Accepted Manuscript Extraordinary boulder transport by storm waves (West of Ireland, Winter 2013–2014), and criteria for analysing coastal boulder deposits
Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, Peter Cox PII: DOI: Reference:
S0012-8252(17)30235-0 https://doi.org/10.1016/j.earscirev.2017.12.014 EARTH 2555
To appear in:
Earth-Science Reviews
Received date: Revised date: Accepted date:
30 April 2017 8 December 2017 18 December 2017
Please cite this article as: Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, Peter Cox , Extraordinary boulder transport by storm waves (West of Ireland, Winter 2013–2014), and criteria for analysing coastal boulder deposits. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Earth(2017), https://doi.org/10.1016/j.earscirev.2017.12.014
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT
EXTRAORDINARY BOULDER TRANSPORT BY STORM WAVES (WEST OF IRELAND, WINTER 2013-2014), AND CRITERIA FOR ANALYSING COASTAL
T
BOULDER DEPOSITS
CR
IP
Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, and Peter Cox
US
Geosciences Department, Williams College, Williamstown MA 01267
AN
Corresponding author: Rónadh Cox
AC
CE
PT
ED
M
[email protected]
1
ACCEPTED MANUSCRIPT ABSTRACT There has been much debate about whether very large boulders in coastal settings can be moved by storm waves. New data, in conjunction with literature review, shed light on this question. Before-and-after photos of supratidal coastal boulder deposits (CBD) in the
T
west of Ireland show that storms in the winter of 2013-214 transported boulders at
IP
elevations up to 29 m above high water, and at inland distances up to 222 m. Among the
CR
clasts transported are eighteen weighing more than 50 t, six of which exceed 100 t. The
US
largest boulder moved during those storms weighs a fairly astonishing 620 t.
AN
The boulders moved in these recent storms provide pinning points for mapping stormwave energies on the coast: their topographic positions mark the elevations and distances
M
inland reached by wave energies sufficient to dislocate those specific masses. Taken
ED
together, the CBD data reveal general relationships that shed light on storm-wave
PT
hydrodynamics. These include a robust correlation (inverse exponential) between maximum boulder mass transported and emplacement height above high water: the
CE
greater the elevation, the smaller the maximum boulder size, with a dependency exponent of about -0. 2 times the elevation (in metres). There is a similar relationship, although
AC
with a much smaller rate-of-change (exponent -0. 02), between boulder mass and distance inland, which holds from the shoreline in to about 120 m. Coastal steepness (calculated as the ratio of elevation to inland distance) seems to exert the strongest control, with an inverse power-law relationship between maximum boulder mass and slope ratio: the more gentle the topography, the larger the moved boulders.
2
ACCEPTED MANUSCRIPT Quantifying CBD dynamics helps us understand the transmission of wave energies inshore during high-energy storm events The transported boulders documented here are larger than many of those interpreted to have been moved by tsunami in other locations, which means that boulder size alone cannot be used as a criterion for distinguishing
T
between tsunami and storm emplacement of CBD. The biggest blocks—up to 620 t—are
IP
new maxima for boulder mass transported by storm waves. We predict, however, that this
CR
record will not last long: the 2013-2014 storms were strong but not extreme, and there are larger boulders in these deposits that didn’t move on this occasion. Bigger storms will
US
surely move larger clasts, and clasts at greater distances from the shoreline. These
AN
measurements and relationships emphasise the extreme power of storm waves impacting exposed coastlines, and require us to rethink the upper limits of storm wave energy at
ED
M
coasts.
PT
Keywords: Coastal boulder deposits, storm waves, coastal erosion, megagravel, coastal
AC
CE
hazard, coastal geomorphology
1. INTRODUCTION A series of unusually strong storms battered the eastern Atlantic in the winter of 20132014. Spectacular photographs of wave impacts on coasts and infrastructure appeared at the time in newspapers and scientific blogs (e.g. Duell and Brady, 2014; Petley, 2014), and resultant geomorphologic effects have been documented in the literature (Castelle et al., 2015; Earlie et al., 2015; Autret et al., 2016; Burvingt et al., 2016; Masselink et al.,
3
ACCEPTED MANUSCRIPT 2016). But some of the most dramatic changes were not shown in the newspapers. They occurred far from the public eye, on inhospitable and uninhabited rocky coastlines characterised by cliffs and open-ocean deep-water exposure. These are the sites of coastal boulder deposits (CBD: Fig. 1), which are poorly understood piles of clasts (including, in
T
some locations, blocks weighing 10s to 100s of tonnes) that can occur at elevations up to
IP
50 m AHW in some places, and can be up to a quarter of a kilometre inland in others
CR
(Williams and Hall, 2004).
US
Archives of high-energy wave events, CBD are not activated very often (Hansom and
AN
Hall, 2009; Scheffers et al., 2010). Because of this, and because of their remote locations, few direct observations of clast motions exist. The lack of data has led some workers to
M
argue that large boulders have stayed in place for hundreds or thousands of years of
ED
storm-wave attack (Scheffers and Kinis, 2014), and to conclude that “the larger 80% of individual boulders in ridges have not been moved recently or within the last centuries”
PT
(Erdmann et al., 2017). The winter of 2013-2014 provided a unique opportunity to
CE
examine the response of CBD to high-energy storm waves, because the storms struck an area for which detailed observations had been built up over the previous decade (e.g.
AC
Williams and Hall, 2004; Zentner, 2009; Cox et al., 2012; Jahn, 2014). Rapid-response field work demonstrated that not only were western Ireland’s CBD substantially reorganised, but that large new boulders were created and added to the deposits (Cox et al., 2014; Cox et al., 2016). Documenting these changes matters because CBD, in the west of Ireland and elsewhere in the world, are at the centre of ongoing debate about the absolute power of storm waves.
4
ACCEPTED MANUSCRIPT
Large waves can send water surging across coastal platforms or cliff tops, and this flow—referred to as a bore (Hibberd and Peregrine, 1979; Nott, 2003b)—may dislodge and entrain clasts, sweeping them inland. But whether storm waves can generate
T
sufficient force to move very large rocks, or whether the biggest boulders require tsunami
IP
to activate them, has been controversial. So although some CBD were interpreted as
CR
storm deposits (e.g. Williams and Hall, 2004; Hall et al., 2008; Goto et al., 2010; Hall et al., 2010), the sheer size of many blocks seemed to indicate that storm wave transport
US
was unlikely (Nott, 2003a; Noormets et al., 2004; Scheffers et al., 2009; Hoffmann et al.,
AN
2013; Scheffers and Kinis, 2014). Only very recently have before-and-after observations proven that storm waves can and do move giant boulders (May et al., 2015; Cox et al.,
M
2016; Kennedy et al., 2017), but still we know very little about the dynamics of block and
ED
boulder transport, or about how storm wave energy is distributed with respect to coastal
PT
topography.
CE
In this contribution we review CBD in general: the different kinds, where they occur, and the background to the storm-versus-tsunami debate. We then report the storm-driven
AC
displacement of 1153 individual boulders— including some with masses in the 100s of tonnes—on Ireland’s western coasts during the winter of 2013-2014. We relate boulder movements to coastal topography and derive quantitative relationships that may be used as baseline comparison measures for CBD worldwide. The before-and-after comparisons not only encompass a spectrum of topographic settings—from the tops of sheer cliffs to low-lying coastal platforms—but incorporate the full range of boulder sizes, permitting
5
ACCEPTED MANUSCRIPT detailed quantitative analysis. These data show definitively that storm waves can move blocks >600 t mass, and that they can transmit forces sufficient to move megagravel at substantial elevations and distances inland.
IP
T
2. SUPRATIDAL COASTAL BOULDER DEPOSITS: AN OVERVIEW
CR
CBD are emplaced by ocean waves above the local high water mark (Fig. 1, and see also Supp. Figs. 1-4). They occur worldwide, mostly along high-energy coastlines exposed to
US
the open ocean (e.g. Nott, 1997; Morton et al., 2008; Etienne and Paris, 2010; Goto et al., 2010; Fichaut and Suanez, 2011; Richmond et al., 2011; May et al., 2015). Some include
AN
Very Large Boulders (VLB, defined by Scheffers et al. (2009) as having mass in excesss
M
of 50 t), with clasts greater than100 t reported from many sites. CBD are found at
ED
elevations up to 50 m above high water, and as much as 300 m inland (e.g. Williams and
PT
Hall, 2004; Goto et al., 2011; Cox et al., 2012; May et al., 2015; Cox et al., 2017).
CE
CBD include cliff-top deposits (e.g. Hall et al., 2006; Hall et al., 2008) (Fig. 1A), but are not limited to that environment: they also occur in the absence of cliffs, at the back of
AC
inclined or stepped coastal platforms (e.g. Scheffers et al., 2010; Hall, 2011; Cox et al., 2012) (Fig. 1B,). Coastal profiles at CBD sites vary (e.g. Suanez et al., 2009; Etienne and Paris, 2010; Cox et al., 2012) . Many are steep, with either a single cliff or series of bedrock steps descending to the ocean (Fig. 1A, Supp. Figs. 2, 4); but in other cases the topography can be gradually sloping, with CBD forming a boulder ridge at the back of a broad platform (Fig. 1B. Supp. Figs. 1, 3).
6
ACCEPTED MANUSCRIPT Whatever the local topography, CBD are generally separated from the ocean by a bedrock surface (Hall et al., 2006; Suanez et al., 2009) and are not connected with any kind of beach deposit (Fig. 1). They are distinctly different from those deposits referred to as boulder beaches or storm beaches, which form in the swash zone as higher-energy
T
analogues to sandy beaches (Emery, 1955; Oak, 1984; Lorang, 2000; Buscombe and
IP
Masselink, 2006). As they are not graded to the water’s edge, and as most are located out
CR
of reach of workaday waves, they record extreme wave activity in those locations where
US
they occur.
AN
There are three kinds of supratidal CBD: boulder ridges, isolated platform boulders, and cliff-detachment blocks (Fig. 2). Boulder ridges, which contain most of the CBD material
M
(Fig. 1, Supp. Figs. 1-4), are structured, organised, coast-parallel accumulations
ED
(Williams and Hall, 2004; Cox et al., 2012) built of clasts that range from small pebbles to megagravel (sensu Blair and McPherson, 1999). Boulders vary in their degree of
PT
rounding, but are angular on average, attesting to infrequent movement (Cox et al., 2017).
CE
Size distributions generally show moderate sorting, consistent with organised emplacement by fluid flow (Etienne and Paris, 2010; Cox et al., 2012; Jahn, 2014).
AC
Boulder ridges are 1-7 m high and asymmetric, with a more steeply inclined (up to 35°) upstream (ocean side) face and a gentle (<14°) lee slope that usually grades landward into a scattered boulder field (Hall et al., 2006; Zentner, 2009). They may extend for hundreds of m or even several km along the coast (e.g. on the Aran Islands: Williams and Hall, 2004, Cox et al. 2012), or they may simply form discontinuous clusters (e.g. on Eleuthera in the Bahamas: Kelletat et al. 2004, or on Shetland: Hall et al. 2008). Ridges are
7
ACCEPTED MANUSCRIPT separated from the ocean by wave-scoured bedrock, clean of sediment and vegetation, on which large isolated boulders may sit (Hall et al., 2006; Etienne and Paris, 2010).
Isolated platform boulders are usually found seaward of a boulder ridge, sitting on
T
bedrock (Figs. 1, 2, Supp. Figs 2 and 3). Most are solitary, although small clusters may
IP
also occur (Williams and Hall, 2004; Morton et al., 2006). They tend to be bigger than
CR
most ridge boulders, and are commonly in the megagravel size category (sensu Blair and McPherson, 1999). The clusters (e.g. Supp. Fig. 3) may in some cases represent former
US
locations of the boulder ridge front, stranded by their greater mass as the rest of the
AN
boulder population migrated inland (although this has yet to be demonstrated).
M
Cliff detachment forms the very largest clasts (masses in the multiple hundreds of tonnes)
ED
(Fig. 2, 4, Supp. Fig. 8). These giant blocks calve from the adjacent rock face along planes of weakness that are surely exploited and opened by waves, but with the final
PT
separation largely due to gravity. They sit close to sea level. Once separated from the
CE
cliff they may simply wear away in place, unless wave energy is sufficient to move them, in which case they may scoot across the platform. In addition to examples described later
AC
in this paper, one of the largest clasts transported during Supertyphoon Haiyan (≈180 t: May et al., 2015) is an example of a cliff-detachment clast.
Most boulders (cliff-detachment blocks are an exception) are wave-quarried from subjacent supratidal bedrock (Williams and Hall, 2004; Herterich et al., in press). Where deposits sit atop a vertical cliff (Fig. 1 A), clasts come from the upper part of the cliff,
8
ACCEPTED MANUSCRIPT extracted and transported inland by the highest-reaching waves. At less-steep sites (e.g. Fig. 1B, Supp. Figs. 1, 3)—where deposits also tend to be farther inland— lithologic comparisons show that most boulders are quarried close to their resting location, by peeling of subjacent bedrock at 10s to 100s of m from the ocean (e.g. Supp. Fig. 6, also
T
starred clast in Supp. Fig. 7). Thus boulder creation generally happens quite close to the
IP
site of deposition, so although clasts are deposited in many cases quite far inland and well
CR
above the high water mark, net transport distances are often not that large.
US
In exception to that general rule, a small proportion of clasts is sourced at considerable
AN
horizontal distance (10s to 100s of m) from the deposition site. These intertidal or subtidal clasts can be recognised by adhering fauna (barnacles, mussels, coralline algae,
M
etc.), or may have other traces of biologic activity, such as borings by sponges or bivalves
ED
(Cox et al., 2012; Erdmann et al., 2017). Although attached organisms will decay and fall off with time, the effects of boring organisms persist for much longer. This mechanism
PT
for identifying inter- or subtidal clasts is lithology dependent, however: limestones and
CE
some sandstones are easily exploited by borers, for example, but volcanic or metamorphic rocks are harder and less soluble; so it may be more difficult to discern
AC
whether CBD in those lithologies had submarine sources.
Regardless, however, of whether bedrock is quarried close to the site of deposition or whether excavated blocks are transported long horizontal distances, the wave-generated forces being applied in these supratidal settings are considerable. And (with the exception of cliff-detachment blocks) the work to detach and move these clasts is done against
9
ACCEPTED MANUSCRIPT gravity: the vast majority are transported both landward and upward.
2. 1 How often do the boulders move? This is an open question Because CBD are activated only by unusually strong waves,
IP
T
they show little or no change from year to year. The biggest boulders can sit unmoved for
CR
decades or maybe even centuries (Hansom and Hall, 2009; Scheffers et al., 2010; Hall, 2011; Cox et al., 2012), and as they occur along desolate coastlines where people do not
US
build and spend little time, their transport has generally gone unrecorded. In comparison with other coastal environments, CBD are relatively unstudied, and thus there are few
M
AN
data to illustrate whether, how, and when they move.
ED
2. 1 Storms or tsunami?
The oldest CBD observations of which we are aware (Hibbert-Ware, 1822; O'Donovan,
PT
1839; Stevenson, 1845; Kinahan et al., 1878; Süssmilch, 1912) all concluded firmly—
CE
based on field observations—that storm waves create and transport boulders weighing many tons. The record include general statements about events such as “the late
AC
memorable storm, which hurled the waves in mountains over those high cliffs, (and) cast rocks of amazing size over the lower ones to the east of them” (O’Donovan, 1839), as well as precise determinations, e.g. “In the winter of 1802, a tabular-shaped mass, 8 feet 2 inches by 7 feet, and 5 feet 1 inch thick, was dislodged from its bed, and removed to a distance of from 80-90 feet” (Hibbert-Ware, 1922).
There were few such studies, however, and CBD were largely ignored for most of the
10
ACCEPTED MANUSCRIPT 20th century. So when interest arose in late 1990s and early 2000s (with the work of Young et al., 1996; Bryant and Nott, 2001a; Scheffers, 2002; Felton and Crook, 2003; Kelletat et al., 2004; Noormets et al., 2004; and Williams and Hall, 2004, among others), there were no long-term observational records on which to draw. Workers trying to
T
interpret CBD therefore had to depend primarily on numerical approaches. A number of
IP
innovative studies derived hydrodynamic equations relating boulder masses to the forces
CR
required to move them (e.g. Young et al., 1996; Nott, 2003b; Noormets et al., 2004), and used those as the basis for hindcasting wave heights needed. These calculations, when
US
applied to the largest boulders in CBD at various locations, returned storm wave heights
AN
that seemed unrealistic in the context of then-available wave spectral data (Nott, 2003a; Noormets et al., 2004), and thus appeared to indicate that storm waves were incapable of
M
emplacing boulders that were very large or too high above sea level. In contrast, the
ED
required tsunami heights that fell out of the calculations were far smaller and more credible. Tsunami action was therefore deemed the most likely mechanism for CBD
CE
PT
emplacement.
Extensive application of these approaches resulted in interpretation of many CBD as
AC
tsunamigenic, or probably tsunamigenic, with hydrodynamic analysis based on boulder size being the most commonly applied determinant (Young et al., 1996; Bryant, 2001; Whelan and Kelletat, 2005; Mastronuzzi et al., 2007; Scicchitano et al., 2007; Barbano et al., 2010; Medina et al., 2011; Mottershead et al., 2014; Prizomwala et al., 2015). Since the CBD themselves showed little evidence for activity on the timescales of investigation, and calculations suggested that storm waves were insufficiently powerful, the conclusion
11
ACCEPTED MANUSCRIPT that tsunami were the most likely agents of CBD emplacement seemed reasonable, and persisted in the literature (e.g. Nott, 1997; Bryant and Nott, 2001b; Scheffers and Kelletat, 2003; Scheffers et al., 2009).
T
Other sedimentologic interpretations cascaded from that interpretation, and many
IP
characteristics of CBD—including clast size, organisation into sorted groups,
CR
imbrication, and supra-tidal location—were asserted to be signatures of tsunami emplacement (Bryant, 2014; Scheffers and Kinis, 2014). In an influential, widely cited
US
paper, Bryant and Nott (2001) concluded that “imbricated boulder piles are the
AN
unmistakable signature of tsunami overwash”, and Courtney et al. (2012) reported that boulder ridges are frequently taken as diagnostic indicators of tsunami activity. Bryant
M
(2014) asserted that storm waves are unlikely to transport boulders and deposit them in
ED
imbricated piles at the top of cliffs, and Scheffers and Kinnis (2014) held that “good imbrication, as well as balancing boulders in delicate positions perched on top of boulder
CE
PT
clusters or boulder ridges…are indicative of tsunami impact and exclude storm waves”.
Some workers pointed out evidence tying imbricated CBD to storm processes (e.g.
AC
Williams and Hall, 2004; Hall et al., 2006; Hansom et al., 2008; Hansom and Hall, 2009; Etienne and Paris, 2010; Hall, 2011). It was also argued that existing hydrodynamic equations largely ignore non-linear effects that can dramatically change wave behaviour, and that they did not adequately capture the complexities of storm-wave dynamics at coasts, which might promote dramatic increases in wave height (e.g. Hansom et al., 2008, Cox et al., 2012). But the tsunami narrative was strong, and in the absence of direct
12
ACCEPTED MANUSCRIPT observational data, the numerical arguments were difficult to refute.
The data landscape has changed, however, as our understanding of wave dynamics grows apace. There are more oceanographic data buoys providing more data about wave
T
spectra, and wave modeling codes become ever more sophisticated (e.g. Roland and
IP
Ardhuin, 2014; Forget et al., 2015; Beisiegel and Dias, 2017; Brennan et al., 2017).
CR
Marine buoy data gathered over the last couple of decades reveal that very large storm waves occur regularly. In the North Atlantic, for example, significant wave heights
US
(SWH)1 in excess of 18 m have been measured (Turton and Fenna, 2008), with maximum
AN
heights up to twice the SWH (Burgers et al., 2008.). And it seems that as more data become available, measured wave heights increase in tandem, suggesting that we have
ED
maxima with any confidence.
M
not been collecting records for long enough to have gauged near-shore storm wave
PT
The record for highest wave measured offshore of Ireland, for example, keeps going up:
CE
from 20.4 m in December 2011 to 23.4 in January 2014, then to 25 m in February 2014 (O'Brien et al., 2013; Met Éireann, 2014; Atan et al., 2016), and most recently to 26.1 m
AC
during storm Ophelia in October 2017 (Siggins, 2017). In addition, there is a growing appreciation that interactions at steep coasts can generate very large waves, including “rogue waves”, defined as having at least twice the local significant wave height (e.g. Didenkulova and Anderson, 2006; Soomere, 2010; Didenkulova, 2011). The greatest
1
SWH = 4 x the square root of the variance of the time series of the wave signal, and approximates the mean height of the largest third of waves measured in a given time period. Generally, the height of the largest 1% of waves is ≈ 1. 7 x SWH.
13
ACCEPTED MANUSCRIPT wave amplifications tend to occur at coasts with deep water close to shore (Tsai et al., 2004)—a characteristic of many coastal boulder-ridge sites (Bryant and Nott, 2001b; Cox et al., 2012)—and this dovetails with recent modeling work showing that abrupt bathymetric transitions can produce dramatic wave amplifications (e.g. Carbone et al.,
T
2013; Viotti et al., 2014; Viotti and Dias, 2014; Brennan et al., 2017). Finally, the role of
IP
infragravity waves, which can magnify these effects by raising the local sea surface
CR
several metres, is emerging as important (e.g. Sheremet et al., 2014; Autret et al., 2016).
US
It is now well demonstrated that storm wave heights—especially when amplified near
AN
steep coasts—can be much greater than predicted by simple wave theory (O'Brien et al., 2013; Viotti and Dias, 2014; Akrish et al., 2016). Recent data show unequivocally that
M
storm waves are routinely larger than had previously been recognised (Flanagan et al.,
ED
2016; Rueda et al., 2016; Santo et al., 2016). In addition, application of hydrodynamic equations to boulders transported during specific storm events (for which wave heights
PT
are known) has shown that hydrodynamic calculations can significantly overestimate the
CE
wave heights required to move those blocks (e.g. Switzer and Burston, 2010). Thus cracks have appeared in the argument that storms cannot generate waves sufficiently
AC
large to move CBD megaclasts: in fact, they can.
At the same time, direct evidence for storm-wave emplacement of large boulders has accumulated (Courtney et al., 2012). In addition to plastic objects of recent vintage being found inextricably trapped beneath large boulders (Williams and Hall, 2004; Hall et al., 2006) and GIS analysis demonstrating boulder ridge mobility in the absence of tsunami
14
ACCEPTED MANUSCRIPT (Cox et al., 2012), there is a growing number of field observations in the wake of large recent storms. Before-and-after image analysis records displacement—at sites well inboard of the high-tide line, and elevations substantially above sea level—of boulders weighing many tens of tonnes (Goto et al., 2009; Fichaut and Suanez, 2011; May et al.,
T
2015; Watkins, 2015; Causon Deguara and Gauci, 2016; Cox et al., 2016; Kennedy et al.,
IP
2016a), and also near-sea-level movement of 100+ tonne megagravel (May et al., 2015;
CR
Cox et al., 2016; Kennedy et al., 2017). It is increasingly clear that storms can—and do—
US
move large boulders.
AN
But still, direct measurements have been few, and mostly limited to boulders sufficiently large that their pre-storm locations were visible in satellite imagery (May et al., 2015;
M
Kennedy et al., 2016b; Kennedy et al., 2017). These observations open a window on the
ED
energies unleashed by storm waves in the coastal zone, but provide little constraint on the way in which those energies dissipate as the ocean waters move inland; nor do they
PT
provide insight into the sedimentology and dynamics of CBD in general. To do that
CE
requires detailed measurement of clasts at all scales, at a site with precise topographic
event.
AC
information, and documentation of CBD configurations both before and after the storm
The west of Ireland is that site. From locations along the western coasts (Fig. 3) there are systematic sets of surveyed CBD transects, with associated sedimentologic and photographic data (Zentner, 2009; Cox et al., 2012; Jahn, 2014; Watkins, 2015; Cox et al., 2017), collected in the years before the 2013-2014 storms. We went back out to these
15
ACCEPTED MANUSCRIPT sites in the summer of 2014 to see whether the winter storms had wrought any changes. The before-and-after comparisons encompass a spectrum of topographic settings—from the tops of sheer cliffs to low-lying coastal platforms—and also incorporate the full range of boulder sizes, permitting detailed and quantitative sedimentologic analysis. Not only
T
can we show that storm waves move enormous rocks, but by examining the relationships
IP
between boulder size and distance from the ocean, we can interrogate how storm wave
US
CR
energy is transmitted inland.
3. WESTERN IRELAND’S CBD: A CLASSIC EXAMPLE
AN
Ireland’s high-energy Atlantic coasts (Fig. 3) have several well-developed CBD sites
M
(Williams and Hall, 2004; Scheffers et al., 2009; Cox et al., 2012). The most spectacular
ED
examples—with large clast sizes and well developed boulder ridges— occur at Annagh Head in Co. Mayo (Supp. Fig. 1), on the three Aran Islands (Inishmore, Inishmaan, and
PT
Inisheer) (examples are shown in Fig. 1, Supp. Figs. 2 and 3), and along the coast
CE
between Doolin and Fanore in Co. Clare (e.g. Supp. Fig. 3).
