f r o m the L1 shell with the c h a r a c t e r i s t i c e ne r gy E 7 - B L .
The sum of the p a r t i a l coefficients is atotal or a t which
equals Z N c e i / N T = (~K + °~L1 -P GL 2. . . .
Ratios such as ~L1/GL 2 a r e c u s t o m a r i l y abbreviated L ~ / L 2 ,
etc. Values of i n t e r n a l - c o n v e r s i o n coefficients a r e of p r a c t i c a l i m p o r t a n c e , for example in studies of biological effects of r a di oa c t i vi t y and in making calculations of shielding r e q u i r e m e n t s .
They a r e also
of g r e a t a s s i s t a n c e in d e t e r m i n i n g the m u l t i p o l a r i t i e s , Aj, of n u c l e a r t r a n s i t i o n s , E l , E2, . . . M1, M2, . . . ,
wh e r e E and M r e f e r to the e l e c t r i c or magnetic c h a r a c t e r of the radiation, and 1, 2 . . . to
the units of angular momentum, j, c a r r i e d off.
F r o m the m u l t i p o l a r i t i e s , i nform at i on on the spins Ii
and If of the initial and final n u c l e a r s t a t e s can be d e t e r m i n e d since [If - lfl <=j <--(li + If) as well as inf o r matio n on the p a r i t i e s since a p a r i t y change takes place for E l , E3, . . . M2, M 4 . . . but not for E0, E2 . .. M1, M3 . . . .
The use of i n t e r n a l - c o n v e r s i o n coefficients in det erm i ni ng m u l t i p o l a r i t i e s and in
establishing n u c l e a r spins and p a r i t i e s has r e c e n t l y been d i s c u s s e d by Hamilton 1 and by G r a h a m . 2 In addition to the n o r m a l dependence of c o n v e r s i o n coefficients on (1) t r a n s i t i o n energy, (2) Z of of e m i t t e r , (3) the shell or subshell f r o m which the e l e c t r o n is ejected, and (4) t r a n s i t i o n m u l t i p o l a r ity and c h a r a c t e r , the coefficients and r a t i o s in c e r t a i n c a s e s (for r e t a r d e d E l , M 1 t r a n s i t i o n s for instance) may be n u c l e a r - s t r u c t u r e dependent.
T h e r e f o r e i n t e r e s t has been strong not only in the funda-
mental a s p e c t s of the i n t e r n a l c o n v e r s i o n p r o c e s s i t sel f but also in effects of n u c l e a r s t r u c t u r e on in. t e r n a l conversion, for example in the influence of penet rat i on m a t r i x el em ent s and t r a n s i t i o n r e t a r d a tion.
Discussions of the calculations of c o n v e r s i o n coefficients m ay be found in " I n t e r n a l Conversion
Coefficients" by R o s e . 3
D i s c u s s i o n s of n u c l e a r - s t r u c t u r e effects a r e found in the g e n e r a l a r t i c l e s by 4 Rose; Ger h o l m and P e t t e r s o n ; H e r r l a n d e r and Ewan; Ewbank; Voikhanska et al. ; and in s e v e r a l s h o r t e r a r t i c l e s in R e f e r e n c e 4. To help in the s y s t e m a t i z a t i o n and u se of c o n v e r s i o n - c o e f f i c i e n t data, e x p e r i m e n t a l values of atotal, ~K, and LI: L2: L 3 a r e p r e s e n t e d in Table 2 in juxtaposition with the t h e o r e t i c a l values of Sliv and Band 5 f o r multipole o r d e r s whose coefficients a r e close to the e x p e r i m e n t a l ones, or for multipole o r 522
INTERNAL-CONVERSION COEFFICIENTS d e r s d e t e r m i n e d f r o m a r e l e v a n t decay s c h e m e .
This table shows a r e a s w here m o r e e x p e r i m e n t a l data
a r e needed for clarifying the r e l a t i o n of e x p e r i m e n t to t h e o r y and for making assi gnm ent s of spins and parities.
It m a y also help in the identification of a r e a s where n u c l e a r - s t r u c t u r e or p e n e t r a t i o n effects
are present. In Table 3 we p r e s e n t , as a function of i n c r e a s i n g energy, n u c l e a r t r a n s i t i o n s whose total or Kc o n v e r s i o n coefficients have been m e a s u r e d with an a c c u r a c y of 10% or b e t t e r .
The usefulness of this
table is brought out in the d i s c u s s i o n of the NPG method in the next sect i on. The l i t e r a t u r e s u r v e y for this review has been c a r r i e d through N o v e m b e r 1965, but in a few ins tan ces m o r e r e c e n t data w e r e included, p a r t i c u l a r l y those appearing in " I n t e r n a l Conversion p ,4 rocesses. I m m e d i a t e l y following, we p r e s e n t a b r i e f d i s c u s s i o n of the vari ous e x p e r i m e n t a l techniques used in i n t e r n a l - c o n v e r s i o n studies.
In this we e m p h a s i z e the s o u r c e of e r r o r s and limitations of each
method. We wish t:o thank D r . K. Way for h e r c o n s i d e r a b l e c r i t i c a l aid, Dr. N. B. G ore and M r s . C. T. Chen for running the p r o g r a m f or interpolating the t h e o r e t i c a l c o n v e r s i o n coefficients~ and M r s . Sharon Spainhour and M r s . M a r g a r e t N o r m a n for p r e p a r i n g the r e f e r e n c e list.
We also want to thank M.
Zender, S. B r a h m a v a r , K. C a r t e r , D. McMillan, A. Meulenberg, L. Riedinger, and C. Whitlock for t h e i r help in p r e p a r i n g and p r o o f r e a d i n g the tables. DISCUSSION OF EXPERIMENTAL METHODS Methods of M e a s u r i n g C o n v e r s i o n Coefficients In all d e t e r m i n a t i o n s of i n t e r n a l - c o n v e r s i o n coefficients, o~i = Ncei/N7, two of the following t h r e e quantities mu st be m e a s u r e d r e l a t i v e to each other: (1) the r a t e of ejection of c o n v e r s i o n e l e c t r o n s , e i t h e r Nce i or ~Nce i =Nce (2) the r a t e of e m i s s i o n of 7 - r a y s , N 7 (3) the total t r a n s i t i o n r a t e , N c e + NT, usually found by d e t e r m i n i n g the r a t e at which the emitting level is populated. To g e t ~i f r o m Nce i and Nce + N T, Ncei/Nce m u s t also be known.
However, in the c a s e of ~/~
this r atio contributes only a s m a l l c o r r e c t i o n . Nce and N c e + N 7 will give, or c o u r s e , only ~total. T h e r e a r e s e v e r a l d i f f e r e n t ways of m e a s u r i n g the above t h r e e quantities or quantities f r o m which they can be d e r i v e d ,
van Nooijen 6 and Hamilton 1 have r e c e n t l y d i s c u s s e d m o s t of the methods used.
In Table 2 we have indicated by each c o n v e r s i o n coefficient the method by which it was d e t e r m i n e d when given in the r e f e r e n c e .
H e r e we d e s c r i b e b r i e f l y each of the methods listed, emphasizing the f a c t o r s
that limit t h e i r a c c u r a c y .
The s ym bol s used in identifying the vari ous e x p e r i m e n t a l techniques a r e
b r i e f l y defined in the section on symbols and abbrevi at i ons. Methods that M e a s u r e Nce and N 7 AEG In the absolute e l e c t r o n - g a m m a method, the absolute num ber of c o n v e r s i o n e l e c t r o n s ej e c te d f r o m all shells p e r unit t i m e and the absolute n u m b e r of g a m m a r a y s emitted p e r unit t i m e a r e m e a s u r e d 523
HAMILTON et a l . in a calibrated electron s p e c t r o m e t e r and calibrated g a m m a s p e c t r o m e t e r , respectively. uncertainties a r e the efficiencies of the two s p e c t r o m e t e r s . ble, the technique is capable of high precision.
The p r i m a r y
In the simple decays, where it is applica-
One does note, however, that a c c u r a t e r e s u l t s obtained
by this technique are, in s e v e r a l cases, s y s t e m a t i c a l l y a few percent lower than r e s u l t s obtained by s e v e r a l other methods.
This could indicate that a small systematic e r r o r is p r e s e n t in these c a s e s .
IEC, IECc In the internal-external-conversion method, the internal-conversion electron intensity is measured in a magnetic beta-ray spectrometer.
The corresponding gamma-ray intensity is determined in the
same instrument by placing an external converter (thin layer of material) in front of the source. The gamma rays incident on the converter liberate both photoelectrons and Compton electrons.
The first
are studied by the IEC method and the second by the IECc method. To obtain the gamma intensities, one must know the thickness of the converter, the photoelectric or Compton cross section and the correction for the angular distribution of the photo- or Compton electrons. The internal-external-conversion method has been reviewed recently by several authors, I, 6, 7 and we shall comment here only on the errors associated with its use. One of the advantages of IEC is that measurements can be made at moderately high resolution; thus the precision is not greatly affected by spectral complexity. Other than the statistical uncertainties associated with low-intensity external lines, the largest sources of error arise from the anisotropic distribution of the photoelectrons and from their scattering in the converter. In work prior to 1958, correction for the anisotropic angular distribution of the photoelectrons was taken into account only roughly, if at all. Aboutthat time Hultberg and Stockendal8 refined the IEC method by using experimentally determined angular-distribution functions to obtain a correction factor, f. In 1961, the method was further refined by the introduction of theoretical photoelectric angular-distribution functions9. It was then foundthat below 500 keV, the experimental angular-distribution functions were unreliable because of distortion due to photoelectron scattering. In fact f-factors based on the experimental distributions were in error by as much as 20% for gamma energies of less than 500 keV (note in Table 1 that ~K is proportional to f).
To use the theoretical functions with little error
from scattering required very thin converters which were often impractical. In 1964 a new correction 7 factor which takes account of the scattering was introduced. It would be difficult to correct all older IEC measurements for scattering and angular-distribution effects. One can note certain general guide lines, however, to be used in interpreting older measurements. In conversion coefficients measured by the IEC method prior to 1958, there may be inaccuracies of 25%, perhaps more, at energies below 500 keV and less above 1MeVfrom errors in f . Between 1958 and 1961, conversion-coefficientmeasurements should be good (within 5%) above 600 keV, but may be in error by 10-20% below 500 keV. Between 1961 and 1964, there may still be errors of 4-15% depending on the energy and converter thickness at energies below 500 keV (greater errors for lower energy and thicker converter, >=2 mg/cm2). The most recent results should be reliable, but there are still some unexplained indications of errors as one goes to energies below 500 keV (see for example the paper by Zender and Albridge in Reference 4). 524
INTERNAL-CONVERSION COEFFICIENTS Additive to the e r r o r s in f a r e e r r o r s in the values of the p h o t o e l e c t r i c c r o s s sect i on which m u st also be taken into account.
F o r e n e r g i e s above a p p r o x i m a t e l y 1 MeV, the c r o s s sections used p r i o r to
1964 w e r e found to be in e r r o r .
T h e s e c r o s s sections (for uranium) w e r e about 10% high at 1333 keV,
about 5% high at 1 MeV, and e s s e n t i a l l y c o r r e c t below 700 keV. 10 Thus one concludes that the inacc u r a c i e s of the method have not been l a r g e enough, general l y, to lead to wrong spin and p a r i t y a s s i g n ments but that the u n c e r t a i n t i e s d i s c u s s e d a r e i m p o r t a n t f o r c r i t i c a l c o m p a r i s o n of t h e o r y and e x p e r i ment.
With c a r e f u l analysis, the method today is capable of a c c u r a c i e s of 2-5%.
(For examples se e
the 605-keV t r a n s i t i o n in 134Ba and the 279-keV t r a n s i t i o n in 2°3T1 in Table 2. ) The I E C c method in which Compton e l e c t r o n s a r e used is not, in general, so a c c u r a t e as that in which p h o t o e l e c t r o n s a r e used b e c a u s e of the g r e a t e r e n e r g y distribution of the f o r m e r . NPG In the n o r m a l i z e d - p e a k - t o - g a m m a method, r e l a t i v e e l e c t r o n and g a m m a - r a y intensities obtained with d i f f e r e n t i n s t r u m e n t s a r e n o r m a l i z e d via a known c o n v e r s i o n coefficient of a t r a n s i t i o n whose r e l ative e l e c t r o n and g a m m a - r a y intensities a r e also m e a s u r e d .
This method is the m o s t p r o m i s i n g one
for g e n e r a l use in n u c l e a r s t r u c t u r e work, since it combines the advantages of high speed, r e a s o n a b l e a c c u r a c y , and independence of the d e c a y s c h e m e .
With multichannel r e c o r d i n g of g a m m a r a y s
[Ge (Li) - d e t e c t o r ] and e l e c t r o n s [Si (Li) - d e t e c t o r ] , it is capable of a c c u r a c i e s of 10-15%, 11 which is g e n e r a l l y sufficient for s p i n - p a r i t y a s s i g n m e n t s .
Improved p r e c i s i o n is possible if the e l e c t r o n
m e a s u r e m e n t s a r e c a r r i e d out in a magnetic beta s p e c t r o m e t e r in which c a s e a c c u r a c i e s of about 8% a r e r e a d i l y obtainable (see for example R e f e r e n c e 12).
Since d e t e r m i n a t i o n s of the effi ci enci e s of the
g a m m a and e l e c t r o n s p e c t r o m e t e r s as functions of e n e r g y a r e r e q u i r e d , g r e a t e r a c c u r a c y can be achieved, of c o u r s e , if the r e f e r e n c e t r a n s i t i o n has an e n e r g y which is v e r y cl ose to that of the t r a n s i tion of i n t e r e s t .
This fact was the r e a s o n behind the inclusion of Table 3 in this compilation, which
lists t r a n s i t i o n s with s t or ~K m e a s u r e d with an a c c u r a c y of 10% or b e t t e r in o r d e r of i n c r e a s i n g energy.
In Appendix 4 of R e f e r e n c e 4, van Nooijen and Hamilton p r e s e n t a table of the m o s t a c c u r a t e l y
known (5% o r b e t t e r ) c o n v e r s i o n coefficients for use as s t a n d a r d s .
These latter standards were se-
lected for long life and s i m pl e decay s c h e m e of the p a r e n t . A word of caution about NPG m e a s u r e m e n t s with NaI (T1) d e t e c t o r s should be m ade.
The r e s o l u -
tion of NaI d e t e c t o r s is r e l a t i v e l y poor and, in com pl i cat ed decays, what would appear as a single g a m m a line m a y be two or m o r e lines.
Thus, unless the d e c a y s c h e m e is r e l a t i v e l y simple, NPG
m e a s u r e m e n t s with NaI d e t e c t o r s can be subject to l arge u n c e r t a i n t i e s .
In Table 2 no effort was made
to c o r r e c t o lder NPG m e a s u r e m e n t s (which includes m o s t work p r i o r to 1964) w h e r e the decay s c h e m e was not well known. T h e r e a r e ways of n o r m a l i z i n g r e l a t i v e e l e c t r o n and g a m m a intensities other than through use of a t r a n s i t i o n of Imown c o n v e r s i o n coefficient. izing factQr.
In the NPG*, the p o s i t r o n intensity is used as the n o r m a l -
The c o n v e r s i o n e l e c t r o n s a r e m e a s u r e d r e l a t i v e to the posi t ron s p e c t r u m and the g a m m a
r a y s r e l a t i v e to the p o s i t r o n annihilation radiation (intensity of ~'+ = twice the intensity of the ~+ s p e c trum).
In the NPG**, the total n u m b e r of K - v a c a n c i e s is used as the n o r m a l i z i n g f a c t o r .
525
The
HAMILTON et a l . conversion electrons are m e a s u r e d relative to the K - A u g e r s p e c t r u m and the gamma r a y s relative to the K - X - r a y s .
The NPG* and NPG** methods eliminate the need to know the positron and K - c a p t u r e
branching ratios, r e s p e c t i v e l y . XPG The ratio of the intensities of X-rays to 7-rays is found in the X-ray-peak-to-gamma method. The K-conversion-electron intensity of interest can be obtained from the K-X-ray intensity by dividing it by the K-fluorescence yield, but only if the number of K-X-rays due to conversion electrons from other transitions and to K-electron capture is very well known. Sometimes, even a very small electroncapture branch can be significant. (See zT°Yb in Table 2 where a correction (6.4%) has been applied to some a K values). Generally, the largest uncertainties arise from the efficiency correction and from correction for gamma and X-ray escape peaks. Sometimes, the gamma-escape peak may fall under the X-ray peak. Accuracies of better than 5% require very careful analysis. There has been recently the suggestion13 that the values of the K-fluorescent yield obtained from the formula of Hagedoorn and Wapstra14 are low by 20% for Z between 20 and 30. Thus, there is some question about the accuracy of results in this Z-region. In addition, there has been a recent report 15 that suggests that XPG measurements with flat Nal (TI) crystals may be in error by 5-10%. However, this has been indicated only for an ~K measurement of the 84.3-keV transition in Iv°Yb. The XPG method has often been used with a coincidence gate (/3 or 7) to select the X- and gamma rays of a particular transition.
This requires corrections for coincidence efficiencies and possible
/3-7 or 7-7 directional correlation effects which have sometimes been ignored.
Methods that M e a s u r e Nce and N c e + N T In these "population" methods, the r a t e s of level population and c o n v e r s i o n - e l e c t r o n depopulation a r e determined.
They a r e generally applied to levels that decay only by the transition of i n t e r e s t so
that the rate of population is equal to the sum of the electron and g a m m a depopulation r a t e s .
If there
a r e additional decay modes, their contributions must be subtracted, and detailed knowledge of the decay scheme is then n e c e s s a r y .
These techniques have been applied mainly to f i r s t and second excited
states and, in the c a s e of the f i r s t four techniques given below, to simple decay s c h e m e s . PAS In the p e a k - t o - A u g e r - s p e c t r u m method, the population rate is determined from the intensity of the Auger s p e c t r u m .
This spectrum and the c o n v e r s i o n - e l e c t r o n spectrum can be m e a s u r e d in the s a m e
s p e c t r o m e t e r , which eliminates solid-angle c o r r e c t i o n s .
The method is applicable to simple electron-
capturing nuclei, but in complex decays it r e q u i r e s knowledge of the e l e c t r o n - c a p t u r e branching to the different levels.
In addition one must know the fluorescence yield (see uncertainties in this quantity
d i s c u s s e d in the XPG method) and the total Auger intensity relative to the Auger spectrum m e a s u r e d (e. g. K- or L - A u g e r spectrum).
Generally the K-Auger s p e c t r u m is m e a s u r e d to simplify the
526
INTERNAL-CONVERSION COEFFICIENTS analysis.
Because of the relatively low energy of the Auger electrons, care must be taken in source
preparation to minimize electron scattering. PaS In the p e a k - t o - a l p h a - s p e c t r u m method, the intensity of the alpha group to a level is m e a s u r e d to d e t e r m i n e the population r a t e .
The solid angles of the alpha and electron s p e c t r o m e t e r s contain un-
c e r t a i n t i e s which have limited the g e n e r a l usefulness of the method. PBS The p e a k - t o - b e t a - s p e c t r u m method, in which the level population is determined by the intensity of the beta spectrum, has been used to obtain accurate r e s u l t s in very simple decay s c h e m e s . spectrum and conversion electrons m a y be m e a s u r e d in the same magnetic s p e c t r o m e t e r .
The beta The total
intensity of a beta spectrum is difficult to determine, however, because of possible scattering effects which can d i s t o r t the lower portion of the s p e c t r u m .
Much care m u s t be taken to p r e p a r e " m a s s - f r e e "
s o u r c e s (<-_10 m g / c m 2) on thin backings (<= 20 m g / c m 2) and to prevent electron scattering in the spect r o m e t e r if a c c u r a c i e s of better than 5% a r e to be obtained. one beta spectrum is p r e s e n t .
The problems are g r e a t e r if m o r e than
A final problem involves the extrapolation of the high-energy portion of
the beta spectrum to zero energy.
This has generally been done on the basis of a theoretical shape,
e. g . , " s t a t i s t i c a l " shape for an allowed transition or some theoretical expression for forbidden decays There are some indications of deviations from the s t a t i s t i c a l shape in allowed spectrum and from the unique shape in once-forbidden unique s p e c t r a .
Also l a r g e r deviations from the s t a t i s t i c a l shape than
originally thought have been observed in once-forbidden nonunique s p e c t r a .
Thus a beta spectrum
should b e m e a s u r e d to as n e a r z e r o beta energy as possible to eliminate extrapolation of the data based on theory.
Many of the older r e s u l t s m a y have inaccuracies l a r g e r than the e r r o r s quoted from
lack of knowledge of the decay schemes, from distortion of the spectrum by electron scattering, or from the use of wrong t h e o r e t i c a l shapes. PES_ When a level is populated by an i s o m e r i c transition with a high ( >= 100) conversion coefficient, the intensity of the electron spectrum from the i s o m e r i c decay gives a m e a s u r e of the level population. The p e a k - t o - e l e c t r o n - s p e c t r u m method is simple and easy to apply with high precision since one need m e a s u r e only relative c o n v e r s i o n - e l e c t r o n intensities in a magnetic s p e c t r o m e t e r . in source preparation if the i s o m e r i c transition is a low-energy one, of course.
