A*~other p r o b l e m O~ G. .a. .l .f.m. .a. .I.¢. S iS soWeA b y at~'~ ~°,c'. ",, ~ e-. .-. -. ."." ~ cba-" ~, .,, o f mii-~iffia} i y o e ; , . =~,a.~-+~,4-,v,.~,ca~<,~
Fix some cemntabie fie'.t-..order: language e~:, ~,,~. ~s .m~.:.~t,e ~,or .x~c '~ -" ~ ~,'"~ of arithme;dc° Let 17 be any comp!ete ~heory in the Ia~.auage -, • 5:? which v".,:~ L ,I,.~J,~: , ~ .:- i:hesv: axiom~_.~ If ,=:¢iis a model of T a~td .+t J { Such ti~at Lt (.,~"/.fO~ (/& < ) ? A m o n g the t h i n ~ which will be proved here is i:hat if .;~, < ) ~s a finite distrikufive lattice, fhen the anSwer is affirnmtive for a~?.y :mode1 ;z~t. One imp0rlant instance Of :this question: was already a~Erma~{veI~ ~-~:~'~~:-"'~ ~ ~'~ k:,mtman" m" [4 °1. t l e proved tliat if (L, < ) is tl~e 2--element lattice, t;aex* *,'.-~,.,a-~,.o ~ ,~< throe is a;*: 2 ' > ; g sltd! that l[t (.#;.g_) ~ (1_. <:). We say, i~ tiffs case~ d~at ~,v :a a ...... ~,.m extension Of ,g.: : Another at~rmative answ,~r to a n instance of ',h~s qti~asti0n was 0btah~a'd t y Paris i8~.. For any C0tmtable. ~g and any complete,: distributive, comoac~v o4;.gen erat:ed la t rice (.g, < ) there is a co, mtabte ~# >-~g such t h a t Lt (,#/:4t) #~ ~L; < ). This ~:esult is: 0Pdmal f o r distribWdvel (L, < ) a n d Countable .,~t arid .#,: stoic<: Peallo:s
": * Rei~earch s u p p d r t e d ~ a p a r i 5 y N S F Grm,~[ M C S 7 , 5 , . 0 7 2 5 8
:
,S~ i17
:
:
i :
=
90
) ;:L & L<*cr
w h e n e v e r A .o-~,~ arid the:v are tx~th e o m m d f l e , thin? [A { ~'~ {~ {s ~ eomp~ete, c o m p a c t l y mo-gcmerated !a~ffce. Pafi<~'s a r g u m e n t ti~tke~; esSe)~tia~: t:~se Of ~:he c o u n t a b i l i t y ef .,~. O a i f i n a n realized ttmt evep~ fox u n c o u m a b l e 3 4 at~y' cor~sm~c~ ~ o n o f .,.xtens~on. ~ f .,¢g wotlld appare~itlv ~ave Io ~ e s s e n t l a l l v c o t m t a b l e (a-: ,a..4.: x t h e c o n s t r u c t i o n is c0m~table)~ Ti,is . . r .e s t.a t e. d . {n **~" . c n o t i o-n <:[" a dg m u s t ~an,e d e f i n a b l e t y p e a n d the e x t e n s i o n s such types i n d n c e . T h i s c u r 0 s din,~ ,<*'[))i-v~] {s ahvays well-defined, A s u s ' u a , at~ :,:-type is a m a x i m a l co,~sisIeat Set of formtflas &(v ...... v.~_~" which extend~ 7L A b ' p e is a !--tyix~ W e will use fl~e r:otat~on t:m".;o........ of ' ":~ .,¢'" , v o , . . . , %,_:)" for n - t y p e s . 'The ~,,,t~owa,~ ~" * -: ,'_. is Galhna,"gs de, ., ao defir~abie r~-type p r e s e n t e d as Definitio~ I . l o f [51].
