Expert systems for inventory control management

Expert systems for inventory control management

Computers ind. Engng Vol. 17, Nos 1-4, pp. 425-429, 1989 0360-8352/89 $3.00+0.00 Copyright © 1989 Pergamon Press plc Printed in Great Britain. All r...

272KB Sizes 0 Downloads 361 Views

Computers ind. Engng Vol. 17, Nos 1-4, pp. 425-429, 1989

0360-8352/89 $3.00+0.00 Copyright © 1989 Pergamon Press plc

Printed in Great Britain. All rights reserved

IJBWERTORY EXPERT

SYSTEMS

Diptendu

FOR

Sinha,

INVENTORY

Nasir

CONTROL

Ghiaseddin,

MANAGEMENT

Khalil

Matta

Management Department U n i v e r s i t y of N o t r e D a m e

ABSTRACT An e x p e r t s y s t e m for i n v e n t o r y m a n a g e m e n t is p r e s e n t e d in this paper. The focus is on the d e v e l o p m e n t of a s i m p l e , u s e r f r i e n d l y tool that can be used by m a n a g e r s to i n c r e a s e the e f f e c t i v e n e s s of t h e i r i n v e n t o r y c o n t r o l systems. The e x p e r t s y s t e m is c a p a b l e of d e r i v i n g i n p u t p a r a m e t e r s by p e r f o r m i n g n e c e s s a r y a n a l y s i s on d a t a b a s e s , i m p l e m e n t i n g a set of r u l e s for the s e l e c t i o n of i n v e n t o r y m o d e l s , and p r e s e n t the o u t p u t t h r o u g h tables, plots, or g r a p h s . The s c o p e of this p a p e r is l i m i t e d to the s i n g l e item, s i n g l e location problem.

INTRODUCTION Most organizations i n v o l v e d in the m a n a g e m e n t of i n v e n t o r i e s are f a c e d w i t h m a k i n g d e c i s i o n s for t h o u s a n d s of items. T h e s e items d i f f e r in s e v e r a l key a t t r i b u t e s s u c h as cost, d e m a n d p a t t e r n , s u p p l i e r l e a d times, n u m b e r of s t o c k i n g p o i n t s w i t h i n the o r g a n i z a t i o n a n d i m p a c t of its i n v e n t o r y p o l i c i e s on o t h e r items. These factors influence inventory operating policies significantly. E s t a b l i s h m e n t of o p t i m u m p o l i c i e s r e q u i r e s that they are a n a l y z e d and set f o r t h in p r e c i s e m a t h e m a t i c a l f o r m u l a s . Such modeling k n o w l e d g e g e n e r a l l y lie in the d o m a i n of e x p e r t s in the field, such as, o p e r a t i o n r e s e a r c h a n a l y s t s who are c o n c e r n e d w i t h m a t h e m a t i c a l a s p e c t s of the i n v e n t o r y t h e o r y . P r a c t i c i n g m a n a g e r s on the o t h e r h a n d are only c o n c e r n e d w i t h the o p e r a t i o n a l a s p e c t s of the p r o b l e m . Namely: i.

E n s u r e that available.

2.

Identify

3.

Provide

4.

Expend

sufficient

excess accurate,

least

fast

quantity

and

concise

amount

of

of g o o d s

slow-moving and

timely

resources

and material

are

always

items. report

to

the

in a c c o m p l i s h i n g

top m a n a g e m e n t . the

above

goals.

S i n c e the a v e r a g e i n v e n t o r y c o n t r o l d e c i s i o n m a k e r u s u a l l y l a c k s the level of sophistication in t h e o r y to come up w i t h the o p t i m u m s o l u t i o n , s i m p l i s t i c m o d e l s are u s u a l l y s u b s t i t u t e d for the a c t u a l m o d e l s . This p r a c t i c e n o r m a l l y p r o d u c e s a s u b o p t i m a l s o l u t i o n w h i c h in t u r n r e s u l t s in a c o s t l y i n v e n t o r y o p e r a t i o n and l i m i t s the p r o f i t of the o r g a n i z a t i o n .