AC
Kinahan et al. (1871) were the first to document these deposits. They reported stormwave emplacement of boulders up to 53 t mass, but no further work was done until Williams and Hall (2004) described the geomorphology and sedimentology of the Aran Islands boulder ridges. Subsequent studies provided measurements of topographic setting, dimensions, and clast-size distributions of CBD at several locations in Western Ireland (Zentner, 2009; Cox et al., 2012; Jahn, 2014), as well as radiocarbon ages constraining boulder emplacement (Scheffers et al., 2009; Cox et al., 2012). These
16
ACCEPTED MANUSCRIPT datasets became the baseline for ongoing annual observations (Zentner and Cox, 2008; Zentner, 2009; Cox et al., 2012; Jahn, 2014; Watkins, 2015), coupled with comparative analysis using historical image sources (Cox, 2013). designed to track changes in the
T
CBD over time.
IP
Each field season revealed limited movement of smaller clasts (up to a few tonnes) and
CR
various lines of evidence showed that VLB were clearly shifting on decadal to centennial timescales (Hall et al., 2008; Cox et al., 2012; Cox, 2013). Little of significance,
US
however, was happening in response to the common-or-garden winter storms that
AN
happened year-to-year. We were beginning to wonder whether we would ever catch the
M
CBD in the act. But then we got lucky with the 2013-2014 storms.
ED
4. THE WINTER 2013-2014 “STORM FACTORY’ The period November 2013 to March 2014 was exceptionally stormy in northwest
PT
Europe, both because of the many closely-spaced storm events and their severity
CE
(Matthews et al., 2014; Masselink et al., 2015; Masselink et al., 2016). Wave periods greater than 20 s were measured off the southwest coast of England, and there were ten
AC
storms with peak SWH greater than 8 m, two of which had peak values greater than10 m (Masselink et al., 2015). SWH reached 14. 7 m on January 6th, 2014, and an individual wave 23. 4 m high was measured on that day at the M4 buoy off Ireland’s NW coast (Gallagher et al., 2016a). Directly west of the Aran Islands, the M6 buoy registered a SWH of 13. 6 m on January 26th, 2014, but broke its moorings in heavy seas shortly thereafter (Marine Institute pers. comm.), and so was out of commission when larger storms directly impacted the Aran Islands the following month. On February 20th,
17
ACCEPTED MANUSCRIPT however (during storm Darwin), the Kinsale Energy gas platform off the SW coast registered a 25 m wave against a background SWH of 12 m (Gallagher et al., 2016b). Peak wave periods throughout the winter were unusually long, and associated with record
T
wave heights (Met Éireann, 2014).
IP
Coastal impacts were magnified by storm surge effects. The December 5th “Xavier”
CR
storm, for example, coincided with high spring tides, maximising surge and wave heights (Met Éireann, 2014; Wadey et al., 2015). Remarkable coastal geomorphic responses that
US
were reported at the time (e.g. Duell and Brady, 2014; Petley, 2014) attested to the
AN
strength of the waves, and suggested that CBD might also have been re-arranged. We therefore mobilised a team to re-visit previously documented CBD sites in western
M
Ireland, with the specific aim of evaluating whether boulder movements had occurred.
ED
5. METHODS
PT
In summer 2014 a seven-person field team carried out a comprehensive inventory of
CE
boulder transport at 100 survey sites in western Ireland (Fig. 3). Clast movement was measured by comparison with baseline data collected in previous field seasons, so there
AC
are two sets of methodologies: the baseline surveys (collected prior to winter 2013-2014), and the post-storm data (collected in summer 2014). 5. 1 Baseline transects and photo-documentation Site surveys (collected between 2008 and 2013) used methods described in Cox et al. (2012). At each location, we recorded the topographic profile and CBD locations (horizontal distance inland and elevation above sea level), as well as heights, widths, and slope angles of boulder ridges. Topographic details were measured using surveying 18
ACCEPTED MANUSCRIPT compasses and laser rangefinders. Each survey was anchored by GPS points at the water’s edge, the ocean-side base of the ridge, the ridge crest, and the landward end of the deposit. Positional data were time-stamped so they could be corrected for tide height and referenced to local high-water level: all distances and elevations are reported as
T
Above High Water (AHW) (Zentner, 2009; Jahn, 2014). These pre-surveyed transects
CR
IP
provide elevation AHW and distance inland for all boulders measured in this study.
Systematic suites of photographs, recording boulder arrangements at each location, were
US
part of each survey. A set of photos was taken on the platform near the ridge base,
AN
looking inland, out to sea, and along the ridge in both directions; and a second set was taken from the ridge crest, also in four directions (looking inland, seaward, and up and
M
down the ridge). Additional contextual shots or views were also taken, so that there were
ED
10-20 photographs of the deposits at each surveyed site. The photos were linked to GPS points. Established sites were visited and re-photographed periodically in subsequent
PT
years, resulting in an extensive database of precisely located reference images showing
CE
boulder arrangements.
AC
5. 2 Post “Storm Factory” field observations Our summer 2014 observations used the pre-2014 photos as baseline data. Using the iPad-based GISKit software, we imported the reference images and linked them to the survey site locations. Field teams navigated to each point using GPS, and then—by comparing the image on the iPad screen with the view in front of them, and adjusting position until objects in the field of view aligned exactly as they did in the photograph— re-occupied the exact stance from which each photograph had been taken (Supplementary
19
ACCEPTED MANUSCRIPT Figs. 5-7). By comparing the reference image with the disposition of boulders on-site, we could determine what changes had occurred.
Boulders that had moved within the field of view, or ones that were newly added, were
T
tagged with a number, measured, and recorded. We targeted the largest five or six moved
IP
clasts in most cases (although where many large rocks had moved we tagged more). The
CR
index photo was then re-taken, showing the tagged boulders for subsequent comparison with the original photos (Supplementary Figs. 5-7). Each tagged boulder was measured
US
(X, Y and Z dimensions) and the values entered in a datasheet. The tag number allowed
AN
us to associate each measurement in the datasheet with a specific identifiable boulder in the field photograph. In this way we assembled a catalogue of 1153 moved boulders
M
(Table 1).
ED
5. 3 Estimating boulder size and weight
PT
Boulder masses (Table 1) were calculated based on the field measurements of X, Y and Z axis length, and using a density value of 2.61 t/m3 (measured from hand samples: Jahn,
CE
2014). Clearly—because boulder shapes are not perfectly regular—the volumes thus
AC
computed (and hence the masses) are imprecise. Recent studies comparing field approximations with 3D modeling techniques confirm the common-sense expectation that XYZ-based estimates generally over-estimate volume (e.g. Spiske et al., 2008; Gienko and Terry, 2014).
But we are not worried about this effect, for two reasons. First, boulders used as examples in the afore-referenced studies are generally irregular and/or highly porous,
20
ACCEPTED MANUSCRIPT which amplifies the difference between estimated and actual volume. In contrast, the well-lithified, pervasively jointed bedrock in our study sites yields boulders with userfriendly orthogonal shapes (Fig. 1, Supplementary Figs. 5-7) such that the X, Y and Z dimensions should yield a good approximation of actual volume; and the measured
T
density (2.61 t/m3: Jahn, 2014) is about the same as the constituent mineral density,
IP
indicating very low porosity. Second, our analysis does not require very accurate mass
CR
determinations: in the context of knowing where the largest boulders are moving, the difference between 4 and 5 t, or 18 and 20 t or between 95 and 105 t is immaterial to our
AN
US
analysis. An error of order 10% in the estimates therefore would not matter.
We tested whether our XYZ-based volume estimates could meet the 10% accuracy
M
criterion by making photogrammetric Structure-from-Motion (SfM) 3D models of a
ED
subset of boulders, and comparing the software-computed volumes with those calculated from the field measurements (see e.g. Gienko and Terry, 2014, for a fuller description of
PT
this approach). We targeted isolated boulders surrounded by bare platform so that we
CE
could capture full 360° imagery unimpeded by obstacles (precise 3D models can’t be made if parts of the boulder are occluded by other rocks). We walked around each of
AC
these boulders with a GPS-enabled digital camera, taking overlapping images to capture all sides of the boulder, the upper surface, and—to the extent possible—the base (this latter by “duck walking” in a crouch around the rock, imaging as much of the underside as we could). We used Agisoft PhotoScan Pro 1.3.0 to align the georeferenced images and construct precise spatially referenced 3D digital models of the test boulders using standard approaches (e.g. Niederheiser et al., 2016). Comparison of photogrammetric
21
ACCEPTED MANUSCRIPT volumes with those estimated from XYZ measurements (Table 2) shows differences ranging from 2-10%. Adding 10% error bars to the masses in the data figures would not change any of the trends, so we conclude that the low-tech XYZ tape-measure approach
T
provides sufficiently accurate first-order assessments of boulder volume.
IP
Dimensions of the two largest blocks (Boulders 293 and 297: Fig. 4) had to be measured
CR
remotely, because they sit on cliff-base platforms inaccessible without ropes. We flew a Phantom 3 UAV to capture the SfM photogrammetric datasets (e.g. Gienko and Terry,
US
2014; Zhang et al., 2016), imaging each boulder thoroughly (106 and 175 photos,
AN
respectively), with at least 60% overlap between photographs to minimise occlusion and
M
ensure precise modeling.
ED
Creating stand-alone 3D models for objects in a landscape involves interacting with the data, and accuracy therefore is influenced by operator choices as well as data quality. The
PT
SfM point cloud must be edited to isolate the object of interest, which involves deleting
CE
extraneous points, and in effect carving out the object from its surroundings. Furthermore, boulder undersides are unavoidably occluded where in contact with the
AC
bedrock surface. Occlusions manifest as “holes” in the 3D model, requiring extrapolation of surfaces to create a closed solid (Zhang et al., 2016). Exactness of the model therefore depends on how precisely the operator can identify the contact between the boulder and the bedrock when editing the point cloud, and on parameters chosen for the “close holes” procedure in the software. To ensure that we were capturing the uncertainty in the
22
ACCEPTED MANUSCRIPT process, we had different operators carry out these procedures several times on each boulder, and report the range of volumes and associated mass estimates for each.
5. 4 Measuring boulder displacement
IP
T
Identifying moved boulders was simple—clasts in new positions were easy to recognise
CR
in before-and-after comparisons. But figuring out how far they had moved was trickier, because that involved being able to identify both the original position and the final resting
US
place. In cases where new clasts simply appeared in the archive photograph field of view, it was impossible to determine precisely where they had come from. Similarly, locating
AN
boulders that had moved out of the picture was challenging at best. Even rocks that
M
remained within the frame could effectively be disguised if they rotated during transport, presenting a different side to the camera so that we had no chance of recognising them.
ED
We measured transport distances only in cases where we could unambiguously identify
PT
both the original and final clast locations based on the photographic evidence. We therefore report displacement values for only about a third of the database (374 of the
AC
CE
1153 clasts: Table 1)
We used tapes to measure short displacements, and laser rangefinders when transport distances were >30 m. To determine displacement of the two largest blocks (Boulders 293 and 297: Fig. 4), which are clearly visible in high-altitude orthophotography, we overlaid recent Digital Globe orthoimages (in Bing Maps and on Google Earth) with
23
ACCEPTED MANUSCRIPT Ordnance Survey Ireland (OSI) archival aerial imagery2, georeferenced and scaled them, and then measured the distance between the starting positions and the post-2014 locations (e.g. Supp. Fig. 8 A and B). 6. RESULTS AND DISCUSSION
IP
T
We photo-documented dislocation of 1153 boulders across the 100 sites, and recorded
CR
dimensions and estimated mass of each (Table 1). For 374 of these, we were able to determine not just that they had moved, but where they had come from, so in those cases
US
we also report horizontal and vertical travel distances. The amount of activity varied from site to site, ranging from a single moved boulder (at the high-elevation locations 80 and
AN
82, Table 1), to forty-two transported clasts (at Location 4). Moved clasts include pre-
M
existing boulders translocated on the coastal platform or redistributed within boulder
(e.g. Supplementary Fig. 6).
ED
ridges (e.g. Supplementary Figs. 5, 7, 8), and also boulders newly created from bedrock
PT
By combining the data from all 100 sites, we gain a synoptic view of the work done by
CE
storm waves over a wide range of elevations and inland distances. No single site includes all settings, but among the sites there are sheer cliffs (e.g. Fig 1A), broad sloping
AC
platforms (e.g. Fig. 1B, Supp. Figs. 1 and 3), and stepped coasts (Supp. Figs. 2 and 4). Thus the dataset provides an integrated view of storm-wave transport capabilities across a wide spectrum of coastal topography. The locations cover many linear km of coastline (Fig. 3). Full data, including geographic co-ordinates, are provided in Table 1, and the
2
OSI makes historical imagery available online through its GeoHive site: map. geohive. ie/mapviewer. html
24
ACCEPTED MANUSCRIPT reader can export the lat-long data to Google Earth, permitting zoomed-in examination of the topographic details of each data-collection site. 6. 1 Overview of boulder movements Masses of moved boulders span several orders of magnitude, from < 10-1 to > 0. 5 x 103
T
tonnes. Among the moved clasts are eighty-three with masses ≥ 20 t, including eighteen
CR
IP
VLB ≥ 50 t. Seven of the boulders are >100 t. The two largest blocks (Table 1, boulder numbers 267 and 293, each weighing several hundred tonnes) are located close to sea
US
level. At greater elevations, the clasts that moved are smaller—but “smaller” is a relative term: boulders up to 20 t mass were transported at 20 m AHW. The highest elevation at
AN
which we recorded displacement is 26 m AHW (at 18 m inland, maximum clast size 1. 2
M
t: Location 24 in Table 1), and the farthest distance inland is 222 m (at 20 m AHW,
ED
maximum clast size 28. 5 t, Location 54).
PT
Some boulders moved very little, others moved 10s of m. The largest horizontal transport distance we measured is 95 m (a 49 t block, which moved from a starting location in the
CE
intertidal zone to a final location 2. 3 m AHW and 45 m inland: Boulder 1088 in Table
AC
1), and the largest vertical displacement is 4. 5 m (an 18 t boulder that was transported from a ridge base at 17 m AWH to the crest of the ridge, with a starting location 120 m inland, and a final resting place 132 m inland and 21. 5 m AHW: Boulder 745 in Table 1).
Among the largest clasts, transport distances range from small nudges to substantial shunts along the coastal platform. In the 50-100 t category, boulders moved as little as 0.5
25
ACCEPTED MANUSCRIPT m (Boulder 1153, a 57 t clast, at 4 m AHW and 15 m inland) and as much as 22 m (Boulder 1095, at 75 t, moved along shore, just above high water and a few m inland). For boulders greater than 100 t, the minimum transport distance is 2 m (Boulder 1151, a 157 t rock, 3 m AHW and 30 m inland) and the largest translation measured is 23 m
CR
IP
T
(Boulder 261, 210 t at 6 m AHW and 27 m inland).
6. 2 The biggest movers
US
The two largest clasts (Boulders 267 and 293 in Table 1; Fig. 4) are located on the island of Inishmore (Fig. 1). Boulder number 267 was tricky to model because its rectilinear
AN
shape (Fig. 4A) is somewhat deceptive, and there is a deep undercut beneath the block’s
M
southern edge (right-hand side in Fig. 4A). That side is very close to the adjacent cliff, which made it difficult to image with the UAV: we were able to image all parts of the
ED
block, but the camera-to-object distance was variable, and with the busy background, that
PT
resulted in a noisy point cloud. Repeat iterations of the modeling protocols by different operators returned volumes between 180 and 185 m3, which (using density of 2.61 t/m3:
AC
CE
Jahn, 2015) correspond to mass in the range 470 to 482 t.
Boulder number 293, being more regular in shape and being farther from the cliff (Fig. 4B), was easier to measure. Repeat models produced consistent volume estimates between 237 and 239 m3, giving a mass between 619 and 624 t. To be conservative, we rounded the mean mass estimate for each block down to the nearest 5 t. Thus we report 475 t as the representative mass for Boulder number 267, and for boulder number 293 we report 620 t (Table 1) .
26
ACCEPTED MANUSCRIPT
Both the 475 t and the 620 t boulders calved from adjacent rock faces at some unknown point in the past. Both are visible as isolated blocks in OSI 1995 aerial imagery, so we know they have been there for more than twenty years, but they may be much older. The
T
sheer size of these rocks makes verification of their displacement particularly significant,
IP
so we show before-and-after image pairs for each in Supplementary Fig. 8. During winter
CR
2013-2014 each was shoved several metres along the supratidal platform: The 475 t block moved about 4 m along shore (just above high water and a few m inland: Supplementary
US
Fig. 8 A,B), and the 620 t block shifted about 3. 5 m seaward (from a starting position ≈2.
AN
5 m AHW and 75 m inland: Supplementary Fig. 8 C,D).
M
6. 3 Topographic controls on the size of boulders that are transported To a first approximation, we expect that the greater the elevation and the farther the
ED
distance inland, the lower the transmitted wave energy. Boulders close to the ocean
PT
should move more readily than hydrodynamically equivalent boulders inland, and the
CE
maximum transportable size should decrease the farther you are from the shoreline.
AC
We quantify that by examining relationships between boulder masses and their topographic setting. The biggest boulders repositioned at each study site constrain the maximum energy available at that location. There was a big range of clast sizes at these study sites, and in most cases there were larger, unmoved boulders. We are therefore confident that, for the set of storms in winter 2013-2014, we have accurately captured the relationships between topography and expended wave energy.
27
ACCEPTED MANUSCRIPT 6. 3 1. Elevation Unsurprisingly, there is a strong inverse correlation between elevation and maximum boulder mass moved. Blocks weighing hundreds of tonnes are restricted to just a few metres AHW, whereas at the highest elevations the largest clasts were two orders of
T
magnitude smaller (Fig. 5A). A regression analysis using the largest moved boulders at
CR
IP
each site yields the exponential relationship:
Equation 1
US
Mass (t) = 150 * ℮- 0.15*Elevation (m)
AN
The highest elevation in Fig. 5A is 26 m, but this does not represent the limit for boulder movements: there are CBD at higher elevation in the study areas (up to 50 m AHW:
M
Williams and Hall, 2004; Cox et al., 2012). Although the clasts at elevations >26 m did
ED
not move in this set of storms, they are contiguous with deposits where movement was recorded, so we infer that they are also storm-wave activated, and further infer that
CE
PT
future, larger storms will induce activity in those highest CBD.
6. 3. 2 Distance inland
AC
The relationship between boulder size and distance inland from the high water mark is less simple (Fig. 5B). Maximum boulder mass decreases exponentially, from greater than 500 t near the shore to something around 20 t at about 120 m inland, given by the relationship:
Mass (t) = 164 * ℮- 0.02*Distance (m)
Equation 2
28
ACCEPTED MANUSCRIPT
The rates of change shown in Fig. 5A and 5B differ by an order of magnitude: maximum transported boulder mass decreases in proportion to the 0.2 power with increasing elevation, whereas for distance inland the decrease is proportional to the 0.02 power (for
T
elevation in units of metres). This is not too surprising, as it requires more work to hoist
CR
IP
mass against gravity than to push it horizontally.
We expected to see the initial strong decrease in maximum size with inland distance, as
US
the inrushing flow loses energy. But beyond 120 m inland, the upper surface of the
AN
distribution flattens, and there is no subsequent trend in the data. From 120-220 m inland the upper limit on boulder size is consistently ≈20-35 t. This flattening of the curve was
ED
M
not predicted.
The topographic context of the data points provides some insight: the suite of locations
PT
greater than120 m inland are generally at low elevation relative to their distance from the
CE
coast, and these CBD are at the back of broad, very gently sloping coastal platforms (e.g. Fig. 1B). Ocean water this far inland is best modeled as a unidirectional bore (Cox and
AC
Machemehl, 1986), analogous to flow generated by green-water overtopping of decks and seawalls (Shao et al., 2006). As it rushes inland across a shallow coastal platform, the bore is little affected by gravity, and can therefore sustain velocity, or even increase in speed (Cox and Ortega, 2002; Ryu et al., 2007). The inland flattening of the massdistance curve (Fig. 5B) may therefore be telling us something specific about mass transport in areas with wide planar coastal topography.
29
ACCEPTED MANUSCRIPT
6. 3. 3 Steepness Neither elevation nor inland distance alone can capture the topographic relationship of a clast to the ocean: a boulder perched 20 m AWH on a cliff top is closer to the ocean than
T
one 20 m AHW at the back of a shore platform. So to incorporate both the vertical and
IP
horizontal components of the CBD setting we use the slope ratio (elevation AHW :
CR
distance inland) as a measure of the steepness of the boulder setting. This yields the strongest trend in the data: an inverse power-law relationship between steepness and
AN
US
maximum transported mass (Fig. 5C).
Equation 3
M
Mass (t) = 8. 17 * Steepness- 0.92
ED
Although we refer to this as “steepness”, we emphasise that the slope ratio does not describe an actual gradient: for example, CBD sitting on a level platform 5 m inland from
PT
the edge of a vertical 50 m cliff would register a 1-in-5 slope, with a steepness ratio of 5.
CE
In fact the cliff is much steeper than that, and the cliff-top platform much flatter. But computing the slope ratio provides a measure of both the superelevation of the storm-
AC
water surface above datum and its horizontal travel distance, giving an integrated sense of the overall work being done by the storm waves. The take-home message is that the ability of the wave to transport mass is far greater when the coastal topography is more gentle, and drops of dramatically as steepness increases.
30
ACCEPTED MANUSCRIPT 6. 4 Topographic controls on how far boulders move Clasts can move small distances at any elevation and along any kind of slope, but the greater the distance from the fairweather shoreline (vertical or horizontal) or the steeper the coastal profile, the smaller the maximum transport distance (Fig. 6). The effects are
T
strong: all relationships (computed by regression through the dark blue points in Fig. 6,
IP
which define the upper bounds on the data) are either exponential (Fig. 6A, B) or power-
CR
law (Fig. 6C).
US
The maximum measured transport distance is 95 m (Boulder 1088: a 41t clast). This
AN
boulder is one of a group (numbers 1088-1094, 35-49 t), all of which were transported more than 70 m on a broad, almost horizontal platform close to sea level (sloping 0. 05-
M
0. 07). The farthest-travelled clasts are within a few m of high water: clasts that moved
ED
more than 50 m are all at elevations below 3 m (Fig. 6A).
PT
But relocation distances at higher elevations are also non-negligible: for example,
CE
Boulder 830, a 19 t clast, moved 12 m at 21 m AHW (the location was also 83 m inland). Even at 26 m AHW, we measured transportation distances up to 4 m. There is, however,
AC
a dramatic dropoff in maximum transport distance with elevation, defined by the exponential relationship:
Transport distance (m) = 52. 5 * ℮-- 0.11*Elevation (m)
Equation 4
31
ACCEPTED MANUSCRIPT The relationship between transport length and distance inland (Fig. 6B) is less striking but nonetheless strong. The longest transport paths were closest to the fairweather shoreline (all clasts that travelled >50 m were located <45 m inland). Although transport distances decrease further inland, they remain substantial: even at 220 m inland, a 4 t
T
boulder was transported 13 m. The overall decline in maximum transport length with
IP
inland distance is, however, exponential. Although the data are noisy (R2 = 0. 56), the
CR
correlation is highly significant (p <0. 0001). The trend is similar to the transport-
US
elevation relationship in Fig. 6A but with an order-of-magnitude smaller exponent:
Equation 5
AN
Transport distance (m) = 36. 6 * ℮-- 0.01*Distance Inland (m)
M
In contrast to the boulder mass-inland distance relationship (Fig 5B), the transport length-
ED
inland distance curve does not seem to flatten inland, suggesting (maybe) a progressive decrease in sustained flow strength: although overland bores may be able to budge large
PT
boulders at long distances inland, perhaps their ability to maintain the force needed for
CE
protracted transport becomes progressively less the farther they are from the shoreline. We recognise, however, that the transport-distance regression line is less steep overall
AC
than the mass-distance line (spanning three rather than four orders of magnitude in the Y axis), which, combined with the noise inherent in the data, may be obscuring nuance or detail in the relationships.
There is a power-law relationship between transport distance and steepness (Fig. 6C):
32
ACCEPTED MANUSCRIPT Transport distance (m) = 6. 3 * Steepness-0. 74
Equation 6
which echoes the relationship between boulder mass and steepness (Fig. 5C), and scales similarly. At the steepest sites, the maximum transport was only 4 m. Transport distances
IP
T
>70 m were achieved only where steepness was < 0. 1.
CR
In general, isolated platform blocks racked up the largest transport distances, probably because they were able to skid unimpeded across bedrock. Boulders within ridges tended
US
to move less far, although some that were at the ocean-facing kerbs of boulder ridges
AN
moved substantial distances laterally along the front of the ridge. Although some boulders on ridge faces moved downward and oceanward, inland-directed transport was
M
more common: ridge boulders tended to move upward and inland on ridge faces, and
ED
some were transferred across ridge crests, ending up on the back of the ridge or even in
PT
the scattered boulder field on the landward side (Nagle-McNaughton and Cox, 2016).
CE
7. THE DOG(S) THAT DIDN’T BARK IN THE NIGHT… In focusing on the big boulders that moved in the winter of 2013-2014 we should not lose
AC
sight of those that stayed exactly where they were. Many big rocks—both isolated platform boulders and clasts within ridges—were unmoved. By remaining in place, these clasts also convey information about CBD dynamics. At most sites, the largest boulders that moved were not the largest available. This means that the biggest rocks that storm waves can transport have not yet been recorded.