~ ( } ( x ) - ~"4 ~ ( x ) ' L' '
' b ( < e.. ~ ( m ve
. ,5 t h e r e ~s a fovmula ~.,,,(u~ ~..~.,~'~t!,~e for aw... . . . "' 0 a ffvo, ,, x iff T P . < d x ) °
~:*'~,,
W e wi!1 use the script Ietters .~6 a n d .V, s o m e t i m e s en~bellished with subscripts, to d e n o t e m o d e i s of T. 71m m e e r ) y i ~ g sets of ~he mode~s ,.dr a n d Y will b e d e n o t e d by M a n d N, respectively, Ill ao . . . . . . a.~;.., are e l e m e n t s of s o m e (v,sua!iy ur~specified) e x t e n s i o n o f dr. t h e r ( J f f a o . . . . , a . ~ .) is ~l~e smallest st.~bstrv, cTure of G a i f m a n uses deS~?ab!e ¢ypes as a m e i h o d for mfiformly ,~,.-~mm~3,~;'"': ......... .~.c*'=~> ¢k~, "~ exteBsior)s. Defi~,itiou 0.2. If ~(th~,.,., G-~) is a d e f i n a b l e tw:>e,~ ~ t h e n .*~(ao . . . . . a.~_,z'r is a *(e,~ . . . . . v,,_~)-ex~ma~io~ cd .~,~f if for a n y f o r m u l a &(u, % . . . . . v,,_~} a n d a~ay b ~ M.. d't(a o . . . .
>- ""
"
v,~_;)-ex';c!>ioc~ :ff d < a n d this e x t e n s i o n is u n i q u e ill tile o b v i o u s sense° See S e c t i o n i of [.5i for a t h m m ~ g h discussion of this m a t t e r . W e r e m a r k here that G a i t * n a i l s rainimai emi:er~aio~s, referred to atxwe, were constructe, it in this m a a o net. 'He s h o w e d that th< r..:: i~ a d e f ~ a b | e type ,.tb,, ': "~ called a mm~iml~ " "~ type, SUCh that w h e n e v e r ¢~(a) is a t~)-e.~:~e~~:iori oi d< t h e n Ltl..a(o"');~:V~)' i has two e l e m c ~ t s S u p p o s e d{ <,,S'o if for :my b e N ,b,~:--:.:~iv :?:i: M S u c h that A@b < a the~i ,:V is a ....u~,~, e x t c n s k m of ~,(t, If whcnex~zr o~ ~: N" 3q :'::',~ ~~< M t h e n o),:~':a< a the~ ;,~-'is a n e n d . e x w , ~ s i o , . , o f .a. When.ever .~(a,> . . . . . :~..... "~ ):'s a e¢"~:,,, ~ . , t:.._, ) - e x t e n s i o n 0f ~., w h e r e t(Vo. . . . . G - i ) : i s a d e f i n a b ; e ~ t y p e , ;hen . g ( a > ~ o . , a..,.,/) is all end-extension of ,K :i
> °e a:m# p**i::~ ~a&{a-a~ arqmn>p .
.
.
v s~ (~:-"a
"7 ' s°a ]~9 arm:
.
4}soddllS *f?[ Ula"l~lt,~ A > - A ! ! . -~v.,,~,:~
A:~s~q~p~i~k:~~ ~:~ ~
(2) whenever ..,R<~:V
(4) w h e n e v e r .:ii(a~,.
.-
"~ " # ""~
a=_~) = X;
(5) whe~.wver ~-~"<.,ff(ac, . . . . .