EXPERT

SYSTEM

OBJECTIVES

AND

METHODOLOGY

It is the o b j e c t i v e of this r e s e a r c h p r o j e c t to n a r r o w the gap b e t w e e n the t h e o r y a n d p r a c t i c e of i n v e n t o r y c o n t r o l o p e r a t i o n . To a c h i e v e this goal, we i n t e n d to d e s i g n a n d i m p l e m e n t the c o n c e p t u a l f o u n d a t i o n of an a r t i f i c i a l l y i n t e l l i g e n t e x p e r t s y s t e m for i n v e n t o r y c o n t r o l . T h i s e x p e r t s y s t e m can be u s e d by any i n v e n t o r y c o n t r o l m a n a g e r w h o w a n t s to m a k e i n t e l l i g e n t d e c i s i o n s w i t h o u t b e i n g b u r d e n e d b y the c o m p l e x i t y and d e t a i l s of i n v e n t o r y c o n t r o l theory. The u s e r can s i m p l y c o n s u l t w i t h the e x p e r t s y s t e m for an a d v i c e

425

426

Proceedings of the l lth Annual Conference on Computers & Industrial Engineering

w h e n e v e r a d e c i s i o n n e e d s to be made. The a d v i c e g i v e n by the s y s t e m w i l l be b a s e d on the o p t i m a l s o l u t i o n of the p r o b l e m a n d u n n e c e s s a r y compromises will not be made. Our e x p e r t s y s t e m w i l l i n c l u d e all the e x p e r t i s e of an o p e r a t i o n r e s e a r c h a n a l y s t as w e l l as the h e u r i s t i c u s e d by s u c c e s s f u l inventory control managers. In o t h e r w o r d s the k n o w l e d g e b a s e of our e x p e r t system will include a model base containing the v a r i o u s m o d e l s u s e d in i n v e n t o r y c o n t r o l as w e l l as r u l e s g o v e r n i n g the J u s t i f i c a t i o n for u s i n g those m o d e l s . The e x p e r t s y s t e m w o u l d n o t o n l y i n c l u d e the k n o w l e d g e of mathematical m o d e l i n g , b u t it w o u l d a l s o i n c l u d e the r e a s o n i n g knowledge for s e l e c t i n g the m o s t a p p r o p r i a t e m o d e l for a g i v e n p r o b l e m s i t u a t i o n . The c o n c e p t u a l d e s i g n of our e x p e r t s y s t e m w i l l be b a s e d on p r e d i c a t e calculus and resolution principle [1,2]. The use of p r e d i c a t e calculus in this c o n t e x t o f f e r s a n u m b e r of b e n e f i t s . Among them conciseness, unambiguity, conformity to o t h e r e x i s t i n g a r t i f i c i a l intelligence t o o l s are of g r e a t i m p o r t a n c e to us. The r e s o l u t i o n principle [3] is a t e c h n i q u e for inference within predicate calculus, and a l l o w s a u t o m a t i c deduction of n e w facts f r o m an e x i s t i n g k n o w l e g e - b a s e .

FEATURES The

key

OF

THE

EXPERT

features

of

the

SYSTEM

FOR

expert

INVENTORY

system

can

be

defined

The s y s t e m s h o u l d be u s e r - o r i e n t e d and in a h i g h - l e v e l english-like language. The s y s t e m s h o u l d f i r s t a t t e m p t m o d e l s f r o m s o u r c e s s u c h as the data.

as:

capable

to p r o v i d e d a t a base,

of

accepting

the i n p u t d a t a to the b e f o r e a s k i n g the u s e r

The s y s t e m s h o u l d be c a p a b l e of a n a l y z i n g an i n v e n t o r y determining the a p p r o p r i a t e mathematical model. The s y s t e m m u s t models provided

be in

able to c o n s t r u c t the m o d e l base.

new

queries

models

from

problem

more

for

and

primitive

The s y s t e m m u s t f i r s t a t t e m p t to o p t i m i z e one or m o r e of the r e q u i r e d performance measures, or e l s e f i n d a p p r o x i m a t e o p t i m a l s o l u t i o n or pseudo optimal solutions if the m a t h e m a t i c a l m o d e l s c a n not be solved. 6.

The o u t p u t f r o m the s y s t e m s h o u l d be p r o v i d e d w i t h the u s e r in mind. T h a t is, it s h o u l d be e a s i l y u n d e r s t o o d by the user. T a b l e s and g r a p h s s h o u l d be u s e d to e n h a n c e the u n d e r s t a n d i n g of the r e s u l t s .