33
ACCEPTED MANUSCRIPT The largest coastal boulder we know of (located at 53. 1367°N, 9. 8261°W) is not in Table 1 because it stayed absolutely stationary in 2013-2014. With mass estimated at 780 t, this clast sits 25-30 m from the cliff face where it originated. It teeters on a small bedrock step (Fig 7), demonstrating that is a cliff-detachment block dragged seaward,
T
rather than a fragment stranded by cliff retreat. We do not know at what point in the past
IP
this enormous rock was mobilised—nor can we be sure that it was moved by storm
CR
waves and not by some long-past tsunami. There are robust sedimentological arguments, however, to suggest that storm waves may have moved it. Size-wise, this block (with Y
US
axis ≈11m) is classified as a medium block (per the criteria of Blair and McPherson,
AN
1999), which is just one size category up from fine blocks, the grade in which the seven largest transported clasts fall. Hydrodynamically, it’s not much of a stretch to imagine
M
that storms more energetic than the 2013-2014 events might produce waves capable of
ED
moving such a block. We are not asserting that storm waves can do such work, but we are hypothesising that it seems probable. And we will continue to monitor this rock in future
CE
PT
years.
Some boulders that should or could have moved, did not budge. Supplementary Fig. 7
AC
shows a block excavated from the subjacent bedrock step and hoisted to lean across the ridge front by storm waves in the past (probably in 1991: Cox et al., 2012). The 20132014 storms had no effect on this block, however, despite the fact that, at 78 t, 17 m AHW and 120 m inland, its vital statistics fall well within the moved-boulder zones in the reference parameter spaces (Fig. 5).
34
ACCEPTED MANUSCRIPT The immobility of this clast during storms that moved comparable masses in comparable topographic situations speaks to the stochastic nature of storm-wave transport dynamics. Some CBD express the full capabilities of the storm, and others do not. The angle at which waves approach the shoreline will affect amplification, breaking, and inland bore
T
generation, so different storms can be expected to have varying impact on boulder
IP
deposits, depending on coastline orientation (at both the regional and the very local
CR
scale). We predict that this boulder (Supplementary Fig. 7) will move in some future storm, and our data (Fig. 5) indicate that—given the right wave approach angle—it could
AN
8. CONCLUSIONS AND IMPLICATIONS
US
happen with storms no stronger than those of winter 2013-2014.
M
Coastal boulder deposits (CBD) are archives of information about the effects of extreme
ED
waves and storm-water incursions along exposed deep-water coasts. Incorporating boulders that weigh in the 10s and even 100s of tonnes, and located above the high-water
PT
mark—some at elevations up to 50 m, some up to a quarter of a km inland—CBD are
CE
both spectacular and geomorphologically significant. They represent the inland transfer of extraordinary wave energies. As CBD record the highest energy coastal processes,
coasts.
AC
they are key elements in trying to model and forecast interactions between waves and
CBD locations, being inhospitable, bear no dwellings and have little infrastructure of any kind, and one might conclude that studying these deposits has little societal relevance. But that would be wrong. Nailing down conditions under which very big boulders are moved is not just about storm impacts on remote coasts: it has direct bearing on
35
ACCEPTED MANUSCRIPT understanding storm-coast interactions in the broadest sense. In the first place, measuring these transported boulders reveals the true scale of storm-wave energy. Until very recently, as discussed earlier, it could legitimately be argued that storm waves have not the power to move colossal boulders. We now know that they do, and we measuring
IP
T
CBD allows us to quantify that power.
CR
Second, these data may contribute to hazard modeling for different kinds of coasts under different climate scenarios. Whereas forces this extreme rarely affect the more sheltered
US
coasts where people generally live, that may change. Given that the future may bring
AN
increased storminess (Zappa et al., 2013; Brown et al., 2014; Elliott et al., 2014; Slingo et al., 2014) and will surely bring higher sea level, there is an expectation of greater
M
inundation of coastal environments in general (e.g. Vose et al., 2014; Vousdoukas et al.,
ED
2016). It is therefore timely to document as well as we can the upper limits of storm wave energy at coasts. Understanding CBD dynamics is essential part of understanding the full
PT
spectrum of wave power so that policy makers can plan forward for potential impacts of
CE
increased storm energy.
AC
Third, these kinds of data are useful for offshore wave-risk evaluation. Marine locations with abundant wave power, some in the vicinity of this study area (Gallagher et al., 2016b), are targeted for renewable-energy installations. Understanding the forces to which such devices would be subjected is critical (Tiron et al., 2013; Tiron et al., 2015), but direct measurements are difficult, and most high-resolution records are short time series (e.g. Flanagan et al., 2016). The onshore boulder movements preserve a record of
36
ACCEPTED MANUSCRIPT forces unleashed at these coasts, and may therefore serve as a proxy for the kind of pounding that near-coast offshore installations might have to endure.
Where CBD occur they provide an eloquent and nuanced record of large-wave events,
T
and their topographic locations are pinning points recording the forces exerted at those
IP
elevations and inland distances from the high-water mark. The data presented here
CR
underscore that point. The 2013-2014 storms caused boulder dislocation and transport at elevations up to 26 m AHW, and at distances up to 222 m inland (Figs. 5 and 6). Many of
US
the clasts that were transported are very big, including eighteen VLB weighing more than
AN
50 t, with six exceeding 100 t. The largest boulder that moved weighs about 620 t. These data show clearly that storm waves have the capacity to do extraordinary work at high
M
elevations and considerable distances from the fairweather shoreline. The boulder mass-
ED
topography relationships presented here—and analogous ones that we hope will be generated for other sites and other storm sets in the future—permit extrapolation and
PT
estimation of maximum transport capacities. Thus we can better constrain and understand
CE
the storm-waves forces to which exposed coasts are regularly subjected.
AC
The boulders moved in western Ireland during the 2013-2014 storms are the largest yet recorded that were unambiguously transported by waves. But we have certainly not yet captured the maximum storm-wave transport capability. At almost every site that we measured there were larger clasts, unmoved by these storms, that had been transported previously by waves. One could argue that large static boulders might be relics of longpast tsunami (Scheffers et al., 2009; Scheffers et al., 2010), but the storms of winter
37
ACCEPTED MANUSCRIPT 2013-2014, while many and impressive, were not record-breaking. Stronger individual storms have impacted these coasts in the past (e.g. Shields and Fitzgerald, 1989; Met Éireann, 1991; Cooper et al., 2004) and the 2013-2014 storm sea states were not the greatest on record for the North Atlantic region (Cardone et al., 2011; de León and
T
Soares, 2014; de León et al., 2015). Add to that other records showing wholesale
IP
migration of CBD in the last century (Cox et al., 2012), and the conclusion must be that
CR
there have been—and will be in the future—storm waves sufficiently energetic to move
US
even larger clasts.
AN
If different storms would move different boulders—and maybe larger ones—do these trends and equations (Fig. 5, 6) have any general applicability? We believe the answer is
M
yes. In areas where both storms and tsunami occur, and where there is debate as to
ED
whether CBD are influenced by one or the other, these relationships can serve as a firstorder baseline. Areas where storm emplacement has been dismissed because boulder
PT
sizes seem too large (e.g. Young et al., 1996; Whelan and Kelletat, 2005; Mastronuzzi et
CE
al., 2007; Scicchitano et al., 2007; Barbano et al., 2010; Medina et al., 2011; Mottershead et al., 2014; Prizomwala et al., 2015) can be compared with these data. If clasts fall below
AC
the lines of fit in Fig. 5, then storm wave emplacement cannot be dismissed as a potential mechanism.
It is no longer possible, in the face of these data, to conclude that CBD were deposited by tsunami based on boulder mass alone. Hydrodynamic models for boulder transport, which underpinned arguments that storm waves could not move very large boulders (e.g.
38
ACCEPTED MANUSCRIPT Young et al., 1996; Nott, 2003b; Noormets et al., 2004), clearly need revision and reanalysis. Similarly, CBD interpreted as tsunamigenic based on hydrodynamic transport equations (e.g. Bryant, 2001; Kelletat et al., 2004; Whelan and Kelletat, 2005; Bryant and Haslett, 2007; Mastronuzzi et al., 2007; Maouche et al., 2009; Barbano et al., 2010; and
T
others) should be re-evaluated. It’s entirely possible that tsunami emplaced such deposits;
IP
but the interpretation must be based on more diverse sedimentologic criteria, and not on
CR
boulder size alone. There is no one-size-fits-all criterion for determining whether a boulder was emplaced by storm waves or tsunami. But if boulder masses plot on or below
US
the reference lines on Fig. 5 A-C, the possibility of storm-wave transport cannot be
AN
excluded, and—unless there is strong evidence to the contrary—should probably be the
M
default interpretation.
ED
In the space of just a few years, discussions of boulder transport have flipped from a state where there was no observational evidence for storm wave dislocation of boulders in
PT
excess of 50 t (as was pointed out by Scheffers et al., 2009) to the current situation, where
CE
new reports of boulders exceeding those criteria are published every year (e.g. May et al., 2015; Kennedy et al., 2016b; Kennedy et al., 2017). The data presented here ratchet the
AC
ceiling for storm-wave transport up another notch. We are sure, however, that these new record masses will soon be exceeded, because although the 2013-2014 storms were powerful, from a long-term perspective they were not that special. Stronger storms have hit Ireland in the past and will again: all indicators are that larger boulder movements will be documented in the future.
39
ACCEPTED MANUSCRIPT Documenting boulder creation and transport during these events is one step in a long journey. Showing that storms can move giant rocks is one thing. Understanding the hydrodynamics behind the data is quite another. These data contribute to the growing realisation that CBD are dynamic and that storms are a more powerful sedimentologic
T
force than was hitherto recognised. But we are as yet only scratching the surface, and
CR
IP
there is a lot of work still to do.
US
ACKNOWLEDGEMENTS
We are grateful for support from NSF awards 0921962 and 1529756, as well as the
AN
Williams College Class of 1963 Sustainability Fund. We are also grateful for anonymous
M
reviewer comments on the manuscript. Many Williams College undergraduate students
ED
collected field data: baseline measurements were made by Danielle Zentner, Rebecca Gilbert, Brian Kirchner, Nari Miller, Miranda Bona, and David Rapp, and 2014 post-
PT
storm movements were recorded by Team Boulder: Kelly Tellez, Kelsey Adamson,
AC
CE
Laura Stamp, Jorge Castro, Caroline Atwood and Spencer Irvine.
40
ACCEPTED MANUSCRIPT
FIGURE CAPTIONS
Fig. 1
Coastal boulder deposits (CBD) in different settings. Arrows indicate people (adults) for scale. A. Cliff-top CBD at locations 68-69 (Figure 3, Table 1) on
IP
T
Inishmaan. The cliffs in this field of view are about 20 m high, and the
CR
seaward edge of the boulder ridge is 32-42 m inland from the cliff edge. B. Locations 47-49 on Inishmaan are at the back of a broad, gently sloping
US
coastal platform. The seaward edge of the boulder ridge is 10-11 m AHW and 150-160 m inland, and the ridge itself is about 3 m tall. The paler-
AN
coloured bedrock at the toe of the boulder pile was newly exposed when this
M
CBD migrated inland by 1-2 m in winter 2013-2014. The large isolated
ED
boulder in the foreground (with person next to it) has mass ≈19 t (see Table 2, Boulder 3). Both photographs were taken in summer 2016. In addition to
PT
showcasing different kinds of CBD setting, these images speak to ongoing
CE
boulder transport: the isolated clasts with people next to them (two in A, one in B) all moved between 2014 and 2016. Additional site images can be
Fig. 2
AC
found in Supplemental Figures XXX
Diagrammatic representation of the different kinds of CBD. Boulder ridges may form at a range of elevations, from 1-50 m AHW and are built of clasts ranging in size from fine pebbles to medium blocks (per the Blair and McPherson, 1999 size scale). Isolated platform boulders are usually large relative to clasts in the ridge (>95th percentile in grain size). Both boulder
41
ACCEPTED MANUSCRIPT ridges and isolated platform boulders are excavated and transported inland by wave, with some component of work done against gravity. Cliffdetachment blocks fall or are separated from superjacent cliff faces, and are moved along the shore platform with little or no vertical component to the
Locations from which data were collected are wide spread on the west coast
CR
Fig. 3
IP
T
transport.
of Ireland. Base map © maproom. net. Geographic co-ordinates for all
US
locations are given in Table 1. The reader can export the latitude and
AN
longitude data to Google Earth or Bing Maps to view detailed topography
ED
Feld photographs of the two largest blocks to have moved during winter 2013-2014. Both are on the island of Inishmore. A: Boulder 267, on the
PT
lower platform, weighs ≈475 t. The yellow box outlines two full-size adults
CE
on the upper platform. B: Boulder 293 weighs ≈620 t The white patch on its upper surface marks the previous location of a 60-ton slab that was dislodged during the recent storms. Supplementary Fig. 4 shows before-and-
AC
Fig. 4
M
and geomorphology of all sites, or of any specific site.
after location images for both. boulders. See section 6.2 for details on the mass determinations.
The platforms on which these blocks are sitting are close to sea level, but above the high-water mark. The ponds near the boulders are not tide pools,
42
ACCEPTED MANUSCRIPT but contain fresh water (made slightly brackish by sea spray), which flows onto the platform via springs emerging along bedding planes in the limestone. The bright green algae in both images are non-marine, salttolerant terrestrial species. In B, the tide is partially out and the upper
T
intertidal (lowest platform) is visible. In A, the tide is almost fully in, and
CR
Masses of transported boulders as a function of topography. Y axis labels in
US
panel A apply to all panels. The graphs show all data; the points included in
AN
the regression analysis (i.e. the two or three largest masses at each elevation) are highlighted in dark blue. Of the 1153 measured boulders, 41 were
M
excluded from the steepness analysis in panel C: because our topographic
ED
measurements are accurate only to about 1 m, steepness estimates are imprecise for locations close to sea level where both elevation and inland
PT
distance values approach the error on our measurements. We therefore
CE
exclude boulders close to the shoreline, because in those locations our “steepness” estimates are not meaningful. Cutoff values are 10 m inland and 4 m AHW: boulder settings must exceed one or both of those values to be
AC
Fig. 5
IP
that lowermost platform is inundated.
included. Boulder no. 267, one of the two largest clasts moved, barely meets the criteria for inclusion: it is only about 1 m AHW, and its centre of mass is about 11 m inland. The dotted line connecting two points at the upper left corner of the graph shows the range in steepness values for this block based on the limits of topographic accuracy. The different locations of this point
43
ACCEPTED MANUSCRIPT do not materially affect the regression line (co-efficients change only in the second decimal place).
Fig. 6
Horizontal clast transport distance as a function of topographic steepness
T
(elevation AHW/ distance inland). Where there is a large distance between
IP
the origin and resting place of the clast, the starting topographic setting is
CR
used. Total N = 367: this is the subset of the dataset for which we were able to measure robust transport distances. The darker points (N = 24) are the
US
three highest transport-distance values per X-axis value, and define the
AN
upper limits of the data distributions. The regression line through these points provides a relationship between coastal steepness and likely
Fig. 7
ED
M
maximum transport distance.
This ~780 t cliff-detachment block, at the northwestern end of Inishmore in
PT
the Aran Islands, near location 33 (Fig. 3), did not move during the 2013-
CE
2014 storms, but was transported to it its current location at some point in
Table 1 Table 2
AC
the past.
Main data table with all moved boulders Comparison of photogrammetric and field measurements of mass
44
ACCEPTED MANUSCRIPT BIBLIOGRAPHY Akrish, G., Rabinovitch, O., Agnon, Y., 2016. Extreme run-up events on a vertical wall due to nonlinear evolution of incident wave groups. Journal of Fluid Mechanics 797, 644-664. Atan, R., Goggins, J., Harnett, M., Agostinho, P., Nash, S., 2016. Assessment of wave
T
characteristics and resource variability at a 1/4-scale wave energy test site in
IP
Galway Bay using waverider and high frequency radar (CODAR) data. Ocean
CR
Engineering 117, 272-291.
Autret, R., Dodet, G., Fichaut, B., Suanez, S., David, L., Leckler, F., Ardhuin, F., Ammann, J., Grandjean, P., Allemand, P., 2016. A comprehensive hydro-
US
geomorphic study of cliff-top storm deposits on Banneg Island during winter 2013–2014. Marine Geology.
AN
Barbano, M.S., Pirrotta, C., Gerardi, F., 2010. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Marine Geology 275, 140-154.
M
doi: 10.1016/j.margeo.2010.05.005
Beisiegel, N., Dias, F., 2017. A Pseudo-Spectral Method for Extreme Storm Waves, The
ED
27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers: ISOPE-I-17-597.
PT
Blair, T.C., McPherson, J.G., 1999. Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research 69, 6-19.
CE
Brennan, J., Clancy, C., Harrington, J., Cox, R., Dias, F., 2017. Analysis of the pressure at a vertical barrier due to extreme wave run-up over variable bathymetry.
AC
Theoretical and Applied Mechanics Letters in review. Brown, S., Nicholls, R.J., Hanson, S., Brundrit, G., Dearing, J.A., Dickson, M.E., Gallop, S.L., Gao, S., Haigh, I.D., Hinkel, J., Jimenez, J.A., Klein, R.J.T., Kron, W., Lazar, A.N., Neves, C.F., Newton, A., Pattiaratachi, C., Payo, A., Pye, K., Sanchez-Arcilla, A., Siddall, M., Shareef, A., Tompkins, E.L., Vafeidis, A.T., van Maanen, B., Ward, P.J., Woodroffe, C.D., 2014. Shifting perspectives on coastal impacts and adaptation. Nature Clim. Change 4, 752-755. 10.1038/nclimate2344 Bryant, E., Nott, J., 2001a. Geological indicators of large tsunami in Australia. Natural Hazards 24, 231-249. 45
ACCEPTED MANUSCRIPT Bryant, E., 2014. Tsunami: the underrated hazard, Third ed. Springer, United Kingdom. Bryant, E.A., Nott, J., 2001b. Geological indicators of large tsunami in Australia. Natural Hazards 24, 231-249. Bryant, E.A., 2001. Tsunami —The Underrated Hazard. Cambridge University Press, Melbourne. Bryant, E.A., Haslett, S.K., 2007. Catastrophic wave erosion, Bristol Channel, United
T
Kingdom: Impact of tsunami? Journal of Geology 115, 253-269.
IP
Burgers, G., Koek, F., Vries, H., Stam, M., 2008. Searching for Factors that Limit
CR
Observed Extreme Maximum Wave Height Distributions in the North Sea, in: Pelinovsky, E., Kharif, C. (Eds.), Extreme Ocean Waves. Springer Netherlands,
US
pp. 127-138.
Burvingt, O., Masselink, G., Russell, P., Scott, T., 2016. Beach response to consecutive
AN
extreme storms using LiDAR along the SW coast of England. Journal of Coastal Research 75, 1052-1056.
M
Buscombe, D., Masselink, G., 2006. Concepts in gravel beach dynamics. Earth-Science Reviews 79, 33-52.
ED
Carbone, F., Dutykh, D., Dudley, J.M., Dias, F., 2013. Extreme wave runup on a vertical cliff. Geophysical Research Letters 40, 3138-3143.
PT
Cardone, V.J., Cox, A.T., Morrone, M.A., Swail, V.R., 2011. Global distribution and associated synoptic climatology of very extreme sea states (VESS), Proceedings
CE
12th International workshop on wave hindcasting and forecasting, Hawaii. Castelle, B., Marieu, V., Bujan, S., Splinter, K.D., Robinet, A., Sénéchal, N., Ferreira, S.,
AC
2015. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 238, 135-148. Causon Deguara, J., Gauci, R., 2016. Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean). Natural Hazards, 1-26. 10.1007/s11069-016-2525-4 Cooper, J., Jackson, D., Navas, F., McKenna, J., Malvarez, G., 2004. Identifying storm impacts on an embayed, high-energy coastline: examples from western Ireland. Marine Geology 210, 261-280.
46
ACCEPTED MANUSCRIPT Courtney, C., Dominey-Howes, D., Goff, J., Chagué-Goff, C., Switzer, A.D., McFadgen, B., 2012. A synthesis and review of the geological evidence for palaeotsunamis along the coast of southeast Australia: The evidence, issues and potential ways forward. Quaternary Science Reviews 54, 99-125. doi: 10.1016/j.quascirev.2012.06.018 Cox, D.T., Ortega, J.A., 2002. Laboratory observations of green water overtopping on a
T
fixed deck. Ocean Engineering 29, 1827-1840.
IP
Cox, J.C., Machemehl, J., 1986. Overload bore propagation due to an overtopping wave.
CR
Journal of Waterway, Port, Coastal and Ocean Engineering 112, 161-163. Cox, R., Zentner, D.B., Kirchner, B.J., Cook, M.S., 2012. Boulder ridges on the Aran
US
Islands (Ireland): Recent movements caused by storm waves, not tsunami. Journal of Geology 120, 249-272. doi: 10.1086/664787
AN
Cox, R., 2013. 1930s movie "Man of Aran" as documentary source for studying boulder transport by storm waves. Geological Society of America Abstracts with
M
Programs 45, 52.
Cox, R., Watkins, O.G., Tellez, K., Stamp, L.K., Irvine, S.W., Castro, J.A., Atwood,
ED
C.E., Adamson, K.P., 2014. Measuring the effects of winter storms (2013-2014) on boulder and megagravel accumulations in western Ireland. Geological Society
PT
of America Abstracts with Programs 46, 453. Cox, R., Jahn, K.L., Watkins, O.G., 2016. Movement of boulders and megagravel by
CE
storm waves. Geophysical Research Abstracts 18, EGU2016-10535. meetingorganizer.copernicus.org/EGU2016/EGU2016-10535.pdf
AC
Cox, R., Lopes, W.A., Jahn, K.L., 2017. Roundness measurements in coastal boulder deposits. Marine Geology. http://dx.doi.org/10.1016/j.margeo.2017.03.003 de León, S.P., Soares, C.G., 2014. Extreme wave parameters under North Atlantic extratropical cyclones. Ocean Modelling 81, 78-88. de León, S.P., Bettencourt, J.H., Brennan, J., Dias, F., 2015. Evolution of the Extreme Wave Region in the North Atlantic Using a 23 Year Hindcast, ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, pp. V003T002A019-V003T002A019.
47
ACCEPTED MANUSCRIPT Didenkulova, I., Anderson, C., 2006. Freak waves in 2005. Natural Hazards and Earth System Science 6, 1007-1015. Didenkulova, I., 2011. Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay). Boreal Environment Research 16 (suppl. A), 138-148. Duell, M., Brady, T., 2014. Obliterated: Cliff stack reduced to sad-looking pile of rubble by raging seas, Daily Mail, 6 January, United Kingdom.
T
Earlie, C.S., Young, A.P., Masselink, G., Russell, P.E., 2015. Coastal cliff ground
IP
motions and response to extreme storm waves. Geophysical Research Letters 42,
CR
847-854.
Elliott, M., Cutts, N.D., Trono, A., 2014. A typology of marine and estuarine hazards and
US
risks as vectors of change: A review for vulnerable coasts and their management. Ocean & Coastal Management 93, 88-99.
AN
http://dx.doi.org/10.1016/j.ocecoaman.2014.03.014
Emery, K.O., 1955. Grain size of marine beach gravels. Journal of Geology 63, 39-49.
M
Erdmann, W., Kelletat, D., Kuckuck, M., 2017. Boulder Ridges and Washover Features in Galway Bay, Western Ireland. Journal of Coastal Research.
ED
Etienne, S., Paris, R., 2010. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland). Geomorphology 114, 55-70.
PT
doi:10.1016/j.geomorph.2009.02.008 Felton, E.A., Crook, K.A.W., 2003. Evaluating the impacts of huge waves on rocky
CE
shorelines: an essay review of the book ‘Tsunami—The Underrated Hazard’. Marine Geology 197, 1-12. doi:10.1016/S0025-3227(03)00086-0
AC
Fichaut, B., Suanez, S., 2011. Quarrying, transport and deposition of cliff-top storm deposits during extreme events: Banneg Island, Brittany. Marine Geology 283, 36-55. doi:10.1016/j.margeo.2010.11.003 Flanagan, J.D., Dias, F., Terray, E., Strong, B., Dudley, J., 2016. Extreme Water Waves off the West Coast of Ireland: Analysis of ADCP Measurements, The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers. Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., Wunsch, C., 2015. ECCO version 4: an integrated framework for non-linear inverse modeling and global
48
ACCEPTED MANUSCRIPT ocean state estimation. Geoscientific Model Development 8, 3071–3104. http://dx.doi.org/10.5194/gmd-8-3071-2015 Gallagher, S., Gleeson, E., Tiron, R., McGrath, R., Dias, F., 2016a. Wave climate projections for Ireland for the end of the 21st century including analysis of EC‐ Earth winds over the North Atlantic Ocean. International Journal of Climatology.
T
Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F., McGrath, R., 2016b. The
IP
nearshore wind and wave energy potential of Ireland: a high resolution assessment of availability and accessibility. Renewable Energy 88, 494-516.
CR
Gienko, G.A., Terry, J.P., 2014. Three‐dimensional modeling of coastal boulders using multi‐view image measurements. Earth Surface Processes and Landforms 39,
US
853-864.