a~.._~), t e e n 3~.(a~,. . . . . . <,,..~):<,,V(a,~). i
Le{ us see why T h e o r e m 1.1 implies C o ~ e c m r e A. W e assume theft the reader is famiiiar wi~h ~:he basic structure tlmorem fer finice dislvibutlve lactic :~>. ( ?o~st~L for example, T h e o r e m 7.9 of {6] or T h e o r e m liLT of [ i]. Assumi~ag T h e o r e m !. {. we will sho_w somethir~g ostensibly stro~ger iha,~ Conjecture A : Suppose that (D. < ) is a finite distrib:.~tive lattice, and let d~>.. o, ~{.~ be .~.he jom-~r~=dtkm~ elem~,nts of D, where we have m~ranged ttae da's so that if d~ < d i, men i < ~]. Then fhere is a definable (~ + l~-tvpe,, ~, ~t~o,. . . ~ ~.) such lhat whei:tever t~ A¢.(a~,,, . . , .a. .'} is ,, vo~)-extensicm . .a .~(~.'o~ . ,• . . . . . o"~...if, the~: Lt C*~:(ao,.. ., a,y~,¢Oa>: (D; < ) . tn {ac~, there is at~ isomorphism h sud~ that h(~gt(a~)) = 4 for i ~-; ~. We wiII verify the above statement bF induction on n. Let . D o = { d ~ D : ~ o t d.. ,~ d}. The~x (Do. < ) is a finite distributive lattice wi~. joindrreduciNe eiements do . . . . . ~:~_> A s an inductive h)~pothesis suppose there is a definaNe ~-a:?pe such that whe~.c~:er -¢g(ac. . . . . a,~_,) is a r~(wa . . . . . . v._.~)-exter~sion of ~.i*, then there is a~'~ isome~phism h ~ : L t (o,ff(ao. . . . . a,,_.t)!dt)-~E) o such that ho¢i~(a:~)}:~:4. N o w !et i~ < ~ . . < i~._~ < n be suel_~ tIsat d: < eL ill: "~=~o, ~' ; Use T h e o r e m L I to obtai~ an (~z + !}-ty)e t(vo . . . . . v~). That ~(Vc. . . . . v.) works is rather easily seen. We ~:;ext stai:e t}:{e ot!>:sr theeve:m~ frown which fol!aw~; Co~;jcct~.'rc B h: c:-;se>datiy the same maimer as Co~jectu:re A follows from t}hcorcm t.i.. •
~"
T h e o r e m 1,2, Suppose ~hat to(vo
.....
v~) is a
,
definable
.
(n+l)-~ype, a m l that
of Jl, ~hen .-ff(a~. . . . . . a~) is a cofinat extension of .;i~(a~. . . . . . , a~). 7 h e n th,cre is a definable (n+2)-13~pe t ( t ~ o , . °. , v"i, ~ +~~ t o ( t ~ , . .~ ,,v.) . s u c h that "whetwt~er (~) ......... ~i~(~ >. ~ . , a., ~~) is a Woger cofinato, e.xwnsio~, o f ~ ( a o , . ~ a,,); (2) wke~:<~er ..4~< . g <.,f~(ao . . . . . a,,.~.:L) a n d a . ~ , ~ N , then W'
(3) wheneoer ..... .~:~' ~,-* ~" .~,%
a , . . , ) a n d .a{ao,°.
a~). then ~,'~'(~<..o.~) ¢"~.¢ff a o. . . . . . a~ ) ,.~.)¢°(a : ,}o
C o n d m o n s (1)o--(5) o* Fheorem l.~. a r e the s>'a~g'afforward :a~}alog:ues of the corresponding'.-- conditions of T h e o r e m 11i: i : :' :
cesu.lt whL:b e~,~;e.~]s .~,od~ . . . Co:~{ecI'l~re.s A fOHOW]n':Zde~Tkieu~.
. . !c~ . . d. o. .t;bii~7~ . ~" a~~d. ;v,. aev
~ mab.~ q.>
v~;
;
9%:
=
j t : < , , C , ,<..v' -zt>q . . . .
With
'
*"
~s
this ~ o t a . t i o n ,
distribmive
~." & . . . . .
:2
p~t?;~vr
Con}ect:UPe [ }
'"'~ . . . . . . . . . .
of'
e'~ad-exS'.Hsic.,s
J
~75!. U
~
asserts 'that ,,x.q.~,~}ev;>~ ,~-,,"~' :f,,..j ~s a
', ,
"
~>,;'~.c:,
°
that I.A* k,.!o.a~,,.,;~:~~<,sJ-. < , .~min(O)~), w[~ere &!(~;~ ~s a ~(@-;,;.;.t.e;:~sb:9 o~: ,<,:~ someth{u:~ m.o;e. If (..'."A < ~ is u finhe disbfibud"ee iatt~ce a n d >s :~. . ,-. . . . ,,~'-"";s a r',~'>'-'~,~<.,x~:,~,:~, :linearly o r d e r e d . . . . . . . ~. ,~..,~ ,,......... ~s ~.,.,..a,.~a.~,:~t½~e t(v) such that Lt* (.g~(a)/.4~ ~-~(D, < , .E') wheneve:r .,i.~(r~):is a R~2).-ex.~ezisv,~.r~of ,Z.