DESCRIPTION

OF

THE

EXPERT

SYSTEM

The f o l l o w i n g three functions have been identified a n d are c r i t i c a l to successful implementation of an e x p e r t s y s t e m for i n v e n t o r y m a n a g e m e n t : I.

The

ability

to

2.

The a b i l i t y to d e r i v e an i n v e n t o r y m o d e l .

3.

The a b i l i t y identified.

to

select

an

appropriate

the

provide

inventory

parameters/variables

a solution

to

the

the

model. required

inventory

model

in

selecting

once

one

is

In o r d e r to p e r f o r m the f i r s t f u n c t i o n , an i n v e n t o r y m o d e l c l a s s i f i c a t i o n s c h e m a is u t i l i z e d . T h i s s c h e m a is b a s e d in p a r t on the one p r o p o s e d by S i l v e r [4]. For the sake of s i m p l i c i t y , h o w e v e r , we f o c u s our a t t e n t i o n on the s i n g l e item, s i n g l e l o c a t i o n i n v e n t o r y p r o b l e m . Those models consider each item in i s o l a t i o n of o t h e r items. T h e r e are six s p e c i f i c f a c t o r s that i n f l u e n c e the s e l e c t i o n of i t e m s for this c a t e g o r y of m o d e l s : A.

TvDe

of

Demand:

i.

Deterministic

The

following

with

a known

demand demand

categories mean.

are

considered:

Sinha et al.: Expert systems for inventory management

2.

B.

1 .

C.

D.

E.

F.

Probabilistic with a known probability distribution (i.e., n o r m a l or g a m m a ) or an u n k n o w n d i s t r i b u t i o n of d e m a n d .

Nature

2.

427

of

the

Supply

Process:

We

consider:

All material o r d e r e d is r e c e i v e d a f t e r All material o r d e r e d is r e c e i v e d a f t e r a s s u m i n g m e a n a n d v a r i a n c e are k n o w n .

Shortages:

We

consider

two

treatments

i.

' Unfilled

demand

is b a c k o r d e r e d .

2.

Unfilled

demand

is

Review

Period:

We

of

a k n o w n l e a d time. a r a n d o m l e a d time,

shortages:

lost.

consider

i.

Continuous review is r e v i e w e d a f t e r

2.

Periodic review models and ordering decisions

the

following:

m o d e l s w h e r e the i n v e n t o r y each transaction.

position

w h e r e the i n v e n t o r y p o s i t i o n is are m a d e at p e r i o d i c intervals.

Costs: The f o u r t y p e s of c o s t s f r e q u e n t l y i n c l u d e d in m o d e l s are the r e p l a c e m e n t or o r d e r i n g c o s t s , c a r r y i n g shortages cost. The u n i t c o s t s are e i t h e r t r e a t e d as: I.

Constant

(i.e.,

the

2.

Quantity

discounts

same) are

Control procedure: We s h a l l procedures to d e t e r m i n e w h e n

of

for

all

offered

on

units all

or

reviewed

inventory c o s t s and

marginal

units. used

i.

(s,Q) s y s t e m : A fixed quantity inventory l e v e l r e a c h e s s.

2.

(s,S) s y s t e m : The o r d e r is p l a c e d or b e l o w s. The size of the o r d e r i n v e n t o r y l e v e l to p o s i t i o n S.

3.

(t,S) s y s t e m : A n o r d e r is p l a c e d e v e r y t time u n i t s . is e q u a l to the d i f f e r e n c e b e t w e e n S a n d the i n v e n t o r y at the e n d of t.

is

item

ordered.

consider three frequently a n d h o w m u c h to order: Q

an

ordered

as

soon

as

control

the

whe'n i n v e n t o r y p o s i t i o n is is c h o s e n to i n c r e a s e the

at

The o r d e r position

In F i g u r e i, we p r e s e n t a d e c i s i o n tree for s e l e c t i n g the i n v e n t o r y m o d e l s i n g l e i t e m g i v i n g the f a c t o r s m e n t i o n e d p r e v i o u s l y . N o t e that r u l e s pertaining to the p r o b a b i l i s t i c l e a d time c a s e are n o t shown. Each node the tree r e p r e s e n t s a decision. E a c h b r a n c h on the tree r e p r e s e n t s the c r i t e r i a or f a c t o r that is a p p l i e d or is c o n s i d e r e d .