Goto, K., Okada, K., Imamura, F., 2009. Characteristics and hydrodynamics of boulders
AN
transported by storm waves at Kudaka Island, Japan. Marine Geology 262, 14-24. http://dx.doi.org/10.1016/j.margeo.2009.03.001
M
Goto, K., Miyagi, K., Kawamata, H., Imamura, F., 2010. Disrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology
ED
269, 34-45. doi:10.1016/j.margeo.2009.12.004 Goto, K., Miyagi, K., Kanawa, T., Takahashi, J., Imanmura, F., 2011. Emplacement and
PT
movement of boulders by known storm waves — Field evidence from the Okinawa Islands, Japan. Marine Geology 283, 66-78. doi:
CE
10.1016/j.margeo.2010.09.007 Hall, A.M., Hansom, J.D., Williams, D.M., Jarvis, J., 2006. Distribution, geomorphology
AC
and lithofacies of cliff-top storm deposits: Examples from the high-energy coasts of Scotland and Ireland. Marine Geology 232, 131-155. doi:10.1016/j.margeo.2006.06.008 Hall, A.M., Hansom, J.D., Jarvis, J., 2008. Patterns and rates of erosion produced by high energy wave processes on hard rock headlands: The Grind of the Navir, Shetland, Scotland. Marine Geology 248, 28-46. doi: 10.1016/j.margeo.2007.10.007 Hall, A.M., Hansom, J.D., Williams, D.M., 2010. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral
49
ACCEPTED MANUSCRIPT environment: A Discussion. Journal of Geology 118, 699-704. doi: 10.1086/656356 Hall, A.M., 2011. Storm wave currents, boulder movement and shore platform development: a case study from East Lothian, Scotland. Marine Geology 283, 98105. Hansom, J.D., Barltrop, N.D.P., Hall, A.M., 2008. Modelling the processes of cliff-top
T
erosion and deposition under extreme storm waves. Marine Geology 253, 36-50.
IP
doi: 10.1016/j.margeo.2008.02.015
CR
Hansom, J.D., Hall, A.M., 2009. Magnitude and frequency of extra-tropical North Atlantic cyclones: A chronology from cliff-top storm deposits. Quaternary
US
International 195, 42-52. doi:10.1016/j.quaint.2007.11.010
Herterich, J.G., Cox, R., Dias, F., in press. Mechanics of very large boulder creation via
AN
hydraulic fracture. Marine Geology.
Hibberd, S., Peregrine, D.H., 1979. Surf and run-up on a beach: a uniform bore. Journal
M
of Fluid Mechanics 95, 323-345. 10.1017/S002211207900149X Hibbert-Ware, S., 1822. A description of the Shetland Islands : comprising an account of
ED
their scenery, antiquities and superstitions. Constable & Co., Edinburgh. Hoffmann, G., Reicherter, K., Wiatr, T., Grützner, C., Rausch, T., 2013. Block and
PT
boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains? Natural Hazards 65, 851-873.
CE
doi:10.1007/s11069-012-0399-7 Jahn, K.L., 2014. The sedimentology of storm-emplaced coastal boulder deposits in the
AC
Northeastern Atlantic region, Geosciences. Williams College, Williamstown, p. 90.
Kelletat, D., Scheffers, A., Scheffers, S., 2004. Holocene tsunami deposits on the Bahaman Islands of Long Island and Eleuthera. Zeitschrift für Geomorphologie 48, 519-540. Kennedy, A.B., Mori, N., Yasuda, T., Shimozono, T., Tomiczek, T., Donahue, A., Shimura, T., Imai, Y., 2016a. Extreme Block and Boulder Transport along a Cliffed Coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Marine Geology. http://dx.doi.org/10.1016/j.margeo.2016.11.004
50
ACCEPTED MANUSCRIPT Kennedy, A.B., Mori, N., Zhang, Y., Yasuda, T., Chen, S.-E., Tajima, Y., Pecor, W., Toride, K., 2016b. Observations and modeling of coastal boulder transport and loading during Super Typhoon Haiyan. Coastal Engineering Journal 58, 1640004. Kennedy, A.B., Mori, N., Yasuda, T., Shimozono, T., Tomiczek, T., Donahue, A., Shimura, T., Imai, Y., 2017. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Marine
T
Geology 383, 65-77.
IP
Kinahan, G., Nolan, J., Leonard, H., Cruise, R., 1878. Explanatory Memoir to
CR
Accompany Sheets 93 and 94, with the Adjoining Portions of Sheets 83, 84, and 103, of the Maps of the Geological Survey of Ireland. Memoir of the Geological
US
Survey of Ireland. HM Stationery Office, Dublin, available on Google Books https://books.google.com/books?id=XToiAQAAMAAJ.
AN
Kinahan, G.H., Leonard, H., Cruise, R.J., 1871. Explanatory memoir to accompany Sheets 104 and 113 with the adjoining portions of sheets 103 and 122 (Killkieran
M
and Aran sheets) of the Geological Survey of Ireland, Memoirs of the Geological Survey. p.
ED
Lorang, M.S., 2000. Predicting threshold entrainment mass for a boulder beach. Journal of Coastal Research 16, 432-445.
PT
Maouche, S., Morhange, C., Meghraoui, M., 2009. Large boulder accumulation on the Algerian coast evidence tsunami events in the western Mediterranean. Marine
CE
Geology 262, 96-104. doi:10.1016/j.margeo.2009.03.013 Masselink, G., Scott, T., Poate, T., Russell, P., Davidson, M., Conley, D., 2015. The
AC
extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surface Processes and Landforms, n/a-n/a. 10.1002/esp.3836 Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., Floc'h, F., 2016. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters 43, 2135-2143. Mastronuzzi, G., Pignatelli, C., Sanso, P., Selleri, G., 2007. Boulder accumulations produced by the 20th of February, 1743 tsunami along the coast of southeastern
51
ACCEPTED MANUSCRIPT Salento (Apulia region, Italy). Marine Geology 242, 191-205. doi: 10.1016/j.margeo.2006.10.025 Matthews, T., Murphy, C., Wilby, R.L., Harrigan, S., 2014. Stormiest winter on record for Ireland and UK. Nature Climate Change 4, 738-740. 10.1038/nclimate2336 May, S.M., Engel, M., Brill, D., Cuadra, C., Lagmay, A.M.F., Santiago, J., Suarez, J.K., Reyes, M., Brückner, H., 2015. Block and boulder transport in Eastern Samar
T
(Philippines) during Supertyphoon Haiyan. Earth Surf. Dynam. Discuss. 3, 739-
IP
771. 10.5194/esurfd-3-739-2015
CR
Medina, F., Mhammdi, N., Chiguer, A., Akil, M., Jaaidi, E.B., 2011. The Rabat and Larache boulder fields; new examples of high-energy deposits related to storms
US
and tsunami waves in north-western Morocco. Natural Hazards 59, 725-747. doi: 10.1007/s11069-011-9792-x
AN
Met Éireann, 1991. Storm causes death and destruction. Monthly Weather Bulletin, February issue, 1-5.
M
Met Éireann, 2014. Winter 2013/2014. Monthly Weather Bulletin, December issue, 1-5. Morton, R.A., Richmond, B.M., Jaffe, B.E., Gelfenbaum, G., 2006. Reconnaissance
ED
investigation of Caribbean extreme wave deposits—Preliminary observations, interpretations, and research directions, USGS Open-File Report 2006-1293. 46 p.
PT
Morton, R.A., Richmond, B.M., Jaffe, B.E., Gelfenbaum, G., 2008. Coarse-clast ridge complexes of the Caribbean: A preliminary basis for distinguishing tsunami and
CE
storm-wave origins. Journal of Sedimentary Research 78, 624-637. doi: 10.2110/jsr.2008.068
AC
Mottershead, D., Bray, M., Soar, P., Farres, P.J., 2014. Extreme wave events in the central Mediterranean: Geomorphic evidence of tsunami on the Maltese Islands. Zeitschrift f??r Geomorphologie 58, 385-411. 10.1127/0372-8854/2014/0129 Nagle-McNaughton, T.P., Cox, R., 2016. Inland migration of coastal boulder deposits on Inishmaan, Ireland, measured using structure-from-motion photogrammetry. Geological Society of America Abstracts with Programs 48. doi: 10.1130/abs/2016AM-281197 Niederheiser, R., Mokroš, M., Lange, J., Petschko, H., Prasicek, G., Elberink, S.O., 2016. Deriving 3D Point Clouds from Terrestrial Photographs-Comparison of Different
52
ACCEPTED MANUSCRIPT Sensors and Software. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 685-692. Noormets, R., Crook, K.A.W., Felton, A., 2004. Sedimentology of rocky shorelines: 3. Hydrodynamics of megalast emplacement and transport on a shore platform, Oahu, Hawaii. Sedimentary Geology 172, 41-65. doi:10.1016/j.sedgeo.2004.07.006
T
Nott, J., 1997. Extremely high-energy wave deposits inside the Great Barrier Reef,
IP
Australia: determining the cause—tsunami or tropical cyclone. Marine Geology
CR
141, 193-207.
Nott, J., 2003a. Tsunami or storm waves?—Determining the origin of a spectacular field
US
of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations. Journal of Coastal Research 19, 348-356.
AN
Nott, J., 2003b. Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth and Planetary Science Letters 210, 269-276. doi: 10.1016/S0012-
M
821X(03)00104-3
O'Brien, L., Dudley, J.M., Dias, F., 2013. Extreme wave events in Ireland: 14 680 BP-
ED
2012. Natural Hazards and Earth System Sciences 13, 625-648. O'Donovan, J., 1839. Letters containing information relative to the antiquities of the
PT
County of Galway, collected during the progress of the Ordnance Survey in 1839; reproduced in 1928 under the direction of Rev. M. O'Flanagan.
CE
Oak, H.L., 1984. The Boulder Beach: A Fundamentally Distinct Sedimentary Assemblage. Annals of the Association of American Geographers 74, 71-82.
AC
10.1111/j.1467-8306.1984.tb01435.x Petley, D., 2014. Remarkable coastal change from the recent UK storms. American Geophysical Union AGU Blogosphere. http://blogs.agu.org/landslideblog/2014/01/08/uk-storms/ Prizomwala, S.P., Gandhi, D., Ukey, V.M., Bhatt, N., Rastogi, B.K., 2015. Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: storm or palaeotsunami? Natural Hazards 75, 1187-1203. 10.1007/s11069-014-1371-5
53
ACCEPTED MANUSCRIPT Richmond, B.M., Watt, S., Buckley, M., Jaffe, B.E., Gelfenbaum, G., Morton, R.A., 2011. Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawaiʻi. Marine Geology 283, 79-89. Roland, A., Ardhuin, F., 2014. On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dynamics 64, 833-846. Rueda, A., Camus, P., Méndez, F.J., Tomás, A., Luceño, A., 2016. An extreme value
IP
Geophysical Research (Oceans) 121, 1262-1273.
T
model for maximum wave heights based on weather types. Journal of
CR
Ryu, Y., Chang, K.-A., Mercier, R., 2007. Runup and green water velocities due to breaking wave impinging and overtopping. Experiments in Fluids 43, 555-567.
US
doi: 10.1007/s00348-007-0332-0
Santo, H., Taylor, P.H., Gibson, R., 2016. Decadal variability of extreme wave height
AN
representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society. Proceedings of the Royal Society A:
M
Mathematical, Physical and Engineering Science 472. 10.1098/rspa.2016.0376 Scheffers, A., 2002. Paleotsunami evidence from boulder deposits on Aruba, Curaçao,
ED
and Bonaire. Science of Tsunami Hazards 20, 26-37. Scheffers, A., Kelletat, D., 2003. Sedimentologic and geomorphologic tsunami imprints
PT
worldwide—a review. Earth-Science Reviews 63, 83-92. doi:10.1016/S00128252(03)00018-7
CE
Scheffers, A., Scheffers, S., Kelletat, D., Browne, T., 2009. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral
AC
enviroment. Journal of Geology 117, 553-573. doi: 10.1086/600865 Scheffers, A., Kelletat, D., Haslett, S.K., Scheffers, S., Browne, T., 2010. Coastal boulder deposits in Galway Bay and the Aran Islands, western Ireland. Zeitschrif für Geomorphologie 54, Suppl. 3, 247-279. doi: 10.1127/0372-8854/2010/0054S30027 Scheffers, A.M., Kinis, S., 2014. Stable imbrication and delicate/unstable settings in coastal boulder deposits: Indicators for tsunami dislocation? Quaternary International 332, 73-84. http://dx.doi.org/10.1016/j.quaint.2014.03.004
54
ACCEPTED MANUSCRIPT Scicchitano, G., Monaco, C., Tortorici, L., 2007. Large boulder deposits by tsunami waves along the Ionian coast of south-eastern Sicily (Italy). Marine Geology 238, 75-91. doi: 10.1016/j.margeo.2006.12.005 Shao, S., Ji, C., Graham, D.I., Reeve, D.E., James, P.W., Chadwick, A.J., 2006. Simulation of wave overtopping by an incompressible SPH model. Coastal Engineering 53, 723-735.
T
Sheremet, A., Staples, T., Ardhuin, F., Suanez, S., Fichaut, B., 2014. Observations of
CR
Letters 41, 976-982. 10.1002/2013GL058880
IP
large infragravity wave runup at Banneg Island, France. Geophysical Research
Shields, L., Fitzgerald, D., 1989. The 'Night of the Big Wind' in Ireland, 6-7 January
US
1839. Irish Geography 22, 31-43. doi: 10.1080/00750778909478784 Siggins, L., 2017. Storm Ophelia: record 26m wave at Kinsale gas platform off south
AN
coast, The Irish Times, October 19th
https://www.irishtimes.com/news/ireland/irish-news/storm-ophelia-record-26m-
M
wave-at-kinsale-gas-platform-off-south-coast-1.3262198. Slingo, J., Belcher, S., Scaife, A., McCarthy, M., Saulter, A., McBeath, K., Jenkins, A.,
ED
Huntingford, C., Marsh, T., Hannaford, J., 2014. The recent storms and floods in the UK, 29 p.
PT
Soomere, T., 2010. Rogue waves in shallow water. European Physical Journal Special Topics 185, 81-96. doi:10.1140/epjst/e2010-01240-1
CE
Spiske, M., Böröcz, Z., Bahlburg, H., 2008. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from
AC
the Lesser Antilles, southern Caribbean. Earth and Planetary Science Letters 268, 384-396. doi:10.1016/j.epsl.2008.01.030 Stevenson, T., 1845. IV.—Account of Experiments upon the Force of the Waves of the Atlantic and German Oceans. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 16, 23-32. Suanez, S., Fichaut, B., Magne, R., 2009. Cliff-top storm deposits on Banneg Island, Briggany, France: Effects of giant waves in the Eastern Atlantic Ocean. Sedimentary Geology 220, 12-28. doi:10.1016/j.sedgeo.2009.06.004
55
ACCEPTED MANUSCRIPT Süssmilch, C.A., 1912. Note on some recent marine erosion at Bondi. Journal and Proceedings of the Royal Society of New South Wales 46, 155-158. Switzer, A.D., Burston, J.M., 2010. Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorphology 114, 42-54. doi:10.1016/j.geomorph.2009.02.009 Tiron, R., Gallagher, S., Dias, F., 2013. Influence of coastal morphology on the wave
T
climate and wave energy resource of the west Irish coast, Proceedings of the 10th
IP
European Wave and Tidal Energy Conference Series EWTEC, Aalborg,
CR
Denmark.
Tiron, R., Mallon, F., Dias, F., Reynaud, E.G., 2015. The challenging life of wave energy
US
devices at sea: A few points to consider. Renewable and Sustainable Energy Reviews 43, 1263-1272.
AN
Tsai, C.-H., Su, M.-Y., Huang, S.-J., 2004. Observations and conditions for occurrence of dangerous coastal waves. Ocean Engineering 31, 745-760. doi:10.1016/S0029-
M
8018(03)00113-6
Turton, J., Fenna, P., 2008. Observations of extreme wave conditions in the north-east
ED
Atlantic during December 2007. Weather 63, 352-355. doi: 10.1002/wea.321 Viotti, C., Carbone, F., Dias, F., 2014. Conditions for extreme wave runup on a vertical
PT
barrier by nonlinear dispersion. Journal of Fluid Mechanics 748, 768-788. Viotti, C., Dias, F., 2014. Extreme waves induced by strong depth transitions: Fully
CE
nonlinear results. Physics of Fluids 26, 051705. doi:http://dx.doi.org/10.1063/1.4880659
AC
Vose, R.S., Applequist, S., Bourassa, M.A., Pryor, S.C., Barthelmie, R.J., Blanton, B., Bromirski, P.D., Brooks, H.E., DeGaetano, A.T., Dole, R.M., Easterling, D.R., Jensen, R.E., Karl, T.R., Katz, R.W., Klink, K., Kruk, M.C., Kunkel, K.E., MacCracken, M.C., Peterson, T.C., Shein, K., Thomas, B.R., Walsh, J.E., Wang, X.L., Wehner, M.F., Wuebbles, D.J., Young, R.S., 2014. Monitoring and Understanding Changes in Extremes: Extratropical Storms, Winds, and Waves. Bulletin of the American Meteorological Society 95, 377-386. 10.1175/bams-d12-00162.1
56
ACCEPTED MANUSCRIPT Vousdoukas, M.I., Voukouvalas, E., Annunziato, A., Giardino, A., Feyen, L., 2016. Projections of extreme storm surge levels along Europe. Climate Dynamics 47, 3171-3190. Wadey, M., Brown, J., Haigh, I., Dolphin, T., Wisse, P., 2015. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions. Natural Hazards and Earth System Science 15, 2209-
T
2225.
CR
Williams College, Williamstown, p. 133.
IP
Watkins, O.G., 2015. Boulder movements on the cliffs of western Ireland, Geosciences.
Whelan, F., Kelletat, D., 2005. Boulder deposits on the southern Spanish Atlantic coast:
US
Possible evidence for the 1755 AD Lisbon tsunami? Science of Tsunami Hazards 23, 25-38.
AN
Williams, D.M., Hall, A.M., 2004. Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic—storms or tsunamis? Marine Geology 206,
M
101-117. doi:10.1016/j.margeo.2004.02.002
Young, R.W., Bryant, E.A., Price, D.M., 1996. Catastrophic wave (tsunami?) transport of
ED
boulders in New South Wales, Australia. Zeitschrif für Geomorphologie 40, 191207.
PT
Zappa, G., Shaffrey, L.C., Hodges, K.I., Sansom, P.G., Stephenson, D.B., 2013. A multimodel assessment of future projections of North Atlantic and European
5862.
CE
extratropical cyclones in the CMIP5 climate models. Journal of Climate 26, 5846-
AC
Zentner, D., Cox, R., 2008. Characteristics and hydrodynamic interpretation of stormemplaced cliff-top boulder ridges on Inishmore, Aran Islands, Ireland, AGU Fall Meeting Abstracts, p. 1293. Zentner, D., 2009. Geospatial, hydodynamic, and field evidence for the storm-wave emplacement of boulder ridges on the Aran Islands, Ireland, Geosciences. Williams College, Williamstown, p. 190. Zhang, R., Schneider, D., Strauß, B., 2016. Generation and Comparison of TLS and SfM Based 3D Models of Solid Shapes in Hydromechanic Research. Proceedings of
57
ACCEPTED MANUSCRIPT the ISPRS-International Archives of the Photogrammetry, Remote Sensing and
AC
CE
PT
ED
M
AN
US
CR
IP
T
Spatial Information Sciences, Prague, Czech Republic, 12-19.
58
ACCEPTED MANUSCRIPT
Table 1: field measuements of moved boulders. Height AHW and Distance Inland are tide-corrected and referenced to the highest spring tide. In the case of large clasts, the centre of mass is the reference point for measuring distance inland. Steepness is the ratio of Height AHW and Distance Inland. Masses are estimates, based on rock density (2.66 t/m3) measured from hand samples, and field measurements of boulder dimensions (X,Y, and Z axes). Transport distances are reported only in cases where the original location of the moved clast could be determined wtih certainty: empty cells mean that the amount of movement could not be determined. Horizontal Transport is the absolute amount of transport (inland, seaward, or coast-parallel). Vertical Transport is positive for elevation gain and negative for downslope movement.
T P
Location
Location Boulder Latitude Longitude No.
No.