C a r e must be taken
Unfortunately the
method is limited to only a few favorable i s o m e r i c decays. Coincidence Techniques ColE, C~E, C~T, CEE, CET, CEX, CTT, C X T As the above abbreviations suggest, there are a variety of coincidence methods that can be used to measure 8. conversion coefficient. "True" coincidence techniques are used to determine the coefficients
527
HAMILTON et al. directly, not m e r e l y to pick out a certain radiation.
In general, they determine Kcei, the probability of
emission of a conversion electron from which a i can be obtained Kcei = Ncei/No Wce £ce, where Nce i is the c o n v e r s i o n - e l e c t r o n emission rate, No the total decay to the level, and ¢Oce e ce the solid angle and efficiency of the electron detector.
A coincidence experiment can be used to m e a s u r e
No which is Nce + N~, No = C~C~//Cp.y, and a different coincidence experiment to m e a s u r e Wce ece, Wce £ce = C c e x / C x .
Here C denotes counts.
The type of coincidence experiment selected
depends on the decay s c h e m e . There a r e some g e n e r a l words of caution with r e g a r d to coincidence experiments.
One m u s t c o r -
r e c t for or eliminate any directional c o r r e l a t i o n effects between the coincidence radiations. fects, which m a y be quite large, have sometimes been ignored.
Such ef-
Also, pertubations or d i s t o r -
tions of the c o r r e l a t i o n from e x t r a - n u c l e a r effects, preceding decays, source scattering, or s c a t t e r ing outside the source m u s t be carefully taken into consideration.
There is also the problem of coin-
cidence efficiency. Finally, there may be noncoincident radiation p r e s e n t (see discussion by van Nooijen 6) that can introduce e r r o r s .
Coincidence methods have generally been applied only to f i r s t and
second excited s t a t e s . Methods that M e a s u r e N7 and N c e + Ny These methods, which a r e also "population" methods, a r e useful only in those cases where conversion coefficient is large, >= 1, since one gets Nce by subtracting N7 from Nce + N7 (i. e . , one is m e a s u r i n g a + 1). ABG In the absolute b e t a - g a m m a - m e t h o d , one has the problem of determining the absolute efficiencies of the detectors as in the other absolute methods. tribution of beta energies.
There is an added problem here because of the dis-
The determination of the beta intensity introduces the l a r g e s t uncertainty
and thus limits the method to a v e r y few special c a s e s . CEL
Coulomb excitation and lifetime m e a s u r e m e n t s give values of the electromagnetic transition rate, B (E2), from an excited state which is proportional to N y , and the half-life of the excited state which is 18 proportional to N c e + N~/. The method has been discussed r e c e n t l y by Stelson. He has noted that there is s o m e t i m e s a large spread in experimental half-life m e a s u r e m e n t s and less often in B (E2) valu e s . At present, conversion coefficients accurate to 5% will be obtained only by averaging s e v e r a l independent determinations of half-life and B (E2) values. MT The MSssbauer technique is limited to the m e a s u r e m e n t of total conversion coefficients for a few low-energy t r a n s i t i o n s .
The method is based on the m e a s u r e m e n t of the maximum resonant528
INTERNAL-CONVERSION COEFFICIENTS absorption c r o s s section for the g a m m a r a y .
Details a r e found e l s e w h e r e . 19 An a c c u r a c y of 10-12%
has been achieved by this method.
R___G In s p e c i a l c a s e s , the m e a s u r e m e n t of r e l a t i v e g a m m a - r a y intensities can be used to d e t e r m i n e a c o n v e r s i o n coefficient. Such c a s e s o c c u r when a t r a n s i t i o n with a l a r g e c o n v e r s i o n coefficient p r o c e e d s f r o m a level populated by a g a m m a r a y with v e r y s m a l l ( <=0. 005) c o n v e r s i o n coefficient. Since the g a m m a - r a y e n e r g i e s a r e usually different, the d e t e r m i n a t i o n of the r e l a t i v e intensities is not too difficult.
Unfortunately t h e r e a r e only a v e r y few c a s e s w h e r e this method can be applied.
Sum Techniques, SI7, SET The " i n t e r n a l s u m " method, f i r s t p r o p o s e d by Lu, Kelly, and Wiedenbeck,
16
has been applied to
nlCd whose two cascading y - t r a n s i t i o n s give, in a w e l l - t y p e scintillation c r y s t a l , two peaks plus a sum peak.
If all e f f i c i e n c i e s a r e equal to unity, the r a t i o of the sum peak to one of the y - r a y peaks is equal
to the r a t i o of the u n c o n v e r t e d and c o n v e r t e d f r a c t i o n s of the other r - t r a n s i t i o n . In the e x t e r n a l sum method, SE, g a m m a pul ses f r o m the level in question a r e s u m m e d e l e c t r o n ically with a gating pulse d e r i v e d f r o m a weakly c o n v e r t e d g a m m a which feeds the level.
The ra tio of
the n u m b e r of pulses in the sum 7 - p e a k to the total pulses in the coincidence s p e c t r u m is NT/(N 7 +Nce) if efficiencies a r e unity.
The method, which is e s s e n t i a l l y a r e f i n e m e n t of RG above, has been d i s -
c u s s ed by Dingus, T a l b e r t , and Hatch. 17 It has been applied to ls2Sm, ~S4Gd, and 16°Dy.
POLICIES ADOPTED FOR T A BL E 2 C r i t e r i a for Reporting s t ,
C~K, and L - S u b s h e l l Ratios
Only data that have e r r o r limits of 25% or l ess a r e listed; however, data for L - s u b s h e l l r a t i o s a r e p r e s e n t e d if one of the r a t i o s is known within +25%, r e g a r d l e s s of the u n c e r t a i n t y of the o th e r r atio .
In c a s e s w h e r e s e v e r a l a c c u r a t e m e a s u r e m e n t s have been r e p o r t e d , ot her r e s u l t s with 20-25%
e r r o r limits m a y not be listed. the third, is indicated by a dash.
If only two L - s u b s h e l l intensities have been m e a s u r e d , the ab se n c e of If the L 1 and L2 lines w e r e not r e s o l v e d , the total intensity is r e -
p o r t e d and is positioned in the table between the t h e o r e t i c a l L 1 and L 2 values. d e t e r m i n e whether the e r r o r s quoted a r e r e o l i s t i c . small.
No e f f o r t was made to
In som e cases, the e r r o r s s e e m to be much too
Some g e n e r a l guide lines on e r r o r s a r e given in the d i s c u s s i o n of the e x p e r i m e n t a l m e th o d s.
T h e o r e t i c a l Values of C o n v e r s i o n Coefficients The t h e o r e t i c a l c o n v e r s i o n coefficients w e r e obtained f r o m the N ucl ear Data Group f r o m a c o m p u t e r p r o g r a m designed by D r . N. B. Cove.
In this p r o g r a m the i nt erpol at ed or e x t r a p o l a t e d value is
obtained by a cubic fit to l o g a r i t h m s of four tabulated Sliv and Band 3 values n e a r e s t in e n e r g y to the d e s i r e d value.
The r e s u l t s obtained in this m a n n e r a r e not n e c e s s a r i l y m o r e a c c u r a t e than others, but
a r e at leas t c o n s i s t e n t and eas i l y available for any Z between 26 and 98 and any e n e r g y above 25 keV.
529
HAMILTON e t a l . The a t - and aK-Values for Z - v a l u e s below 33 and the aL-Values for som e l o w - Z , h i g h - e n e r g y t r a n s i tions a r e obtained by extrapolation.
T h e s e t h e o r e t i c a l values a r e c o r r e s p o n d i n g l y subject to g r e a t e r
un cer tain ty . T h e o r e t i c a l values which include s c r e e n i n g and finite n u c l e a r - s i z e c o r r e c t i o n s have been calculated only f o r the K - and L - s h e l l . K + L +...,
F o r c o m p a r i s o n with e x p e r i m e n t a l total c o n v e r s i o n coefficients, e i t h e r
or L + M + . . . ,
t h e o r e t i c a l values of e / / + 1.33 e L or 1.33 e L a r e given in the table.
Although this approximation of 0.33 e L for the contribution from the higher shel l s is known to r e p r e sent well the data for s om e t r a n s i t i o n s , its applicability over the whole range of Z values, m u l f i p o l a r ities, and e n e r g i e s is not adequately established. The t h e o r e t i c a l values p r e s e n t e d for c o m p a r i s o n with the e x p e r i m e n t a l data w e r e s e l e c t e d f i r s t on the basis of the spin and p a r i t y a s s i g n m e n t s .
In som e c a s e s , w h e r e the t h e o r e t i c a l value for the low-
e s t - o r d e r multipole did not a g r e e with the spin and p a r i t y assignment, values for other multipoles a r e presented.
Exceptions to this rule o c c u r in the c a s e s of some of the E1 t r a n s i t i o n s with known anomo-
lies in th eir c o n v e r s i o n c o e f f i c i e n t s . If no spin and p a r i t y have been assigned, the t h e o r e t i c a l value or values n e a r e s t the e x p e r i m e n t a l data a r e given.
In applying this rule, R1 - M2 m i x t u r e s w e r e not
considered. Standards Used for N o r m a l i z a t i o n The K - c o n v e r s i o n coefficients of many d i f f e r e n t t r a n s i t i o n s w e r e used as s t a n d a r d s in applying the NPG method.
When noted in the original paper, the value of the st andard a K is given in a footnote.
Those of the 662-keV t r a n s i t i o n in 137Ba and the 412-keV t r a n s i t i o n in 198Hg w e r e m o s t often used. values of a K that w e r e used for t he s e two t r a n s i t i o n s v a r y by s e v e r a l (5-10) p e r c e n t .
The
Since t h e r e has
been s o me question r e g a r d i n g the t r u e values of these two a K - s t a n d a r d s in the last y e a r or two, we have not adjusted the s e c o n d a r y values to one common p r i m a r y value. T r a n s i t i o n E n e r g i e s and Spins and P a r i t i e s Th e e n e r g i e s given a r e a v e r a g e s taken f r o m the Nuclear Data Sheets 20 or values f r o m so m e p a p e r not yet c o v e r e d in the Sheets w her e a c c u r a t e values w e r e r e p o r t e d .
Since the function of the p r e s e n t
pap er was not a p r e s e n t a t i o n of " b e s t " e nergi es, t hese w e r e always rounded off at l e a s t to the n e a r e s t tenth of a keV.
U nc e r t ai nt i es in the t r a n s i t i o n e n e r g i e s of the o r d e r of 1 keV a r e i m p o r t a n t below 100
keV (for example at 75 keV, Z = 66, ~/t changes about 5% p e r keV).
At e n e r g i e s above a p p r o x i m a t e l y
200 keV such u n c e r t a i n t i e s in e n e r g y do not affect the c o m p a r i s o n with t h e o r y . Only those t r a n s i t i o n s for which spin assignments have been made in the l i t e r a t u r e or in N u c l e a r Data Sheets 20 a r e included. initial and final state.
The f u r t h e r r e s t r i c t i o n was made that t h e r e be a single spin choice for the
C as e s w h e r e one spin is definitely known and the ot her r e s t r i c t e d to two o r m o r e
choices a r e thus omitted a l t o g e t h e r .
Some spin assi gnm ent s m ay have been overlooked if they have
been d e t e r m i n e d in a r e c e n t p a p e r by 7-Y angular c o r r e l a t i o n or techniques other than i n t e r n a l - c o n v e r sion-coefficient measurements.
530
INTERNAL-CONVERSION COEFFICIENTS REFERENCES FOR INTRODUCTORY MATERIAL 1.
J . H . :Hamilton, "Nuclear Spin-Parity Assignments," N. B. Gove, ed., Academic P r e s s , New York, 1966, p. 31.
2.
R . L . Graham, "Nuclear Spin-Parity Assignments," N. B. Gove, ed., Academic Press, New York, 1966, p. 53.
3.
M . E . Rose, "Internal Conversion Coefficients," North Holland Publishing Co., Amsterdam, 1958.
4.
"Internal Conversion P r o c e s s e s , " J. H. Hamilton, ed., Academic P r e s s , New York, 1966.
5.
L . A . Sliv and I. M. Band, "Alpha-, B e t a - a n d Gamma-Ray Spectroscopy," K. Siegbahn, ed., North Holland Publishing Company, Amsterdam, 1965; p. 1639: Leningrad Physico-Technical institute USSR; K-Shell 1956, L-Shell 1958.
6.
B. van Nooijen, "Internal Conversion P r o c e s s e s , " J. H. Hamilton, ed., Academic P r e s s , New York, 1966, p. 35.
7.
S. Hultberg, "Internal Conversion P r o c e s s e s , " J. H. Hamilton, ed., Academic P r e s s , New York, 1966, p. 125.
8.
S. Hultberg, Arkiv Fysik 15__, 307 (1959). S. Hultberg and R. Stockendal, Arkiv Fysik 1_44, 565 (1959).
9.
S. Hultberg, B. Nagel, and P. Olsson, Arkiv Fysik 20.__, 555 (1961).
10.
R.H. Pratt, R. D. Lever, R. L. Pexton, and W. Aron, Phys. Rev. 135, A898, A916 (1964); S. Hultberg, B. Nagel, and P. Olsson, to be published.
11.
J . M . Hollander, "Internal Conversion Processes," J. H. Hamilton, ed., Academic Press, New York, 1966, p. 89.
12.
B. van Nooijen, A. V. Ramayya, J. H. Hamilton, J. J. Pinajian, and N. R. Johnson, "Internal Conversion Processes," J. H. Hamilton, ed., Academic Press, New York, 1966, p. 193.
13.
J . G . V . Taylor and J. S. Merritt, Proceedings of the Warsaw Conference, 1963, p. 465.
14.
H.L. Hagedoornand A. H, Wapstra, Nucl. Phys. 15___, 146 (1960).
15.
J . F . W . Jansen and A. H. Wapstra, "Internal Conversion Processes," J. H. Hamilton, ed., Academic Press, New York, 1966, p. 237.
16.
D.C. Lug W. H. Kelly, and M. L. Weidenbeck, Phys. Rev. 97___, 139 (1955).
17.
A.S. Dingus, W. L. Talbert, Jr., and E. N. Hatch, IS-1032 (1965).
18.
P . H . Stelson, "Internal Conversion Processes, " J. H. Hamilton, ed., Academic Press, New York, 1966, p. 213.
19.
E. Kankeleit, F. Boehm, and R. Hager, Phys. Rev. 134, B747 (1964).
20.
Nuclear Data Sheets, National Academy of Science, Washington, D. C. (1959-1965); Nuclear Data, Section B, Academic Press, New York (1966).
531
HAMILTON et al. SYMBOLS
AND
ABBREVIATIONS
Aej
Auger e l e c t r o n group
AeT
All Auger electron groups
b,bc
Dimension factors
B(E2) ¢
Reduced upward E2 electromagnetic transition probability
C
Intensity for the radiation indicated by the s u b s c r i p t m e a s u r e d in t e r m s of counting r a t e s or a r e a s
Ce
Compton electron
ce
Conversion electron
d
Thickness of c o n v e r t e r
E
Energy of photon emitted in a nuclear transition
El, M 1 , . . .
Multipolarities of nuclear transitions
]
Correction factor for anisotropic distribution of photoelectrons
/o
Correction factor for the anisotropic distribution of the Compton electrons and for the fraction of the Compton spectrum o b s e r v e d
/i, /~
Spin-parity of initial, final nuclear state involved in a transition
LI:L2:Ls
OILI:O~L2:OtL ~
Noe, lv~
Rate of emission of conversion electrons, photons
No
Rate of population of a level
P
P e r c e n t a g e of level population due to electron capture
pe
Photoelectron
t
Total width of excited level
T1/2
Half-life of level for emission of photons plus conversion electrons
X
X-ray
Y
F l u o r e s c e n c e yield
~gp
Alpha group
~K
Internal-conversion coefficient for the K-shell, NceK/N 7
~L
0lLl + Q L 2 + Q L 3
O~L1, O/L2, ~L 3
Internal-conversion coefficients for the L - s u b s h e U s , ~hTceL x//-NT
at
Internal-conversion coefficient for a l l s h e l l s . ~ t = Qtotal = QK + ~ L + eLM
532
INTERNAL-CONVERSION COEFFICIENTS Beta spectrum Photon £
gcei
E f f i c i e n c y of d e t e c t o r The p r o b a b i l i t y of c o n v e r s i o n e l e c t r o n e m i s s i o n f r o m the i t h shell, +NT)
Ncei/(ZNce i a
Compton cross section M S s s b a u e r c r o s s s e c t i o n as a function of % and t
(~(E) =
( E - E) 2 + ( t / 2 ) 2
(~o
Maximum MSssbauer resonant-absorption cross section
T
Photoelectric cross section
o~
Solid angle s u b t e n d e d b y d e t e c t o r
Subscripts
i, j
A t o m i c e l e c t r o n shell,
st
Standard used for normalization
1, 2
F i r s t and s e c o n d r a d i a t i o n s in a c a s c a d e
K, L, M . . .
Superscripts t
E x p e r i m e n t a l value of a t = a K + a L + a M . . .
t+
E x p e r i m e n t a l value of a L ÷ a M ÷ . . .
t*
T h e o r e t i c a l value of a N + 1.33 (~L
t**
T h e o r e t i c a l value of 1.33 a L
533
HAMILTON
TABLE
et a l .
1
Conversion Coefficient Methods
Method
Quantities Meesured
Equation for 0btaining~ t or ~. z C~ ~T Mr
C
AEG
Cce./Cy
~i
I
- i
ee. a ~ y l
Cy ace . ~ee. l
i
.5.89 x zo-6]- E. CEL
B(~.2)t, TI/2
(~t =
B(E2)tTI/2
~
- i
Cc e IEC
Ccei/Cpej
~'m = C i pej C
ee.
IECc
Ccei/Cce
~i = CCe l
M~
~(~)' ~
%
NPG
gf cb cd
2.45 x lo 9 (2z~ o
Cce'/(Ccei )st m CT/Cy st
Tjfjbd
E
2
(2z i
c
Cee./C~+ l ~i = 2Cy ¢F±/Cy± ¢
l
CF/Cy±
Coe./CAe " • (~j + l)
Cce./C~e" NPG
a(ce±)
~st st (cei) st ¢yst
i
NPG
+
z) -i z)
o
Cce i e ~i = CT ce.
c ce. /c~+
+
m
cr/'c xj ' J
.J,
~i = V ~ xj Yj/Cxj ~r
534
(~i) st
INTERNAL-CONVERSION
TABLE
Method
COEFFICIENTS
1 (Continued)
Quantities Measured
Equation for Obtaining ~t OF J. I
C
PAS
ca. 1
Cce./%e . Z
(~i =
0
Cce./% 1 gp
~.~
Ae T P[CAe " (Yj + 1) AT. ] - Cce J J
Cce./%e. l I =
(C~
/S gP
) - Cce/Sce gP
C PBS
ce.
Cce"/c¢,
c~.
z
C- 1- C
i
~
ce
C
PES
RG
ce21 Cce2i/Ccel
~2i = C
Cr
~2t =
-C
ce I
%1/%1
ce 2
-
cr2/%2
CX. sr XPG
Cx./C r"
a. = l
1
Cy! eX.
Yi
l
Coincidence Techniques CO~j C~E; C~y, CEE CEr, CEX, CrY, CXY
<
W* ce. l
ece' %' %' %' %' coincidences*
% = z-~ ce. (Cce/Cc;).
y Sum
***
l
l
Sum Techniques SEy, Sir
9~
9+*
Some combination of singles counting snd coincidence counting relations is measured In coincidence technique messurements ~ is generslly messured. The relation between
Equations for ~ t OF Ji depend on the type of sums observed (see Reference 17 for examples).
535
HAMILTON
et al.
Symbols for Conversion Coefficient Methods
ABG
Absolute beta and gamma, counting
AEG
Absolute conversion-electron and gamma counting
CEL
Coulomb excitation and lifetime measurement
IEC
Internal and external (photoelectric) conversion electron intensity measurement
IEC C
Internal and external (Compton)
conversion electron intensity measurement
TT
MT
Mossbauer technique
NPG
Normalization of relative conversion-electron and gamma, intensities via intensities of one or more transitions with known conversion coefficients
NPG
Normalization of relative conversion-electron and gamma intensities via intensities of the positron spectrum and annihilation radiation
NPG
Normalization of relative conversion-electron and gamma intensities via intensities of the Auger spectrum and X-rays
PAS
Conversion-electron-peak and Auger-spectrum measurement
PC~
Conversion-electron-peak and alpha-spectrum measurement
PBS
Conversion-electron-peak and beta-spectrum measurement
PES
Conversion-electron-peak and conversion-electron-spectrum of isomeric psrent measurement
RG
Relative gamma ray intensities
Coincidence Techniques
Cc~ C~E, C~T, CEE CE~, CEX, CTT, CX~
Appropriate combination of conversion electron~ beta~ gamms~ and X-ray intensities with coincidence counting rates of a!phs with conversion electron~ beta with conversion electron~ beta. with gamma~ conversion electron with conversion electron~ conversion electron with gsmma,~ conversion electron with X-ray~ gamma with gamma and gamma with X-ray
Sum Techniques SET, SIr
Gamma-ray spectra summed externally or internally
536
INTERNAL-CONVERSION
COEFFICIENTS
O r~
r~
~4
o
.,,
0.