for on

The d e c i s i o n tree in f i g u r e i e s t a b l i s h e s the f o u n d a t i o n for the m o d e l selection. However, it is a s s u m e d that the u s e r h a s i n f o r m a t i o n regarding all the p a r a m e t e r s r e q u i r e d for the e x p e r t s y s t e m to s e l e c t the m a t h e m a t i c a l model. A l i s t of t h o s e p a r a m e t e r s and variables is p r e s e n t e d in T a b l e I. Note that w h i l e s o m e of t h e m are e a s y to d e t e r m i n e s u c h as the u n i t cost, o t h e r s r e q u i r e t h a t the m o d e l be s o l v e d s u c h as the o r d e r q u a n t i t y and reorder point. It is t h e r e f o r e c r i t i c a l that the e x p e r t s y s t e m has the capability to a n a l y z e the p a r a m e t e r s r e q u i r e d to m a k e a m o d e l s e l e c t i o n . In o r d e r to i l l u s t r a t e w h a t we mean, let us take the d e m a n d as an e x a m p l e . The d e m a n d c a n e i t h e r be d e t e r m i n i s t i c or p r o b a b i l i s t i c . If the u s e r can not d e c i d e the e x p e r t s y s t e m s h o u l d be a b l e to r e t r i e v e that i n f o r m a t i o n by analyzing database containing historical d e m a n d data. A calculation of the m e a n and the s t a n d a r d d e v i a t i o n is a r e l a t i v e l y e a s y task. T h o s e c a n be u s e d to c a l c u l a t e the c o e f f i c i e n t of v a r i a t i o n w h i c h if s m a l l (< .2) i n d i c a t e s that the d e m a n d is d e t e r m i n i s t i c . If the d e m a n d is p r o b a b i l i s t l c / a Chis q u a r e d test ( g o o d n e s s of fit test) c o u l d be p e r f o r m e d to d e t e r m i n e if the N o r m a l , G a m m a or P o i s s o n d i s t r i b u t i o n s approximate the d e m a n d p a t t e r n . This is i m p o r t a n t s i n c e it c a n i m p a c t the s o l u t i o n p r o c e d u r e . If the d e m a n d is deterministic, the u s e r c o u l d be p r e s e n t e d w i t h h i s t o r i c a l g r a p h s to determine if t h e r e are c y c l i c a l p a t t e r n s or time v a r y i n g d e m a n d s .

428

Proceedings of the 1lth Annual Conference on Computers & Industrial Engineering

Once an i n v e n t o r y m o d e l is i d e n t i f i e d , the e x p e r t s y s t e m m u s t be able to find a s o l u t i o n b a s e d on m a x i m l z i n g / m i n i m i z l n g one or m o r e of the o p e r a t i n g characteristics s h o w n in T a b l e 2. It is i m p o r t a n t to n o t e that w h i l e e x a c t s o l u t i o n s c a n e x i s t for the d e t e r m i n i s t i c c a s e s for e x a m p l e , it c a n be extremely difficult to s o l v e some m o d e l s s u c h as the q u a n t i t y d i s c o u n t m o d e l s for the p r o b a b i l l s t i c cases. The

strategy

implemented

I.

Find

an

2

Develop a mathematical characteristic(s) and optimum; if n o t

3.

Use

exact

in

the

solution;

a simulation

expert

system

is

as

follows:

if not formulation, if p o s s i b l e , for the o p e r a t i n g use a s e a r c h t e c h n i q u e to l o c a t e a l o c a l

routine

to

find

an

approximate

optimum

solution.

A general simulation m o d e l is p r o v i d e d w h i c h c a n be a c c e s s e d by the e x p e r t s y s t e m to s o l v e the m o r e c o m p l e x i n v e n t o r y s y s t e m s . T h i s is p a r t i c u l a r l y useful when performing sensitivity a n a l y s i s s u c h as the i m p a c t of a d d i n g constraints. T h r e e t y p e s of c o n s t r a i n t s are c o n s i d e r e d : i.

Supplier constraints cycle, m i n i m u m o r d e r

2.

Marketing level.

3.

Internal

constraints

constraints

such lead such

such

as m i n i m u m time, etc. as

as

minimum

storage

order

size,

tolerable

space,

fixed

replenishment

consumer

budget,

service

etc...