Deposit
Height
type
AHW
Inland
(m)
AHW
I R
C S
Distance Steepness
U N
X
Y
Z
(cm) (cm) (cm)
Mass
Horizontal
Vertical
(t)
Transport
Transport
(m)
(m)
A
(m)
Annagh Head
1
1
54.2483
-10.0942
4.9
48
0.10
170
100
60
2.7
4.5
1.2
1
2
54.2483
-10.0942
Ridge
4.9
48
0.10
145
70
30
0.8
3.0
0.5
1
3
Ridge
4.9
48
0.10
155
130
40
2.1
3.3
4
C A
-10.0942
1
54.2483
-10.0942
Ridge
4.9
48
0.10
160
130
25
1.4
3.3
1
5
54.2483
-10.0942
Ridge
4.9
48
0.10
150
110
30
1.3
T P
Annagh Head
E C
Annagh Head Annagh Head
D E
54.2483
Ridge
M
Annagh Head
59
ACCEPTED MANUSCRIPT
Annagh Head
1
6
54.2483
-10.0942
Ridge
4.9
48
0.10
160
85
1
7
54.2483
-10.0942
Ridge
4.9
48
0.10
80
80
1
8
54.2483
-10.0942
Ridge
4.9
48
0.10
120
1
9
54.2483
-10.0942
Ridge
4.9
48
0.10
1
10
54.2483
-10.0942
Ridge
4.9
48
1
11
54.2483
-10.0942
Ridge
4.9
1
12
54.2489
-10.0944
Ridge
1
13
54.2489
-10.0944
1
14
54.2489
C A
2
15
54.2421
Annagh Head
0.5
90
40
1.1
150
110
40
1.8
0.10
116
116
116
4.2
48
0.10
135
130
55
2.6
10.3
103
0.10
115
35
10
0.1
Ridge
10.3
103
0.10
70
50
25
0.2
-10.0944
Ridge
10.3
103
0.10
95
65
25
0.4
-10.1051
Ridge
5.9
109
0.05
100
35
30
0.3
I R
C S
Annagh Head
U N
Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head
T P
1.1
30
Annagh Head
30
D E
T P
E C
M
A
8.0
1.4
3.0
0.7
3.5
60
ACCEPTED MANUSCRIPT
Annagh Head
2
16
54.2421
-10.1051
Ridge
5.9
109
0.05
60
35
2
17
54.2421
-10.1051
Ridge
5.9
109
0.05
70
40
2
18
54.2421
-10.1051
Ridge
5.9
109
0.05
60
2
19
54.2421
-10.1051
Ridge
5.9
109
0.05
2
20
54.2421
-10.1051
Ridge
5.9
109
2
21
54.2421
-10.1051
Ridge
5.9
2
22
54.2421
-10.1051
Ridge
2
23
54.2421
-10.1051
2
24
54.2421
C A
2
25
54.2421
Annagh Head
35
30
0.2
55
30
30
0.1
0.05
80
45
10
0.1
109
0.05
105
85
25
0.6
5.9
109
0.05
200
85
40
1.8
Ridge
5.9
109
0.05
100
90
55
1.3
-10.1051
Ridge
5.9
109
0.05
85
55
40
0.5
1.5
-10.1051
Ridge
5.9
109
0.05
60
50
40
0.3
0.3
I R
C S
U N
Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head
1.0
0.1
Annagh Head
T P
0.1
20
Annagh Head
15
D E
T P
E C
M
A
2.0
61
ACCEPTED MANUSCRIPT
Annagh Head
2
26
54.2421
-10.1051
Ridge
5.9
109
0.05
185
110
2
27
54.2421
-10.1051
Ridge
5.9
109
0.05
60
40
2
28
54.2421
-10.1051
Ridge
5.9
109
0.05
100
2
29
54.2421
-10.1051
Ridge
5.9
109
0.05
2
30
54.2421
-10.1051
Ridge
5.9
109
2
31
54.2421
-10.1051
Ridge
5.9
2
32
54.2421
-10.1051
Ridge
2
33
54.2421
-10.1051
2
34
54.2421
C A
2
35
54.2421
Annagh Head
0.2
45
20
0.2
65
55
20
0.2
0.05
60
30
25
0.1
109
0.05
180
125
20
1.2
5.9
109
0.05
100
80
35
0.7
3.5
Ridge
5.9
109
0.05
150
120
25
1.2
0.5
-10.1051
Ridge
5.9
109
0.05
150
70
55
1.5
-10.1051
Ridge
5.9
109
0.05
210
125
70
4.9
I R
C S
Annagh Head
U N
Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head
T P
2.2
25
Annagh Head
40
D E
T P
E C
M
A
1.0
0.5
62
ACCEPTED MANUSCRIPT
Annagh Head
2
36
54.2424
-10.1048
Ridge
6.1
54
0.11
130
65
2
37
54.2424
-10.1048
Ridge
6.1
54
0.11
130
60
2
38
54.2424
-10.1048
Ridge
6.1
54
0.11
110
2
39
54.2424
-10.1048
Ridge
6.1
54
0.11
2
40
54.2424
-10.1048
Ridge
6.1
54
2
41
54.2424
-10.1048
Ridge
6.1
2
42
54.2424
-10.1048
Ridge
2
43
54.2424
-10.1048
Head
2
44
54.2424
Inis Mor
3
45
C A
Inis Mor
3
Inis Mor
3
Annagh Head
0.5
95
70
40
0.7
5.0
0.11
320
75
70
4.5
2.0
54
0.11
130
40
35
0.5
6.1
54
0.11
90
50
35
0.4
Ridge
6.1
54
0.11
230
165
40
4.0
-10.1048
Ridge
6.1
54
0.11
115
90
40
1.1
1.0
53.0963
-9.6689
Ridge
9.4
95
0.10
274
135
20
2.0
6.3
46
53.0963
-9.6689
Ridge
9.4
95
0.10
87
85
30
0.6
47
53.0963
-9.6689
Ridge
9.4
95
0.10
198
111
51
3.0
Annagh Head Annagh Head
0.5
30
Annagh Head
1.0
55
I R
C S
U N
Annagh Head
4.5
1.0
Annagh Head
T P
0.3
50
Annagh Head
15
Annagh
D E
T P
E C
M
A
63
ACCEPTED MANUSCRIPT
Inis Mor
3
48
53.0963
-9.6689
Ridge
9.4
95
0.10
166
103
26
1.2
Inis Mor
3
49
53.0963
-9.6689
Ridge
9.4
95
0.10
145
70
21
0.6
Inis Mor
4
50
53.0975
-9.6700
Ridge
12.4
94
0.13
155
150
25
1.5
Inis Mor
4
51
53.0975
-9.6700
Ridge
12.4
94
0.13
222
200
23
2.7
Inis Mor
4
52
53.0975
-9.6700
Ridge
12.4
94
0.13
103
160
29
1.3
Inis Mor
4
53
53.0975
-9.6700
Ridge
12.4
94
0.13
350
150
75
10.5
Inis Mor
4
54
53.0975
-9.6700
Ridge
12.4
94
0.13
210
180
100
10.1
Inis Mor
4
55
53.0975
-9.6700
Ridge
12.4
94
0.13
200
110
70
4.1
Inis Mor
4
56
53.0975
-9.6700
Ridge
12.4
94
0.13
105
60
20
0.3
Inis Mor
4
57
53.0975
-9.6700
Ridge
12.4
94
0.13
205
140
80
6.1
Inis Mor
4
58
53.0975
-9.6700
Ridge
12.4
94
0.13
250
130
30
2.6
Inis Mor
4
59
53.0975
-9.6700
Ridge
12.4
94
0.13
215
135
50
3.9
Inis Mor
4
60
53.0975
-9.6700
Ridge
12.4
94
0.13
215
145
40
3.3
Inis Mor
4
61
53.0975
-9.6700
Ridge
12.4
94
0.13
315
140
15
1.8
Inis Mor
4
62
53.0975
-9.6700
Ridge
12.4
94
0.13
195
110
35
2.0
Inis Mor
4
63
53.0975
-9.6700
Ridge
12.4
94
0.13
600
210
30
Inis Mor
4
64
Ridge
12.4
94
0.13
425
85
Inis Mor
4
65
53.0977
-9.6701
Ridge
12.4
94
0.13
200
Inis Mor
4
66
C A
-9.6700
53.0977
-9.6701
Ridge
12.4
94
0.13
Inis Mor
4
67
53.0977
-9.6701
Ridge
12.4
94
Inis Mor
4
68
53.0978
-9.6702
Ridge
12.4
93
53.0975
D E
T P
E C
M
A
I R
C S
U N
T P
8.5
2.5
10.1
6.3
1.7
25
2.4
6.8
2.0
155
50
4.1
155
110
35
1.6
1.0
0.13
165
115
30
1.5
4.0
0.13
264
127
44
3.9
-1.0
64
ACCEPTED MANUSCRIPT
Inis Mor
4
69
53.0978
-9.6702
Ridge
12.4
93
0.13
164
88
45
1.7
8.3
1.5
Inis Mor
4
70
53.0978
-9.6702
Ridge
12.4
93
0.13
140
80
40
1.2
Inis Mor
4
71
53.0978
-9.6702
Ridge
12.4
93
0.13
180
135
35
2.3
Inis Mor
4
72
53.0978
-9.6702
Ridge
12.4
93
0.13
165
105
55
2.5
Inis Mor
4
73
53.0978
-9.6702
Ridge
12.4
93
0.13
140
95
50
1.8
Inis Mor
4
74
53.0978
-9.6702
Ridge
12.4
93
0.13
140
95
30
1.1
Inis Mor
4
75
53.0974
-9.6702
Ridge
11.9
85
0.14
325
135
15
1.8
9.0
2.5
Inis Mor
4
76
53.0974
-9.6702
Ridge
11.9
85
0.14
440
270
35
11.1
7.9
1.7
Inis Mor
4
77
53.0974
-9.6702
Ridge
11.9
85
0.14
620
220
40
14.5
5.6
1.5
Inis Mor
4
78
53.0974
-9.6702
Ridge
11.9
85
0.14
235
130
50
4.1
Inis Mor
4
79
53.0974
-9.6702
Ridge
11.9
85
0.14
280
180
40
5.4
Inis Mor
4
80
53.0974
-9.6702
Ridge
11.9
85
0.14
200
145
60
4.6
Inis Mor
4
81
53.0971
-9.6702
Ridge
11.9
100
0.12
390
260
135
36.4
Inis Mor
4
82
53.0971
-9.6702
Ridge
11.9
105
0.11
135
125
45
2.0
Inis Mor
4
83
53.0971
-9.6702
Ridge
11.9
105
0.11
110
85
70
1.7
Inis Mor
4
84
53.0971
-9.6702
Ridge
11.9
105
0.11
155
75
30
0.9
Inis Mor
4
85
Ridge
11.9
108
0.11
375
195
95
18.5
53.0971
-9.6702
Isolated
11.9
95
0.13
420
300
110
36.9
87
C A
-9.6702
Inis Mor
4
86
Inis Mor
4
53.0971
-9.6702
Isolated
11.9
98
0.12
470
350
110
48.1
Inis Mor
4
88
53.0971
-9.6702
Isolated
11.9
98
0.12
285
255
130
25.1
7.0
Inis Mor
4
89
53.0971
-9.6702
Isolated
11.9
103
0.12
400
260
120
33.2
5.0
53.0971
D E
T P
E C
M
A
I R
C S
U N
T P
14.5
9.5
0.5
65
ACCEPTED MANUSCRIPT
Inis Mor
4
90
53.0971
-9.6702
Isolated
11.9
105
0.11
260
245
105
17.8
3.0
0.5
Inis Mor
4
91
53.0971
-9.6702
Isolated
11.9
105
0.11
275
180
70
9.2
3.0
0.5
Inis Mor
5
92
53.1034
-9.6843
Ridge
23.2
7
3.57
90
65
15
0.2
1.6
-0.3
Inis Mor
5
93
53.1034
-9.6843
Ridge
23.2
7
3.57
115
110
45
1.5
3.2
-0.5
Inis Mor
5
94
53.1031
-9.6843
Ridge
22.0
18
1.22
110
100
25
0.7
Inis Mor
5
95
53.1031
-9.6843
Ridge
22.0
18
1.22
130
90
15
0.5
Inis Mor
5
96
53.1031
-9.6843
Ridge
22.0
18
1.22
160
120
15
0.8
Inis Mor
5
97
53.1031
-9.6843
Isolated
22.0
18
1.22
195
90
65
3.0
Inis Mor
5
98
53.1031
-9.6843
Isolated
22.0
18
1.22
160
115
70
3.4
Inis Mor
5
99
53.1031
-9.6843
Isolated
22.0
18
1.22
110
60
40
0.7
Inis Mor
5
100
53.1031
-9.6843
Isolated
22.0
18
1.22
180
140
35
2.3
Inis Mor
6
101
53.1213
-9.7467
Ridge
1.2
6
0.20
155
85
80
2.8
Inis Mor
6
102
53.1213
-9.7467
Ridge
1.2
6
0.20
220
220
120
15.4
Inis Mor
6
103
53.1213
-9.7467
Ridge
1.2
6
0.20
200
140
80
6.0
Inis Mor
6
104
53.1213
-9.7467
Ridge
1.2
6
0.20
180
115
75
4.1
Inis Mor
6
105
53.1213
-9.7467
Ridge
1.2
6
0.20
95
65
40
0.7
0.5
0.5
Inis Mor
6
106
Ridge
1.2
6
0.20
105
95
50
1.3
0.5
0.5
Inis Mor
6
107
53.1215
-9.7473
Ridge
1.2
6
0.20
280
220
90
14.7
3.0
Inis Mor
6
108
C A
-9.7467
53.1215
-9.7473
Ridge
1.2
6
0.20
198
198
198
20.7
0.8
Inis Mor
6
109
53.1215
-9.7473
Ridge
1.2
6
0.20
160
105
35
1.6
2.0
1.5
Inis Mor
6
110
53.1214
-9.7502
Isolated
4.0
25
0.16
230
230
230
32.4
9.5
-0.3
53.1213
D E
T P
E C
M
A
I R
C S
U N
T P
6.5
1.3
66
ACCEPTED MANUSCRIPT
Inis Mor
6
111
53.1214
-9.7502
Isolated
4.0
25
0.16
195
180
170
15.9
12.0
Inis Mor
6
112
53.1216
-9.7485
Isolated
3.0
10
0.30
505
440
150
88.7
3.5
Inis Mor
6
113
53.1215
-9.7489
Isolated
2.5
15
0.17
510
450
155
94.6
Inis Mor
6
114
53.1217
-9.7490
Ridge
3.6
29
0.12
220
155
70
6.3
Inis Mor
6
115
53.1217
-9.7490
Ridge
3.6
29
0.12
170
170
30
2.3
Inis Mor
6
116
53.1217
-9.7490
Ridge
3.6
29
0.12
230
115
60
4.2
13.5
Inis Mor
6
117
53.1217
-9.7490
Ridge
3.6
29
0.12
140
110
55
2.3
1.0
Inis Mor
6
118
53.1217
-9.7490
Ridge
3.6
29
0.12
135
130
50
2.3
Inis Mor
6
119
53.1217
-9.7490
Ridge
3.6
29
0.12
145
75
50
1.4
Inis Mor
6
120
53.1217
-9.7490
Ridge
3.6
29
0.12
140
75
70
2.0
5.0
Inis Mor
6
121
53.1217
-9.7490
Ridge
3.6
29
0.12
190
140
70
5.0
2.8
Inis Mor
6
122
53.1217
-9.7488
Isolated
3.6
26
0.14
355
240
85
19.3
4.0
Inis Mor
6
123
53.1217
-9.7488
Ridge
3.6
26
0.14
170
115
105
5.5
3.5
-2.0
Inis Mor
6
124
53.1217
-9.7488
Ridge
3.6
26
0.14
120
95
75
2.3
Inis Mor
6
125
53.1217
-9.7488
Ridge
3.6
26
0.14
180
160
130
10.0
Inis Mor
6
126
53.1217
-9.7488
Ridge
3.6
26
0.14
200
115
115
7.0
Inis Mor
6
127
Ridge
3.6
26
0.14
110
85
25
0.6
1.0
0.5
Inis Mor
6
128
53.1217
-9.7488
Ridge
3.6
26
0.14
155
85
60
2.1
1.0
0.5
Inis Mor
6
129
C A
-9.7488
53.1217
-9.7488
Ridge
3.6
26
0.14
150
125
45
2.2
0.5
-0.5
Inis Mor
6
130
53.1216
-9.7487
Ridge
3.6
24
0.15
125
95
80
2.5
Inis Mor
7
131
53.0913
-9.6585
Ridge
6.0
10
0.60
245
155
70
7.1
3.0
-0.5
53.1217
D E
T P
E C
M
A
I R
C S
U N
T P
-0.3
0.5
2.0
67
ACCEPTED MANUSCRIPT
Inis Mor
7
132
53.0913
-9.6585
Ridge
6.0
10
0.60
370
310
75
22.9
5.2
0.5
Inis Mor
7
133
53.0913
-9.6585
Ridge
6.0
10
0.60
290
190
75
11.0
2.5
0.5
Inis Mor
7
134
53.0913
-9.6585
Ridge
6.0
10
0.60
170
100
25
1.1
3.0
1.0
Inis Mor
7
135
53.0913
-9.6585
Ridge
6.0
10
0.60
445
355
20
8.4
2.0
0.5
Inis Mor
7
136
53.0913
-9.6585
Ridge
6.0
10
0.60
430
320
25
9.2
7.0
4.0
Inis Mor
7
137
53.0913
-9.6585
Ridge
6.0
10
0.60
210
120
30
2.0
7.0
4.0
Inis Mor
7
138
53.0913
-9.6585
Isolated
6.0
10
0.60
520
200
125
34.6
0.8
Inis Mor
7
139
53.0913
-9.6585
Isolated
6.0
10
0.60
340
295
135
36.0
2.5
1.5
Inis Mor
7
140
53.0913
-9.6585
Ridge
6.0
10
0.60
695
250
90
41.6
7.0
0.0
Inis Mor
7
141
53.0913
-9.6585
Ridge
6.0
10
0.60
265
160
25
2.8
Inis Mor
7
142
53.0913
-9.6585
Ridge
6.0
10
0.60
290
240
50
9.3
13.2
2.0
Inis Mor
7
143
53.0913
-9.6585
Ridge
6.0
10
0.60
370
195
100
19.2
3.9
Inis Mor
7
144
53.0913
-9.6585
Ridge
6.0
10
0.60
300
185
55
8.1
Inis Mor
7
145
53.0913
-9.6585
Ridge
6.0
10
0.60
175
125
50
2.9
Inis Mor
7
146
53.0913
-9.6585
Ridge
6.0
10
0.60
320
200
40
6.8
Inis Mor
7
147
53.0913
-9.6585
Ridge
6.0
10
0.60
385
290
30
8.9
Inis Mor
7
148
Ridge
6.0
10
0.60
270
165
25
3.0
Inis Mor
7
149
53.0913
-9.6585
Ridge
6.0
10
0.60
200
110
40
2.3
Inis Mor
7
150
C A
-9.6585
53.0913
-9.6585
Ridge
6.0
10
0.60
155
85
30
1.1
Inis Mor
7
151
53.0913
-9.6585
Ridge
6.0
10
0.60
150
110
25
1.1
Inis Mor
7
152
53.0913
-9.6585
Ridge
6.0
10
0.60
135
100
30
1.1
53.0913
D E
T P
E C
M
A
I R
C S
U N
T P
1.5
-0.5
1.0
0.5
68
ACCEPTED MANUSCRIPT
Inis Mor
7
153
53.0912
-9.6583
Ridge
7.2
14
0.51
135
90
25
0.8
Inis Mor
7
154
53.0912
-9.6583
Ridge
7.2
14
0.51
125
100
15
0.5
Inis Mor
7
155
53.0912
-9.6583
Ridge
7.2
14
0.51
135
80
15
0.4
Inis Mor
7
156
53.0912
-9.6583
Ridge
7.2
14
0.51
155
100
35
1.4
Inis Mor
7
157
53.0912
-9.6583
Ridge
7.2
14
0.51
355
340
70
22.5
1.0
Inis Mor
7
158
53.0912
-9.6583
Ridge
7.2
14
0.51
110
110
51
1.6
1.0
Inis Mor
7
159
53.0912
-9.6583
Ridge
7.2
14
0.51
155
85
30
1.1
Inis Mor
7
160
53.0912
-9.6583
Ridge
7.2
14
0.51
150
110
25
1.1
Inis Mor
7
161
53.0912
-9.6583
Ridge
7.2
14
0.51
135
100
35
1.3
Inis Mor
7
162
53.0913
-9.6586
Ridge
6.0
14
0.43
115
60
15
0.3
2.0
Inis Mor
7
163
53.0910
-9.6580
Ridge
6.0
18
0.33
395
210
115
25.4
1.0
Inis Mor
7
164
53.0910
-9.6580
Ridge
6.0
18
0.33
205
135
75
5.5
1.0
Inis Mor
7
165
53.0910
-9.6580
Ridge
6.0
18
0.33
210
120
20
1.3
Inis Mor
7
166
53.0910
-9.6580
Ridge
6.0
18
0.33
350
350
90
29.3
Inis Mor
8
167
53.0904
-9.6420
Ridge
23.2
14
1.66
125
95
25
0.8
Inis Mor
8
168
53.0904
-9.6420
Ridge
23.2
14
1.66
125
65
20
0.4
Inis Mor
8
169
Ridge
23.2
14
1.66
90
65
15
0.2
Inis Mor
8
170
53.0904
-9.6420
Ridge
23.2
14
1.66
60
45
5
0.0
2.6
Inis Mor
8
171
C A
-9.6420
53.0904
-9.6420
Ridge
23.2
14
1.66
90
60
15
0.2
2.3
Inis Mor
8
172
53.0904
-9.6420
Ridge
23.2
14
1.66
100
80
15
0.3
Inis Mor
8
173
53.0904
-9.6420
Ridge
23.2
14
1.66
90
75
20
0.4
53.0904
D E
T P
E C
M
A
I R
C S
U N
T P
0.5
0.3
69
ACCEPTED MANUSCRIPT
Inis Mor
8
174
53.0904
-9.6420
Ridge
23.2
14
1.66
120
95
15
0.5
Inis Mor
9
175
53.1220
-9.7562
Ridge
19.3
74
0.26
100
95
25
0.6
Inis Mor
9
176
53.1220
-9.7562
Ridge
19.3
74
0.26
140
70
70
1.8
Inis Mor
9
177
53.1220
-9.7562
Ridge
19.3
74
0.26
110
65
40
0.8
Inis Mor
9
178
53.1220
-9.7562
Ridge
19.3
74
0.26
145
70
50
1.3
Inis Mor
9
179
53.1220
-9.7562
Ridge
19.3
74
0.26
115
55
30
0.5
Inis Mor
9
180
53.1220
-9.7562
Ridge
19.3
74
0.26
185
120
40
2.4
1.0
Inis Mor
9
181
53.1224
-9.7564
Ridge
19.6
12
1.63
200
40
30
0.6
2.7
Inis Mor
9
182
53.1224
-9.7564
Ridge
19.6
12
1.63
65
70
30
0.4
1.0
Inis Mor
9
183
53.1224
-9.7564
Ridge
19.6
12
1.63
105
65
20
0.4
Inis Mor
9
184
53.1237
-9.7568
Ridge
25.0
15
1.72
65
55
25
0.2
Inis Mor
9
185
53.1237
-9.7568
Ridge
25.0
15
1.72
90
65
20
0.3
Inis Mor
9
186
53.1237
-9.7568
Ridge
25.0
15
1.72
100
70
15
0.3
Inis Mor
9
187
53.1237
-9.7568
Ridge
25.0
15
1.72
130
55
50
1.0
4.0
Inis Mor
9
188
53.1237
-9.7568
Ridge
11.6
15
0.80
85
50
35
0.4
8.0
Inis Mor
10
189
53.1195
-9.7455
Ridge
17.6
23
0.77
75
60
45
0.5
Inis Mor
10
190
Ridge
17.6
23
0.77
150
100
45
1.8
2.0
Inis Mor
10
191
53.1195
-9.7455
Ridge
17.6
23
0.77
125
60
35
0.7
0.5
Inis Mor
10
192
C A
-9.7455
53.1195
-9.7455
Ridge
17.6
23
0.77
165
70
65
2.0
Inis Mor
10
193
53.1195
-9.7455
Ridge
17.6
23
0.77
145
55
40
0.8
Inis Mor
10
194
53.1195
-9.7455
Ridge
17.6
23
0.77
140
100
55
2.0
53.1195
D E
T P
E C
M
A
I R
C S
U N
T P
1.0
1.0
70
ACCEPTED MANUSCRIPT
Inis Mor
10
195
53.1195
-9.7455
Ridge
17.6
23
0.77
95
90
70
1.6
Inis Mor
10
196
53.1195
-9.7455
Ridge
17.6
23
0.77
105
65
30
0.5
Inis Mor
11
197
53.1174
-9.7421
Ridge
20.2
22
0.92
200
250
25
3.3
Inis Mor
11
198
53.1174
-9.7421
Ridge
20.2
22
0.92
100
30
30
0.2
Inis Mor
11
199
53.1174
-9.7421
Ridge
20.2
22
0.92
100
40
25
0.3
Inis Mor
11
200
53.1174
-9.7421
Ridge
20.2
22
0.92
60
30
30
0.1
Inis Mor
11
201
53.1174
-9.7421
Ridge
20.2
22
0.92
115
75
35
0.8
Inis Mor
11
202
53.1174
-9.7421
Ridge
20.2
22
0.92
45
35
25
0.1
Inis Mor
11
203
53.1174
-9.7421
Ridge
20.2
22
0.92
205
55
25
0.7
Inis Mor
11
204
53.1174
-9.7421
Ridge
20.2
22
0.92
90
80
50
1.0
Inis Mor
11
205
53.1174
-9.7421
Ridge
20.2
22
0.92
90
70
60
1.0
Inis Mor
11
206
53.1174
-9.7421
Ridge
20.2
22
0.92
180
45
45
1.0
Inis Mor
11
207
53.1174
-9.7421
Ridge
20.2
22
0.92
90
60
40
0.6
Inis Mor
11
208
53.1174
-9.7421
Ridge
20.2
22
0.92
100
70
30
0.6
Inis Mor
11
209
53.1174
-9.7421
Ridge
20.2
22
0.92
120
30
30
0.3
Inis Mor
11
210
53.1174
-9.7421
Ridge
20.2
22
0.92
120
40
35
0.4
Inis Mor
12
211
Ridge
8.7
18
0.48
130
60
30
0.6
Inis Mor
12
212
53.0889
-9.6406
Ridge
8.7
18
0.48
130
50
30
0.5
Inis Mor
12
213
C A
-9.6406
53.0889
-9.6406
Ridge
8.7
18
0.48
155
70
45
1.3
Inis Mor
13
214
53.1051
-9.6902
Ridge
25.1
16
1.57
80
50
15
0.2
Inis Mor
13
215
53.1051
-9.6902
Isolated
25.1
16
1.57
120
80
10
0.3
53.0889
D E
T P
E C
M
A
I R
C S
U N
T P
2.5
1.0
2.5
1.0
2.5
71
ACCEPTED MANUSCRIPT
Inis Mor
13
216