0J
g
40
+
0
+
o
o°
0
0
o
o°° 0
o
CD
0
0
0
0
0"-,
'43
0
~+
+
4:
~ o ~
~
"~
~
o
o
o
o
-o
~Yed
~+
o
o
i
&~04
H
o
~
6
O
II
r/l
o 000J -~ 0J
If~cJ
o
hrkOJ
.~
Lr~OJ
L~k L~J
~ o ~
~
OJ
CO
CO
o4 ~D
.z.Wko
,-1
',.0
LrX
L~
kO
k£)
°~,,4
o
o
o
,,.-I o o 0
0. OJ(D
4~
03
O~
r.D
~Q
0
0
n
,°
+1
o>-
~ 0
o° o0
o° o0
o o
8
0
0
6
o
o
o
o
,5
8
%
~
#
o
c~
0
0
0
o°788°o 0
0
0
0
O ko
o0
§
o
0 0
0 0 0
0 0 0
0 0 0
0
0
0
0
0
0
0
0
o
8 o II
i
o
~ co
,-4
,-I
~4
0J,-[
,-I COt"-"
-~PCD
~ff-r-I
537
r-t r-t
k0oJ •-~- o l
J +
HAMILTON et al.
o
~
~
~
~d o -p rl
tD
~
o
tQ
tD
,,
i
1~ -
o,I +I
~k
+I
:@ o
co
+'~
o0
0
cO ~r~
o
0
0
0
0
o
6
o
o
0 8 8 8 8 8 0 0 0 0 0
~+
o
6
o
o
o
~,~ o
6
~ 6
•
*
,,~ o
6
+
~_
o
o
~ 8
o
o o
g o o
g 8
6
o
o
6
o
,
+
umloJ
v
+
"zJ @
o
o
,,~
0~~DC~
4.~
g
0~0 ',.00J
kOCM
~OC~
q-i
,-4
o
c!l
d o o
~d i
r~
rD
,, +
+
.-7 +~
0
0
0
8
0
o
6
6
o
o
+
o
+
g
~
O
88888888 (D
4~
o
o
o
o
g
~
~
o
~,
0
O
O
O
O
O
O
O
O
Aio~
%" O
O
O
8
AI~
i
,
0
+
0 II
~
0
t---
~ r~
©
o
tr~d
8
oN t,-u'N01
Ob'.0 C~I
538
COEFFICIENT8
INTERNAL-CONVERSION
b~
4o
~A
%
H
+
~
d~
0
0
U'x
0
aO
0
0
0
0
0
0
0
0
0
~
~1~
6
6
6
6
6
c;
o
o
o
o
o
o
o
o
d
6
~b-
c~
-4
co
4~
0J
o
co .,4 0J
8
b.~
ba
b.1
',,Ct hr~
~0 i'C',
o ~J
r.~ L'-- l,c~
+ O
o +
~
m
~
~
p~
~
~
o
M
g 0
4~
d
4~ ,° r
o o o o II
t.D
Lr~
0
"~D
8
8
0
0
0
0
0
0
I
8
0 oo
oo
8
0
0
0o 0
0
0
0
0
0
4o
OJ OJ
OJ
0
0
0
0
0
0
~%
Ol
8
8
8
o°
o
o
8
8
8
o
o
o
o
o
o
~
o o ~
o
o
o
0
0
0
0
0
0
0
0
0
0
0
o 0
+ 0J
Ol
kO
0
P
! o o o
d
+ 0J
II
CO °,-t
g M ) GI
kOO XON~
539
H A M I L T O N et a l .
o
~0
LD
~
o
F~.
o
LO
kD
~
%0
~
~o
o
~.
o
~o
o o 0 II
d~
~ o
o
o o
~o
~
6
6
~o
~o
o
o
o
~
6
o
o
+'
~o
~o
~
~
~
o
~
0
0
0
0
0
0
0
0
0
6
o
o
o
o
o
o
6
o
~I~
~i~
.~I~
~I~
%0
~
kD
0
c~ o
6 11
brc~ o
6 II
°~1
,-t
la 0
L~
v b-
O~
rq
LO
".13
r~
0 kD
C F~
~
o
+
II
0
v
v
0
0
~
%
r~
v
r~
F 6 II
~0
r-~ 0
0 0
0 0
6
(5
o
o
oJ
6
6
6
~
6
oo
~-
o
~
~
o
o
6
o
o
o
o
i
+ io~
0~
o
S
umlc~
.-
+ ~d
0 M~
t"~
.
b-a%
0
~'tc,,
•
t'~t~
540
,-t r-4
0 kD •
+
INTERNAL-CONVERSION COEFFICIENTS
+
+ Sd
o
0
~
oo
o
o
"5" ~
o
~
~
oO
oO
o
d
+~
~
oO 6
~
~
~
oO
oO
o
d
+
~ oo
~
o~
~8
~8
oo
o
o
o~
~
~°
oo
oo
oo
6
o
o
~
~
°8
°°
oo
o
oo° o
~ 8o o
~-
,~o
o
~
~
~
oo o
oo o
°~o~
°°o
8
o
o
d o o o I1
+ t--b--
~-
&
+
+
_¢
_¢
g ~0
~£)
b-
OD
G"
0 ,-t
4~
X 0,1~0 cO ~r'~
o II
,-I
< E-~
(M
"g v O4 0 i
0 II
',D
°
~
o o
~ ~
o o
~ o
o
i
o
o o
6
i
~I~
~',1~
&~
+ ~
o o
o o
~ ~
o o
o o
+I
S
~3
N ~ +
II
~ 6
M
1
,-IlOJ
&
~
+~,~
+ r~
o
~
~
N
O
o~
o~
.r4
ul
a o ~c-~
541
~
o
HAMILTON et a l .
,-I 0
I
0
0
0
0
0
""
÷
d~ ,,--. 4o
~0 m
~.
~'~, ~
~"~,
'~~
"~
~
.
o
o
~
~
0
°o
0
0
0
0
0
0
0
0
o0
0o 8
0
o0
00
0
o0
o°
oO o o
o°
Oo
o°
o
oo
Oo
°o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
~,
0
0
~+
~
+
+
0
.
+
0
~+
~
0
0
0
0
O "H
~+lc~
0)
+ 0J
co
+
+
D-c0 CO~r~
LOCO CO
o~
,-I
~-
,-I o
,-I
~ o"
,-I 0
,-I 0
,-t 0
,-I 0
,.q o
S 4o
8o o t'-
b-
b-
rl
d~
t--
i
% m ,4D co
CO
o
o
o
g
o
o
Ho 0
8
0
o
o
0
0
o
0
0
o
0
0
o
0
o
o~
0
o 0
~
0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C,
0
+
0
0
0
0
o
0
0
~
o o o Jl
.
.
°
t--t--
co
,4 o
O~',D
542
INTERNAL-CONVERSION
cO
H
COEFFICIENTS
O
O
0
o
O
G
~o ~
~o
co
~
co
..
+ b-
0
~ O
o
6
O
o o
~
~ o ~
~
~
~
~
o
8
° o
0
~
~ 0
O 0
O 0
~ 0
O 0
O 0
~ O 0
d,
6
o
o
6
6
d
o
o
o
6
o
O
~
o
o
~
O 0
~ O 0
O ~
O O 0
O O 0
~ o ~0
oo
o
d
6
o
o
cJ
o
~
~ O 0
o
0
i o
+ ko
+lo~
tJ
+lo~
.o -~"
-~-
O~
b-
cO
CO
o3 °
0 vJ
o o
o o~-~
+ + Oh
G
fs'o
-
-f
£
~o ~q
"
,9 -4
4~
"5"
r~
0
0
r~
rd~ 0 0 0 II
0
o
o 0
0
0
0
0
o
0
o 0
0
0
0
+
oJ
0
8
0
o
o°
o°
0
0
0
0
0
o
0
0
+
+~
b-
+~
0
d
d
d
d
b-
~o
8
8
d
o
o
o
~+ o o
OJ
L~,
II
',D oJ ,-J
O~
o b-00 cO~
00co o0~
02
543
o~_¢
t~,-4
et a l .
HAMILTON
,-I
~LO
? 'qD
LO
o ,-I
4 ÷
+•1~-I
0
o
0
o
0
0
o
0
0
,~ 0.~
,--I
cO
0
O~
~,~ o°
o
o
o
0
0
0
o
o
o
~
c;
o
d
r-t
t,--
o~
g
i
~le, i
.el
~'1~ Ox OJ ~0
b0"~ '..0
e4
t--
~, 4+
III
0
0
0 4~
m
Ckl
-=2
~
03
"5"
o
4 II
r)
0d
o c~l +1
L~ -
0 0
o o oo oo O 0
0
0
0
0
0
0
~o
o~
~o
o
o
o
0
0
0
0
0
0
0
o
~
o
o
o
o
o
rH
+1
o
c;
o
o
o
0 0 o
+lc~
H
ol °
r~~
4r4
,~
e0
co
~o
o
544
,W
o
¢
INTERNAL-CONVERSION COEFFICIENTS
cO
cO
ko
,-4
+
0
,q
..
OJ
oh
2
GO
%4
g
~'~
o oJ
o
o
o
v
+
+
v
~, ....+ +l ,..., +i
oh
+ , + .4 , +
~
cu
i~
~.o
~
~
~
o
~lm
o
o
0
+-4 co
oh
0
~
+
b-
o O
O
8
oo
~O
~O
gO
gO
gO
gO
0
0
0
0
C,
0
0
0
0
0
+
~0
+lo.J
g
4~
['--
.4-
',D ["-
co
0~
0 OJ '43
.~"
'.+0 0 0
6 fl
o
o.9.. o
ea
~ o
~
o
,~
oh o
~o
~_ co
M
oJ
,.o
ca <
o
m
~'
u%
ko
ko
kO
cO
o o
o o
~
~
2
+~ 4-~
o/
i
~J
d:+
'-19
'43
L+h
ru~
" 0
8
r~
d II
'.£+, N
°
6
d o
0 +1 oh
~
b-
S
oh
~1
co
O
O
O
oO
~8 O
gO
oO
oO
oO
oO
8
O
O
O
O
O
O
O
O
o
o
+l
+l
K%
o
SS
~
8
1'+4 II
,j,-,
i
+~-I0~ 0~
m+ r~
ko
~o
co
&
oh 0 aO
oh 69
~0
o
~qb
545
o
H A M I L T O N et a l .
4~
o
°.
i
"°
\
s
s
s s s
o
.,-+
+
+
~o
~
o o
o o
o o
0
0
0
~
~
~
~
~
o
~
~
o
~
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o
o
o
o
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
~
o
~0
o
~
g
÷,
~
g
g
%
~-,
~
,~.
u).
Ck~
0.1
rg
,--I
4~
'.D OJ O 0
!
~ql0,
o
o
m~
cO
,'1:I I
O~
,-t
~D:
,-t
d~
,-4
,-q
o~
o~
°,..4
',D
r-t
+.a ,.-t ,-4 O O
0 x~
O f~
..
I
O~
,-4
r-t
o
o 0
0
0
0
0
0
0
0
o
o
°o
o
o
o
o
o
o
~
~
o
o
o
o
o 0
o0
o0
o0
o0
o0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0
0
0
~
~+
4~
p_
o II
['--
%o
kD
~ff
4 O
546
INTERNAL-CONVERSION COEFFICIENTS
~0
0
o
-~ 0J
o~ oJ
~
co
U~
0
o 0 0
o
o
o
o
-~"
Od
0
~i
0J
~
A
~-
d
~
d
Ir
cO
O~
O~
0
cO
o
o
6
~
o
~
O0
kD
o
o
~
~
OJ
OJ
o
S
H
6
o
kO
~-I
~.
O~
r-I
d
cO eJ 0 o
o
Jl
~0o ~o~
C~
O0
c0~ ~
cO
o
~
~
~
o
0
%0~ ~
cO
o ~-I ~ ~-I ~ r-I o
r-t
J
+
.. i
I[
4~
o
~
o
o
o
6
o
o
o
o
o
o
6
o
6
o
6
6
6
6
6
6
6
o
~
8
o
..,
ir
cd M
o
:,-4 ,-to0
547
H A M I L T O N et al.
0,1 o c~
Z'
o
o
o
N
M
M
8 0
~--I
"4
;'"1
7 h%
+1
+ +
t.D
M
,-4 +1
*
*
%
+I
kO
co
4~
+1
%
~,
o
o
o
~
OL
0
0
0
+ 0
0
o ~
°
8
0
0
0
OJ
+I
0
+1
0
0
+1
i~ kO
b-kO kO
co CO
bCO
0
0
0,1
C~l
0
4
H
o
~D cO
34
~_
OJ ~a r~2
.4 o
g 2 g~ N +
~1
H
~-t
r-I
OJ
d ir
~o O
Z' g ,, I
N
~
M~ ~"
+' ,
,
+1
+' *
*
+1
~
* e-t
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
H
~+
~
:
~
+
~+
g 4~
a+'2
co u~
0
0
m
,m
,4
.~"
g
~o
~"o
548
~
INTERNAL-CONVERSION
~1
~1
~
~
b--
0
,-I
COEFFICIENTS
~1
0 OJ
0 OJ
~D
4~
I
g
g
,-I
;-I
0
o
~
~
6
o
6
o
o
o
r-I
d
o
oJ +I
t-~
oJ +I ~
~r~
~-I
o
g
g
o
o
6
o
o
o
o
oO
O~
0,1
+Io~ LO 0J
kO
o~
~0
o
6 II
,-I
o
4~
I
E-~
ctl
ol
+1
,-t
0"~
o ,--t
.-
cO
t~
~r~ •
cO kO
+1
~
~o
o
o
~
+,
~
o~
~
~o
~o o~
0
0
r-I
rH
rH
6
6
6
6
6
~ o
~
o
~
~ C~
6
6
o
S
6
~
o
o
o
6
6
o
~_ 6
~- ~
~o
oo
0o
oo
6
o
6
c~
0
6
~+leJ
~+Io~
II
v
0 cO CO
oJ Lr~
549
HAMILTON et a l .
D-
,'q
b-
~
b-
~-I
b-
",o
I
o.
o
o
o
o
o
o 8
C~
0
0
0
0
0
I~
0~
t#~
o~
~
kO
~
o~ 0
~
o~
o
g
o
g
~0
~0
0
"°
0
~0
0
o
8
6
6
6
o
o
6
o
6
o
6
6
o
6
o
o
6
8
6
+lc~
~+tc~
+1~
0,I
ol
o
~
~
~
8 I
8
o ~
o
~
o
~ 6
~ ,4
A
A ~ ~ o]
~
~
~
6 ~a
~ • ~a
+1
+1
oJ
ko
~ o o
~ o 6
~ o o
~ o o
o o o
~ o o
~ o o
~ o o
~ o o
~ o o
~ o c~
0~ ~ o 6
o o 8
% o o
~o o o o~ o
6 ?I
~o
# r--I u~
04
550
INTERNAL-CONVERSION
COEFFICIENTS
~q
tr~
L~X
-~.
,-.I
-~.
~D
'.O
oJ 0 + + ha f0
b-
cO _-I-
O r-cq
~.O
kO o4
0
o
o
0
o
~o
oJ
o
6
o
o
11
o o
o
o
6
5~
~M
4
~
4
4
4
0
(~
ko
00
oJ
ko
0~ +
+1c4 A
ol
u
co
u~ N 8
~o
c~o
6 II
d~ ~-I u'x
,-IL~
cO t'-,--
c~ co 0~ o o
o
O4 0
0
m
0
m
m
~D I
LD
6
1!,
fl
d~ oJ
~
~d
N +
~
t--
o 8 8 6 6
~ c~
° 8 8 6 o +1~
o
o o
o~
8 6
~o o
8 6
°o 6
°o 6
oo
6
8 6
~+
o
o~
D,-
v Od .--tU~
551
Od
~
~
o~
HAMILTON et a l .
o
c~ co o
o
cq
~
LO
0
e-I
*'
0
~ 8
8
6
6
6
.
~
~
,-4
~ +'
~
~8
~
8
6
-
~
~
~
+,
6
+ e~
+ e~
CO
~0
CO
~
~o
,'-I
o
+ c~
~
~
~ o Oo o
~
8 8
o
o
6
oo o
6
~o~ o
r-I
g
o
~
g
o
6
g
~r)
~
6
~
d
~
~0
II
C~ ~D ~O
.,
6
Oh O
o
~
~ 8 ~ o
°~
0
~
8
~~
~r~
~
......
8
6
~
0
~
~
~
o
6
~
W
~
8
o o o8 8
8
6
6
o
o
II
~
o
d
+
d
6
b-
+le~
~
o~ ~D ~o
--I"
co 0 o o II
Lrx
o
0
~
m
o~ ~
~
o~ ~
~
#
~
~ KO
~~
kO
~
o
-~
~~
o N
°~
~o
kO
# r.-t
.p
CO
O'x
~o~
0
O0
%
~
OX
0
o%
o
o°
i
a N o
0
+,
+l
o o
o
o ~
o
°o
5
d
6
5
d
,-4
+1
o
~
~ o
+1
o
~ o
o
S
+l
+1
+l
~ ~ og o No ~D g
+i
o
o
o
o
o
~
5
6
S
5
d
d
ed
+b~
~
+1
~-
+1
~11
+1
+l
+l
o o ~o o
o
o
o ~ ~~ ~v o ~o o
~
~
~
~
g
"~ g o
o
g
o
o
d
o
5
o
S
o
d
d
o
kO
CO
'.0
b-
o
,-t
~
8
d
d
II
II
kO
,--I kc~
552
INTERNAL-CONVERSION COEFFICIENTS
o~oo
~ '43
',D
'43
~0
M3M3
r~
~Q
#
6 II
o
oJ
~
~
6
6
6
6
6
kO
oJ
6
6
6
o
6
6
6
d,
6
6
6
6
6
6
6
i
.e4
,.0
2
~_
0~
L0
°~,-i
N
i
J
Lo L0
~
g ~ kO
~-4u ~,
L,%
r-4 Lr~
,-4
II
o o
H
0
0
0
0
0
0
6
6
o
5
o
6
+Ncu
6
~ .~
+1~
,~ .-,
~
~
~
~
~
~
~
+1
~
~
~
+c~[
~"
6
o 6
o 6
~ 6
o 6
o 6
o o
o c~
o 6
o 6
o o
o o
~ o
~ o
+1~
+ic~ o
~
,-4
2 L~-
J
Lr~
L~
553
et a l .
HAMILTON
'A
H 0
0
L~Lh
o
g o ,D
l~
(U
+1 t~-
b-
o
..
i
rD
~D
0.1 M
oO:Oo o
,r-I
i~
o
o
+
0,
o
.~
+
',,0
.~
A
i
~
+l
co
.
~
0~
,A
0i
+loa
+m,l~
v ,-q ko
0~
A
A
,~ o
,~ o
k0 o o
o
o
o
i
i~:~lO,I
u~loJ 0
o
o H H .~1- Oh ,--I ~
-:-if" 0 H '..D
b-
o
,I-1',.0
~
~lko
~-tkO
r-IM)
0 II
cO
~
N r~
gZ' ~
""
i
.°
o~
%
,.-I o II
,-t o
~• 0~ ~
-~ ~
~ ~ A
,~ --.
~ d
o~ o o
~ o o
+, o o
~ o
~ o
o
d
o
0
o~ t-(M
0
o
o o
o
o o
o
o o
~ ,~ &
p~ A
~ o~
~ 6 &
~ d
o d
g o 0 II
+led v
N '.D N
A ~,-to~,D
B54
~-(~ ,-4u~
INTERNAL-CONVERSION COEFFICIENTS
co
+l
+I
o
o
o
0
0
(~
° ° o o 8 0
0
0
~
0
0
~
o.
o
o
0
0
0
6
6
6
6
o
o
o
o
o
6
6
o
i
~,~ v
°,-~
8
,-~0
8
II
o ['--
b-
t---
0
0
o
co o 0 o
It
d~ H
r~
~ 0
~-
~
o
~
~-~
0
0
0
0
oOoOoOo o 0
o
~
0
0
,-I
kO
0x
~
~
0
0
Cd
OoO o
o
6
o
~,~
o
o
o
6
o
o
o
o
*~'3
o
6 II
v
o
o°
p_
00
o ,-I
u).
12)
b,-IL0
555
~
v
04
~
d~ ~
N
et a l .
HAMILTON
~ ed
~
OJ
o
OJ
~M
u~,
~
,--I
Cll
•
kO
,--4
0
~
a
M21
~,D
h%
~
LCX
4 + 0
0
,-q
,I
~',
0.,
°
~'~Lb
o
r.3
~
0 ko 0 ,-4
0 ,-I
o-.
t'-'~o
o
+1
+~
P-
r--I
~, o 6
t,D
d
0,1
~8 o
~
~o o
0
o o o
o
o
8o d
d
6
~
o
%
g
g
5
o
6
6
d
+ b-
CO
6
+
+1c4
$
A:
A v
+
--*+
co
t--
o
~
8
>
~+
+leJ
'9.