s,~q~';~ev..,., .. ee~ch of. the ]bt.k,-tv,,~,,.~g: ( I ) E is [i~:;?orgy o,,zV.ered;~ (2) rain ( D ) e E ; (3) (i# x ~cI£. gher~ there is ez uniae.ee, y ~-." ............, ..~,,.,~*. *~',,,,~,.~. ..... (i} ~herc & ~H> z such #~at x < z < y; (H) ~ y x < z a n d z ~ E , then y ~ z . '~%en 6~ere is a ~2@nabhe type V v ) sacg¢ t.ha:g ~wk.,e * " ' . . . . . . ..... ~...... e~(~e "'"~ is o: t(v.)..ex~:e~d(,'~ o f ¢f *-- * ¢ *~T' ~ X ~ ~ X ' - - ' / t ) r'--'" ta~n gt* t.,~tka~e.a,4-=t ...... < , E). Pr~mf (~ketch% L,et doo • , d,i b e the i o i n - i r r e d u c i b t e e!ementS oil D a~ran~ed in s~Ich a w a y ti~at if ~¢~ -" ~~ .4 t h e n i < ]. Furthermore,. becm]se • • . -o ~,~, of coad~tlon ,(~*s,a b o v e , we c a n arrs~.ge t h a t : t h e r e ~s ~ set :[5; t~+:t such that x ~ E i-fi; x = s u p (.(d~>..., d ~ _ . , } ) for s o m e i ~ L N o t i c e t h a t (2~ implies t h a t 0 , - L C ~ ~'~'" :.~:. . . .u~. ~ , a d h . "?" tO~] k-)) !~IVh~,:-' ~ a ~ * {{ i ~ L t h e n d~ is ~miquely d e t e r m i n e d . N o w p r o c e e d i n d u c t i v e l y as b.~ t h e prcofs of the Conjecture,,,. H e w e v e r , m: stage i-".Lr~, e m p l o y Th.eore~u !.1 if i~.~; a n d T h e o r e m 1.2 i:f i~.L T h e r e is n o p r o b l e m w h e n i ~ l ; so ~et us check ~hat d~e h y p o t h e s e s of T h e o r e m 1.2 a~e m e t w h e n ~esL "-' Suppo~., ........ "- ~ that i:~I (so t h" a t ;.-,-,,~° a n d that w e a l r e a d y h a v e ~%(:%,., . , v~.<). L e t i(~< . • - < i~,_< i ~.:e Such'~,~.~:~c ~. ~'z0,.. o, ik} = {]: 4 < 4}* C o n d i t i o n (3) i m p l i e s t h a t i = m a x ( i n i) c {io, ~ ~ Tlms~, ;f ~kY .
c 0 f i n a l e x t e n s i o n of d f f a : , , , . . . , a},);
.
.
.
.
:
-
-
.
.
.
.
.
.
[;?
W e e~Ki this s e c t i o n b y sbowi~G -*lea> ~........'-~'~a°~, p r e v i o u s Co~-oIlary, : : : : ; : :7 : :
.
[
,
' ..~-..... 4.=..... :. . . . .
, ..
., ....
P r e N s i l i o n l.,S, .Let D be a n y finiw lattice. ~et E si~;D,r ,.,~,.{,A_,.r ,e,,:?7' ~ be a n er~d.. ex~ensio~ o .f!~. . . . such . . tl,.at .L t * (.~g./iEt ~ ( . D i < ; E ) : T**e:,~ . .,atid'~es~ .. ~.... .;4-->~;g':'~ 0f. Comtlarv 1 . 4 : :
9.1
3'.[i
&:,;i ,,~.d
Pr(~d. (t) and (2) a~'e obvim~s. For (3)!e~ x ~LT, a~_d suppose L'(.;%)=X where H : L t * (,.¥'/.,R'~,, ~.'0._.~ <:, E). is an isomorphism. Then, l e t z b< fl~e. immediate - x = m a x (.:,~, g-, !et. z .:= m a x w,,.a'~ successor of x in E ~ or if - : . L.e t . h.( # ' A ~• z, and.]c~ g ={.;% :..,%~.,%
2~ ~ e
proof of'"I h e o r e m L L
i~ T h e o r e m L I , if n =0~ then the ~heorem~ius[ asserts ~he exis~e~ce of -YV "0 "
"3~
"
~,.~..I~.~.,.,., O f l!11111llla~.tvlxeS.,
(:iuite
IS
a
some
detai~ in Sect~on 3 of [51}, We wiiI .~:~eeda rcthaed version of his constructiom which we present iu T h e o r e m 2.5, Before we give this construction, some properties of mi~Ymai t3~;es w{I[ be discussed. In the following ! e m m a we cotiect toged~er several of GMfman's characterizations of mk~imal types. See T h e o r e m s 3.6 and 3.i3 of [5]i. L e m m a 2 . L FB:" an ~m~_:oar,ded ~ g
~(~ "~ each o f
~s e~g&>aIe.,~g .to tgoH,
being a m_:g~abna/ type:
((Vv ".--.xXq,(~.0-~ g(~, .f(u, e0~ = v))] is a :consequence of T; ',"~),.,:. for ereo; term ?'(~. v) there is a .fbrm:da 6(>'~. ~ t:,~,,,,°*.~,~.~ J.,. J.~' ""'~ o w h:,r:~:~ :.p.u'~ "', ".,~--:~.-r(~,~
iV,, "- x)(O(v).,-,,..~f ( . . v),:,, ~ '~?\: z W
........ ., ...-:..<:
"
. .......