53.1051
-9.6902
Ridge
25.1
16
1.57
290
165
35
4.5
Inis Mor
13
217
53.1051
-9.6902
Ridge
25.1
16
1.57
175
110
30
1.5
3.5
Inis Mor
13
218
53.1050
-9.6902
Ridge
24.5
7
3.50
85
55
15
0.2
0.5
Inis Mor
13
219
53.1050
-9.6902
Ridge
24.5
7
3.50
60
60
25
0.2
Inis Mor
13
220
53.1050
-9.6902
Ridge
24.5
7
3.50
140
50
30
0.6
Inis Mor
13
221
53.1050
-9.6902
Ridge
24.5
7
3.50
55
40
20
0.1
Inis Mor
13
222
53.1050
-9.6902
Ridge
24.5
7
3.50
150
75
20
0.6
1.0
Inis Mor
13
223
53.1054
-9.6903
Ridge
24.6
5
4.92
220
55
50
1.6
2.0
Inis Mor
13
224
53.1054
-9.6903
Ridge
24.6
5
4.92
110
65
30
0.6
Inis Mor
13
225
53.1054
-9.6903
Ridge
24.6
4.92
125
120
60
2.4
2.5
Inis Mor
13
226
53.1054
-9.6903
Ridge
24.6
5
4.92
165
85
45
1.7
1.0
Inis Mor
13
227
53.1054
-9.6903
Ridge
24.6
5
4.92
170
75
45
1.5
1.0
Inis Mor
13
228
53.1054
-9.6903
Ridge
24.6
5
4.92
190
90
30
1.4
Inis Mor
13
229
53.1054
-9.6903
Ridge
24.6
5
4.92
130
80
30
0.8
Inis Mor
13
230
53.1054
-9.6903
Ridge
24.6
5
4.92
215
100
30
1.7
3.4
Inis Mor
13
231
53.1054
-9.6903
Ridge
24.6
5
4.92
240
170
50
5.4
5.1
0.0
Inis Mor
14
232
Ridge
19.8
38
0.52
175
145
25
1.7
Inis Mor
14
233
53.0897
-9.6430
Ridge
19.8
38
0.52
100
60
30
0.5
1.5
-1.0
Inis Mor
14
234
C A
-9.6430
53.0897
-9.6430
Ridge
19.8
38
0.52
225
155
15
1.4
5.0
Inis Mor
14
235
53.0897
-9.6430
Ridge
19.8
38
0.52
170
75
15
0.5
Inis Mor
14
236
53.0897
-9.6430
Ridge
19.8
38
0.52
180
75
15
0.5
53.0897
D E
T P
E C
M
A 5
I R
C S
U N
T P
-0.5
-0.5
72
ACCEPTED MANUSCRIPT
Inis Mor
15
237
53.0891
-9.6488
Ridge
7.5
5
1.50
150
140
35
2.0
Inis Mor
15
238
53.0891
-9.6488
Ridge
7.5
5
1.50
210
110
25
1.5
Inis Mor
16
239
53.0907
-9.6564
Ridge
5.4
30
0.18
440
170
45
9.0
5.5
Inis Mor
16
240
53.0907
-9.6564
Isolated
5.4
27
0.20
310
200
75
12.4
8.5
Inis Mor
17
241
53.0920
-9.6611
Ridge
6.0
31
0.19
70
55
30
0.3
Inis Mor
17
242
53.0920
-9.6611
Ridge
6.0
31
0.19
120
60
30
0.6
Inis Mor
17
243
53.0920
-9.6611
Ridge
6.0
31
0.19
130
20
20
0.1
Inis Mor
17
244
53.0920
-9.6611
Ridge
6.0
31
0.19
70
70
25
0.3
Inis Mor
17
245
53.0920
-9.6611
Ridge
6.0
31
0.19
130
65
25
0.6
Inis Mor
17
246
53.0920
-9.6611
Ridge
6.0
31
0.19
130
75
20
0.5
Inis Mor
17
247
53.0920
-9.6611
Ridge
6.0
31
0.19
130
85
20
0.6
2.0
Inis Mor
18
248
53.0923
-9.6625
Ridge
9.6
21
0.46
480
250
140
44.7
5.1
Inis Mor
18
249
53.0923
-9.6625
Ridge
9.6
21
0.46
330
260
75
17.1
Inis Mor
18
250
53.0923
-9.6625
Ridge
9.6
21
0.46
125
105
35
1.2
Inis Mor
18
251
53.0923
-9.6625
Ridge
9.6
21
0.46
135
100
60
2.2
Inis Mor
18
252
53.0923
-9.6625
Ridge
9.6
21
0.46
200
100
25
1.3
Inis Mor
18
253
Ridge
9.6
21
0.46
185
80
40
1.6
Inis Mor
18
254
53.0923
-9.6625
Ridge
9.6
21
0.46
180
110
30
1.6
Inis Mor
18
255
C A
-9.6625
53.0923
-9.6625
Ridge
9.6
21
0.46
190
150
45
3.4
Inis Mor
18
256
53.0923
-9.6625
Ridge
9.6
21
0.46
790
440
150
138.7
3.0
Inis Mor
19
257
53.0930
-9.6632
Ridge
7.3
61
0.12
430
285
35
11.4
22.5
53.0923
D E
T P
E C
M
A
I R
C S
U N
T P
0.5
73
ACCEPTED MANUSCRIPT
Inis Mor
19
258
53.0930
-9.6632
Ridge
7.3
61
0.12
160
145
20
1.2
Inis Mor
19
259
53.0930
-9.6632
Ridge
7.3
61
0.12
195
120
30
1.9
18.0
Inis Mor
19
260
53.0930
-9.6632
Ridge
7.3
61
0.12
165
100
20
0.9
17.2
Inis Mor
19
261
53.0930
-9.6634
Isolated
5.8
27
0.21
930
630
135
210.4
23.0
Inis Mor
19
262
53.0930
-9.6632
Ridge
7.3
61
0.12
430
285
35
11.4
22.5
Inis Mor
19
263
53.0930
-9.6632
Ridge
7.3
61
0.12
220
100
25
1.5
4.0
Inis Mor
20
264
53.0938
-9.6640
Ridge
8.4
48
0.18
135
65
40
0.9
Inis Mor
20
265
53.0938
-9.6640
Ridge
8.4
48
0.18
185
125
30
1.8
0.5
Inis Mor
20
266
53.0938
-9.6640
Ridge
8.4
48
0.18
95
65
20
0.3
2.5
A
11
0.18
940
650
320
520
4.0
Cliff
M
Inis Mor
20
267
53.0933
-9.6645
detach
Inis Mor
20
268
53.0936
-9.6639
Isolated
9.5
48
0.20
215
225
35
4.5
1.3
Inis Mor
20
269
53.0936
-9.6639
Isolated
9.5
48
0.20
490
305
40
15.9
5.6
Inis Mor
20
270
53.0936
-9.6639
Isolated
9.5
48
0.20
340
340
90
27.7
0.5
Inis Mor
20
271
53.0936
-9.6639
Isolated
9.5
48
0.20
400
210
90
20.1
2.0
Inis Mor
21
272
53.0946
-9.6641
Ridge
11.0
64
0.17
120
90
65
1.9
1.0
Inis Mor
21
273
Ridge
11.0
64
0.17
145
85
55
1.8
11.0
Inis Mor
21
274
53.0946
-9.6641
Ridge
11.0
64
0.17
160
80
45
1.5
Inis Mor
21
275
C A
-9.6641
53.0946
-9.6641
Ridge
11.0
64
0.17
145
55
50
1.1
Inis Mor
21
276
53.0946
-9.6641
Ridge
11.0
64
0.17
250
225
30
4.5
Inis Mor
21
277
53.0946
-9.6641
Ridge
11.0
64
0.17
170
110
40
2.0
53.0946
D E
T P
E C
2.0
I R
C S
U N
T P
3.0
1.0
0.0
1.0
74
ACCEPTED MANUSCRIPT
Inis Mor
21
278
53.0946
-9.6641
Ridge
11.0
64
0.17
180
95
30
1.4
Inis Mor
21
279
53.0946
-9.6641
Ridge
11.0
64
0.17
125
90
35
1.0
Inis Mor
21
280
53.0946
-9.6641
Ridge
11.0
64
0.17
230
185
70
7.9
Inis Mor
21
281
53.0946
-9.6641
Ridge
11.0
64
0.17
175
135
60
3.8
Inis Mor
21
282
53.0948
-9.6644
Ridge
12.0
48
0.25
300
170
70
9.5
Inis Mor
21
283
53.0948
-9.6644
Ridge
12.5
45
0.28
280
145
85
9.2
Inis Mor
21
284
53.0948
-9.6644
Ridge
12.0
48
0.25
225
205
120
14.7
Inis Mor
21
285
53.0948
-9.6644
Ridge
11.0
48
0.23
540
325
125
58.4
12.2
Inis Mor
21
286
53.0948
-9.6644
Ridge
12.0
48
0.25
475
265
120
40.2
1.0
0.0
Inis Mor
21
287
53.0948
-9.6644
Ridge
15.0
60
0.25
250
155
90
9.3
3.0
2.0
Inis Mor
21
288
53.0948
-9.6644
Isolated
12.0
45
0.27
420
290
120
38.9
1.6
0.0
Inis Mor
21
289
53.0948
-9.6644
Isolated
11.0
48
0.23
275
155
55
6.2
1.6
0.0
Inis Mor
21
290
53.0948
-9.6644
Isolated
11.0
48
0.23
380
305
110
33.9
0.5
0.0
Inis Mor
21
291
53.0948
-9.6644
Ridge
11.0
48
0.23
160
115
80
3.9
Inis Mor
21
292
53.0948
-9.6644
Ridge
11.0
48
0.23
590
260
95
38.8
0.5
0.0
3.3
-0.4
D E
T P
E C
M
A
I R
C S
U N
T P
3.0
25
0.12
850
600
380
515
53.0945
-9.6646
Isolated
6.0
26
0.23
550
316
130
60.1
295
C A
detach
53.0959
-9.6661
Ridge
10.4
62
0.17
115
50
50
0.8
22
296
53.0959
-9.6661
Ridge
10.4
62
0.17
75
50
30
0.3
22
297
53.0959
-9.6661
Ridge
10.4
62
0.17
80
60
35
0.4
21
293
Inis Mor
21
294
Inis Mor
22
Inis Mor Inis Mor
53.0945
-1.0
Cliff
-9.6646
Inis Mor
4.0
75
ACCEPTED MANUSCRIPT
Inis Mor
22
298
53.0959
-9.6661
Ridge
10.4
62
0.17
70
50
35
0.3
Inis Mor
22
299
53.0959
-9.6661
Ridge
10.4
62
0.17
80
60
20
0.3
Inis Mor
22
300
53.0959
-9.6661
Ridge
10.4
62
0.17
120
55
25
0.4
Inis Mor
23
301
53.0983
-9.6710
Ridge
10.4
62
0.17
190
145
20
1.5
Inis Mor
23
302
53.0983
-9.6710
Ridge
22.4
42
0.53
110
100
40
1.2
Inis Mor
23
303
53.0983
-9.6710
Ridge
22.4
42
0.53
110
90
20
0.5
Inis Mor
23
304
53.0983
-9.6710
Ridge
22.4
42
0.53
150
95
30
1.1
Inis Mor
23
305
53.0983
-9.6710
Ridge
22.4
42
0.53
140
110
10
0.4
Inis Mor
23
306
53.0983
-9.6710
Ridge
22.4
42
0.53
100
80
15
0.3
Inis Mor
23
307
53.0983
-9.6710
Ridge
22.4
42
0.53
150
90
20
0.7
Inis Mor
23
308
53.0983
-9.6710
Ridge
22.4
42
0.53
145
125
90
4.3
Inis Mor
23
309
53.0983
-9.6710
Ridge
22.4
42
0.53
115
70
40
0.9
Inis Mor
23
310
53.0983
-9.6710
Ridge
22.4
42
0.53
70
65
35
0.4
Inis Mor
24
311
53.0991
-9.6735
Ridge
17.0
25
0.68
100
75
35
0.7
Inis Mor
24
312
53.0991
-9.6735
Ridge
17.0
25
0.68
145
70
15
0.4
Inis Mor
24
313
53.0991
-9.6735
Ridge
17.0
25
0.68
145
95
20
0.7
Inis Mor
24
314
Ridge
17.0
25
0.68
170
165
25
1.9
Inis Mor
24
315
53.0991
-9.6735
Ridge
17.0
25
0.68
65
55
5
0.0
2.0
-1.0
Inis Mor
24
316
C A
-9.6735
53.0991
-9.6735
Ridge
17.0
25
0.68
75
50
10
0.1
3.0
-3.0
Inis Mor
25
317
53.0996
-9.6744
Ridge
16.9
46
0.37
135
115
50
2.1
Inis Mor
25
318
53.0996
-9.6744
Ridge
16.9
46
0.37
360
290
35
9.7
53.0991
D E
T P
E C
M
A
I R
C S
U N
T P
0.5
-0.5
76
ACCEPTED MANUSCRIPT
Inis Mor
25
319
53.0996
-9.6744
Ridge
16.9
46
0.37
430
295
55
18.6
Inis Mor
25
320
53.0996
-9.6744
Ridge
16.9
46
0.37
255
160
45
4.9
Inis Mor
25
321
53.0996
-9.6744
Ridge
16.9
46
0.37
410
160
20
3.5
Inis Mor
25
322
53.0996
-9.6744
Ridge
16.9
46
0.37
185
120
25
1.5
Inis Mor
25
323
53.0996
-9.6744
Ridge
16.9
46
0.37
205
190
70
7.3
2.0
Inis Mor
26
324
53.1001
-9.6761
Ridge
16.6
73
0.23
300
230
80
14.7
7.5
Inis Mor
26
325
53.1001
-9.6761
Ridge
10.3
73
0.14
295
120
100
9.4
5.5
Inis Mor
26
326
53.1001
-9.6761
Ridge
10.3
73
0.14
215
190
30
3.3
Inis Mor
26
327
53.1001
-9.6761
Ridge
10.3
73
0.14
160
120
30
1.5
Inis Mor
26
328
53.1001
-9.6761
Ridge
10.3
73
0.14
145
40
50
0.8
Inis Mor
26
329
53.0998
-9.6755
Isolated
9.8
10
0.98
505
240
115
37.1
2.5
0.0
Inis Mor
27
330
53.1001
-9.6761
Isolated
10.3
56
0.18
490
270
120
42.2
4.5
2.0
Inis Mor
27
331
53.1003
-9.6777
Isolated
11.8
54
0.22
680
430
165
128.3
7.4
Inis Mor
27
332
53.1003
-9.6777
Ridge
13.9
72
0.19
225
90
55
3.0
Inis Mor
27
333
53.1003
-9.6777
Ridge
13.9
72
0.19
105
55
35
0.5
Inis Mor
27
334
53.1003
-9.6777
Ridge
13.9
72
0.19
100
60
30
0.5
Inis Mor
28
335
Ridge
14.1
94
0.15
120
90
50
1.4
Inis Mor
28
336
53.1008
-9.6788
Ridge
14.1
94
0.15
120
90
25
0.7
0.5
Inis Mor
28
337
C A
-9.6788
53.1008
-9.6788
Ridge
13.2
59
0.22
145
70
35
0.9
0.5
Inis Mor
28
338
53.1008
-9.6788
Ridge
13.2
59
0.22
90
85
25
0.5
Inis Mor
28
339
53.1015
-9.6797
Ridge
17.5
54
0.32
170
75
30
1.0
53.1008
D E
T P
E C
M
A
I R
C S
U N
T P
77
ACCEPTED MANUSCRIPT
Inis Mor
28
340
53.1015
-9.6797
Ridge
17.5
54
0.32
115
95
20
0.6
Inis Mor
28
341
53.1015
-9.6797
Ridge
17.5
54
0.32
100
85
25
0.6
Inis Mor
28
342
53.1015
-9.6797
Ridge
17.5
54
0.32
120
60
35
0.7
Inis Mor
28
343
53.1015
-9.6797
Isolated
17.5
54
0.32
280
130
130
12.6
Inis Mor
28
344
53.1015
-9.6797
Isolated
17.5
54
0.32
120
105
30
1.0
Inis Mor
29
345
53.1021
-9.6809
Ridge
17.9
36
0.50
185
95
15
0.7
Inis Mor
29
346
53.1021
-9.6809
Ridge
17.9
36
0.50
130
65
35
0.8
Inis Mor
29
347
53.1021
-9.6809
Ridge
17.9
36
0.50
110
65
30
0.6
Inis Mor
29
348
53.1021
-9.6809
Ridge
17.9
36
0.50
105
65
40
0.7
Inis Mor
29
349
53.1021
-9.6809
Ridge
17.9
36
0.50
105
75
15
0.3
Inis Mor
29
350
53.1021
-9.6809
Ridge
17.9
36
0.50
125
90
35
1.0
Inis Mor
29
351
53.1021
-9.6809
Ridge
17.9
36
0.50
180
70
25
0.8
Inis Mor
30
352
53.1027
-9.6837
Ridge
23.6
64
0.37
230
150
60
5.5
Inis Mor
30
353
53.1027
-9.6837
Ridge
23.6
64
0.37
90
85
40
0.8
Inis Mor
30
354
53.1027
-9.6837
Ridge
23.6
64
0.37
155
130
45
2.4
Inis Mor
30
355
53.1027
-9.6837
Ridge
23.6
64
0.37
110
70
30
0.6
Inis Mor
30
356
Ridge
23.6
64
0.37
110
60
45
0.8
Inis Mor
30
357
53.1027
-9.6837
Ridge
23.6
64
0.37
140
80
35
1.0
Inis Mor
30
358
C A
-9.6837
53.1027
-9.6837
Ridge
23.6
64
0.37
200
110
50
2.9
Inis Mor
30
359
53.1027
-9.6837
Ridge
23.6
64
0.37
100
90
45
1.1
Inis Mor
30
360
53.1027
-9.6837
Ridge
23.6
64
0.37
130
45
50
0.8
53.1027
D E
T P
E C
M
A
I R
C S
U N
T P
3.5
2.5
1.0
2.2
78
ACCEPTED MANUSCRIPT
Inis Mor
31
361
53.1375
-9.8229
Ridge
4.0
19
0.21
325
135
80
9.3
Inis Mor
31
362
53.1375
-9.8229
Ridge
4.0
19
0.21
185
150
135
10.0
Inis Mor
31
363
53.1375
-9.8229
Ridge
4.0
19
0.21
175
160
65
4.8
Inis Mor
31
364
53.1375
-9.8229
Ridge
4.0
19
0.21
145
90
70
2.4
Inis Mor
31
365
53.1375
-9.8229
Ridge
4.0
19
0.21
220
150
35
3.1
Inis Mor
31
366
53.1375
-9.8229
Ridge
4.0
19
0.21
135
110
50
2.0
Inis Mor
31
367
53.1375
-9.8229
Ridge
4.0
19
0.21
195
90
80
3.7
Inis Mor
31
368
53.1375
-9.8229
Ridge
4.0
19
0.21
250
100
60
4.0
Inis Mor
31
369
53.1375
-9.8229
Ridge
4.0
19
0.21
180
75
55
2.0
Inis Mor
31
370
53.1375
-9.8229
Ridge
4.0
19
0.21
200
70
60
2.2
Inis Mor
31
371
53.1375
-9.8229
Isolated
4.0
19
0.21
190
260
185
Inis Mor
31
372
53.1375
-9.8229
Ridge
4.0
19
0.21
290
245
Inis Mor
31
373
53.1373
-9.8237
Ridge
4.5
45
0.10
130
Inis Mor
31
374
53.1373
-9.8237
Isolated
4.5
45
0.10
Inis Mor
31
375
53.1373
-9.8237
Isolated
4.5
45
Inis Mor
31
376
53.1373
-9.8237
Isolated
4.5
Inis Mor
31
377
Isolated
Inis Mor
31
378
53.1373
-9.8237
Inis Mor
31
379
C A
-9.8237
53.1373
Inis Mor
31
380
Inis Mor
31
381
T P
I R
6.0
2.0
2.0
1.0
24.3
4.0
0.0
75
14.2
2.7
1.5
90
80
2.5
265
230
140
22.7
0.10
280
210
80
12.5
45
0.10
200
180
170
16.3
4.5
45
0.10
150
130
120
6.2
Isolated
4.5
45
0.10
180
160
50
3.8
-9.8237
Isolated
4.5
45
0.10
260
230
160
25.5
53.1373
-9.8237
Isolated
4.5
45
0.10
230
180
150
16.5
53.1373
-9.8237
Isolated
4.5
45
0.10
170
150
75
5.1
53.1373
D E
T P
E C
U N
A
M
C S
3.0
1.0
6.0
79
ACCEPTED MANUSCRIPT
Inis Mor
31
382
53.1373
-9.8237
Isolated
5.0
45
0.11
250
170
120
13.6
0.5
Inis Mor
31
383
53.1373
-9.8237
Isolated
5.0
45
0.11
160
140
100
6.0
2.5
Inis Mor
31
384
53.1372
-9.8247
Isolated
4.5
70
0.06
253
253
253
43.0
5.0
Inis Mor
31
385
53.1372
-9.8247
Isolated
4.5
45
0.10
215
210
130
15.6
Inis Mor
31
386
53.1372
-9.8247
Isolated
4.5
45
0.10
200
140
35
2.6
Inis Mor
31
387
53.1372
-9.8247
Isolated
4.5
45
0.10
220
150
75
6.6
Inis Mor
31
388
53.1372
-9.8247
Isolated
4.5
55
0.08
360
300
180
51.7
2.0
Inis Mor
31
389
53.1372
-9.8247
Isolated
4.5
45
0.10
290
190
100
14.7
5.0
Inis Mor
31
390
53.1372
-9.8247
Isolated
4.5
45
0.10
230
200
100
12.2
5.4
Inis Mor
32
391
53.1371
-9.8206
Ridge
7.4
31
0.24
90
80
40
0.8
1.5
Inis Mor
32
392
53.1371
-9.8206
Ridge
7.4
31
0.24
130
85
50
1.5
Inis Mor
32
393
53.1371
-9.8206
Ridge
7.4
31
0.24
130
75
40
1.0
Inis Mor
32
394
53.1371
-9.8206
Ridge
7.4
31
0.24
155
115
45
2.1
Inis Mor
32
395
53.1371
-9.8206
Ridge
7.4
31
0.24
145
55
40
0.8
Inis Mor
32
396
53.1371
-9.8206
Ridge
7.4
31
0.24
115
100
25
0.8
Inis Mor
32
397
53.1371
-9.8206
Ridge
7.4
31
0.24
145
140
40
2.2
Inis Mor
32
398
Ridge
7.4
31
0.24
185
80
25
1.0
Inis Mor
32
399
53.1377
-9.8219
Ridge
4.0
65
0.06
130
125
65
2.8
Inis Mor
32
400
C A
-9.8206
53.1377
-9.8219
Isolated
4.0
65
0.06
190
160
55
4.4
Inis Mor
32
401
53.1377
-9.8219
Ridge
4.0
65
0.06
155
125
60
3.1
Inis Mor
32
402
53.1377
-9.8219
Ridge
4.0
65
0.06
235
120
30
2.3
53.1371
D E
T P
E C
M
A
I R
C S
U N
T P
2.6
1.0
80
ACCEPTED MANUSCRIPT
Inis Mor
32
403
53.1377
-9.8219
Ridge
4.0
65
0.06
240
160
50
5.1
Inis Mor
32
404
53.1377
-9.8219
Ridge
4.0
65
0.06
150
115
40
1.8
Inis Mor
32
405
53.1377
-9.8219
Ridge
4.0
65
0.06
100
80
90
1.9
1.3
Inis Mor
32
406
53.1377
-9.8219
Isolated
4.0
65
0.06
190
160
55
4.4
1.0
Inis Mor
32
407
53.1377
-9.8219
Ridge
4.0
65
0.06
255
215
100
14.6
1.0
Inis Mor
32
408
53.1377
-9.8219
Ridge
4.0
65
0.06
330
270
60
14.2
Inis Mor
32
409
53.1377
-9.8219
Ridge
4.0
65
0.06
100
60
50
0.8
Inis Mor
32
410
53.1377
-9.8219
Ridge
4.0
65
0.06
105
60
65
1.1
Inis Mor
32
411
53.1377
-9.8219
Ridge
4.0
65
0.06
210
170
35
3.3
Inis Mor
32
412
53.1375
-9.8229
Ridge
5.5
21
0.26
170
155
65
4.6
Inis Mor
32
413
53.1375
-9.8229
Ridge
5.5
21
0.26
145
95
75
2.7
Inis Mor
32
414
53.1375
-9.8229
Ridge
5.5
21
0.26
195
90
85
4.0
Inis Mor
32
415
53.1375
-9.8229
Ridge
5.5
21
0.26
135
110
50
2.0
Inis Mor
32
416
53.1375
-9.8229
Ridge
5.5
21
0.26
170
60
60
1.6
Inis Mor
33
417
53.1374
-9.8239
Ridge
4.8
72
0.07
210
200
125
14.0
Inis Mor
33
418
53.1374
-9.8239
Ridge
4.8
72
0.07
220
150
30
2.6
Inis Mor
33
419
Ridge
4.8
72
0.07
235
175
175
19.1
Inis Mor
33
420
53.1374
-9.8239
Ridge
4.8
72
0.07
220
90
80
4.2
Inis Mor
33
421
C A
-9.8239
53.1374
-9.8239
Ridge
4.8
72
0.07
155
130
85
4.6
Inis Mor
33
422
53.1374
-9.8239
Ridge
4.8
72
0.07
435
215
140
34.8
Inis Mor
33
423
53.1374
-9.8239
Ridge
4.8
72
0.07
240
150
45
4.3
53.1374
D E
T P
E C
M
A
I R
C S
U N
T P
2.5
1.5
81
ACCEPTED MANUSCRIPT
Inis Mor
33
424
53.1374
-9.8239
Ridge
4.8
72
0.07
435
140
90
14.6
Inis Mor
33
425
53.1374
-9.8239
Ridge
4.8
72
0.07
105
120
105
3.5
Inis Mor
33
426
53.1374
-9.8239
Ridge
4.8
72
0.07
500
265
110
38.8
Inis Mor
33
427
53.1374
-9.8239
Ridge
4.8
72
0.07
270
240
120
20.7
Inis Mor
33
428
53.1374
-9.8239
Ridge
4.8
72
0.07
290
185
105
15.0
Inis Mor
34
429
53.1043
-9.6881
Ridge
26.0
18
1.44
75
30
20
0.1
2.0
Inis Mor
34
430
53.1043
-9.6881
Ridge
26.0
18
1.44
30
15
10
0.0
0.5
Inis Mor
34
431
53.1043
-9.6881
Ridge
26.0
18
1.44
120
110
20
0.7
3.5
Inis Mor
34
432
53.1043
-9.6881
Ridge
26.0
18
1.44
100
50
20
0.3
Inis Mor
34
433
53.1043
-9.6881
Ridge
26.0
18
1.44
90
80
10
0.2