M)
.-1-
@
4a o -p
u~ 0", e~ o o 0 II
r5
o
O4 trx 0,1
r-4 ~,D
~q
~b-
~,
O
4--0,1
o
~
~
cO ',o co
Od
o
N
t~ O
r.3
S n
N
O "I'I +I
~o
~o.
8
oO o
9o
oo
o°
8
b--
CO
O
O
o
00
o
o
6
o
o
o
6
o
C~
O
O
O
0~
4
o
+,
~,
~
~
+oI, ~ .
4
4
~
d
o
6
4 d
+ 0
tt.lcu
o+
o II
r=3
~1 ',.O
lOa ~ O HMD
H 0d tr'., ~-I ',.D
556
la~ i.ch H~-D
~t~x Od ¢-i\O
INTERNAL-CONVERSION COEFFICIENTS
Oh
0 0
0 0 ~-I
~-
~o
0 0 rq
0 0 ,--I
r~
~ ',.o
o ~
+!
,A
+1 kO
H
o
4
4
L~
~
4
4
4
A
,5
E,
o
+,
+~
6
~
--#
~
L~
+
C
°~.~
rq'.D
,qkD
r-qKO
o
2
v ~q
m
g
<
.H
t~ r-q
rq
h~
+
co
+
o
~
~
~
~
~
+'
~
+ ,
+,
&l~
AI~
II
Al~
Ar~
557
H A M I L T O N et a l .
o crj
o
~
~o
o
o
~
~o~
o
o8
ko
o~
o
8
8 _@ cD
b-
~
N
o
o o
~
~o
+
o
cO
~O
÷'
~.
o
o 0
kO
Cq
o
6
~
o
o
~
~o
o
~'~loJ
~-
~
o
~
S
~
0
~
0,I
Cq
o
o
u~fc~
~led
o o
tr~
~-
Od
*I+
r-]'~D
0
r-lkO
u~tr~
rlkO
m
g
4~
"5" m
8,.-t
8,--I
o
6 fi
X "fl o',
,--I
i
r-~
*o
~~,, o
,S
S
~
o
0
0
0
0
~
°~ o
~
o~
o
~
o 0
(D'
0
0
0
0
0
0
0
0
0
0
0
0
o
o
~
~'
~ 0
~
~ ~ 0
0
0
0
0
0
(D
0
0
0
0
0
0
c0 0
.o
t~..~ ,'q ',D
558
INTERNAL-CONVERSION
q0 OJ ~'h ~O
0 C,J r-I
OJ
~
r~
o OJ
~ I.~
kO
I~.
kC,
4-[._ ~~0 0 kO
kO
COEFFICIENTS
~
~
OD
kO
,-I ,-I
0
,-I
0
~ ko
0
o
ko
kO
~ ~
~~]
~
~
ko
ko
~
~
0
0
0
0
cO u~
co
0
o
.d
..
~
I
,.
o
u
o
o
o
~ ~
o OJ ,-t
~ O0
o 0 x, ,-t
0 0
0 0
0 0 b÷I
+I
+1
+1
trx 0
0
0
6
6
6
6
~H
O~
~o
~-
¢~0 •
--#0
o
O~ +U.t
-p kO
•
,H
+1 0 b--
kO ,-~
-~" OJ
L)
H
+
kO
OJ
== °,-(
-o 0
oD L¢~--~ ~qkO
o
c)
(I} LrX U'X r-{kO
~LC~ ~kO
v
¢J o
~c~
m
~
2
(~
',,0
to r=3
.o ~d
0
o
0 o o
I
o~ 0x
?
o o Mr)
~
o
~
A
4
+
o
o
+1
÷1 o
+ 0J
o
o
~
~
~
~:~
m
~
4~
co co
6
~"
-~
-4
.q
(D
~
0 o
0o
0 o
o
o
o
6
o
8 6
0 o
6
8 6
o° 6
oo
0 o
6
6
6 rl
~
~
+
~+ v
o
u~ L~ U~.
~
•
,
~
o
~t~-
u-x L~-~
,-qkO
~-It.O
559
0J 'qD ko
HAMILTON
od
p~
~D
o
F~
~
'qD
et al.
~
kD
F~
LD
o ~
~
F~
~.D
F~
o O
Z (M
-~-
~D I
P~
°.
b
N +1
+i
•+I
+~1
~4 LO
+
,o
~
o
6
~
kO
0
,-I
0
~
D,
~
6
o
6
6
,o
0
0
~
-~
0
0
~
6
~
~
~
6
o
6
0
o
¢q
+
&
+
+
+
~
&
~
+
O
0
kO 0
kO 0
0
0
~
0
o
o
o
o
+
o
LD
OJ
(M
.2
"rl
kO 0
0
+I
o
6
o
+ +lc~ i
~J + tr~
Od
°~..i
Od
d~
CO
C
J~ 0
0
o
o o
o
o M~
r~
ko
~,0
r~
u~
kOt.o
M3
LO .H r~
0
o
I
0
o
0
0
o
o
0
o
°" ~4
r
+ +
o~ 0,1
M •
o
o
~
~
o
o
A
o
6
~
~
+I
+I
~
o
~3
~
~
~ % % ~ ~,
% ~
4~
~
o
~.
~
~
~
5" g o
~Ic~
~Ic~
~Ic~
+ 0
d-lc~
+
b-
~ ~o
D~ ~
o
o
~
560
6 II
INTERNAL-CONVERSION
COEFFICIENTS
o o
kO
kO
kO
kO
kO
kO
kO
\D
,-q
o
o
o
0
,4
0
+ r~
~,
ko
~
d
03
(M
o
o
~,
~
~
~'
o
~,
~
~
+,
+~
+,
d~
+,
o 4~
i 8
o
~+ b~
kD
oJ cO
O CO
.rt
o
o u~
o
ko
%0
0
o
v
+ tr~
0
o
+ M
¢n t---
4~ 0 4~
ed
cD
r.D
r~
O
O +1 w~
cO c) cxl
o o
0
(M
+1
+~
*
+1
+1
o
o+
+ o
+ o
+ c~
~+
+ tM
M3
~.
tr~
•
0 cO
•
~
•
+~1~
rhl~
c0
b--
o
0
r-I
Ao
561
•
kO
~
6
oJ ko %0
et a l .
HAMILTON
(~J O
-d-
o
LO
0 0 r-I
0 0 ,-I
0
~
co
Lr~
Lrx
o rj
+1 + OJ
OJ
Ox
3
~tcu
~lc~ +b-IoJ
+
o
o
6
oo
tt
o
O~ + N
1-1 eLI
-t-
OJ
,-I
'4:)
~
0
0
0
0
o
o
~
~
o
03
o
o
o
~ h%
o
o
~
~
o
o~
,-I
~
4~
0
H
o
+l
+I
o
m
ox
o~
~
g N ~
÷l
-~.
~,.
(M CO
~-I
•
%
@
~ % x
•
0
N
CO
~ .in
2
co 8
o
6
o
o
~+
o
~
o
s
~
+1
o
0J
~+
~+ ~o
o
d,
0 0J
~
o
o, m
© +~
562
INTERNAL-CONVERSION COEFFICIENTS
(~1
~
0d
Od
0
0
0
~
0
0
o
o
0
~
0
0
0
o
~9
~o
~
~q
CLI
e-I
Od
=~
,-I
~
o
~
~1~
,-t
0
~
0
0
0
o
0
0
0
0
0
o
~
o
o
o r~ +1
~i I
Lr~
0
~
o
o
0,1
0
~
0
~;
o
o
E.~
t~
~
,o
~
~
o
o
+1
+1
~
~
Od 0
t"2-
~
O~
v
_.H•
°
°,-4
o
~
o
~
o
o
o r-I
o
0r~
0
o
~ ~
~
~ =q
r~ 0
~
0
0
o
o ,-{
,~
o
o
o
~
v
v
L~
L~
o
o~
o
+~ ~
+1
0
+~
+,
,
+~
~
+~
+
~-I~
+ ~-
co
o~
0o
LO
('J ~-
o LO
~ LO
c,l o
0
0
o
o
o
~
o
o
6
6
6
6
6
6
o
6
6
C Q o o II
cu o4 CO
~Q
,-4 ,-I
r-I
# ~-o~ ,-ILO
563
c~
HAMILTON et al.
o
0
0
0
0
o
o
,-4
o
o
0
~J 4~
~3
0
..
i
O o O O
o
6 II
b'-
t'-
~-
o
o
6
0
6
6
D-
t'--
~
0
0
0
0
0
0
6
6
6
6
6
o
KO
6
0
0
d
J
co KO
~ KO
o
i
+~
~
~
~
;~
+~
~,~
v o o 0
o
r~~
8
~
o~
.,-I
co
~
g~
~,
°
J~
o" r~ .,-f
~-~'0
v
~'0
~q rq
4-
0
4-(X1 0
N
,-4
rfl
@ ~
~
~o° ~ N + 0
0
p 0 i
0
o
II
0
~
.o -0 b--
~3
co . ~
~ o
~
~
~
8
8
°
6
6
6
° O 6
T O 6
t~
~
+,
g
+,
~
5O 6
~,
~
P,l t~
~
+,
ko
+'
+~
o~
~
~
~
~'
S
,~
~,
~
+'
~
~~ 6
% O 6
~ O 6
o O
~ O
o O
~O
~O
~O
8
8
~
o
6
6
c~
6
6
d
6
6
o:,
c~ ¢6
o
~
+' * ~
,rt
20 o
I-I
~0J o
II
:"
co
,-1
+
H v t
~
v
v
~
CO
v kid
v
12--
t~-O e-it"-
O
,-I
~-
t~-O
r-lb-
564
N
N
+
M
~
INTERNAL-CONVERSION COEFFICIENTS
o
M0
a 0
0
~0
~
-.~ 0
r-t 0
,~o
o ,-t
0
q
o
0
P cr~
o
o ,H
4
,-i
o
~. o
0 0
0 0
0 0
0,
8 D-
~ 4
H
~
6
S
o
Od
u-,
%0
•
r~
~
6
ol
~
o
o
6
o
~
o
o
o
o
4 II
bb-
oO O~ 0
0 0 ,d
o
c~ c~
~'
~
o
o
~_
o
o d
~o o
8 d
p +
~Ic~
~
|
+io~
H"
~4
~Ic~ o~Ic~
~o
.r4
@
g
P~ 0J ~D
o
4-
.{_(,4 0 0 P-~ 0"~
N
o
o~
~
~
r-4
o
co
o°
b + C~ O
OJ
4
o
~q ,,
Ir
+~ 4~
~4
O O
o
+•1
,H
~" g
N
S
g
o
g
g
~
0~
6
d
6
6
6
6
o
~
O
O
00 0h
o
~ o
q co
~
o:,
o
o I
b-lO~
O i[
H~
• + +
o
~_
~
o
OJ Lr~
b-
o
p
o
b-o
b-o
u~
565
4~
et al.
HAMILTON
o ~o
o ,-I
b-
+I k0
o
o
•
k0
~J
0
0
o ,-I
0 ,-I
o
.Io
I
~-1
=-1
~.
cO
-2 +I
M oJ ~
o
~
o
o
o
o
,--t
÷1
T, co
ko
~loJ
D.-
+ ~h °,,-I
=o
4~
o~
b-Cq
~0J r~b-
rib-
~"
~I
~-t~
o
o
~
"~-L~ -I-
o
"~-W~,
~
~
+'b ~- ~OJ
~o
o
o
~
~
r-4~-
~i
o
o A
kO
r--I
~o kO
o
o
L,~
kO
0
0
(IJ
O~
4~
c)
..
I
OJ
.r4
o
o
o
0
o
0
O
+
-F
o +i
o o
0
o
~
o
o
~
~
~
j~
+~Ic~ i
OMoJ v
+ O~
÷ CW
o~l~
'-D
CO oJ ~0
J~ o
u~ b-,-~ rlb-
0 o II
~-IoJ
',D
o
b--
~'-OJ
566
b'-b-oJ
INTERNAL-CONVERSION COEFFICIENTS
o
~
~
~
o•
~ W o
.,
i
o~
..
o
o
.
6 +
'~ o
~ o
~
+>"
o
-~
~ ~
'R+, ~
6
6
o
6
o
~
,~ *'
~ ~
4
4
~
~ ~
,-,
0., .,
6
4
4
~ 4
6
o
o
o
+>-' ~ ~
6
o
6
4~
4~
o~ o °
(D
+
[I 0
~c
r-I
o ,-I o
,-I
,-I
,-I
m bt o.I o
d
.o
-rt O.1
4
4~
t~
rb
0
rl
a
:
~
,4
d +
o
4~ N
.-I
.4
6
•
,4
6
N
t--I~
~
•
4
0
0
+it4
~
0
+~-Icu
o +
~
4
4
~
6
6
o
6
~+
o
o
6 H
4,I~
~+
4~
kO *
['--
oh
i~
i~
4 II
g
#
r~ 0% r-~b-
r ~ t,--
rj
ko
567
ko
HAMILTON
a,-h%
4-
~o o t.o
'.o
ko
~d
et al.
o
} o o
o
~
~
tO
.
• o',
o.,
• o-,
o',
o A
~ o~
o d
o o
,5
~
o fD
+'
i
~
o
~
o o ~
~
~
,--I
o
4
"~
~Z
o
~
co
~
co
A
~
6
o
oo
~
o
o
d
°
o
oP
o"
.,4
~
A
oa
,-t
-4
~
-4
o
~
o
~
~
6
6
6
go ,
tc~ r-I +
*7 i
0
~ t1~
u~
t~
kD
g z 4~
I
u~
.,
~1~
_~-
~
~
~
~ r~
~
o
o
~
o o
Oh
,
A
.°
+
+t e4
+1 ~
~_
0 +
o
o
o
0
~l o
o
o
0
0
0
0
0
0
o
6
o
d
6
o
o
o
r~
0~
S
4~
"5"
0 II
+lcJ ~H
o
p_
0
M
+1c4 M-
CO
@ rH
~p
oJ
ko
~.0
5
~P
568
INTERNAL-CONVERSION
COEFFICIENTS
o 0d KID
~-
Lt% ~
la~
0,l r£1
(M F~I
-~-
o
um
~D
oh o
6
4~
6 ~D 0 o
o o~ oJ
ko
o
o°
H
o
~
~o~
o
~~°~ ~
-~ ~
o 0 6
o 0 o
o 0 o
o o 6
o
g,, ~-0 d;
0 ~
~
o 0 6
o
~
~
~
~
~
g 0
o
o
o
o o o
o o 6
+
i
~
co
o
~ g o 6
+~
~ ~ o o
~o
~
~ o
% ~,
~o ~-
o
d
~
~
~,
o o 6
+,
+,
o
+, L ~ O~~ 0~ ~0 6 0J
+I
~ d
EW
c~l
cd
(D
+
~ o 0~,,~
o o
0
0J
t
v
o ¢xl
q-
~q
~0
~0
~ •
~ •
+' ~
~ o
o o
~0 o
~
~ o
~0 ~
~
~
~ %
o~
~
0
0
0
0
+
4~
,H
'R.
~.
~
~-
o
o
~ o
o
o
o
~
o
~
o .~ ~
~ o ° 6
o
,,0
~ OJ
o
o ~
~ o
o
o
~ o ~q
~ ~ o o
o
~
0~
~
~_
6
o
6
6
~
~ ~
~ ~ o
o
c~
OJ
~
~
o
0
~ ~ o o
co o~
o
~
o
o
~
~1
o o
o
~,
~
oO o
~
o
o
o
o~
~
o
~
~
6
6
~
o
~ o
.H
O o c~ +
+
A
~
+
+
& +
•
.
,
.
+
4o co-~-
569
HAMILTON et al.
-% ~
0 o
o z~
o
o
~o
o o
o o
o
o
o
o o
b-
,. 0
(2,
rY
~
o
D+I
tD
t~
{u 0
~
o
oo
kD
oo
0
CO
+
+'
co
4n
+
S
o
S
S
~
6
0]
~
~
6
6
6
o
+i~
:5
+ o,I
0J
,-4
0 kD
6 II
J kO
o
~-
CO
o
o %o ~o
r~ o
~c~
Lr~
o
cO
o
6 i
L~
..
°
A
~
6
o
o
0
0
0
0
0
0
6
o
o
o
o
o
~+,
o
~
6
o
0
0
o~ [-r-t
M~ ,-t
b-
÷, 6
6
~
II
P4
6
~
~
~
o H
6 II
L~ cO
e,l
cJ
t---
+ c)
tr~
kO
~P
570
INTERNAL-CONVERSION COEFFICIENTS
o ~
o
~
o
.
o
.
4~
o v
~
',o
F~
~ o
o
~
v
I
m
0 ~-
c)
o
~
~+
o
o
o
o
o
~
o
o 0~
()
~. o~
o
0~ o~
~ c~
~ o~
~ ~
o 0~
~ 0~
~ ~
~ o
+
+ c~ 4~
L() l~'x
0 ~3
oJ cO
b-
oJ
6
d~ o
~-I
o ol
o c)
o
m
o
~
o
~
o
o~
o b-
[-,
~0
~
~
~
o o
o
o
o
0
o o
o
0
o
N
~
0
o
"%
~
'%
,~
N
N
,%
"%
6
o4 o~ (xl
o
~
+~
0+,
OJ
o
6
S
6
0~
+~, cO
~
o
6
o~
~-
o
co
o~
0J
o,1
o
~laJ
oJ
o
o
o
o
oJ o
oJ 0
0
o
o
(~
o
o
o
o
o
~+
+
+
~
~+
+~
~
~
o o
+
.LIoJ
0J
fl
r-t
.R
o
u~
LD
rl
,-.t
co
~
o r4t~-
571
HAMILTON et a l .
q
#. o
o
o
-d
~o ~ #y,
..
I
.°
o
o
o
~-
~
~
~-
o (~
~ o
o o
o~ o
~
~ ~
0
0
0
0
0
o~ o
o~ o
o
o
oR
2
~
~
~ o o ~ ~ o~ ~
~° o
0
0
0
0
4
o
5
o
o
o
o
o
~+~loJ
o
u+Moj
H
t.-
co
~
4
.-~
~
o
r-I
'0
Cq
0,1
o~
o
8o ~-
ko t.o
.< 0
0
o
o
o
o
o
o~
PISS o
r~
.S
0
o °°
,-I
D-
C' i
°°
C)
C)
rJ
C~
C~
o
÷ + i-7
',D
rt
tr~
o,~ o
co
o
o
+
o
o
~
°~
o~
0
0
0
0
0
0
0
0
0
0
0
"~
o
8 II
+~
oJ
4
8
O2
H
a oJ
b-
572
INTERNAL-CONVERSION
o ~ ~o
~o
~ ~o
~ o+ +
~
COEFFICIENTS
~o
~
~
~o
N
g
N
0+
0•
o
0
0
0
0
~
~
~o+
~
.
N
~
S 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0~ °° |
0 0
H
g
g
~
.
0
0
o
o
N
~
o
o
~
0•
0•
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0•
0•
0•
~+
~+
~+
~+
~
~+
o
~
~
~
o
~0
~0
c~
~
0"~
0•
0•
0
0
o
~+
o
~
o~
0 o o ~,
".
II
d~ .+ !
12) Cd
p-
+I
0
0
0
0
0
o~
0
0
0
0
0
•
~o
o
~
o
0
0
0
0
.
•
o
•
•
0
o
o
o
o
~
~
~o
o
o
o
o
o
o
0
0
0
0
0
0
0
0
0
0
0
0
0
.
•
+
I
# o
6 II
I
e,f
c~
tc~
573
HAMILTON et a l .
~
~
o~
o~_.
tD
~
~
o OJ
OJ
8
. o
8
.
o .
o
. o
8
o
.
o
o
o
0
0
0
0 °
o
o
o
0
.
0
0
tD
t~
~
~
o
o
o
0
0
0
0
o
o
o
~
0
OJ
o
0
.
o
~_~
0
GJ
¢~I
8
0
oO8
o
o
e
o
0
OJ
rl
0
0 0
0
0
0
0
0
o
o
o
o
o
o
o
o
0
o
0
0
0
0
L~
v
m o
0
,H
0 o o II OJ _.q-
~.
v
0
0
.
o 0
o 8. oo . o o .e 8. 8 . 8 .8 o O 8q o . 8
.
.q 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
o
08
0
0
0
q
°
o
o
0
0
0
o
s II
o~ ¢q
o~ r~
574
INTERNAL-CONVERSION
COEFFICIENTS
~o p~
o o
0
o 0
0
o
8
0
0
C)
C)
b-
0
o +I +I
~
o 6
~
Z
0~
~
o
6
o
d
d
~Io~ ~+~ b~
o
~
o
~ o
0
0
0
0
~
A I~
Al~
+[
+I
0J
+i
+[
o o
2 o
o o
~ o
o
co~ o
co° o
~ o
~ o
0
0
0
0
0
0
0
0
0
+t
o
8
'
+
u~l~
o4
~q
L~
CO
,--I
°,-I
o
cO
o~o
~o
o
o
co
v
b-
ox 0 o o 0
0 Lr~
Oh ~
~
0~ ~
~
~
~
o
o
kO
II
m
~
~o ~
~
co o~
f~
tr~
o '43
I
0
0
0
8
F oJ
kO
o
o
£
o
o
o
~
co
J
o
~-
b-
o
o
o
~
~o
o
o
o
o
~
o
g
g
o
o
o
0
o
o
d
o
o
o
o
o
o
.I +lcJ
+
+
eJ CO
0
co
~
0~
,--~
c~
~.~
t---
~+
.I v
r-t 4~
u%
o j ~ - I t ~-
~-~ i~-
Hco
575
~
b-
HAMILTON et al.
u%
~
o
~
Lr~
o
~
LP~
~o
,~ ~ o
+1 -~
~
+1
~
o
0 i
•
~ o ~ o
o u'x
.-~ OX
~ ~
0~
~-
6
o
6
~ o
o
r,~
b-
C~
O
cO
÷~'o
~
~
~
~-
~
o
o
o
6
o
~',
6
o
o
o
o
o
.H
o ~ oo
~o
~ o o00
0,!00
0.1
v
OJ
0
0
CO
0,1
0
0
0
0
0
0
b,'-I
# o
0
0 cO
°.
b-
b-
~'-
0 0 II
!