~,)}---~
CV ~ : ,'q ""0 4 : ~P".~) = v))]
is a co,~equence o f T : (3) .,ebb.even,,
term .f(~c v) q,,~.,':: is
Vu:~[(~v,(Vv:>
.q e'....... '-*~,,ma~,, ~}(>)~? K t ' )
")(~b(;-)-"'f(.
:~1.7:~~" ~h~,:?t ~'hi, s,c.~n,:~i~ e
:,:):' !~,'}'~,,,'
( ( V :>: > x ) ~ V v - , > x K. < s, ( v ~ ) . - , . . . . . . ,
•
........
.
~
. "" .....
.,~
" .~
~
.,¢'2IJ¢v.v,{
.-*.
is a consequerce o f 7:
The condition (3) above Ca~.~be expressed informNty i~ a more dcsc.rii:atiXe= w a y by., saying that for each f(u, a) there is a foi:mtfla 6 0 0 c; ¢:v) such that ': ,':.~q-~" cacti ~¢ :
~,~ G a i f m a a (see +page, 266 of [51]) by ~+ep!acisg (i) av+,~d(23 by a ~d+++,leccmd~tk;,~ x
,14%q,
+
+aI+~g
+'I,
:*+~
W e ca~t Stiet~tb' st'ce.n£then (3) of Len~+s+~a 2. i. i~ Q~e :tbilowk+£ w~-,w • • t]emm~a 2 2 b~>r cat+) m+++++++a+ +~v+e +(+;} +++ ,+ +++4+ t e m t , >F ,+, , -a} +, +~+,r °
+ + + \ ....
+
' V ~ : : ; + x [ ( B ~ v ( V e + ' > .......v . ~' +:+"' s°'~ = + ~ ' ) ) v ~ t "~ ; ; ~',:-~ ]b:+%
W e wM define two. t e r m s g(~+, tO al°~d h(~, i,Q w ~ o s e v~:fiues are of ~t¢~:est oo,]y for 0~ose ~+ for w h i c h Xvi~f(',¢ v ) ] is eve:ama!ly one+.or~e, On @o(v)+ Co~,~+der a n y
.
. .
.
.
.
.
.
j
.
)-"
] \+.%
z/]j
Let ..... "+,.~,, w) > Q+
N o t i c e that each of the foltowh~g is a cort~-eque, nce of T:
:
Vv(h(u, ~.n~-h(u, " v + i)), Vx~v(h(u, v ) = x), W.u,Vv:~(h(u, ~.t) + 2 < h(u, v~) A 4'o(V0 A #'o',~h)+%&+.~',':-h;< A~', V:,))+ s u c h t h a t 11-Vv(6(v)-÷&o(v)), and s~tch d~at tB.e fu.~acdor~ Av[h(u, v)] is evm~tuMly one+orie On (b(z,) and also i s eitl~.er eveL,+-. ,,m, eve~ Or t.k~,ra~ay e v e n t u fll'~ o d d on ~b(t?}: F. .r. o. .m . the a b o v e c0~~seque~ices of T it e:+:,s~+.y'•-':.tolbws" ' titsi: /~,,~.~\H,+ c.v, ....+,.5} is eve~m~.ailv . . . . b~creasin+: . or~ ~6(i}), +=,+"+'t
Now
let O(t~)et(v)tx~
L e m m a 2+3. Fbr each m i n i m o l LvPe t(v'~. . a~.s . . . . . .e:aca . . . . een';l f(~, t~) the~e as a fc:~'m.+eb:e
8++(r~)+~: t(t/) such that the senwetce w+,vt+:a~[((v,.,> x)(44~,)7-/(u,, .,,)= fCt++,+.+~,))) i v((v<
:
> x'~CVv..,> . . . . x')(e~(r, ~.,,, d,C,u.,'~=++f ( u . v,)'+ +:+~vu v + ~
i + t l +:O~+,.~eql+gepl(:¢ Op+ T+
: :
: ::
+ ....