CONCLUSION The c o m p l e x i t i e s of m u c h of i n v e n t o r y c o n t r o l t h e o r y h a s p r e v e n t e d its application in m a n y o r g a n i z a t i o n s . The e x p e r t s y s t e m p r e s e n t e d in this p a p e r is an a t t e m p t to b r i d g e this gap b e t w e e n the t h e o r e t i c i a n s a n d the practitioners. Facilities are p r o v i d e d in the e x p e r t s y s t e m to not o n l y aid the p r a c t i t i o n e r in s e l e c t i n g the a p p r o p r i a t e m o d e l b u t a l s o in o b t a i n i n g and calculating the p a r a m e t e r s r e q u i r e d for s o l v i n g s u c h p r o b l e m s . The e x o e r t s y s t e m is i n t e r f a c e d w i t h b o t h a d a t a b a s e ( u s e d to e x t r a c t i n p u t p a r a m e t e r s ) and a s i m u l a t i o n m o d e l ( u s e d to m o d e l the m o s t c o m p l e x s y s t e m s ) . Future r e s e a r c h in this a r e a s h o u l d f o c u s on e x p a n d i n g the s c o p e of the e x p e r t s y s t e m to i n c l u d e a n a l y s i s of m u l t i - i t e m , multi-locatlon inventory problems.

REFERENCES

[i]

Nilsson, N. , P r i n c i p l e s of A r t i f i c i a l Co., P a l o A l t o , C a l i f o r n i a , 1980.

[2]

B o n c z e k , H.B. , C.W. H o l s a p p l e , a n d A.B. W h i n s t o n , "A G e n e r a l i z e d Decision Support System Using Predicate Calculus and Network Data Base," Operations R e s e a r c h , Vol. 29, No. 2, M a r c h - A p r l l 1981.

[3]

Robinson, J . A . , "A M a c h i n e O r i e n t e d L o g i c Principle. J o u r n a l of ACM, M a r c h 1965.

[4]

S i l v e r , E. Review and

A. , " O p e r a t i o n s Critique," Vol.

Intelli~ence,

Based

on

Tioga

Publishing

Resolution

Research in I n v e n t o r y M a n a g e m e n t : 29, No. 4., J u l y - A u g u s t , 1981.

A

Sinha et al.: Expert systems for inventory management

TABLE

1

TABLE

PARAMETERS/VARIABLES:

i 2 3 4 5 6 7 8 9 i0 II 12 13

429

2

OPERATING CHARACTERISTICS (PERFORMANCE MEASURES)

O r d e r Q u a n t i t y (Q) O r d e r - u p t o L e v e l (S) O r d e r P o i n t (s) U n i t C o s t (C) Fraction Carrying Cost H o l d i n g C o s t (H) B a c k O r d e r C o s t (B) M e a n L e a d T i m e (L) M e a n D e m a n d (D) S.D. of D e m a n d (SD) S.D. of L e a d T i m e (SL) R e v i e w I n t e r v a l (T) Set Up C o s t (K)

FI~

No. of C y c l e s ( O r d e r s ) No. of S t o c k - o u t s A v e r a g e No. of B a c k O r d e r s Average Inventory Average Inventory Value I n v e n t o r y C a r r y i n g Cost Shortage Cost Ordering Cost Total Cost

(F)

1.

Inwntory

ALL UNITS

~

~

t

D e c l s l o n Tree

(~J~olmt)

OTY-DI~. 1 FIXED

FIXED LEAIEIM~

I

FINITE

lOq 1 ] ~ )

~ISI~miT

Is,Q)

SF_JtR~ 12 s t e p )

COV < I

OTY.-DISC,

Io ~

smo~

I

~

~ ss

DE~)

FOR~YLATIONI

OTHER

cov< .2

~

ANALYTICAL SEARCH

OTHER

C0V > .2

APRN3XIMATION

SIMULATE

SIMULATE

DIST.

Dm~A~D MUDEL NO

DISCiPERIODIC I

IS'S)

I COV > I SDfJLATE ~OV < 1 P C ~ R APPROXD~TION

it,s)

I

PROBABILISTIC D~AND

REVIE~ ]

I LOST SALES SIMEW.JkTE LARGE PROBABILISTIC LEAD T D ~

~ ~ PROCESS

SOLVEFOR S

AEPE)F,3~IATE SOLVEFOR S t-not

t

~l~L-d

SALES U ~ ~

SMALL

t-fLied

SC~O

NO

~mPROXIMATION

SDqJ~TE