0.
0
OJ
0
,--I
---+
o
~ +,
~ +,
+,
#;
~
~
~
~
~
~
~
OJ
OJ
OJ
0,1
OJ
+1
o
o
kO
o
tr~
~ 0
0
0
0
0
0
0
0
g
o~
o
0
a o o
o
o 0
~ t~
o
a
o 0
o
~
o
o*"
0
o
r-t +1
6 0 o II
,~leJ
ol M3
co H
A o
co
576
b-
INTERNAL-CONVERSION
COEFFICIENTS
O
o ,-t
o ,--4
o ,.-4
o ,--I
o o
4~
ta
Lr~
r#]
CD
o o
o o
o
,-4
O CO
~
o
cb
i
rl
C9 0
~O~
LF~
O
,--I o O
o
,-4 o", o
o
O
o
,cO cO o
,.-I cO o
o
o
~.
~ +~
+~ ,
~
~OJ
~
r--I
r--I
~
~-I
o
6
6
6
6
6
,
6
o
6
o
H+loa .~
oL
oL
o,I
oJ
~0~ ,--I
O,i 00~ ,~ cO
9_.
b(M
+
o e-t olc0
C L~
,-4
~0 ~0
~
o
o
~ o
q
o
o ~
o
o ~
o
o
o
~o
~
o m
,° .-~ ~M r-I
o
,.O b-
~D
8
OJ
c0 b-
~9 r-I
o', •
r-I
,.D
co •
~-~
+
H + ~d
o
~+Icu
cq
o
c~
,-4
O
o
o
o
6
6
o
o
O
o
o
o
4*
u-xlo.1 v
~Ic~
v
~
i t~ OJ ',0
c~
A e~
o~
0J00
,-~ o,-4 c~Ic0
e, l C O
57'/
od::o
oJcO
HAMILTON et a l .
o~ o~
~
~
~ O
o r~ ~
~ ~ ~o
~, ~
..p
,-I
4-~
o
~
~
o
°o
o
~
~
~
~
~
,~
o
~,
r-t
~
~
,-4
~
b-
+l ,~1
o
L~,
oo
o
o
R
o 4~
0,1
0 co
o I
£ +1
+I
,-t
,,6
2r t o
o
+'
~ ~, ~
o
oo
~
~o
~
o
o
o
0
c~
O4
k.
~S
0Med
Lr~
0
6
o
HIC~
o
~o
H
6
o
b-I~
6
o
o
o
o
u~l~
.,q
0.1
0.1
,.0
Lr~
Lr~
•
°
0
0
o
o
o
0
6 II
,b P~
-50~ o.lcO
Od00
o
-~-
O'x
,--I
H
~1
~-t
r-t 0J
9
;q
o
~-
o
oJ
~M
cO
0~
o
o
v
o
0-,
o
~
~
~
,
6 o co
0 0
6
I
##
11
o
,-t
~
o
~
o
~
~
v
#
0 ~M
6
o
6
6
J
o
~S
I
I
I
0
0
Od
O~
0.1
o
o
C)
0
0
0
0
0
o
I
o
c0
~D
|
6 +lc~
o H
II
I 0•
~ .°
~.
0
LO
kO
2
H CO
O~ OJ
.
CO Cd
O~cO
04~
OJcO
578
INTERNAL-CONVERSION COEFFICIENT8
0
0
o
o
0
0
,, C~
O
O
•
~
O
O
0
~
o~
~
~
o
0
0
0
0
0
~-
P-
~
~ o
o
0
0
0
0
0
o
o
o
L~
~
~
o~ ~
~ o
8
o o
o o
o
o
°
-~
o
0J '~
~
o
0
0
0
0
0
0
0
0
0
0
0
0
o
o
o
I
I
~
L¢~
+
L'-
+
•
0~
~
OJ
0
,
L¢',
LC~
0".,
,-I
.
~.
L~
~
co
,.-I
.i
o
~0 O~ Od oO
o 0 v
~o O~r~ 0400
~D 0~'~ OJcO
m,1 ~,~
H
,-I
r-I
~-t
~
N
N
N
,"4 0~
+
.~
.o
i
~
~ ~
~ °
,.0 ~
~~
P, ~o
o-, -~ o
-~-
o 5
5
o
o
o
o
o
o
o
0
0
0
0
0
0
0
0
o
~1
.~
~ o 0
0
o
5~ ~
o o 0
0
o
o
o
o
c~
o
o
0
0
0
~
8
o 0
o
o
0
oJ
r~
0
,r4 I
o
0
0
0
C~
0
0
o ,
,
,
,'-"
7"
,~
,'-"
+ t ~•
co
c o.
~ ~
kD
~
~
~
,~
o
~
,~-
~
~
~
,~
=
o-,
+
iiJ
g
-o
o
ko OeJ P,I c O
cxlco
5"/9
et a l .
HAMILTON
rq
o
~
o
cO
~
,-4
o
0
0
~q
~
~
b--
I
+I
o
0 0
o o
,--t
,--t
o
~
~
~o
~
S'
°
o
o
o
l~ o~loa
~o ~
~
+~
o 6
o 6
o
o
o
o
~ ~r,l~
~
~-
+
0
o0
o
,~
% o
0~
l~ 0~I04
6
cu
6
o
"~ UN
_4 0 hOd
,.-t
rd E~
g
4~
cO
CO
o~
edoO g-t ca
0
u-x
~o
~
',,0
@
0J
b-
~o
,-I
,-I 0
r-I
,.-I
g oel ID 0 0
e,J
4~
+ 0 I
..
+
~ o t~. u~ :-I
0
o
+I
+I
6
6
o
6
~+I(~
O4
0
o
6
o
6
6
6
Icu
~,lc~
-~ ~0
o
oJco
E~ 04(I:)
6
6
d
o
o
d
6
o
kO
~
o
EI~ 11
,--I
0
t ~-
t"OOd OJCO
580
E 0
o
+~
+Ic~
~o
6
o
0 0,1 ~1
0
COEFFICIENTS
INTERNAL-CONVERSION
o~ b..-o t,~Y,,O
+'
v
~o~_~
k~ +1
+1
cO o !
.o
o M~ o
o +, 0
0~ o
0 o
0 0
o
0
o
o
+,
~
~ ~o
~°~
+, co r-f C~
,,~
o
o
6
o
o
o
6
o
o
o
o
o
-~
o
H .r'l H
H ,--I
0
.H
",'4
OJcO
o
~
o
+1 O
+1
m I
~
.~-
o
0 0
!
II
..
oJ
o ÷I
~-I
0 o
0 o
0 0
0
0
o
d
o
0
0
0J
+1
0
0
0
0
0
co
6 II o v
A
oJ
cO ~K
0J
o
#
A cO
OJ~O
581
HAMILTON et a l .
t--
o
~
~
~
o
b-
~
~ ~
b--
~ ~ ~ o
0
~ ~ ~
b--
t--
~ ~ ~ ~ ~ ~ ~0 o ~ ° P ~
0
Lb
J
~
oo
~
+'
~
~
~o~oO~o~o~~oo~O •
0
•
0
•
0
.
0
®
0
,
0
•
0
,
0
•
0
•
0
0
0
•
0
•
0
~ 0 ~0 o 0.
0
0
0
•
o
0
°
0
0
°
0
°
0
o 0
•
0
.
~0
0
0
0
•
0
~
o
o ~0 0
•
•
0
0
•
0
0
~ ,
N'~ •
0
(D o o~o0
c~ o
p !
aa~aa
..
°
~o~
~
o~
~
°~
°.
5~ o
~
R
~
~
0
~
~
~
~ •
0
0
0
0
.
0
•
0
°
0
o
o
8
o
•
,
•
,
°
0
0
0
0
0
o
o
0
0
o
•
0
.
0
o
o
°
0
o
0
•
0 cO
6 II
~D
,-4
oJ
o °
~
~-
tc~
oJ
oJ
J~ o
g
oJco
(',/cO
582
co
INTERNAL-CONVERSION COEFFICIENTS
,-4
Ix;
-p
,-I
.. r..b
0
0
t"-
+I
|
,-4
,-4
,C)
[.t.1
,..1 m .,¢ E-i
OJ
+~1
o0
0
o
o0
o0
~0
~0
o0
o0
~0
~
00
o
o
o
o
o
o
o
o
o
(~
o
~
I-4
0
o
~o
~
~
~I °
~
,.4
~
°
(~ 0
o
~
"%
0 o
",O
o
~
0~
:o
0,1
.pkO
(I~~
o
o
(5
~F
~
~
r~
o
~
•
~
~
~
~0
I"-I
~
~
°
~
~
~ ~0 °
~~.
~
o
0,I
~0
~
o
0
0",
,"4
~ C~
,-I
~o,_-P °.
+
.c$
0 !
0
0
..
5'
q-i
+1
g
0
0
o
o
o
o
o
6
o
o
o
o
6
+
6
6
(3
,3
8
8
8
8
O~
O~
~'~
o
o
o
~+ + +
0 kO
,,? 4~
CtlCO
"5"
583
HAMILTON et a l .
%
03 o
~0
~o~
kO
~
~o
~
~o
~
~o
kO
F-~
0
0
kO
@i
0
0 kO
o
4~ i
.o
~
o
+,
'.~
6
o
0
0
~
9
6
0
6
6
o ~c~
o
6
o 0
o~
%
~
-4
%
-4
0~ o
~
o
~
kO
6
6
6
o
g-i
S
H
÷
('d
0,.I o~ ,-I
0J
cO O~
03
0
Ao
.o 0
~o
0J
~
0JO~
('d 0"~
oJo~
0 ~
OJO~
E) "t-
'4)
,rl 4~
o
o
o
~
~
o
6
~o
~o
~ o
~
o
~
L~
0
o
A
+I 0
i
'
8
'
~
6
kO OJ
OJ rc~
o
6
~'~
kO CO
0
0
%o
6
d"
v
A
~
~
i
8 ~ o
o + v
~
+I~ v
S ÷ oJ
+
H o 0 c~co (woo
OJCO
o
~OJCO o
cdo~ oJco
584
o ~c~o c4o'~
+.~
INTERNAL-CONVERSION
~ ~
~o
~
LO
LO
COEFFICIENTS
~o ~o
o +, o
o
r-I
o
~
I
~
~o
~~
~
.... ~ ~
=
S'
~_ ~
~
~
~
~
o
~
~o
"
~~
~o
o
0
~0
0
12.-
-+ I
~
~'
t--
i
~
~
~
~
~
d
~
6
o
0
~ ~,
~
6
6
6
~
~o
~_
~, ¢
~
o
o
6
o
d
~
~
~
+,
~
~/~ 4~
0
6
~
~
~
~
~
~
7# o ~
~
.,4
~
"
'
tc~
Mu~
o
,.-I
C
@
i
cJo~
o ,rt
,-t
0
M
Z!
0
8
o
+
+I
¢~
0J
e-~
r-I
0 ~,
+, ~
o °
o
+
0
'
#,
'
d
o
0
% %
,
4~ M3
~~o
6
t--
o
o
o
~,
~
.~
d 8
~s
+
+~loJ
+I~
~loJ
II
+ o t4
~D
.--I M~
@ o,lo~
~oJ oJo~
585
et al.
HAMILTON
4-
% kO
kD
F~I
kO
0
~F~
0
~o
o
0~ I
O c~ F~
o~
O 0x
o 0x F~
O F~
kO
o
..
o
r-i
~
~
o
~
~
~
~
O~
I-I
e--I
~
e-4
OJ
•
~
o
o
6
~o 0 o~ kO o~ t
to,
÷,
~
~0
~0
~
o
d
o
~
~
~ ++
d
o
.,
O4
0
o
6
~
o
*
~o
d
d
0~
e~lO~
~,~0
--4
-4
~dON
OION
0dO~
o
r.v.1
¢1 O
O
~ .°
o
d
O
~
o
0 O
OJ ~-I
O
O
o~
o~ 0 O
~o
O V
O
O
CO O
O
O O
I-o
o
ko O
O
0,1
0 Od
O
o
,5
O
O
O
O
O
i O
~o
o
o k0
cO
0
0
8
u~
o
d
o]
o
~d
~,
d
~
o
o
o
o
o
d,
o
c;
d
o o
+
H
+
586
INTERNAL-CONVERSION COEFFICIENT8
0
0
0
0
0
0
0
o
0
or-~
o
0
I
0
~
0
o
o
kO
0 +[
CO
o
-~-
b~ 0
r.5 |
o
0o
o
o
0J
o4
N
o 0J
0~ o
a N
N
~'~
0J
N
~1
co
o
v 0~
+1
C~
0
0
0
0
M3 CO
0
~ 0",
0 0
0 0
0 0
0 0
0
0
0
0
?
"T
o
o
OdO'~
r~ v
o
o
o
,
o
o
o
o
o
o
0,°
o
o
o
o
o
~ o
o r~
r~
|
~
~
~
~
o
o
o ~
~
#
~
o
m
m
~
~
~
~
~
o
~
o
o
~
o
o
~
~ ~
o
o ~
o
~
~
d
S
o
o
r-I
o
i
OJ
cl
0 o ~
~
0
~
~-
~-o~ 0
A
~_
~.~
0.1
c~
o
0
÷1
o
~.
~0
~
~
o
ill
o
? +
+
r-I CO CO
r-I ~ 0
u~ •
~0 0
CO o
O~
-p
OJ O"~
587
HAMILTON
et al.
0 o
o
o
~
o
4~
0
0
0
0
o
o,I
b-
k~
!
t~
ko 0
cO
0
,D
..
0
~
~o
~ o
,.~
i
!
,-~
o'x
ko
0
d~
L~ -
.
.
o
00
,~1
,-I
+I
~
.
. o
o
.
,
o
o
°
0
•
0
o
~1~
~1~
~,~
~,~
~1~
i,~
~,~
i,~
CO
~
o
~
0
,-I
o~
.
o
o
0~
~
.M
o oJob
o
v
b~
0
0
~0
~0
m
~ ~o ~F~ Lr~ kO
~o kD 2 o o
4~
0
~00
0
~ F~ o 0 o
0
o
0
~
i~
~0
0
o
0 ~
0 0
~o
0 0
~
o
0
~03
,
~
~3
o !
0 ~o
0
~
kO
.. b-
~
o o
~
~
~
~
o
o
N
0~
o
~~
~~
•
o
~
i
o
o
~
o
+'
o
o
o
o
+'
o~
d~ 0.1 0
Od
OJ
0
0
b-
~
0
o
o
~,~
+~,~
~
~,~
AI~
~,~
~,~ 4÷
o
o
4~
(MO~
(UO~
588
INTERNAL-CONVERSION COEFFICIENTS
o
~W
0 r-I
i
,H ~H
bC~
rH ~d
LF~ .
r/1
o
0
3
L)
4~
o
o
o
o
~
+i
~
C~
+
LrX C~
o v
~0
o
o
4J
o
0
6
6
+~
o
I
+b-lOJ
(W
Ox
?
kO
0J
o
=+
+
+
+
~r~
r-~
i
+b-lOJ
+10J
o
?Lr~ v
LrX
0~ o o u
# kO
LO
A
~q Ox -~-b0~O~
0 Lrx. b CLIOX
589
HAMILTON e t a l .