i
hfformath<., tb:c f o r m a l sente,~ce i~ the l e m m a expresses ~.he[fact t h a t fo~' v.~.v,, ~ ~~" ee m~d ~> vhe functio,~s X;.~[t(~,.,. v ) ] a.*ad ,\o[f(:~'~..*.07 a,'e e i t h e r e v e m u a l l y idemica! o n ¢(t') or else h a v e d i s i o i n t r a n v e s o ~ d~(.~,).
.....
~ ~h"e~ m L.e~,.:n;as ? ~-":'' alld "~;.,.° Primf. T h e characteriza~o,~s of mmm~z~, " * ~ :vpes.. will b e utilized several t k n e s i,~ this ~>roof.
F o r clarity we p r e s e n t the proo~ ia~fo~;mal!v, Let ,:; ~#,,~ <¢...~e,.)be s~ch t h a t for ,.v.m.,,,.J'v {a>:~ e,.~ca' m mc'~ ......unctiot~ ,.h.'[f{m.. . .~,'~]. .{S .c........... . ~ ' e i t h e r Co "c.~,{t~,,RtOf SD"iC{Iw i~{rt'{':lq N" (¢ V , i r
"~ {a k ¢@ I
or:, ,.~,~.,.,,~"Let .sxa,,":':4,... z']. be. ,,'~ I¢:~Tc~de{h~<'d by..
~ ,~ cb~O.'.~<=-u.u .>e such *,kat Vt..'.{<~,(~)-.~d:o('.0). a.ud for each u~. ~:q, d~e ~,- - ~ ac.[gC,.,~,~ . ,,~..,.:,u)}. is eve~tuailv., c o ~ s t a n t o n ¢ ~'<.~e.\Ve .r~o,.~,...d e l i ~ e a tev-m ,....,>hi",. ....... g~. ,., so dmt the whw,,~*~,%~p r o p e r t i e s hoid: ......~:.p~....... m . ~ i . are such t h a t {or s o m e x , whenever x<-e~< ¢", ,i -,~ \ o-,.of, O.'W-,' )A <~*~'2,;, then ,f(u~, ~'>,t , :-'o ~i ~ ,~#" " ~ ,.,. . " *'"~,.,> <'~. ~'~-.f ( >. , ~. . ~.;.~ . . .1 - .h e. n . h. O. , . , ~ . . .',~ ~s t h e iarS:est .< s ,,~'ta that there: is a s e q u e n c e go . . . . , z~ w h e r e z o == o aa~., for ; < it. ~..~+..: = max
({ z: ~: < q ,,. <,% (z } ,,. f(~e~, z '~ = f( m. ;:~)}?.
such tha~ Vv.(tT~0.-,~d~.-~(-'.0) a n d for each ~t> t~> the h m c t i o n M..'[h0,~., ~<-,u)j is e k h e r e v e m u a l t y eve~ or eve~mmily o d d otl g~(*0, w e claim that this ~ ( e ) satisfies the coo.dkio.u of the l e m m a . T o :~ee this c o n s i d e r a r b i t r a r y u~ a n d ~ o K, for i = ! or i = 2 ,
OF
LZ4V:,~> ,~,'~(<~&.'.b.-- f ( u ~ v) = f(,'<> v)), the~:~ . there is n o ....... *q-,0r~ So w i t h o u t '~ " of "~.tl,,i,~ . . . . . . ~'* th~...... x:~ call ass!line Ih~'t t h e r e is
some x such that
so tlm~ (1) a b o v e applies, Let tts lit a d d i t i o n a~%t~:xo t~!a[ V~hVt 2[
.