0.5
Inis Mor
34
434
53.1043
-9.6881
Ridge
26.0
18
1.44
50
15
20
0.1
4.0
Inis Mor
34
435
53.1043
-9.6881
Isolated
26.0
18
1.44
85
70
15
0.2
Inis Mor
34
436
53.1043
-9.6881
Isolated
26.0
18
1.44
95
50
25
0.3
Inis Mor
34
437
53.1043
-9.6881
Ridge
26.0
18
1.44
75
50
20
0.2
Inis Mor
34
438
53.1043
-9.6881
Ridge
26.0
18
1.44
190
120
20
1.2
Inis Mor
34
439
53.1043
-9.6881
Ridge
26.0
18
1.44
135
85
10
0.3
Inis Mor
34
440
Ridge
26.0
18
1.44
120
70
20
0.4
Inis Mor
34
441
53.1043
-9.6881
Ridge
26.0
18
1.44
120
65
15
0.3
2.0
Inis Mor
34
442
C A
-9.6881
53.1043
-9.6881
Ridge
26.0
18
1.44
65
50
20
0.2
0.5
Inis Meain
35
443
53.0675
-9.6004
Ridge
1.9
13
0.15
170
50
50
1.1
Inis Meain
35
444
53.0675
-9.6004
Ridge
1.9
13
0.15
200
155
35
2.9
53.1043
D E
T P
E C
M
A
I R
C S
U N
T P
2.0
0.2
0.0
82
ACCEPTED MANUSCRIPT
Inis Meain
35
445
53.0675
-9.6004
Ridge
1.9
13
0.15
200
120
30
1.9
Inis Meain
35
446
53.0675
-9.6004
Ridge
1.9
13
0.15
190
135
30
2.0
Inis Meain
35
447
53.0675
-9.6004
Ridge
1.9
13
0.15
360
125
50
6.0
Inis Meain
35
448
53.0675
-9.6004
Isolated
1.9
13
0.15
300
200
35
5.6
Inis Meain
35
449
53.0675
-9.6004
Ridge
1.9
13
0.15
160
155
15
1.0
Inis Meain
35
450
53.0675
-9.6004
Ridge
1.9
13
0.15
110
80
15
0.4
Inis Meain
36
451
53.0670
-9.6015
Ridge
3.4
15
0.23
95
75
25
0.5
Inis Meain
36
452
53.0670
-9.6015
Ridge
3.4
15
0.23
170
65
10
0.3
Inis Meain
36
453
53.0670
-9.6015
Isolated
3.4
15
0.23
130
105
30
1.1
Inis Meain
36
454
53.0670
-9.6015
Ridge
3.4
15
0.23
100
85
25
0.6
Inis Meain
37
455
53.0667
-9.6021
Ridge
3.8
8
0.48
205
65
30
1.1
Inis Meain
37
456
53.0667
-9.6021
Ridge
3.8
8
0.48
85
70
20
0.3
Inis Meain
37
457
53.0667
-9.6021
Ridge
3.8
8
0.48
95
60
25
0.4
Inis Meain
37
458
53.0667
-9.6021
Ridge
3.8
8
0.48
90
75
15
0.3
Inis Meain
37
459
53.0667
-9.6021
Ridge
3.8
8
0.48
125
105
25
0.9
Inis Meain
37
460
53.0667
-9.6021
Ridge
3.8
8
0.48
100
90
15
0.4
Inis Meain
37
461
Ridge
3.8
8
0.48
80
80
30
0.5
Inis Meain
37
462
53.0667
-9.6021
Ridge
3.8
8
0.48
85
65
15
0.2
Inis Meain
37
463
C A
-9.6021
53.0667
-9.6021
Ridge
3.8
8
0.48
105
95
10
0.3
Inis Meain
37
464
53.0667
-9.6021
Isolated
3.8
8
0.48
105
70
40
0.8
Inis Meain
37
465
53.0667
-9.6021
Ridge
0.8
5
0.16
130
115
30
1.2
53.0667
D E
T P
E C
M
A
I R
C S
U N
T P
1.5
83
ACCEPTED MANUSCRIPT
Inis Meain
37
466
53.0667
-9.6021
Ridge
0.8
5
0.16
120
75
25
0.6
Inis Meain
37
467
53.0664
-9.6037
Ridge
3.0
32
0.10
100
45
35
0.4
Inis Meain
37
468
53.0664
-9.6037
Ridge
3.0
32
0.10
100
60
15
0.2
4.5
3.5
Inis Meain
37
469
53.0664
-9.6037
Ridge
3.0
32
0.10
110
90
15
0.4
4.5
4.0
Inis Meain
37
470
53.0664
-9.6037
Ridge
3.0
32
0.10
70
65
5
0.1
4.5
3.5
Inis Meain
37
471
53.0664
-9.6037
Isolated
3.0
32
0.10
195
160
65
5.4
29.0
2.0
Inis Meain
37
472
53.0664
-9.6037
Isolated
3.0
32
0.10
120
95
40
1.2
24.5
2.0
Inis Meain
37
473
53.0664
-9.6037
Ridge
3.0
32
0.10
135
110
15
0.6
21.0
0.5
Inis Meain
38
474
53.0665
-9.6029
Ridge
1.5
12
0.13
170
80
60
2.2
Inis Meain
38
475
53.0665
-9.6029
Ridge
1.5
12
0.13
210
150
35
2.9
Inis Meain
38
476
53.0665
-9.6029
Ridge
1.5
12
0.13
200
140
60
4.5
7.0
Inis Meain
38
477
53.0665
-9.6029
Ridge
1.5
12
0.13
220
140
40
3.3
4.7
Inis Meain
38
478
53.0665
-9.6029
Ridge
1.5
12
0.13
140
125
30
1.4
Inis Meain
38
479
53.0665
-9.6029
Ridge
1.5
12
0.13
120
110
65
2.3
Inis Meain
38
480
53.0665
-9.6029
Ridge
1.5
12
0.13
140
60
50
1.1
Inis Meain
38
481
53.0665
-9.6029
Ridge
1.5
12
0.13
160
110
40
1.9
Inis Meain
38
482
Ridge
4.2
21
0.20
230
110
30
2.0
Inis Meain
38
483
53.0662
-9.6045
Ridge
4.2
21
0.20
130
130
30
1.3
Inis Meain
38
484
C A
-9.6045
53.0662
-9.6045
Ridge
4.2
21
0.20
130
115
25
1.0
Inis Meain
38
485
53.0662
-9.6045
Isolated
4.2
21
0.20
210
200
65
7.3
Inis Meain
38
486
53.0662
-9.6045
Ridge
4.2
21
0.20
120
85
25
0.7
53.0662
D E
T P
E C
M
A
I R
C S
U N
T P
84
ACCEPTED MANUSCRIPT
Inis Meain
38
487
53.0662
-9.6045
Ridge
4.2
21
0.20
155
95
15
0.6
Inis Meain
38
488
53.0662
-9.6045
Ridge
4.2
21
0.20
135
110
15
0.6
Inis Meain
38
489
53.0662
-9.6045
Ridge
4.2
21
0.20
160
75
35
1.1
Inis Meain
38
490
53.0662
-9.6045
Ridge
4.2
21
0.20
145
85
50
1.6
Inis Meain
38
491
53.0662
-9.6045
Ridge
4.2
21
0.20
130
95
35
1.1
Inis Meain
38
492
53.0662
-9.6045
Ridge
4.2
21
0.20
150
90
40
1.4
Inis Meain
38
493
53.0662
-9.6045
Ridge
4.2
21
0.20
85
65
25
0.4
Inis Meain
39
494
53.0660
-9.6051
Ridge
2.4
24
0.10
90
70
30
0.5
Inis Meain
39
495
53.0660
-9.6051
Ridge
2.4
24
0.10
130
100
20
0.7
Inis Meain
39
496
53.0660
-9.6051
Ridge
2.4
24
0.10
110
85
20
0.5
Inis Meain
39
497
53.0660
-9.6051
Ridge
2.4
24
0.10
100
85
40
0.9
Inis Meain
39
498
53.0660
-9.6051
Ridge
2.4
24
0.10
160
105
30
1.3
Inis Meain
40
499
53.0659
-9.6059
Ridge
5.0
24
0.20
260
205
90
12.8
41.1
Inis Meain
40
500
53.0659
-9.6059
Ridge
5.0
24
0.20
270
260
150
28.0
29.6
Inis Meain
40
501
53.0659
-9.6059
Ridge
5.0
24
0.20
160
145
50
3.1
1.5
Inis Meain
40
502
53.0659
-9.6059
Ridge
5.0
24
0.20
210
205
60
6.9
Inis Meain
40
503
Ridge
5.0
24
0.20
120
75
30
0.7
Inis Meain
40
504
53.0659
-9.6059
Ridge
5.0
24
0.20
155
130
65
3.5
Inis Meain
40
505
C A
-9.6059
53.0659
-9.6059
Ridge
5.0
24
0.20
195
125
130
8.4
Inis Meain
40
506
53.0659
-9.6059
Ridge
5.0
24
0.20
195
150
50
3.9
Inis Meain
40
507
53.0659
-9.6059
Ridge
5.0
24
0.20
185
175
25
2.2
53.0659
D E
T P
E C
M
A
I R
C S
U N
T P
2.8
85
ACCEPTED MANUSCRIPT
Inis Meain
40
508
53.0659
-9.6059
Ridge
5.0
24
0.20
200
190
30
3.0
Inis Meain
40
509
53.0660
-9.6074
Isolated
1.0
10
0.10
330
265
75
17.4
Inis Meain
40
510
53.0660
-9.6074
Isolated
1.5
13
0.12
250
205
100
13.6
37.0
Inis Meain
40
511
53.0660
-9.6074
Ridge
1.3
15
0.09
300
220
120
21.1
1.0
0.3
Inis Meain
40
512
53.0660
-9.6074
Ridge
2.3
18
0.13
130
125
35
1.5
Inis Meain
41
513
53.0660
-9.6074
Ridge
5.0
40
0.13
120
80
35
0.9
23.0
1.0
Inis Meain
41
514
53.0660
-9.6074
Isolated
1.2
11
0.11
350
330
150
46.1
12.0
1.0
Inis Meain
42
515
53.0661
-9.6094
Isolated
8.4
45
0.19
210
185
60
6.2
Inis Meain
42
516
53.0661
-9.6094
Ridge
8.4
45
0.19
370
245
45
10.9
Inis Meain
42
517
53.0661
-9.6094
Ridge
8.4
45
0.19
120
60
25
0.5
Inis Meain
42
518
53.0661
-9.6094
Ridge
8.4
45
0.19
95
95
10
0.2
Inis Meain
42
519
53.0661
-9.6094
Ridge
8.4
45
0.19
100
95
20
0.5
Inis Meain
42
520
53.0661
-9.6094
Ridge
8.4
45
0.19
110
80
15
0.4
Inis Meain
42
521
53.0661
-9.6094
Ridge
8.4
45
0.19
130
110
15
0.6
Inis Meain
42
522
53.0661
-9.6094
Ridge
8.4
45
0.19
155
95
25
1.0
Inis Meain
42
523
53.0661
-9.6094
Ridge
8.4
45
0.19
245
150
45
4.4
Inis Meain
42
524
Ridge
8.4
45
0.19
130
70
35
0.8
Inis Meain
42
525
53.0661
-9.6094
Ridge
8.4
45
0.19
95
90
40
0.9
Inis Meain
42
526
C A
-9.6094
53.0661
-9.6094
Ridge
8.4
45
0.19
110
60
40
0.7
Inis Meain
42
527
53.0661
-9.6094
Ridge
8.4
45
0.19
125
105
40
1.4
Inis Meain
42
528
53.0661
-9.6094
Ridge
8.4
45
0.19
105
90
20
0.5
53.0661
D E
T P
E C
M
A
I R
C S
U N
T P
86
ACCEPTED MANUSCRIPT
Inis Meain
42
529
53.0661
-9.6094
Ridge
8.4
45
0.19
205
185
35
3.5
Inis Meain
42
530
53.0661
-9.6094
Isolated
8.4
45
0.19
210
200
30
3.4
Inis Meain
42
531
53.0661
-9.6094
Ridge
8.4
45
0.19
225
210
30
3.8
Inis Meain
42
532
53.0661
-9.6094
Ridge
8.4
45
0.19
135
120
35
1.5
Inis Meain
42
533
53.0661
-9.6094
Ridge
8.4
45
0.19
130
125
25
1.1
Inis Meain
43
534
53.0663
-9.6102
Ridge
7.7
105
0.07
80
80
20
0.3
Inis Meain
43
535
53.0663
-9.6102
Isolated
7.7
105
0.07
135
70
40
1.0
Inis Meain
43
536
53.0663
-9.6102
Ridge
7.7
105
0.07
220
115
35
2.4
Inis Meain
43
537
53.0663
-9.6102
Ridge
7.7
105
0.07
125
80
25
0.7
Inis Meain
43
538
53.0663
-9.6102
Ridge
7.7
105
0.07
90
90
25
0.5
Inis Meain
43
539
53.0663
-9.6102
Ridge
7.7
105
0.07
65
50
35
0.3
Inis Meain
43
540
53.0663
-9.6102
Isolated
7.7
105
0.07
190
165
40
3.3
Inis Meain
43
541
53.0663
-9.6102
Ridge
7.7
105
0.07
140
90
20
0.7
Inis Meain
43
542
53.0663
-9.6102
Ridge
7.7
105
0.07
180
130
50
3.1
Inis Meain
43
543
53.0663
-9.6102
Ridge
7.7
105
0.07
180
130
60
3.7
Inis Meain
43
544
53.0663
-9.6102
Ridge
7.7
105
0.07
100
90
25
0.6
Inis Meain
43
545
Isolated
7.7
105
0.07
220
150
55
4.8
Inis Meain
43
546
53.0663
-9.6102
Ridge
7.7
105
0.07
130
75
55
1.4
Inis Meain
43
547
C A
-9.6102
53.0663
-9.6102
Isolated
7.7
105
0.07
230
195
40
4.8
Inis Meain
43
548
53.0663
-9.6102
Ridge
7.7
105
0.07
195
190
50
4.9
Inis Meain
43
549
53.0663
-9.6102
Ridge
7.7
105
0.07
220
215
40
5.0
53.0663
D E
T P
E C
M
A
I R
C S
U N
T P
87
ACCEPTED MANUSCRIPT
Inis Meain
43
550
53.0663
-9.6102
Ridge
7.7
105
0.07
370
240
50
11.8
Inis Meain
44
551
53.0664
-9.6110
Ridge
8.2
110
0.07
190
135
50
3.4
Inis Meain
44
552
53.0664
-9.6110
Ridge
8.2
110
0.07
150
85
25
0.8
Inis Meain
44
553
53.0664
-9.6110
Ridge
8.2
110
0.07
110
70
20
0.4
Inis Meain
44
554
53.0664
-9.6110
Ridge
8.2
110
0.07
180
170
25
2.0
Inis Meain
44
555
53.0664
-9.6110
Ridge
8.2
110
0.07
160
90
25
1.0
Inis Meain
44
556
53.0664
-9.6110
Ridge
8.2
110
0.07
185
145
25
1.8
Inis Meain
44
557
53.0664
-9.6110
Ridge
8.2
110
0.07
130
65
25
0.6
Inis Meain
44
558
53.0664
-9.6110
Ridge
8.2
110
0.07
100
95
25
0.6
Inis Meain
45
559
53.0666
-9.6120
Ridge
8.4
100
0.08
140
85
35
1.1
Inis Meain
45
560
53.0666
-9.6120
Ridge
8.4
100
0.08
145
25
25
0.2
Inis Meain
45
561
53.0666
-9.6120
Ridge
8.4
100
0.08
85
75
20
0.3
Inis Meain
45
562
53.0666
-9.6120
Ridge
8.4
100
0.08
95
75
15
0.3
Inis Meain
45
563
53.0666
-9.6120
Ridge
8.4
100
0.08
165
70
35
1.1
Inis Meain
45
564
53.0666
-9.6120
Ridge
8.4
100
0.08
120
65
25
0.5
Inis Meain
45
565
53.0666
-9.6120
Ridge
8.4
100
0.08
130
65
25
0.6
Inis Meain
46
566
Ridge
8.3
99
0.08
75
50
10
0.1
Inis Meain
46
567
53.0666
-9.6128
Ridge
8.3
99
0.08
125
65
25
0.5
Inis Meain
46
568
C A
-9.6128
53.0666
-9.6128
Ridge
8.3
99
0.08
90
65
15
0.2
Inis Meain
46
569
53.0666
-9.6128
Ridge
8.3
99
0.08
100
70
10
0.2
Inis Meain
46
570
53.0666
-9.6128
Ridge
8.3
99
0.08
185
180
30
2.7
53.0666
D E
T P
E C
M
A
I R
C S
U N
T P
2.0
2.0
-1.0
3.3
-5.0
5.0
88
ACCEPTED MANUSCRIPT
Inis Meain
46
571
53.0666
-9.6128
Ridge
8.3
99
0.08
130
90
30
0.9
Inis Meain
47
572
53.0667
-9.6137
Ridge
10.7
156
0.07
120
95
25
0.8
Inis Meain
47
573
53.0667
-9.6137
Ridge
10.7
156
0.07
100
90
25
0.6
Inis Meain
47
574
53.0667
-9.6137
Ridge
10.7
156
0.07
225
110
20
1.3
Inis Meain
47
575
53.0667
-9.6137
Ridge
10.7
156
0.07
160
80
45
1.5
Inis Meain
47
576
53.0667
-9.6137
Ridge
10.7
156
0.07
100
60
25
0.4
Inis Meain
47
577
53.0667
-9.6137
Isolated
10.7
156
0.07
280
190
50
7.1
Inis Meain
47
578
53.0667
-9.6137
Isolated
10.7
156
0.07
280
230
95
16.3
Inis Meain
48
579
53.0669
-9.6144
Ridge
10.1
150
0.07
510
240
75
24.4
Inis Meain
48
580
53.0669
-9.6144
Isolated
10.1
150
0.07
225
160
40
3.8
Inis Meain
48
581
53.0669
-9.6144
Ridge
10.1
150
0.07
135
100
25
0.9
Inis Meain
48
582
53.0669
-9.6144
Ridge
10.1
150
0.07
145
75
40
1.2
Inis Meain
48
583
53.0669
-9.6144
Ridge
10.1
150
0.07
170
90
25
1.0
Inis Meain
48
584
53.0669
-9.6144
Ridge
10.1
150
0.07
230
160
35
3.4
Inis Meain
48
585
53.0669
-9.6144
Ridge
10.1
150
0.07
310
180
40
5.9
Inis Meain
48
586
53.0669
-9.6144
Ridge
10.1
150
0.07
390
315
45
14.7
Inis Meain
48
587
Isolated
10.1
150
0.07
75
230
130
6.0
Inis Meain
48
588
53.0699
-9.6164
Ridge
10.1
150
0.07
185
125
20
1.2
Inis Meain
48
589
C A
-9.6144
53.0699
-9.6164
Ridge
10.1
150
0.07
255
105
35
Inis Meain
48
590
53.0699
-9.6164
Ridge
10.1
150
0.07
205
120
Inis Meain
48
591
53.0699
-9.6164
Ridge
10.1
150
0.07
385
215
53.0669
D E
T P
E C
M
A
I R
C S
U N
T P
-1.5
14.1
1.0
2.5
3.5
-1.0
50
3.3
2.0
75
16.5
89
ACCEPTED MANUSCRIPT
Inis Meain
49
592
53.0672
-9.6149
Ridge
11.6
158
0.07
150
105
10
0.4
Inis Meain
49
593
53.0672
-9.6149
Ridge
11.6
158
0.07
120
65
45
0.9
Inis Meain
49
594
53.0672
-9.6149
Ridge
11.6
158
0.07
125
85
30
0.8
Inis Meain
49
595
53.0672
-9.6149
Ridge
11.6
158
0.07
125
80
15
0.4
Inis Meain
49
596
53.0672
-9.6149
Ridge
11.6
158
0.07
105
65
40
0.7
Inis Meain
49
597
53.0672
-9.6149
Ridge
11.6
158
0.07
90
65
40
0.6
Inis Meain
49
598
53.0672
-9.6149
Ridge
11.6
158
0.07
125
60
20
0.4
Inis Meain
49
599
53.0672
-9.6149
Ridge
11.6
158
0.07
105
80
20
0.4
Inis Meain
49
600
53.0672
-9.6149
Ridge
11.6
158
0.07
105
70
35
0.7
Inis Meain
49
601
53.0672
-9.6149
Ridge
11.6
158
0.07
65
65
20
0.2
Inis Meain
49
602
53.0672
-9.6149
Ridge
11.6
158
0.07
70
60
20
0.2
Inis Meain
49
603
53.0672
-9.6149
Ridge
11.6
158
0.07
170
85
15
0.6
Inis Meain
49
604
53.0672
-9.6149
Ridge
11.6
158
0.07
155
75
15
0.5
Inis Meain
49
605
53.0672
-9.6150
Ridge
11.6
140
0.08
425
300
80
27.1
Inis Meain
49
606
53.0672
-9.6150
Ridge
11.6
158
0.07
170
170
20
1.5
Inis Meain
49
607
53.0672
-9.6150
Ridge
11.6
158
0.07
130
100
45
1.6
Inis Meain
49
608
Ridge
11.6
158
0.07
230
140
50
4.3
Inis Meain
49
609
53.0672
-9.6150
Ridge
11.6
158
0.07
130
100
40
1.4
Inis Meain
49
610
C A
-9.6150
53.0672
-9.6150
Ridge
11.6
158
0.07
320
90
45
3.4
Inis Meain
49
611
53.0672
-9.6150
Ridge
11.6
158
0.07
116
65
35
0.7
Inis Meain
49
612
53.0672
-9.6150
Ridge
11.6
158
0.07
100
80
15
0.3
53.0672
D E
T P
E C
M
A
I R
C S
U N
T P
29.5
0.8
90
ACCEPTED MANUSCRIPT
Inis Meain
50
613
53.0674
-9.6155
Ridge
12.8
123
0.10
430
260
50
14.9
Inis Meain
50
614
53.0674
-9.6155
Ridge
12.8
123
0.10
270
160
70
8.0
Inis Meain
50
615
53.0674
-9.6155
Ridge
12.8
123
0.10
270
120
40
3.4
11.5
Inis Meain
50
616
53.0674
-9.6155
Ridge
12.8
123
0.10
245
60
45
1.8
16.0
Inis Meain
50
617
53.0674
-9.6155
Ridge
12.8
123
0.10
240
60
60
2.3
17.0
Inis Meain
50
618
53.0674
-9.6155
Ridge
12.8
123
0.10
230
65
40
1.6
17.0
Inis Meain
50
619
53.0674
-9.6155
Ridge
12.8
123
0.10
200
120
25
1.6
Inis Meain
50
620
53.0674
-9.6155
Ridge
12.8
123
0.10
235
105
30
2.0
Inis Meain
50
621
53.0674
-9.6155
Ridge
12.8
123
0.10
185
140
40
2.8
Inis Meain
50
622
53.0674
-9.6155
Ridge
12.8
123
0.10
165
105
40
1.8
Inis Meain
50
623
53.0674
-9.6155
Ridge
12.8
123
0.10
250
130
55
4.8
Inis Meain
50
624
53.0674
-9.6155
Ridge
12.8
123
0.10
180
95
35
1.6
Inis Meain
50
625
53.0674
-9.6155
Ridge
12.8
123
0.10
125
120
30
1.2
Inis Meain
50
626
53.0674
-9.6155
Ridge
12.8
123
0.10
235
110
40
2.8
Inis Meain
50
627
53.0674
-9.6155
Ridge
12.8
123
0.10
170
120
65
3.5
Inis Meain
50
628
53.0674
-9.6155
Ridge
12.8
123
0.10
180
90
40
1.7
Inis Meain
50
629
Ridge
12.8
123
0.10
160
90
55
2.1
Inis Meain
50
630
53.0674
-9.6155
Ridge
12.8
123
0.10
280
195
20
2.9
Inis Meain
50
631
C A
-9.6155
53.0674
-9.6155
Ridge
12.8
123
0.10
140
110
10
0.4
Inis Meain
50
632
53.0674
-9.6155
Ridge
12.8
123
0.10
170
140
10
0.6
Inis Meain
50
633
53.0674
-9.6155
Ridge
12.8
123
0.10
90
85
20
0.4
53.0674
D E
T P
E C
M
A
I R
C S
U N
T P
91
ACCEPTED MANUSCRIPT
Inis Meain
51
634
53.0678
-9.6159
Isolated
11.5
135
0.09
280
155
55
6.3
Inis Meain
51
635
53.0678
-9.6159
Isolated
11.5
135
0.09
275
275
60
12.1
Inis Meain
51
636
53.0678
-9.6159
Isolated
11.5
135
0.09
370
155
60
9.2
Inis Meain
51
637
53.0678
-9.6159
Isolated
11.5
135
0.09
250
205
60
8.2
Inis Meain
51
638
53.0678
-9.6159
Isolated
11.5
135
0.09
200
195
60
6.2
Inis Meain
51
639
53.0678
-9.6159
Ridge
11.5
135
0.09
260
160
15
1.7
Inis Meain
52
640
53.0682
-9.6161
Ridge
13.9
175
0.08
240
165
25
2.6
6.0
Inis Meain
52
641
53.0682
-9.6161
Ridge
13.9
175
0.08
110
105
15
0.5
1.8
Inis Meain
52
642
53.0682
-9.6161
Ridge
13.9
175
0.08
180
125
30
1.8
Inis Meain
52
643
53.0682
-9.6161
Isolated
13.9
175
0.08
280
200
40
6.0
14.5
Inis Meain
53
644
53.0686
-9.6163
Ridge
15.5
200
0.08
200
60
70
2.2
1.0
Inis Meain
53
645
53.0686
-9.6163
Ridge
15.5
200
0.08
210
100
65
3.6
Inis Meain
53
646
53.0686
-9.6163
Ridge
15.5
200
0.08
350
230
10
2.1
Inis Meain
53
647
53.0686
-9.6163
Ridge
15.5
200
0.08
290
150
45
5.2
1.1
Inis Meain
53
648
53.0686
-9.6163
Ridge
15.5
200
0.08
280
250
60
11.2