42S01
G.P.Smith - Phys.Rev. 61,578 (1942)
47B05
H.Bradt, P.C.Gugelot, O.Huber, H.Medicus, P.Preiswerk, P.Scherrer, R.Steffen - Helv.Phys.Acta 20, 153 (1947)
49B08 49S17
F.Boehm, O.Huber, P.Marmier, P.Preiswerk, R.Steffen - Helv.Phys.Acta 22, 69 (1949) R.M.Steffen, O.Huber, F.Humbel - Helv.Phys.Acta 22, 167 (1949)
50M21 50M26 50M62 50003 50W09 50W59
H.Medicus, P.Preiswerk, P.Scherrer - Helv.Phys.Acta 23, 299 (1950) J.Y.Mei, C.M.Huddleston, A.C.G.Mitchell - Phys.Rev. 79, 429 (1950) M.k.Moon, M.A.Waggoner, A.Roberts - Phys.Rev. 79, 905 (i950) G.E.Owen, C.S.Cook, P.H.Owen - Phys,Rev. 78, 686 (1950) M.A.Waggoner, M.k.Moon, A.Roberts - Phys.Rev. 78, 295 (1950) M.A.Waggoner, M.L.Moon, A.Roberts - Phys.Rev. 80, 420 (1950)
51C47 51H18 51Mll 51M18 51M61 51 P20 51S39
E.C.Campbell, J.H.Kahn, M.Goodrich - ORNL-1164 (1951) P.Hubert - Compt.rend. 232, 2201 (1951) C.L.McGinnis - Phys.Rev. 83, 686 (1951) H.Medicus, D.Maeder, H.Schneider- Helv.Phys.Acta 24, 72 (1951) C.L.McGinnis - Phys.Rev. 83, 686 (1951) P.Preiswerk, P.Stahelin - Helv.Phys.Acta 24, 300 (1951) R.M.Steffen - Phys.Rev. 82, 827 (1951)
51S73 51S79 51V05 51W19
A.W.Sunyar-~ Phys.Rev. 83, 864 (1951) R.M.Steffen - Phys.Rev. 83, 166 (1951) N.F.Verster, G.J.Nijgh, R.van Lieshout, C.J.Bakker- Physica 17, 637 (1951) M.A.Waggoner - Phys.Rev. 82, 906 (1951)
52B31 52B55 52B95
D.Brower, G.Hinman, G.Lang, R.Leamer, D.Rose - Phys.Rev. 86, 1054 (1952) I.Bergstrom- Arkiv Fysik 5, 191 (1952) R.E.BelI, R.L.Grahom - Phys.Rev. 86, 212 (1952)
52C12 52C17 52C31 52F14 52F35
J.M.Cork, J./d.LeBlanc, F.B.Stumpf, W.H.Nester - Phys.Rev. 86, 415 (1952) P.E.Cavanagh - PhiI.Mag. 43, 648 (1952) k.S.Cheng, J.L.Dick, J.D.Kurbatov - Phys.Rev. 88, 887 (1952) C.Y.Fan - Phys.Rev. 87, 252 (1952) P.Falk-Vairant, J.Teillac, C.Victor - J.Phys.Radium 13, 313 (1952)
52G18 52H01 52H18 52H48 52M05 52M06 52M48
R.L.Graham, J.L.Wolfson, R.E.Bell - Can.J.Phys. 30, 459 (1952) O.Huber, F.J-lumbel, H.Schneider, A.de Shalit - Helv.Phys.Acta 25, 3 (1952) R.L.Heath, P.R.Bell - Phys.Rev. 87, 176A (1952) D.R.Hutchinson, M.L.Wiedenbeck - Phys.Rev. 88, 699 (1952) F.K.McGowan - Phys.Rev. 85, 151 (1952) F.K.McGowan, E.D.Klema, P.R.Bell- Phys.Rev. 85, 152 (1952) R.I.Mendenhall, C.E.Mandeville, E.R.Zucker, G.L.Conklin - Phys.Rev. 88, 554 (1952)
52M50 52M53 52R16 52T18
F.R.Metzger, H.C.Amacher - Phys.Rev. 88, 147 (1952) F.R.Metzger- Phys.Rev. 88, 1360 (1952) D.Rose, G.Hinman, I_.G.Lang - Phys.Rev. 86, 863 (1952) E.P.Tomlinson, S.L.Ridgway - Phys.Rev. 88, 170A oral report (1952)
53A25 53A32
P.Avignon - J.phys.radium 14, 636 (1953) N.h4.Antoneva, A.A.Bashilov, B.S.Dzhelepov, L.S.Chervinakay - Izvest.Akad.Nauk SSSR, 17, 507 (1953); Chem. Abstr. 48, 2490b (1954) J.Brunner, O.Huber, R.Joly, D.Maeder - Helv.Phys.Acta 26, 588A (1953) A.A.Bashilov, N.M.Antoneva, D.C.Broder, B.S.Dzhelepov - Izvest.Akad.Nauk SSSR, Ser.Fiz. 17, 468 (1953); Chem.Abstr. 48, 2488h (1954) I_.S.Cheng, M./.Pool - Phys.Rev. 90, 886 (1953) V.M.Dolishnyuk, G.M.Drabkin, V.I.Orlov, k.I.Rusinov - Doklady Akad.Nauk SSSR92, 1141 (1953) H.T.Easterday- Phys.Rev. 91,653 (1953) H.T.Easterday - UCRL-2162 (1953) R.k.Graham, R.E.Bell - Can.J.Phys. 31, 377 (1953)
The dual decay o f l~e 1.6
D i s i n t e g r a t i o n scheme o f I 131
Etude de la t r a n s i t i o n ~ de 350 keV accompagnant l ' emission AcC ~
AcC'"
Gwnma-rays from ..~n12s
53 B73 53 B82 53C16 53D31 53Ell 53E17 53G07
590
INTERNAL-CONVERSION COEFFICIENTS
53H02 53H48 53K17 53M52 53M59 53M67 53P14 53526 53W45 54A01 54A22 54B36 54B76 54E04 54E07 54GI9 54K28 54L50 54L57 54M10 54M28 54M70 54N12 54N27 54P31 54.508 54512 54544 54W12 54Wl 4
G.Hinman, D.Brower, R.Leamer - Phys.Rev. 90, 370A (1953) J.R.HoIt - Ann.Phys. 8, 662 (1953) B.It.Ketelle, A.R.Brosi, F.M.Porter - Phys.Rev. 90, 567 (1953) W.E.Meyerhof, L.G.Mann, H.l.West,Jr. - Phys.Rev. 92, 758 (1953) N.Marty, H.kangevin, P.Hubert- J.phys.radium 14, 663 (1953) F.K.McGowan, E.C.Campbell - Phys.Rev. 92, 523 (1953) J.F.Perkins, S.K.Haynes - Phys.Rev. 92, 687 (1953) M.Sakai, P.Hubert - Compt.rend. 236, 1249 (1953) J.P.Welker, A.W.Schardt, G.Frledlander, J.J.Howland°Jr. - Phys.Rev. 92, 401 (1953) T,Azuma - J.Phys.Soc.Japan 9, 1 (1954) Internal conversion coefficient of Ba'37 I.A.Antonova, I.V.Estulin - Izvest.Akad.Nauk SSSR, Ser.Fiz. 18, 79 (1954) I.Bergstrom, S.Thulin, A.H.Wapstra, B.Astrom - Arkiv Fysik 7, 255 (1954) W.W.Buechner- priv.comm. (Oct. 1954) L.G.Elliott, M.A.Preston, J.L.Wolfson- Can.J.Phys. 32, 153 (1954) L.G.Elliott, R.L.Grahamt J.Walker, J.L.Wolfson - Phys.Rev. 93, 356 (1954) R.k.Graham, J.Walker - Phys.Rev. 94, 794A (1954); oral report G.L.Keister - Phys.Rev. 96, 855A (1954) R.D.Leamer, G.W.Hinman - Phys.Rev. 96, 1607 (1954) K.Linden, N.Starfelt - Arkiv Fysik 7, 109 (1954) Gamma-rays, x-rays and bremsstrahlung from Tm17° sources F.K.McGowan- Phys.Rev. 93, 163 (!954) P,S.Mittelman - Phys.Rev. 94, 99 (1954) J.W.Mihelich, A.W.Schardt, E.Segre - Phys.Rev. 95, 1508 (1954) R.H.Nussbaum, R.van Lieshout - Physica 20, 440 (1954) R.H.Nussbaum, A.H.Wapstra, R.van kieshout, G.J.Nijgh, L.T.M.Omstein - Physica 20, 571 (1954); priv.comm. C.H.Pruett, R.G.Wilkinson - Phys.Rev. 96, 1340 (1954) E.F.Sturcken, Z.O'Friel, A.H.Weber- Phys.Rev. 93, 1053 (1954) A.W.Sunyar- Phys.Rev. 93, 1345 (1954) A.W.Sunyar, J.W.Mihelich, M.Goldhaber - Phys.Rev. 95, 570 (1954) A.H.Wapstra, D.Maeder, G.J.Nijgh, L.T.M.Ornstein - Physica 20, 169 (1954) A.H.Wapstra - Arkiv Fysik 7, 275 (1954)
55J22 55K04 55L30 55M17 55M39 55M62 55M90 55595
A.H.W.Aten,Jr., T.de Vrles-Hamerling - Physica 21, 544 (1955) D.I-.Alburger, A.W.Sunyar - Phys.Rev. 99, 695 (1955) M.E.Bunker, J.W.Stamer- Phys.Rev. 97, 1272; 99, 1906.(1955) H.H.Bo|otin, R.G.Wilkinson - Phys.Rev. 99, 671 (1955); oral report G.Bertolini, M.Bettoni, E.Lazzarini - Nuovo cimento 2, 273 (1955) J.W.Blue, E.Bleuler - Phys.Rev. 100, 1324 (1955) H.de Woard - PhiI.Mag. 46, 445 C1955) G.M.Drabkin, V.I.Orlov, L.I.Rusinov - Izvest.Akad.Nauk SSSR, Ser.Fiz. 19, 324 (1955); Columbia Tech.Transl. p.294 (1955) t.V.Estulin, E.M.Moiseeva - Zhur.Ekspth i Teoret.Fiz. 28/541 (1955); Soviet Phys.JETP 1,463 (1955) V.K.Fischer - Phys.Rev. 99, 764 (1955) R.L.Graham, J.L.Wolfson, M~A.Clark- Phys.Rev. 98, 1173A (1955) M.J.Glaubman - Phys.Rev. 98, 645 (1955) H.Gaffe, T.O.Passell, CA.Browne, I.Perlman - Phys.Rev. 97, 142 (1955) da~aa and x-radiation in the decay of AmT M R.Joly, J.Brunner, J.Halter, O.Huber - Helv.Phys.Acta 28, 403 (1955) G.k.Keister, E.B.Lee, F.H.Schmidt - Phys.Rev. 97, 451 (1955) H.R.Lemmer, O.J.A.Segaert, M.A.Grace - Proc.Phys.Soc.(London) 68A, 701 (1955) C.L.McGinnJs - Phys.Rev. 97, 93 (1955) N.Marty - Compt.rend. 240, 963 (1955) N.Marty - J.phys.radium 16, 458 (1955) J.P.Mize, M.E.Bunker, J.W.Starner - Phys.Rev. 100, 1390 (1955) T.Stribel - Z.Naturforsch. lOa, 894 (1955)
56A28 56A29 56B76
P.Avignon - Ann.Phys. 1, 10 (1956) use 56A28 A.Bisi, E.Germagnoli, L.Zappa - Nuovo cimento 3, 1007 (1956)
55A22 55A26 55B01 55B29 55B98 55B123 55D18 55D43 55E15 55F30 55G07 55G41 55J01
591
HAMILTON e t a l .
C28 56D31 56D32 56G23 56G44 56H50 56J05
D.R.Connors, W.C.Miller, B.Waldman- Phys.Rev. 102, 1584 (1956) V.S.Dubey, C.E.Mandeville, M.A.Rothman - Phys.Rev. 103, 1430 (1956) P.Debrunner, E.Heer, W.Kundig, R.Ruetschi - Helv.Phys.Acta 29, 235 (1956) N.Goldberg - BulI.Am.Phys.Soc. 1, No.4, 207 R7 (1956) T.R.Gerholm- Arkiv Fyslk 11, 55 (1956) C.J.Herrlander, R.Stockendal, J.A.McDonell, I.Bergstrom - Nuclear Phys. 1,643 (1956) M.W.Johns, C.W.McMullen, I.R.Williams, S.V.Nablo - Can.J.Phys. 34, 69 (1956)
56K23 56K48
B.H.Ketelle, H.Thomas, A.R.Brosi - Phys.Rev. 103, 190 (1956) V.M.Kelman, R.I.Metskhvarishvili, V.A.Romanav, L.I.Rusinov, K.A.Konaplev - Doklady Akad.Nauk SSSR 107, 394 (1956); Soviet Phys.Doklady I, 189 (1956) E.M.Krisiuk, G.D.Latyshev, M.A.Listengarten, L.A.Ostretsov, E.G.Sergeev - Izvest.Akad.Nauk SSSR, Ser.Fiz. 20, 363; Columbia Tech.Transl. p.332 (1956) E.M.Krisiuk, A.D.Vitman, V.D. Borobev, I.V.Vorobev, K.l.llin, G.D.Latyshev, M.A.Listengarten, A.G.Sergeev, Izvest.Akad.Nauk SSSR, Ser.Fiz. 20, 883 (1956); Columbia Tech.Transl. p.803 (1956) M.Langevin - Ann.phys. 1, 57 (1956) D.W.Martin, M.K.Brice, J.M.Cork, S.B.Burson - Phys.Rev. 101, 182 (1956) L.B.Magnusson, A.M.Friedman, D.Engelkemeir, P.R.Fields, F.Wagner,Jr. - Phys.Rev. 102, 1097 (1956) H.T.Motz- Phys.Rev. 104, 1353 (1956) C.Nordling, K.Siegbahn, E.Sokolowski, A.H.Wapstra - Nuclear Phys. 1,326 (1956) Z.O'Friel, A.H.Weber - Phys.Rev. 101, 1076 (1956) V.R.Potnis- Phys.Rev. 104, 722 (1956) M.D.Petroff - BulI.Am.Phys.Soc.1, No.8, 389 M3 (1956) M.D.Petroff - UCRL-3538 (1956) A.W.Stoner - UCRL-3471 (1956) R.Stockendal, J.A.McDonell, M,Schmorak, I.Bergstrom - Arkiv Fysik 11, 165 (1956) V.S.Shpinel, G.A.Kuznetsova - Zhur.Eksptl. i Teoret.Fiz. 30, 231 (1956); Soviet Phys.JETP 3, 216 (1956) M.T.Thieme, E.Bleuler- Phys.Rev. 101, 1031 (1956) M.T.Thieme, E.Bleuler- Phys.Rev. 102, 195 (1956) J.Volpe, G.Hinman- Phys.Rev. 104, 753 (1956) H.Vartapetian - Compt.rend. 243, 1512 (1956) R.G.Waddell, E.N.Jensen - Phys.Rev. 102, 816 (1956) T.Wiedling - Thesis, University of Stockholm (1956) A.V.Zolotavin, E.P.Grigorev, M.A.Abrovion - Izvest.Akad.Nauk.SSSR, Ser.Fiz. 20, 289 (1956); Columbia Tech.Transl. p.271 (1956); Columbia Tech.Transl. 20, 271 (1957)
The decay o f Re 186 a n d r e 188
56K49 56K58 56L23 56M16 56M32 56M92 56N26 • 56003 56P37 56P39 56P56 56S60 56S105 56Sl19 56T10 56Tll 56V20 56V21 56W24 56W39 56Z06
57A61 57A75 57B20 57B156 57E30 57F54 57H64 57H73 57.109 57J24 57K49 57M13 57M34 57M40 57005 57010 57581 57587 575112 575131 57V08 57W05
E.Arbman - Nuclear Phys. 3, 625 (1957) L.S.August - Thesis, Louisiana State University (1957); Dissertation Abstr. 17, 792 (1959) E.Brun, W.E.Meyerhof, J.J.Kraushaar, D.J.Horen - Phys.Rev. 107, 1324 (1957) S.Bjomholm, O.Nathan, O.B.Nielsen, R.K.Sheline - Nuclear Phys. 4, 313 (1957) G.T.Ewan, J.W.Knowles, D.R.MacKenzie- Phys.Rev. 108, 1308 (1957) M.S.Freedman, F.T.Porter, F.Wagner, P.Day, D.W.Engelkemeir - quoted by 585150 K.W.Hoffmann - Z.Physik 148, 298 (1957) H.Houtermans - Z.Physik 149, 215 (1957) M.W.Johns, S.V.Nablo, W.J.King - Can.J.Phys. 35, 1159 (1957) M.C.Joshi, B.N.Subba Rao, B.V.Thosar - Proc.lndian Acad.Sci. 45A, 390 (1957) E.M.Krisluk, A.G.Sergeev, G.D.Latyshev, V.D.Vorobyov - Nuclear Phys. 4, 579 (1957) N.Morty, Id.Vergnes - J.phys.radium 18, 233 (1957) F.K.McGowan, P,H.Stelson- Phys.Rev. 107, 1674 (1957) J.A.McDonell, R.Stockendal, C.J.Herrlander, I.Bergstrom - Nuclear Phys. 3, 513 (1957) J.L.Olsen, L.G.Mann, M.Linder - Phys.Rev. 106, 985 (1957) V.V.Ovechkin, E.M.Tsenter- Atomnaya Energ. 2, 282 (1957) E.S.Snyder, S.Frankel - Phys.Rev. 106, 755 (1957) T.Stribel - Z.Naturforsch. 12a, 939 (1957) P.H.Stelson, F.K.McGowan - Phys.Rev. 105, 1346 (1957) A.W.Sunyar - quoted in 575112 B.van Nooiien, J.Konijn, A.Heyligers, J.F.Van cler Brugge, A.H.Wapstra - Physica 23, 753 (1957) A.H.Wapstra, H.van der Fijk - Nuclear Phys. 4, 325 (1957); erratum Nuclear Phys. 4, 695 (1957)
58A38
V.K.Adamchuk, A.A.Bashitov, B.K.Preobrazhenskii - Izvest.Akad.Nauk SSSR, Ser.Fiz. 22, 919 (1958); Columbia Tech.Transl. 22, 911 (1959)
592
INTERNAL-CONVERSION
COEFFICIENTS
E.Arbman, J~Brude, T.R.Gerholm - Arkiv Fysik 13, 501 (1958) S.A.Baranov, Yu.F.Rodionov, G.V.Shishkin, L.V.Chistiakov - Zhur.Eksptl. i Teoret.Fiz. 34, 1367 (1958); Soviet Phys. JETP 7, 946 (1958) N.Benczer-Koller- CU-177 (1958) 58B81 58B113 S.K.Bhattacherjee, T.D.Nainan, S.Ramanl B.Sahai -Nuovo cimento 7, 501 (1958) G.D.Cheever, W.S.Koski, D.R.Tilley, L.Madansky - Phys.Rev. 110, 922 (1958) 58C28 J.A.R.Cloutier, A.Henrikson - Can.J.Phys. 36, 1253 (]958) 58C42 J.B.Cummlng, N.R.Johnson- Phys.Rev. 110, 1104 (1958) 58C91 V.S.Dubey, S.S.Malik, C.E.Mandeville, A.Mukerji- Phys.Rev. 111,920 (1958) 58D76 B.S.DzheZepov, k.K.Peker - Decay schemes of radioactive nuclei, Academy of Sciences of the USSR Press, Moscow, 58D90 Leningrad (1958); Pergamon Press, New York (1961) B.S.Dzhelepov, N.N.Zhukovskii - Nuclear Phys. 6, 655 (1958); erratum Nuclear Phys. 10, 96 (1959) 58D92 N.B.Gove, R.W.Henry, L.T.Dillman, R.A.Becker - Phys.Rev. 112, 489 (1958) 58G78 58GI02 E.P.Grigorev, B.S.Dzhelepov, A.V.Zolotavin, V.Ya.Mishin, V.P.Prikhodtseva, Yu.V.Kholnov, G.E.Shchukin - Izvest.Akad. Nauk SSSR, Ser.Fiz. 22, 831 (1958); Columbia Tech.Transl. 22, 825 (1959) 58H45 R.L.Heath, N.P.Alley - priv.comm. (March 1958) R.L.Hickok, W.A.McKinley, S.C.Fultz -Phys.Rev. 109, 113 (1958) 58H76 M.C.Joshi, B.N.Subba Rao, B.V.Thosar - Nuovo cimento 9, 600 (1958) 58J22 M.C.Joshi, B.N.Subba Rao, B.V.Thosar - Nuovo cimento 10, 775 (1958) 58J30 K.Kamada, T.Teranishi, Y.Yoshlzawa, J.Phys.Soc.Japan 13, 763 (1958) 58K13 J.Konijn, H.L.Hagedoom, B.van Nooijen - Physica 24, 129 (1958) 58K60 I.Y.Krause - Z.Physik 151,210 (1958) 58K66 I.Y.Krause - Z.Physik 152, 586 (1958) 58K71 S.S.Malik, A.Mukerji - Phys.Rev. 111, 1291 (1958) 58M56 58M59 C.L.McGinnis - Phys.Rev. 109, 888 (1958) 58M88 A.C.G.Mitchell, C.B.Creager, C.W.Kocher- Phys.Rev. 111, 1343 (1958) 58N04 K.O.Nielsenl O.B.Nielsen - Nuclear Phys. 5, 319 (1958) 58Nt5 S.V.Nablo, M.W.Johns, A.Artna, R.H.Goodman - Can.J.Phys. 36, 1409 (1958) 58N28 G.J.Nijgh, A.H.Wapstra, L.T.M.Ornstein, N.Salomons.Grobben, J.R.Huizenga, O.Almen -Nuclear Phys. 9, 528 (1958) T.Novakov, R.Stockendal, M.Schmorak, B.Johansson - Arkiv Fysik 14, 85 (1958) 58N30 58R22 D.Reitmann, H.Schneider, I.J.van Heerden - Phys.ReV. 1101 1093 (1958) 58S21 P.S.Samoilov- Atomnaya Energ. 41 81 (1958) R.Stockendal, T.Novakov~ B.Johansson, M.Schmorak - Arklv Fysik 14, 65 (1958) 58S99 58S150 D.Strom~nger, J.M.Hollander, G.T.Seaborg - Revs.Modem Phys. 30, 585 (1958) 58W08 A.H.Wapstra~ G.J.Nijgh, N.Salomons-Grobben, L.T.M.Ornstein- Nuclear Phys. 9, 538 (1958) 58Y01 Y.Yoshizawa - Nuclear Phys. 5, 122 (1958) 58A156 58B44
59A135
N.M.Antoneva, A.A.Bashilov, F:.K.Kulakovsky - Zhur.Eksptl. i Teoret.Fiz. 37, 1497 (1959); Soviet Phys.JETP 10, 1063 (1960) 59B107 A.Bisi, F.Germagnoll, L.Zappa - Nuovo cimento 11,843 (1959) 59B165 A.R.Brosi, B.H.Ketetle, H.C.Thomas, R.J.Kerr - Phys.Rev. 113, 239 (1959) 59B208 S.B.Burson, H.A.Grench, L.C.Schmid - Phys.Rev. 115, 188 (1959) 59B220 M.7".Bunker, B.J.Dropesky, J.D.Knight, J.W.Stamer, B.Warren - Phys.Rev. 116, 143 (1959) Decay of U 24° and 7.3-min Npz4° 59C80 F.P.Cranston - Thesis, Stanford University (1959); Dissertation Abstr. 19, 2990 (1959) g.T.Ewan, J.S.Geiger, R.L.Graham, D.R.MacKenzie -Phys.Rev. 116, 950 (1959) 59E90 59H91 K.W.Hoffmann, I.Y.Krause, W.D.Schmidt-Otb A.Flammersfeld - Z.Physik 154, 408 (1959) 59H123 S.H~Jltberg, R.Stockendahl - Arkiv Fyslk 14, 565 (1959) 59K20 V.~,.Kelman, R.Ya.Metskhvarishvili - Zhur.Eksptl. i Teoret.Fiz. 36, 694 (1959); Soviet Phys.JETP 9, 486 (1959) D.C.Lu - BulI.Am.Phys.Soc. 4, No.4, 277 U2 (1959) 59L65 F.R.Metzger, W.B.Todd - Nuclear Phys. 10, 220 (1959) 59M76 59012 S.Ofer- Phys.Rev. 113, 895 (1959) 59S24 A.W.Schardt, A.Goodman - BulI.Am.Phys.Soc. 4, No.l, 56 VA1 (1959); oral report A.Schwarzschild, L.Grodzins - priv.comm. (1959) 59S33 L.C.Schmid, S.B.Burson - Phys.Rev. 115,447 (1959) 59S37 H.Schneider, I.J.van Heerden, D.Reitman - Nuovo cimento 10, 338 (1959) 59S40 59S50 M.k.Sehgal, H.S.Hansl P.S.Gill - Nuclear Phys. 12, 261 (1959) 59559 A.G.Sergeyev, V.D.Vorolyev, A.S. Remenny, T.J.Kolchenskaya, G.D.Latyshev, Y.S.Yegorov - Nuclear Phys. 9, 498 (1959) 59Sl16 A.A.Sorokin - Izvest.Akad.Nauk SSSR, Ser.Fiz. 23, 1445 (1959); Columbia Tech.Transl. p.1434 (1960) 59S142 R.Stockendal, S.Hultberg - Arkiv Fysik 15, 33 (1959) 59V13 I.J.van Heerden, D.Reitmannl H.Schneider - Nuovo cimento 11,167 (1959)
593
HAMILTON et a l .
60AI12 T.Alvager - Arkiv Fysik 17, 517 (1960) 60A122 M.I.Ali, A.Q.Sarker - Pakistan J.Sci.Res. 12, 1 (1960); Phys.Abstr. 65, 1964, No.20329 (1962) A.Artna, M.E.Law - Can.J.Phys. 38, 1577 (1960) 60Ar5 F.Asaroa F.S,Stephens, J.M.Hollander, I.Perlman - Phys.Rev. 117, 492 (196.0) 60As2 F.Asaro, I.Perlman, J.O.Rasmussen, S.G.Thompson - Phys.Rev. 120, 934 (1960) 60As5 M.A.Clark - Can.J.Phys. 38, 262 (1960) 60CI3 C.B.Creager, C.W.Kocher, A.C.G.Mitchell - Nuclear Phys. 14, 578 (1960) 60Cr 1 M.de Croes, G.Backstrom - Arklv Fysik 16, 567 (1960) 60De6 60De17 C.de Vries, E.J.Bleeker, N.Salomons-Grobben -Nuclear Phys. 18, 454 (1960) 60Era1 G.T.Fmery, W.R.Kane- Phys.Rev. 118, 755 (1960) I.V.Estulin, A.S.Melioransky, L.F.Kallnkin - Nuclear Phys. 16, 168 (1960) 60Esl J.S.Geiger, R.L.Graharn, G.T.Ewan - Nuclear Phys. 16, 1 (1960) 60Ge5 E.P.Grigoriev, A.V.Zolotavin - Nuclear Phys. 14, 443 (1960) 60Gr3 60Gr20 R.C.Greenwood, E.Brannen - Phys.Rev. 120, 1411 (1960) C.J.Herrlandel', R.Stockendal, R.K.Gupta - Arkiv Fysik 17, 315 (1960) 60He5 R.G.Helmer, S.B.Burson- Phys.Rev. 119, 788 (1960) 60He9 S.Nultberg, W.F.Frey, J.H.Hamilton - Bull.Southeastern Section Am.Phys.Soc. J9 (1960) 60Hu4 M.G.Iodko, V.V.Tuchkevich, V.A.Romanov, O.M.Kresin - Zhur.Eksptl. i Teoret.FJz. 38, 1027 (1960)/ Soviet Phys.JETP 60 Iol 11,739 (1960) Investigation of the relative intensities of some conversion lines of the speetram of neatron-deficient Iatecitun isotopes 60Kal 1 T.Katoh - priv.comm. (1960) 60Ka14 W.R.Kane, G.T.Emery, G.Scharff-Goldhaber, M.McKeown - Phys.Rev. 119, 1953 (1960) J.Kern, G.Backstrom - Nuclear Phys. 19, 461 (1960) 60Ke9 60Ko12 C.W.Kocher, A.C.G.Mitchell, C.B.Creager, T.D.Nainan - Phys.Rev. 120, 1348 (1960) H.Leutz - Z.Physik 159, 462 (1960) 60Le6 J.Lindskog, E.Bashandy, T.R.Gerholm - Nuclear Phys. 16, 175 (1960) 60Li8 D.C.Lu- Phys.Rev. 119, 286 (1960) 60Lu5 G.Luhrs, C.Mayer-Boricke - Z.Naturforsch. 15a, 939 (1960) 60Lu7 60Mal 9 I.Marklund, B.Van Nooijen, Z.Grabowski - Nuclear Phys. 15, 533 (1960) P.N.Mukerjee, I.Dutt, A.K.Sen Gupta, R.L.Bhattacharyya - Physica 26, 179 (1960) 60Mu5 N.N.Perrin- Ann.phys. 5, 71 (1960) 60Pe5 A.Schwarzschild, L.Groclzins- Phys.Rev. 119, 276 (1960) 60Sc6 G.Schupp, H.Daniel; G.W.Eokins, E.N.Jensen - Phys.Rev. 120, 189 (1960) 60Sc7 R.Stockendal - Arkiv Fysik 17, 579 (1960) 60St21 R.Stockendal - Arkiv Fysik 17, 553 (1960) 60St24 B.N.Subba Rao - Nuovo clmente 16, 283 (1960) 60Su4 R.E.Sund, M.L.Wiedenbeck- Phys.Rev. 120, 1792 (1960) 60Su8 R.Tornau- Z.Physik 159, 101 (1960) 60To6 A.A.Vorobev, A.P.Komar, V.A.Korolev - Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 1092 (1960); 60Vo7 Columbia Tech.Transl. 24, 1099 (1961) Y.Yamamoto - Thesis, Osaka University (1960) 60Ya3 N.h4.Antoneva, B.S.Dzhelepov - Izvest.Akad.Nouk SSSR, Ser.Fiz. 25, 1088 (1961); Columbia Tech.Tronsl. 25, 1096 (1962) A.Artna, M.W.Johns - Can.J.Phys. 39, 1817 (1961) A.Bedesku, O.M.Kalinkina, K.P.Mitrofanov, A.A.Sorokin, N.V.Forafontov, V.S.Shpinel - Zhur.Eksptl.i Teoret.Fiz. 40, 91 (1961); Soviet Phys. JETP 13, 65 (1961) F.Brown, R.L.Graham, G.T.Ewan, J.Uhler - Can.J.Phys. 39, 779 (1961) 61 Br9 J.R.Cook - Proc.Phys.Soc.(London) 77, 346 (1961) 61C04 B.S.Dzhelepov, I.M.Rogachev - Vestnik Leningrad University, No.4, Ser.Fiz. i Khim. 1, 56 (1961); Nuclear Sci.Abstr. 61Dz6 16, 2575, No. 19814 (1962) W.F.Edwards, F.Boehm - Phys.Rev. 121, 1499 (1961) 61Edl 61Ed2 W.F.Edwards, C.J.Gallagher- Nuclear Phys. 26, 649 (1961) T.R.Gerholm, B.G.Pettersson, B.van Nooijen, Z.Grabowski - Nuclear Phys. 24, 177 (1961) 61 Ge3 M.Giannini, D.Prosperi, S.Sciuti - Nuovo cimento 21,430 (1961) 61Gi2 61 Go19 S.Gorodetzky, N.Schulz, A.C.Knipper - Priv.Comm. (Oct. 1961) Z.Grabowski, B.G,Pettersson, T.R.Gerholm, J.E.Thun - Nuclear Phys. 24, 251 (1961) 61Gr9 P.H.Heckmann, K.Gubenator, J.Poyhonen, A.FMmmersfeld - Z.Physlk 163, 451 (1961) 61He8 K.Hisatake - J,Phys.Soc.Japan 16, 1280 (1961) 61Hi6 61Hu12 S.Hultberg, D.J.Horena J.M.Hollander -Nuclear Phys, 28, 471 (1961) B.Jung, J.Svedberg - Arklv.Fysik 19, 429 (1961) 61Ju5 61An5 61Ar15 61 Be20
594
INTERNAL-CONVERSION
61Ke4 61Lel 7 61Mu3 61Ne12 61Ni12 61Pc5 61Pc7 61 Pc11 61 Re2 61Sul 61Su10 61Tr8 61Wol 61Wo2
COEFFICIENTS
B.Keisch, E.A.C.Yates - J.Inorg.Nuclear Chem. 17, 183 (1961) W.H.G.Lewin, B.Van Nooijen, A.H.Wapstra - Nuclear Phys. 27, 681 (1961) A.H.Muir,Jr., F.Boehm - Phys.Rev. 122, 1564 (1961) L.Nemet - Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 68 (1961); Columbia Tech.Transl. 25, 68 O.B.Nielsen, H.Nordby, S.Bjomholm - quoted in 64Hy02, p.683 (1961) B.G.Pettersson, T.R.Gerholm, Z.Grabowski, B.van Nooijen - Nuclear Phys. 24, 196 (1961) B.G.Pettersson, J.E.Thun, T.R.Gerholm - Nuclear Phys. 24, 243 (1961) L.Persson, R.Stockendal - Arkiv Fysik 19,303 (1961) D.H.Rester, M.S.Moore, F.E.Durham, C.M.Class - Nuclear Phys~ 22, 104 (1961) A.W.Sunyar, P.Axel - Phys.Rev. 121, 1158 (1961) Z.Sujkowski - Arkiv Fysik 20, 243 (1961) E.F.Tret'yakov, N.I.Pirogova, L.L.Gol'din - Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 274 (1961); Columbia Tech.Transl. 25, 260 (1961) J.L.Wolfson - Can.J.Phys. 39, 468 (1961) J.L.Wolfson - Can.J.Phys. 39, 773 (1961)
62Ba7 E.Bashandy, M.S.Elnesr - Nuclear Phys. 31, 177 (1962) 62Be53 E.M.Berstein - Phys.Rev.ketters 8, 100 (1962) 62EI12 M.S.EI-Nesr, E.Bashandy - Physica 28, 1335 (1962) Internal conversion coefficients of the 2 + --* 0 + pare E2 transitions in 166Er, 17°Yb and IB60s 62 Fol 1 R.Foucher, J.Merinis, A.de Pinho, M.Valadares - Compt.rend. 255, 1916 (1962) 62Fo15 A.Foglio, M.M.Bettoni - Energia Nucl.9, 677 (1962) K,-conversion coefficients of some E-2 transitions 62Fr13 W.F.Frey, J.H.Hamilton, S.Hultberg - Arkiv Fysik 21,383 (1962) 62Ge6 J.S.Geiger, R.L.Graham, F.Brown -AECL-1542, p.24 (1962) The relative K and L sabshelI conversion line intensities for M4 transitions in Xe and Ba 62Ge7 T.R.Gerholm, M.S.EI-Nesr, E.Bashandy, B,G.Petterson - Arkiv Fysik 21, 241 (1962) 62Ge9 J.S.Geiger, R.L.Graham, F.Brown - Can.J.Phys. 40, 1258 (1962) 62Go6 S.Gorodetzky, F.Beck, S.Knipper, R.Manquenouille, R.Richert - Compt.rend. 254, 2319 (1962) 62Gr4 R.C.Greenwood, J.H.Reed - BulI.Am.Phys.Sac. 7, 4, 316, MB8 (1962); priv.comm. 62Gu3 R.Gunnink, A.W.Stoner- Phys.Rev. 126, 642 (1962) 62Ha23 S.S.Hanna - BulI.Am.Phys.Soc. 7, No.7, 470, LA4 (1962) 62Ha25 J.H.Hamilton R.V.Stockendal, D.C.Camp, L.M.Langer, D.R.Smith - Nuclear Phys. 36, 567 (1962) 62Ho36 J.H.Hamihon, T.R.Duncan, H.Krouser, J.Pollard - Nuclear Phys. 38, 539 (1962) 62Je10 J.F.W.Jansen, S.Hultberg, P.F.A.Goudsmit, A.H.Wapstra - Nuclear Phys. 38, 121 (1962) E2 internal conversion coefficients of 2 +--" 0 + transitions from the decay of 17°Tin, 196Au, and Z°°Tl 62Ka7 T.Katoh, Y.Yoshizawa - Nuclear Phys. 32, 5 (1962) 62Ki3 O.C.Kistner, A.W.Sunyar - BulI.Am.PhYs.Soc. 7, 4, 342, UA14 (1962) 62Ki9 P.Kienle, K.Wierb F.Wunderlich, R.Haas - Z.Physik 170, 76 (1962) 62La10 N.k.Lark, P.F.A.Goudsmit, J.F.W.Jansen, J.E.J.Oberski, A.H.Wapstra - Nuclear Phys. 35, 582 (1962) 62Lu3 D.C.Lu, R.S.Dingus - Phys.ketters 3, 44 (1962) 62Ma30 k.G.Marinkov, M.T.Zupancic - Bull.Boris Kidrich Inst.Nuclear Sci. 13, No.2, 7 (1962) 62No7 T.Novakov, R.Stepic - Phys.ketters 3, 82 (1962) Penetration effects in the internal conversion of the M1 transitions between rotational states 62P~ H.J.Prask, J.J.Reidy, E.G.Funk,Jr., J.W.Mihelich - Nuclear Phys. 36, 441 (1962) 62Re9 V.V.Remaev, Y.S.Korda, A.P.Klyucharev, A.M.Smirnov - Zhur.Eksptl.i Teoret.Fiz.43, 1649 (1962); Soviet Phys.JETP 16, 1162 (1963) Decay of some millisecond isomers 62Sc4 C.F.Schwerdtfeger, E.G.Funk,Jr., J.W.MJhellch - Phys.Rev. 125, 1641 (1962) 62Sc22 G.Schupp, E.N.Hatch - IS-590 (1962) Precise measurement of the K-shell internal conversion coefficient of the 344-keV, E2 transition in C..dls2 62Sh10 S.Shimizu, Y.Nakayama - Nuclear Phys. 31, 600 (1962) 62Sul T.Suter, P.Reyes:Suter, S.Gustafsson, I.Marklund - Nuclear Phys. 29, 33 (1962) 62Ta6 J.G.V.Taylor - Can.J.Phys. 40, 383 (1962) 62Th3 J.E.Thun, Z.Grabowski, M.S.EI-Nesr, G.Bruce - Nuclear Phys. 29, 1 (1962) 62Un1 J.Unik, P.Day, S.Vandenbosch - Nuclear Phys. 36, 284 (1962) 62Va10 B.van Nooijen, H.van Krugten, W.J.Wiesehahn, A.H.Wapstra - Nuclear Phys. 31,406 (1962) 62Wa22 H.Warhanek - Nuclear Phys. 33, 639 (1962) 62We8 H.Weigmann - Z.Physik 167, 549 (1962)
595
HAMILTON
63A 132
etal.
K.F.Alexander, H.F.Brinckmann - Ann.Physik 12, 225 (1963) Bestinnnung der Aktivierungsqaerschnitte karzlebiger Kernisomere far thermische Neutronen 63Be53 M.Bernheim, G.R.Bishop - J. Phys. 24, 970 (1963) Etude de la diffusion inelastique des electrons par los noyaax 6Li et 7Li K.M.Bisgard, P.Dahl, P.Hornshoj, A.B.Knutsen - Nucl.Phys. 41,21 (1963) 63Bi03 K.M.Bisgard, K.B.Nielsen, J.Sodemann - Physietters 7, 57 (1963); erratum Phys.ketters 8, 220 (1964) 63Bi13 The state at 1576 keV in Sm's2 63Bo29 H.E.Bosch, F.Krmpetic, A.Plastino - Nucl.Phys. 48, 292 (1963) Experimental determination of the total conversion coefficient of the 0,265 MeV transition in Mo93m 63Bu02 D.G.Burke, M.E.Law, M.W.Johns - Can.J.Phys. 41, 57 (1963) 63Ch25 P.Chedin, A.Moussa - J.Phys. 24, 930 (1963) Determination absoIae de coefficients de conversion interne de transitions de basso energie dons lS3Eu 63Ci02 k.Ciuffolotti, F.Demichelis - NucI.Phys. 48, 305 (1963) Isomeric transitions in Sb 122m 63Cr06 B.Crasemann, G.T.Emery, W.R.Kane, M.k.Perimon - Phys. Rev. 132, 1681 (1963) Properties of radioactive Re '8~ 63Cr14 W./.Croft, B.-G.Pettersson, J.H.Hamilton - NucI.Phys. 48, 267 (1963) The K-conversion coefficient of the 279 keV transition in T12°3 by a coincidence technique and establishraent as a standard 63Dal 1 H.Danlel, G.Luhrs - Z.Physik 176, 30 (1963) Aufbau eines automatisch arbeitenden Spektrometers and Untersuehung des Konversionslinienspektrwns B.Elbek - Thesis, University of Copenhagen (1963) 63EI06 Determination of nuclear transition probabilities by Coulorab excitation 63Fo02 D.B.Fosson, B.Herskind - NucI.Phys. 40, 24 (1963) Half-lives of f i r s t excited 2 + states (I50 < A < 190) 63 Gi 18 W.W.Givens - Thesis, Rice Univ., Houston, Tex. (1963) 63Go21 M.T.Goncalves - Compt.Rend. 257, 887 (1963) Spectre d' electrons de conversion associes a la transmutation du radiua 226 en radon 222 63 Grl 5 K.Y.Gromov, B.S.Dzhelepov, V.Zvolska, l.Zvolskii, A.V.Zolotavin, k.k.Pelekis, Z.E.Pelekis Izv.Akad.Nouk SSSR, Ser.Fiz. 27, 195 (1963); BulI.Acad.Sci.USSR, Phys.Ser. 27, 205 (1964) Decay scheme for Tm'6s 63Gr38 R.L..Graham, J.M.Hollander, P.Kleinheinz - Nucl.Phys. 49, 641 (1963) Properties of the 57 and 351 keV excited states in s g P r ' 4 3 63Gr39 R.L.Graham - priv.comm. (Sept. 1963) L subshell ratio in Eu 's3 63 Gr40 E.P.Grigorlev, K.Y.Gromov, V.G.Kalinniorov - 4th Conf.Nucl.Spectroscopy of Neutron Deficient Isotopes and Nuclear Theory, Dubna (1963) 63Ha16 R.L.Hahn, W.S.Lyon - Phys.Rev. 130, 306 (1963) Internal conversion coefficients in the decay of Au-199 63Ha38 A.K.Hankla, J.H.Hamilton, R.V.Stockendal - Arkiv Fysik 24, 429 (1963) K internal conversion coefficients of transitions in BaT M 63Ja06 • A.Jasinski, J.Kownacki, H.kancman, J.Ludziejewski, C.Chojnacki, I.Yutlandov - NucI.Phys. 41,303 (1963) The decay scheme of Yb-i66 63Ke08 B.Keisch - J.lnorg.NucI.Chemo 25, 220 (1963) 63Kei 1 W.H.Kelly, D.J.Horen - NucI.Phys. 47i 454 (1963) Conversion electron measurements in the decay of i1.5 d BaT M 63Ku22 T.Kuroyanagi, T.Tamura - NucI.Phys. 48, 675 (1963) Nuclear spectroscopy of Tm'Ts 63Lel 1 W,H.G.Lewin, B.Van Nooijen, C.W.E.Van Eijk, A.H.Wapstra - NucI.Phys. 48, 159 (1963) The K-conversion coefficient of the 412 keVE2 transition in Hg'98 63Le20 B.C.kevrat - Thesis, Univ. of Michigan, Ann Arbor, Mich. (1963) 63Na01 Y.Nakayama, H.Hirata - NucI.Phys. 40, 396 (1963) 63Pel 1 L.Persson, R.Hordell, S.Nilsson- Arkiv Fysik 23, 1 (1963) The decay of the ground state of Dy-I65 63Pe20 k.Persson, H.Ryde, K.Oelsner-Ryde - Arkiv Fysik 24, 451 (1963) Levels in TblSTpopalated in the decay of Dyls7 63Pr13 Z.Preibisz, K.Pawlok, K.Stryczniewicz - BulI,Acad.Polon.Sci., Ser.Sci.Math.Astron.Phys. 11,691 (1963) Contribution to the investigation of Tm166 decay scheme 63Ra07 G.N.Rao, H.S.Hons - NucI.Phys. 41,511 (1963) 63Ra21 G.N.Rao - Nuovo Cimento 30, 507 (1963) Internal conversion coefficient measurements in Pr '4' and Crs4
596
INTERNAL-CONVERSION COEFFICIENTS
W.D.Schmidt-Ott - Z.Physik 174, 206 (1963) Der ZerfaIl des Co-60m and Zr-9Ora 63Sc15 F.Schima, E.G.Funk,Jr., J.W.Mihelich -Phys.Rev. 132, 2650 (1963) Electron capture of At 21° (8.3 h) to Po 21° 63Se20 K.D.Sevier - Arkiv Fysik 25, 87 (1963) The conversion lines of the 39.85 keV transition in thallium 208 E.Steichele, P.Kienle - Z.Physik 175, 405 (1963) 63Stl3 Der zerfall des OdIsl 63Th04 H.C.Thomas, C.F.Griffin, W.E.Phillips, E.C.Davis,Jr. - NucI.Phys.44, 268 (1963) The electron capture ratio and the conversion c o e f f i c i e n t of the I4.~ keV gauvaa ray in the decay of Cos7 63Tr05 P.N.Trehan, J.D.French, M.Goodrich - Phys.Rev. 131, 2625 (1963) Decay of Cs T M and the level scheme of Ba T M 63Tu01 V.V.Tuchkevich, V.A.Romanov, M.G.Totubalina - Izv.Akad.Nauk SSSR, Ser.Fiz. 27, 246 (1963); Buli.Acad.Sci.USSR, Phys.Ser. 27, 258 (1964) Investigation of neutron-deficient lutetitun isotopes by means of a prism spectrometer with quadrupole lenses 63Va05 S.E.Vandenbosch, C.V.K.Baba, P.R.Christensen, O.B.Nielsen, H.Nordby - NucI.Phys. 41,482 (1963) The decay scheme of Pb 211 63Va28 J.Valentin, A.Santoni - J.Phys. 24, 648 (1963) Transition dipolaire electrique anormale de Ta 179 63Scl 4
64Aa01 64Ab03 64Bal 2 64Be16 64Be23 64Bol 9 64Bo21
64Bo23 64Bo34
64Br35 64Ch08 64Chl 8 64Co22
64Da15 64Da19 64Dz04
64Ew03 64Fr02
E.Aasa, T.Sundstrom, O.t3ergman,J.Lindskog, K.Sevier - Arkiv Fysik 27, 133 (1964) A conversion electron study o f the decay of Pb 2°1 A.A.Abdumalikov, A.A.Abdurazakov, K.Y.Gromov, F.N.Mukhtasimov, G.Y.Umerov - JINR-P-1509 (1964) Investigation of conversion electron spectra of Er andHo isotopes with T½ < I8 kilosec E.Bashandy, A.H.EI-FarrQsh, M.S.El-Nesr - Nucl.Phys. 52, 61 (1964) Internal conversion coefficients of the transitions in W182 N.Benzcer-Koller - Phys.Rev. 134, B1205 (1964) Internal conversion in Sn 119 O.Bergman, G.Backstrom - NucI.Phys. 55, 529 1(964) Multipolarities of transitions in the decay of Au 194 to Pt 194 D.D.Bornemeier, k.D. EIIsworth, C.E.Mandeville, V.R.Potnis - Phys.Rev. 134, B740 (1964) Nuclear energy states of In 'is H.H.Bolotin - Phys.Rev. 136, B1566 (1964) Level structure of Sn 116 from the decay of I-h Sb 116 ; and a detailed comparison of Sn 116, Sn 118, and Sn lao with pairing-force calculations N.E.Bosch, F.Krmpotic, h.Plastino - Nucl.Phys. 56, 689 (1964) Determination of conversion coefficients from the decay of Pb 2°2m by means of a semiconductor detector H.E.Bosch, F.Ktmpotic, A.Plastino - J.Phys.(Paris) 25, 1023 (1964) Determination du coefficient de conversion K de la transition de 0.~00 MeV clans la desintegration du 2°3Pb en u t i l i s a n t un compteur semiconducteur W.H.Brantley, J.H.Hamilton, T.Katoh, E.F.Zganjar - BulI.Am.Phys.Soc. 10, No.2, 244, A3 (1965) ~S4Eu decay Y.Y.Chu, O.C.Kistner, A.C.L-i, S.Monaro, M.k.Perlman - Phys.Rev. 133, B1361 (1964) E2/Mi ratios in the isomeric transitions of Te 121 and Te 123, and the decay of the Te T M isomers to Sb 12t Y.Y.Chu, M.k.Perlman - Phys.Rev. 135, B319 (1964) Empirical screening correction for M-subshell internal conversion coefficients C.R.Cothern, R.D.Connor - Can.J.Phys. 42, 1798 (1964) Studies in the decay of the active deposit o f actiniara. I. Alpha-ganuna angular correlation in the decay of Bi 21 a(AcC) H.Daniel, J.Huefner, T.I-orenz, O.W.B.Schutt, U.Gruber - Nucl.Phys. 56, 147 (1964) Oer Zerfall Ta 1"2 -~ W1~2 H.Daniel, O.Mehling, P.Schmidlin, D.Schotte, E.Thummernicht - Z.Physik 179, 62 (1964) Zerfallsschemata, fl-Matrixelemente und~-Multipolordnungen fur die Ubergange Cos6 ~ Fe s6 und ji31 ~ Xel31 B.S.Dzhelepov, A.I.Medvedev, I.F.Uchevatkin, S.A.ShestQpalova - Izv.Akad.Nauk SSSR, Ser. Fiz. 28, 64 (1964); BulI.Acad.Sci.USSR, Phys.Ser. 28, 63 (1964) Measurement o f the conversion coefficient o f the I095.0 keV transition accompanying decay of Lu I ~ . Calculation o f the constants that determine the probabilities for transitions between K = 3* and If = 0 + rotational bands G.T. Ewan - priv.comm. (November 1964) J.Frana, I.Rezanka, A.Spalek- priv.comm. (March 1964) Decay Cs ~s4m
597
HAMILTON et al.
64Fu08
M.Fujioka, K.Hisatake, K.Takahashi- NucI.Phys. 60, 294 (1964) The decay o f 2.2 h 138Pr and e x c i t e d s t a t e s in 1~8Ce
64Hal 8
I.B.Haller, B.Jung - NucI.Phys. 52, 524 (1964)
64Ha19
R.Hardell, S.Malmskog, L.Perssen - Arkiv Fysik 25, 333 (1964)
64Ha52 64He19
P.G.Hansen - Rise Report 92 (1964) (Thesis) C.J.Herrlander, R.k.Graham - NucI.Phys. 58, 544 (1964)
64Hi07
T.Hirose, K.Hisatake -J.Phys.Soc.Japan 19, 1542 (1964)
64Ho18
B.W.Hooton.- Nucl.Phys. 59, 341 (1964)
S p i n - p a r i t y o f 53 rain Cs 13s m Decay o f the I. 26 min isomeric level in Dy 16s
Penetration e f f e c t s in the K and L internal conversion c o e f f i c i e n t s o f the 279 keV t r a n s i t i o n in T12°a The decay o f Ba T M
and e x c i t e d levels in Cs T M
K s h e l l conversion c o e f f i c i e n t s in fie 16s , Tm169 , Ta TM 1 and Yb 17°
64Ka02
E.K.Hyde, I.Perlman, G.T.Seaborg - The Nuclear Properties of the Heavy Elements, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1964) E.Kankaleit, F.Boehm, R.Hager- Phys.Rev. 134, B747 (1964)
64Ka21 64Ma36
G.Kaye priv.comm. (November 1964) L.Maly, Z.Plajner, J.Jursik, M. Finger- Czech.J.Phys. B14, 240 (1964)
64Hy02
Mossbauer e f f e c t in Tm167 and t o t a l internal conversion o f the 8.~2-keV t r a n s i t i o n
64ivlc17 64Ne05 64Ne14 64No08 64Pa20
-
Decay o f Be 186 J.F.McNulty, E.G. Funk,Jr., J.W.Mihelich - NucI.Phys. 55, 657 (1964) A r e - i n v e s t i g a t i o n o f the decay o f Eu 147 to Sm 147 W.B.Newbolt, J.H.Hamilton - NucI.Phys. 53, 353 (1964); errata NucI.Phys. 59, 693 (1964) Internal conversion studies in the decay o f Ag ~l°m W.B.Newbolt - Thesis, Vanderbilt Univ., Nashville, Tenn. (1964) T.Novakov, J.bt.Hallander - NucI.Phys. 60, 593 (t964) Anomalous L subshell ratios in mixed M1-E2 t r a n s i t i o n s
D. Parsignault - Compt.Rend. 259, 1515 (1964) Spectre fl de la t r a n s i t i o n (2 --~ 2 +) (960 keV) de l ' o r t98. C o e f f i c i e n t de conversion de la t r a n s i t i o n eIeetromagnetique de 412 keV du ~ r c a r e t98
64Pe07
L.Persson - Arkiv Fysik 25, 307 (1964)
64Pe13
L.Persson, H.Ryde - Arkiv Fysik 25, 397 (1964)
L e v e l s in Tb 's9 populated in the decay o f Gdls9
64Pe17 64Po05 64Sel 1
On the level scheme o f Tb Iss N.F.Peek, J.A.Jungerman, C. G.Patten - Phys.Rev. 136, B330 (1964) Nuclear energy levels o f Gd~s6 as populated by/3 emission from Eu ~6 V.R.Potnis, E.B.Nieschmidt, C.E.Mandeville, k.D.EIIsworth, D.D.Bomemeier- Phys.Rev. 136, B919 (1964) Nuclear t r a n s i t i o n s in Au ~97 C.Sebi IIe, F.Widemann - Compt. Rend. 259, 2207 (1964) Le spectre d ' e l e c t r o n s de basse energie emis ~ cours de la transmutation du tungstene 187 en rhenium 187
64Sh20
S.Shastry, B.B.Barman Roy, R.Bhattacharyya - NucI.Phys. 56, 491 (1964)
64Th02
B.Y.Thosar, M.C.Joshi, R.P.Sharma, K.G.Prasad - Nucl.Phys. 50, 305 (1964)
64Va06
W.Van Wiingaarden, R.D.Connar - Can.J.Phys. 42, 504 (1964)
Decay o f Tc96 Internal
64We09 64Wo03
65An01 65As03
c o n v e r s i o n s t u d i e s o f the 2*"*0* t r a n s i t i o n
in some deformed even n u c l e i
The beta decay o f Cs 124 W.Weirauch - Z.Physik 181,273 (1964) Messang der K-Konversionskoeffizienten der isomeren Atomkerne Pd I° 7 m and Pd 1°9 m J.L.Wolfson, J.J.H.Park - Can.J.Phys. 42, 1387 (1964) Low-energy ga~na-ray t r a n s i t i o n s in Np 237 follovdng c~ decay o f AmT M O.U.Anders - Phys.Rev. 138, B1 (1965) Br 8 z m c~td i t s decay scheme D.Ashery, A.E.Blougrund, R.Kalish, J.S.Sokolowski, Z.Vager - Nucl.Phys. 67, 385 (1965) E2/MI mixing ratios and K conversion c o e f f i c i e n t s o f some rotational t r a n s i t i o n s
65Ba18
E.Bashandy, M.G.M.El-Sayad, M.R.EI-Aassar - Z.Physik 186, I08 (1965)
65Be07
K.-E.Bergkvist, S.Hultberg - Arkiv Fysik 27, 321 (1965)
The K-conversion c o e f f i c i e n t o f the 32t keV Et t r a n s i t i o n in H f ~77 A p r e c i s i o n measurement o f (cC2)K o f the 412 keV t r a n s i t i o n in Hg 198 by the i n t e r n a l - e x t e r n a l conversion method and a high resolution study o f the 412 keV angular d i s t r i b u t i o n o f gold K-shell photoelectrons
598
INTERNAL-CONVERSION
COEFFICIENTS
H.W.Boyd, J.H.Hamilton - Nucl.Phys. 72, 604 (1965) Low-energy transitions in the decay of la2I R.A.Brown, G.T.Ewan - NucI.Phys. 68, 325 (1965) 65Br20 Study of the decay of Cs T M with a high resolution Ge(Li) :c-ray spectrometer 65Co06 C.R.Cothern, R.D.Connor - Can.J.Phys. 43,383 (1965) Studies in the active deposit of actinium. Part II: The decay of 211Pb (AcB) 65Cr04 T.Cretzu, K,Hohmuth, J.Schintlmeister - NucI.Phys. 70, 129 (1965) Der Zerfall yon Tc9srn 65Cr05 W.k.Croft, B.-G.Pettersson, J.H.Hamilton - NucI.Phys. 70, 273 (1965) Studies of the 84.2 keV E2 transition in Yb ~7° 65Di05 R.S.Dingus, W.k.Talbert, E.N.Hatch - 15-1032 (1965) Measurements of some internal conversion coefficients using scintillation counter P.Erman, S.Hultberg- priv.comm. (March 1965) 65Er05 On the anomalies of E2 conversion coefficients in the deformed-nucleus region 65Frl 1 A.M. Friedrnan, J.R.Erskine, T.H.Braid - Bull.Am.Phys.Soc. 10, No.4, 540, KA13 (1965) Measurement of the quadrapole nmments and deformations of Th230, U234 U236, /~240, and Pu242 65Ge01 J.S.Geiger - Nucl.Phys. 61,264 (1965) The multipolarity of the 116 keg isomeric transition in Ag 1lo 65Ha13 J.R.Harris, G.M.Rothberg, N.Benczer-Koller- Phys.Rev. 138, B554 (1965) Decay of Aa 19s 65Ho10 M.D.Hohz, J.M.Hollander, R.L.Graharn, T.Novakov - priv.cornm, to J.H.Harnilton 65Ka01 G.Kaye -priv.cornm. (January 1965) 65Ke04 W.J.Keeler, R.D.Connor - NucI.Phys. 61,513 (1965) The decay of Au 198 65La05 D./an9 e - Z.Physik 183, 90 (1965) Untersuchung des Iridium-191m-Zerfalls 65Le06 H.keutz, K.Schneckenberger, H.Wenninger - Nucl.Phys. 63, 263 (1965) Electron capture ratios in Gd 1°9 and internal conversion coefficients in Ag 1°9m 65Le18 C.M.kederer, J.K.Poggenburg, F.Asaro, J.O.Rasmussen, I.Perlman - priv.comm, to J.H.Hamilton 65Le19 W.H.G.kewin - Thesis, Univ.Delft, Delft (1965) Determinations of nuclear decay energies and conversion coefficients using coincidence techniques 65Mcl 1 W.C.McHarris - UCRL-11784 (1965) 65Me03 J.S.Merritt, J.G.V.Taylor - Anal.Chem. 37,351 (1965) Decay of cesium-137 determined by absolute counting methods 65Mu01 A.H.Muir,Jr. - Nucl.Phys. 68, 305 (1965) The 6 keV transition in Ta lsl R.H.Nussbaum, R.M.Housley - Nucl.Phys. 68, 145 (1965) 65Nu0t Internal conversion in Fes7 from the Mossbauer effect in iron 65Pa07 S.C.Pancholi - Nucl.Phys. 67, 203 (1965) The E2 conversion coefficients of rotational transitions 65Ri10 [..L.Riedinger, J.H.Hamilton, N.R.Johnson - Am.Phys.Soc.Southeastem Section Meeting, p.37 (November 1965) Gasuaa-ray intensities in the I.S4Eu decay 65Scl 1 W.-D.Schrnidt-Ott, F.Smend, A.Flamrnersfeld - Z.Physik 184, 310 (1965) Der Zerfall des TblsSm 65Se08 S.K.Sen, I.O.Durosinmi-Etti -Phys.Letters 18, 144 (1965) Measurement of ~K, ~totcfi and K/(L + M) for electron capture transitions in 113rain and l°gmAg with a solid state detector 65Ta03 K.Yakahashi, M.McKeown, G.Scharff-Goldhaber - Phys.Rev. 137, B763 (1965) Decay of the isomer EulS2m 2 (96 rain) 65Th05 J.E.Thun, S.Tomkvist, F.Falk, H.Snellman - Nucl.Phys. 67, 625 (1965) Nuclear spectroscopy of Ba ~ssm 65Th06 B.V.Thosar, M.C.Joshi, R.P.Sharrna, K.G.Prasad - priv.cornm. (August 1965) K-shell internal conversion coefficients of pore E2 transitions 65Ya05 T.Yarnazaki, J.M.HolJander - priv.cornrn, to J.H.Harnilton 65Bo23
66As01 66Br01 66De01
D.Ashery, A.E.Blaugrund, R.Kalish -661CP, p.263 (1966) K conversion coefficients of mixed E2-MI rotational transitions W.H.Brantley, S.C.Pancholi, J.H.Hami[ton - 661CP, p.535 (1966) L subshell ratio measurements for E2 transitions in C-dls4, Yb 17°, and ~f182 B.I.Deutch, P.Hornshoj -661CP, p.459 (1966) Particle parameters measured in pare transitions
599
H A M I L T O N et a l .
66EI01 66Er01 66Ge01 66Gr01 66Ha01 66Ha03
66Ho04 66Ha07 66Ha08 66H e01 66He02 66He03
661CP 66Ja01 66Jo02 66Jh01 66Ko01 66KI01 66Le01 66Le02
66Mi01 66Mu01 66No01 66No02 66Po09 66Se01 66St01 66St02 66Va01 66Ve01 66Ya03 66Zg01 66Zg02
M.S.EI-Nesr, M.R.EI-Aassar - Z.Physik 189, 138 (1966) Study of Er '7 ' decay by means of an electron-gazzm coincidence technique P.Erman, S.Hu!tberg - 661CP, p.249 (1966) On the anomalies of E2 conversion coefficients in the deformed-nucleus region J.S.Geiger - 661CP, p.379 (1966) The internal conversion of high multipole order T-transitions R.k.Graham, J.Geiger - quoted by 66Ha08 J.H.Hamilton, B.van Nooijen, A.V.Ramayya, W.H.Brantley - 661CP, p.541 (1966) L subshell ratios for E2 transitions in deformed heavy elements E.N.Hatch, G.W.Eakins, G.C.Nelson, R.E.McAdams -661CP, p.183 (1966) Method for measuring internal conversion coefficients using a bent-crystal gamma-ray ~onochromator and a magnetic electron spectrometer R.Hager, E.Seltzer -661CP, p.315 (1966) J.H.Hamilton, S.R.Amtey, B.Van Nooijen, A.V.Ramayya, J.J.Pinajian - Phys.ketters 19, 682 (1966) Total and K conversion coefficient measurements in S4Gr, 6sCu and 88Sr for use as standards J.H.Hamilton - Phys.ketters 20, 32 (1966) L subshell ratios of pure E2 transitions C.J.Herrlander, G.T.Ewan - 661CP, p.515 (t966) L subshell measurements of retarded dipole transitions R.J.Herickhoff, H.W.Boyd, J.H.Hamilton - 661CP, p.277 (1966) E2 conversion coefficients of the 245-keV transition in Sm 's2 and the 344-keV transition in GdIs2 K.Heinemonn, F.W. Richter- Z. Physik 190, 423 (1966) Messungen der W~nkelverteilung der 4~0 keV-y-Strahlung ans der Beaktion 2~Na(p,p'y) a3Na in den Besonanzen Ep = f281 keV and Ep = 1456 keV Proc.lntem.Conf.Jntema[ Conversion Process, Nashville, Tenn. (1965), J.H.Hamilton, ed., Academic Press, Inc., New York, N.Y. (1966) J.F.W.Jansen, A.H.Wapstra - 661CP, p.237 (1966) Determination of the conversion coefficient in Yb It° with s c i n t i l l a t i o n methods J.F.W.Jonsen, J.H.Hamilton, E.F.Zganjar- 661CP, p.257 (1966) Conversion coefficient measurements in Sm's2, C-d 's4, and Dy '6° by the IEC method S.Jha, M.Friedman, B.Patnoik, J.L.Power - 661CP, p.327 (1966) The conversion coefficient of saree gamma rays in In 113, in 1Is, Xe 1,9 and Xe133 S.-E.Karlsson, I.Andersson, O.Nilsson, G.Molmston, E.Aisonberg - quoted by 66Ha08 P.Kleinheinz, L.Semuelsson, R.Vukanovicz, H.L.indstrom, F.Krmpotic, K.Siegbahn - quoted by 66De01 C.M.Lederer, J.M.Hollander, I.Perlman - Table of Isotopes, John Wiley end Sons, New York (to be published, 1966) W.H.G.kewin - 661CP, p.163 (1966) Recent determinations of conversion coefficients of E2 transitions obtained from coincidence techniques and the peak-to-beta spectram method S.C.Misra, J.S.Merritt, J.G.V.Toylor - quoted in 66Ge01 A.Mukerji, J.W.Kane, Jr. - 661CP, p.419 (1966) Internal conversion coefficient of the 53-keV gamma ray emitted in the decay o f R u 103 T.Novakov - 661CP, p.497 (1966) MI-E2 mixing from L subshell conversion ratios T.Novakov, J.M.Hollander - quoted by 66Ha08 S.C.Poncholi -Nucl.Ph,/s. 81, 417 (1966) K-shell internal conversion coefficient measurement for the 145 keV transition in 141pr E.Seltzer, R.Hager -661CP, p.309 (1966) Anomalous MI transitions in Ta 's~ and Lu 17s R.Stepie, M.Bogdanovic, M./Vlladjenovic - 661CP, p.507 (1966) L subshell ratios in E2 transitions P.H.Stelson - 661CP, p.213 (1966) Deformation on conversion cqefficients from Coulomb excitation and lifetime measurements B.van Nooijen, A.V.Ramoyyo, J.H.Hamilton, J.J.Pinajian, N.R.Johnson - 661CP, p.19d (1966) Conversion coefficients measurement employing magnetic and solid-state spectrometers k.J.Velinsky, M.A.Velinsky - 661CP, p.395 (1966) Belative intensities of internal conversion lines in '37Bum and Bi sl° T.Yamazaki, J.M.Hollonder - quoted by 66Ha08 E.F.Zgonjar, J.H.Hamilton - Con.J.Phys. 44, 549 (1966) The IEC method and conversion coefficients of the 605-keV transition in 134Ba E.F.Zgonjar, J.H.Hamilton - 661CP, p.253 (1966) The K conversion coefficient of the pure E2 123-keV transition in Gd 1s4 by a coincidence method
600
INTERNAL-CONVERSION COEFFICIENTS
~
~
~
~
~
~' ~
~
~
~
o
o
~
~
~
~
~
o
~
o/
Od
O,I
Cq
o,I
~
~
~
~
,~ ~
~
t
~
~
~
~
~
~
~
ed
~
Ctl
OJ
ed
O~
04
~
Pd
Od
I
i
,
i
i
i
(
i
i
i
i
i
~
i
i
i
i
~
OJ
~
QI
ed
0 o co
H
~o
0 •
°
0
ee o
~ o
~o
r~~"
© P~
~
~
~
~
r~
~
~
~
~
~
~
~
~
~
~
i
~
i
i
i
i
i
i
,
i
i
i
i
i
i
~
o
,
i
~
i
:
i
,
i
i
i
i
i
i
¢
i
H
0
0
~ o H
601
i
HAMILTON et a l .
& o
i
I
i
i
i
i
i
!
I
i
i
i
i
i
!
f
i
I
I
i
i
l
I
i
!
i
I
i
i
i
i
t
i
I
I
i
i
I
l
I
CO
CO
CO
t
i
i
kO
,,.0
o
o
g
i
i
!
i
t
i
f
i
i
I
i
i
i
i
i
i
I
f
o
i
i
i
I
i
!
!
i
i
!
i
i
I
!
i
l
I
i
ot-I
~-
i
o
& o g
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
!
i
i
i
t>
602
i
i
i
i
i
M)
i
i
i
i
i
I
i
i
i
i
i
i
!
i
i
f
!
!
~3
i