1.8
Inis Meain
54
649
53.0686
-9.6163
Ridge
15.5
195
0.08
420
290
55
17.8
6.0
Inis Meain
54
650
Ridge
15.5
195
0.08
580
135
70
14.6
Inis Meain
54
651
53.0689
-9.6166
Ridge
19.6
222
0.09
230
190
50
5.8
Inis Meain
54
652
C A
-9.6163
53.0689
-9.6166
Ridge
19.6
222
0.09
260
100
55
3.8
Inis Meain
54
653
53.0689
-9.6166
Ridge
19.6
222
0.09
140
80
20
0.6
Inis Meain
54
654
53.0689
-9.6166
Ridge
19.6
222
0.09
155
120
40
2.0
53.0686
D E
T P
E C
M
A
I R
C S
U N
T P
0.5
3.3
3.4
92
ACCEPTED MANUSCRIPT
Inis Meain
54
655
53.0689
-9.6166
Ridge
19.6
222
0.09
160
160
35
2.4
Inis Meain
54
656
53.0689
-9.6166
Ridge
19.6
222
0.09
405
130
35
4.9
Inis Meain
54
657
53.0689
-9.6166
Isolated
19.6
222
0.09
550
300
65
28.5
Inis Meain
54
658
53.0689
-9.6166
Isolated
19.6
222
0.09
300
170
60
8.1
Inis Meain
54
659
53.0689
-9.6166
Ridge
19.6
222
0.09
250
240
25
4.0
12.7
Inis Meain
54
660
53.0689
-9.6166
Ridge
19.6
222
0.09
280
260
65
12.6
3.0
Inis Meain
54
661
53.0689
-9.6166
Ridge
19.6
222
0.09
270
150
45
4.8
Inis Meain
54
662
53.0689
-9.6166
Ridge
19.6
222
0.09
315
220
40
7.4
Inis Meain
54
663
53.0689
-9.6166
Ridge
19.6
222
0.09
145
120
30
1.4
Inis Meain
54
664
53.0689
-9.6166
Ridge
19.6
222
0.09
100
90
45
1.1
Inis Meain
54
665
53.0689
-9.6166
Ridge
19.6
222
0.09
130
50
45
0.8
Inis Meain
55
666
53.0694
-9.6165
Ridge
18.3
213
0.09
210
70
70
2.7
Inis Meain
55
667
53.0694
-9.6165
Ridge
18.3
213
0.09
495
205
60
16.2
Inis Meain
55
668
53.0694
-9.6165
Ridge
18.3
213
0.09
215
140
55
4.4
Inis Meain
55
669
53.0694
-9.6165
Ridge
18.3
213
0.09
190
120
35
2.1
Inis Meain
55
670
53.0694
-9.6165
Ridge
18.3
213
0.09
150
90
40
1.4
Inis Meain
55
671
Ridge
18.3
213
0.09
150
50
40
0.8
Inis Meain
55
672
53.0694
-9.6165
Ridge
18.3
213
0.09
145
65
15
0.4
Inis Meain
55
673
C A
-9.6165
53.0694
-9.6165
Ridge
18.3
213
0.09
500
315
70
29.3
Inis Meain
55
674
53.0694
-9.6165
Ridge
18.3
213
0.09
175
110
35
1.8
Inis Meain
55
675
53.0694
-9.6165
Ridge
18.3
213
0.09
205
165
50
4.5
53.0694
D E
T P
E C
M
A
I R
C S
U N
T P
6.0
-1.0
-4.0
3.3
3.4
4.5
93
ACCEPTED MANUSCRIPT
Inis Meain
55
676
53.0694
-9.6165
Ridge
18.3
213
0.09
245
100
40
2.6
Inis Meain
55
677
53.0694
-9.6165
Ridge
18.3
213
0.09
265
180
30
3.8
Inis Meain
55
678
53.0694
-9.6165
Ridge
18.3
213
0.09
315
170
35
5.0
Inis Meain
55
679
53.0694
-9.6165
Ridge
18.3
213
0.09
560
140
70
14.6
Inis Meain
55
680
53.0694
-9.6165
Ridge
18.3
213
0.09
190
150
35
2.7
Inis Meain
55
681
53.0694
-9.6165
Ridge
18.3
213
0.09
400
215
75
17.2
Inis Meain
55
682
53.0694
-9.6165
Ridge
18.3
213
0.09
100
95
25
0.6
Inis Meain
56
683
53.0699
-9.6164
Ridge
17.7
210
0.08
305
205
45
7.5
Inis Meain
56
684
53.0699
-9.6164
Ridge
17.7
210
0.08
178
135
25
1.6
Inis Meain
56
685
53.0699
-9.6164
Ridge
17.7
210
0.08
205
205
40
4.5
Inis Meain
56
686
53.0699
-9.6164
Ridge
17.7
210
0.08
675
320
60
34.5
Inis Meain
56
687
53.0699
-9.6164
Ridge
17.7
210
0.08
140
80
35
1.0
Inis Meain
56
688
53.0699
-9.6164
Ridge
17.7
210
0.08
290
140
65
7.0
Inis Meain
56
689
53.0699
-9.6164
Ridge
17.7
210
0.08
240
125
55
4.4
Inis Meain
56
690
53.0699
-9.6164
Ridge
17.7
210
0.08
155
145
15
0.9
Inis Meain
56
691
53.0699
-9.6164
Ridge
17.7
210
0.08
125
65
60
1.3
Inis Meain
57
692
Ridge
18.3
171
0.11
120
95
30
0.9
Inis Meain
57
693
53.0704
-9.6168
Ridge
18.3
171
0.11
170
70
50
1.6
Inis Meain
57
694
C A
-9.6168
53.0704
-9.6168
Ridge
18.3
171
0.11
250
85
55
3.1
Inis Meain
57
695
53.0704
-9.6168
Ridge
18.3
171
0.11
180
90
30
1.3
Inis Meain
57
696
53.0704
-9.6168
Ridge
18.3
171
0.11
570
230
75
26.2
53.0704
D E
T P
E C
M
A
I R
C S
U N
T P
5.5
2.5
3.3
-1.5
1.5
2.2
2.2
-0.5
1.0
1.5
1.5
94
ACCEPTED MANUSCRIPT
Inis Meain
57
697
53.0704
-9.6168
Ridge
18.3
171
0.11
140
85
20
0.6
Inis Meain
57
698
53.0704
-9.6168
Ridge
18.3
171
0.11
165
80
50
1.8
-1.5
Inis Meain
57
699
53.0704
-9.6168
Ridge
18.3
171
0.11
135
95
30
1.0
-1.0
Inis Meain
57
700
53.0704
-9.6168
Ridge
18.3
171
0.11
240
50
45
1.4
Inis Meain
57
701
53.0704
-9.6168
Ridge
18.3
171
0.11
365
290
75
21.1
5.0
-1.5
Inis Meain
57
702
53.0704
-9.6168
Ridge
18.3
171
0.11
300
150
40
4.8
2.0
-1.0
Inis Meain
57
703
53.0704
-9.6168
Ridge
18.3
171
0.11
150
130
55
2.9
5.5
Inis Meain
57
704
53.0704
-9.6168
Ridge
18.3
171
0.11
160
110
35
1.6
Inis Meain
57
705
53.0704
-9.6168
Ridge
18.3
171
0.11
95
60
40
0.6
Inis Meain
57
706
53.0704
-9.6168
Ridge
18.3
171
0.11
300
95
50
3.8
Inis Meain
57
707
53.0704
-9.6168
Ridge
18.3
171
0.11
210
125
50
3.5
Inis Meain
58
708
53.0707
-9.6168
Ridge
17.3
128
0.14
300
150
70
8.4
Inis Meain
58
709
53.0707
-9.6168
Ridge
17.3
128
0.14
420
135
45
6.8
Inis Meain
58
710
53.0707
-9.6168
Ridge
17.3
128
0.14
300
125
75
7.5
Inis Meain
58
711
53.0707
-9.6168
Ridge
17.3
128
0.14
240
160
45
4.6
Inis Meain
58
712
53.0707
-9.6168
Ridge
17.3
128
0.14
240
130
40
3.3
Inis Meain
58
713
Ridge
17.3
128
0.14
170
130
30
1.8
Inis Meain
58
714
53.0707
-9.6168
Ridge
17.3
128
0.14
165
120
45
2.4
7.1
Inis Meain
58
715
C A
-9.6168
53.0707
-9.6168
Ridge
17.3
128
0.14
550
160
65
15.2
1.0
Inis Meain
58
716
53.0707
-9.6168
Ridge
17.3
128
0.14
180
120
55
3.2
Inis Meain
58
717
53.0707
-9.6168
Ridge
17.3
128
0.14
280
120
35
3.1
53.0707
D E
T P
E C
M
A
I R
C S
U N
T P
10.5
2.0
2.8
-1.0
1.0
95
ACCEPTED MANUSCRIPT
Inis Meain
58
718
53.0707
-9.6168
Ridge
17.3
128
0.14
300
120
55
5.3
Inis Meain
58
719
53.0707
-9.6168
Ridge
17.3
128
0.14
460
240
60
17.6
Inis Meain
58
720
53.0707
-9.6168
Ridge
17.3
128
0.14
305
220
45
8.0
Inis Meain
58
721
53.0707
-9.6168
Isolated
17.3
128
0.14
215
75
35
1.5
Inis Meain
59
722
53.0712
-9.6166
Isolated
16.7
118
0.14
320
310
10
2.6
Inis Meain
59
723
53.0712
-9.6166
Isolated
16.7
118
0.14
215
75
30
1.3
Inis Meain
59
724
53.0712
-9.6166
Ridge
16.7
118
0.14
295
220
60
10.4
Inis Meain
59
725
53.0712
-9.6166
Ridge
16.7
118
0.14
430
210
40
9.6
Inis Meain
59
726
53.0712
-9.6166
Ridge
16.7
118
0.14
535
165
50
11.7
Inis Meain
59
727
53.0712
-9.6166
Ridge
16.7
118
0.14
315
125
70
7.3
Inis Meain
59
728
53.0712
-9.6166
Ridge
16.7
118
0.14
145
120
25
1.2
Inis Meain
59
729
53.0712
-9.6166
Ridge
16.7
118
0.14
135
80
35
1.0
Inis Meain
59
730
53.0712
-9.6166
Ridge
16.7
118
0.14
305
310
70
17.6
Inis Meain
59
731
53.0712
-9.6166
Ridge
16.7
118
0.14
200
165
45
4.0
Inis Meain
59
732
53.0712
-9.6166
Ridge
16.7
118
0.14
255
70
45
2.1
Inis Meain
59
733
53.0712
-9.6166
Ridge
16.7
118
0.14
335
175
50
7.8
Inis Meain
59
734
Ridge
16.7
118
0.14
565
180
60
16.2
Inis Meain
59
735
53.0712
-9.6166
Ridge
16.7
118
0.14
225
130
20
1.6
Inis Meain
59
736
C A
-9.6166
53.0712
-9.6166
Ridge
16.7
118
0.14
140
75
30
0.8
Inis Meain
59
737
53.0712
-9.6166
Ridge
16.7
118
0.14
175
65
40
1.2
Inis Meain
59
738
53.0712
-9.6166
Ridge
16.7
118
0.14
200
100
50
2.7
53.0712
D E
T P
E C
M
A
I R
C S
U N
T P
0.5
10.5
1.5
-0.5
96
ACCEPTED MANUSCRIPT
Inis Meain
59
739
53.0712
-9.6166
Ridge
16.7
118
0.14
185
170
45
3.8
Inis Meain
59
740
53.0712
-9.6166
Ridge
16.7
118
0.14
175
120
35
2.0
Inis Meain
59
741
53.0712
-9.6166
Ridge
16.7
118
0.14
200
95
40
2.0
Inis Meain
59
742
53.0714
-9.6164
Ridge
17.0
120
0.14
490
170
50
11.1
Inis Meain
59
743
53.0714
-9.6164
Ridge
17.0
120
0.14
710
190
70
25.1
1.0
Inis Meain
59
744
53.0714
-9.6164
Ridge
18.0
120
0.15
350
130
45
5.4
1.0
Inis Meain
59
745
53.0714
-9.6164
Ridge
21.5
132
0.16
560
190
65
18.4
12.3
Inis Meain
59
746
53.0714
-9.6164
Ridge
21.5
120
0.18
700
125
70
16.3
0.5
Inis Meain
60
747
53.0717
-9.6164
Ridge
17.5
144
0.12
165
95
40
1.7
Inis Meain
60
748
53.0717
-9.6164
Ridge
17.5
144
0.12
235
90
40
2.3
Inis Meain
60
749
53.0717
-9.6164
Ridge
17.5
144
0.12
430
80
70
6.4
Inis Meain
60
750
53.0717
-9.6164
Ridge
17.5
144
0.12
260
165
115
13.1
Inis Meain
60
751
53.0717
-9.6164
Ridge
17.5
144
0.12
295
125
75
7.4
Inis Meain
60
752
53.0717
-9.6164
Ridge
17.5
144
0.12
180
120
40
2.3
Inis Meain
60
753
53.0717
-9.6164
Ridge
17.5
144
0.12
255
130
65
5.7
Inis Meain
60
754
53.0717
-9.6164
Ridge
17.5
144
0.12
300
110
70
6.1
Inis Meain
60
755
Ridge
17.5
144
0.12
570
190
65
18.7
Inis Meain
60
756
53.0717
-9.6164
Ridge
17.5
144
0.12
690
120
65
14.3
Inis Meain
60
757
C A
-9.6164
53.0717
-9.6164
Ridge
17.5
144
0.12
160
105
45
2.0
Inis Meain
60
758
53.0717
-9.6164
Ridge
17.5
144
0.12
400
125
80
10.6
Inis Meain
60
759
53.0717
-9.6164
Ridge
17.5
144
0.12
200
180
65
6.2
53.0717
D E
T P
E C
M
A
I R
C S
U N
T P
10.2
4.5
-1.5
1.5
97
ACCEPTED MANUSCRIPT
Inis Meain
60
760
53.0717
-9.6164
Ridge
17.5
144
0.12
325
185
35
5.6
Inis Meain
60
761
53.0717
-9.6164
Ridge
17.5
144
0.12
440
90
45
4.7
Inis Meain
60
762
53.0717
-9.6164
Ridge
17.5
144
0.12
350
85
45
3.6
Inis Meain
60
763
53.0717
-9.6164
Ridge
17.5
144
0.12
355
80
50
3.8
Inis Meain
60
764
53.0714
-9.6164
Ridge
12.0
175
0.07
150
55
25
0.5
1.0
Inis Meain
60
765
53.0719
-9.6160
Ridge
19.0
166
0.11
255
120
25
2.0
1.0
Inis Meain
60
766
53.0719
-9.6160
Ridge
19.0
166
0.11
235
75
35
1.6
3.0
Inis Meain
60
767
53.0719
-9.6160
Ridge
19.0
166
0.11
90
60
20
0.3
Inis Meain
61
768
53.0722
-9.6165
Ridge
16.2
123
0.13
225
80
55
2.6
Inis Meain
61
769
53.0722
-9.6165
Ridge
16.2
123
0.13
235
125
70
5.5
Inis Meain
61
770
53.0722
-9.6165
Ridge
16.2
123
0.13
230
135
40
3.3
Inis Meain
61
771
53.0722
-9.6165
Ridge
16.2
123
0.13
200
140
55
4.1
Inis Meain
61
772
53.0722
-9.6165
Ridge
16.2
123
0.13
290
210
50
8.1
Inis Meain
61
773
53.0722
-9.6165
Ridge
16.2
123
0.13
405
100
55
5.9
Inis Meain
61
774
53.0722
-9.6165
Ridge
16.2
123
0.13
450
85
45
4.6
Inis Meain
61
775
53.0722
-9.6165
Ridge
16.2
123
0.13
295
120
55
5.2
Inis Meain
61
776
Ridge
16.2
123
0.13
100
85
30
0.7
Inis Meain
61
777
53.0722
-9.6165
Ridge
16.2
123
0.13
110
105
15
0.5
Inis Meain
61
778
C A
-9.6165
53.0722
-9.6165
Ridge
16.2
123
0.13
135
100
45
1.6
Inis Meain
61
779
53.0722
-9.6165
Ridge
16.2
123
0.13
280
90
40
2.7
Inis Meain
61
780
53.0722
-9.6165
Ridge
16.2
123
0.13
560
125
65
12.1
53.0722
D E
T P
E C
M
A
I R
C S
U N
T P
4.5
10.1
1.8
98
ACCEPTED MANUSCRIPT
Inis Meain
61
781
53.0722
-9.6165
Ridge
16.2
123
0.13
270
120
35
3.0
Inis Meain
61
782
53.0722
-9.6165
Ridge
16.2
123
0.13
205
110
40
2.4
Inis Meain
61
783
53.0722
-9.6165
Ridge
16.2
123
0.13
220
115
45
3.0
Inis Meain
61
784
53.0722
-9.6165
Ridge
16.2
123
0.13
115
60
50
0.9
Inis Meain
62
785
53.0726
-9.6164
Ridge
16.5
111
0.15
205
150
45
3.7
Inis Meain
62
786
53.0726
-9.6164
Ridge
16.5
111
0.15
90
85
25
0.5
Inis Meain
62
787
53.0726
-9.6164
Ridge
16.5
111
0.15
245
120
15
1.2
Inis Meain
62
788
53.0726
-9.6164
Ridge
16.5
111
0.15
150
85
45
1.5
Inis Meain
62
789
53.0726
-9.6164
Ridge
16.5
111
0.15
205
205
205
22.8
Inis Meain
62
790
53.0726
-9.6164
Ridge
16.5
111
0.15
205
125
65
4.4
Inis Meain
62
791
53.0726
-9.6164
Ridge
16.5
111
0.15
240
125
45
Inis Meain
62
792
53.0726
-9.6164
Ridge
16.5
111
0.15
140
125
Inis Meain
62
793
53.0726
-9.6164
Ridge
16.5
111
0.15
185
Inis Meain
62
794
53.0726
-9.6164
Ridge
16.5
111
0.15
Inis Meain
62
795
53.0726
-9.6164
Ridge
16.5
111
Inis Meain
62
796
53.0726
-9.6164
Ridge
16.5
Inis Meain
62
797
Ridge
Inis Meain
62
798
53.0726
-9.6164
Inis Meain
62
799
C A
-9.6164
53.0726
Inis Meain
62
800
Inis Meain
62
801
I R
C S
U N
T P
1.5
0.5
10.5
5.0
0.0
3.6
1.5
0.8
30
1.4
1.0
1.0
95
55
2.6
6.5
380
170
45
7.7
5.0
0.8
0.15
200
125
15
1.0
2.0
0.8
111
0.15
145
100
15
0.6
2.0
0.8
16.5
111
0.15
280
185
15
2.1
2.0
0.8
Ridge
16.5
111
0.15
200
135
50
3.6
6.0
1.5
-9.6164
Ridge
16.5
111
0.15
215
50
35
1.0
53.0726
-9.6164
Ridge
16.5
111
0.15
130
95
35
1.1
3.0
1.5
53.0726
-9.6164
Ridge
16.5
111
0.15
120
100
55
1.8
53.0726
D E
T P
E C
M
A
99
ACCEPTED MANUSCRIPT
Inis Meain
62
802
53.0726
-9.6164
Ridge
16.5
111
0.15
215
140
20
1.6
Inis Meain
63
803
53.0730
-9.6161
Ridge
19.0
124
0.15
95
90
20
0.5
Inis Meain
63
804
53.0730
-9.6161
Ridge
19.0
124
0.15
180
75
50
1.8
Inis Meain
63
805
53.0730
-9.6161
Ridge
19.0
124
0.15
400
240
50
12.8
Inis Meain
63
806
53.0730
-9.6161
Ridge
19.0
124
0.15
415
110
95
11.5
Inis Meain
63
807
53.0730
-9.6161
Ridge
19.0
124
0.15
295
135
85
9.0
Inis Meain
64
808
53.0736
-9.6156
Ridge
19.8
114
0.17
430
70
50
4.0
Inis Meain
64
809
53.0736
-9.6156
Ridge
19.8
114
0.17
235
110
25
1.7
Inis Meain
64
810
53.0736
-9.6156
Ridge
19.8
114
0.17
135
110
35
1.4
Inis Meain
64
811
53.0736
-9.6156
Ridge
19.8
114
0.17
170
100
25
1.1
1.5
Inis Meain
64
812
53.0736
-9.6156
Ridge
19.8
114
0.17
190
120
25
1.5
0.7
Inis Meain
64
813
53.0736
-9.6156
Ridge
19.8
114
0.17
205
115
15
0.9
Inis Meain
64
814
53.0736
-9.6156
Ridge
19.8
114
0.17
160
100
25
1.1
Inis Meain
64
815
53.0736
-9.6156
Ridge
19.8
114
0.17
195
120
35
2.2
Inis Meain
65
816
53.0738
-9.6155
Ridge
20.8
83
0.25
395
205
30
6.5
Inis Meain
65
817
53.0738
-9.6155
Ridge
20.8
83
0.25
165
145
30
1.9
Inis Meain
65
818
Ridge
20.8
83
0.25
170
120
35
1.9
Inis Meain
65
819
53.0738
-9.6155
Ridge
20.8
83
0.25
270
110
50
4.0
Inis Meain
65
820
C A
-9.6155
53.0738
-9.6155
Ridge
20.8
83
0.25
160
110
20
Inis Meain
65
821
53.0738
-9.6155
Isolated
20.8
83
0.25
180
180
Inis Meain
65
822
53.0738
-9.6155
Isolated
20.8
83
0.25
400
210
53.0738
D E
T P
E C
M
A
I R
C S
U N
T P
1.0
1.5
1.5
1.0
-1.0
0.9
2.5
0.3
180
15.4
1.6
90
20.1
1.5
100
ACCEPTED MANUSCRIPT
Inis Meain
65
823
53.0738
-9.6155
Isolated
20.8
83
0.25
195
90
50
2.3
Inis Meain
65
824
53.0738
-9.6155
Isolated
20.8
83
0.25
115
60
55
1.0
Inis Meain
65
825
53.0738
-9.6155
Ridge
20.8
83
0.25
140
130
30
1.5
1.0
Inis Meain
65
826
53.0738
-9.6155
Ridge
20.8
83
0.25
230
110
55
3.7
7.5
Inis Meain
65
827
53.0738
-9.6155
Ridge
20.8
83
0.25
185
110
70
3.8
Inis Meain
65
828
53.0738
-9.6155
Ridge
20.8
83
0.25
255
220
45
6.7
Inis Meain
65
829
53.0738
-9.6155
Ridge
20.8
83
0.25
240
125
60
4.8
Inis Meain
65
830
53.0738
-9.6155
Ridge
20.8
83
0.25
450
195
80
18.7
12.3
Inis Meain
65
831
53.0739
-9.6155
Ridge
20.8
58
0.36
325
290
25
6.3
11.0
Inis Meain
65
832
53.0739
-9.6155
Ridge
20.8
58
0.36
290
115
70
6.2
Inis Meain
66
833
53.0744
-9.6155
Ridge
19.9
32
0.62
145
60
35
0.8
Inis Meain
66
834
53.0744
-9.6155
Ridge
19.9
32
0.62
200
90
55
2.6
Inis Meain
66
835
53.0744
-9.6155
Ridge
19.9
32
0.62
190
115
45
2.6
Inis Meain
66
836
53.0744
-9.6155
Ridge
19.9
32
0.62
250
160
50
5.3
Inis Meain
66
837
53.0744
-9.6155
Ridge
19.9
32
0.62
140
110
40
1.6
Inis Meain
66
838
53.0744
-9.6155
Ridge
19.9
32
0.62
165
115
35
1.8
Inis Meain
66
839
Ridge
19.9
32
0.62
155
85
20
0.7
Inis Meain
66
840
53.0744
-9.6155
Ridge
19.9
32
0.62
120
50
40
0.6
Inis Meain
66
841
C A
-9.6155
53.0744
-9.6155
Ridge
19.9
32
0.62
165
90
20
0.8
Inis Meain
66
842
53.0744
-9.6155
Ridge
19.9
32
0.62
370
340
15
5.0
Inis Meain
66
843
53.0744
-9.6155
Ridge
19.9
32
0.62
300
190
95
14.4
53.0744
D E
T P
E C
M
A
I R
C S
U N
T P
1.0
9.5
5.0
-1.0
8.5
101
ACCEPTED MANUSCRIPT
Inis Meain
66
844
53.0744
-9.6155
Ridge
19.9
32
0.62
160
100
50
2.1
Inis Meain
66
845
53.0744
-9.6155
Ridge
19.9
32
0.62
100
85
15
0.3
Inis Meain
66
846
53.0742
-9.6160
Isolated
12.8
17
0.75
215
140
85
6.8
Inis Meain
67
847
53.0748
-9.6151
Ridge
18.6
42
0.44
130
60
40
0.8
Inis Meain
67
848
53.0748
-9.6151
Ridge
18.6
42
0.44
150
75
65
1.9
Inis Meain
67
849
53.0748
-9.6151
Ridge
18.6
42
0.44
205
120
30
2.0
Inis Meain
67
850
53.0748
-9.6151
Ridge
18.6
42
0.44
120
65
50
1.0
Inis Meain
67
851
53.0748
-9.6151
Ridge
18.6
42
0.44
220
70
70
2.9
Inis Meain
67
852
53.0748
-9.6151
Ridge
18.6
42
0.44
160
105
25
1.1
Inis Meain
67
853
53.0748
-9.6151
Ridge
18.6
42
0.44
95
70
40
0.7
Inis Meain
67
854
53.0748
-9.6151
Ridge
18.6
42
0.44
150
125
40
2.0
Inis Meain
67
855
53.0748
-9.6151
Ridge
18.6
42
0.44
130
80
30
0.8
Inis Meain
67
856
53.0748
-9.6151
Ridge
18.6
42
0.44
230
100
35
2.1
Inis Meain
67
857
53.0748
-9.6151
Ridge
18.6
42
0.44
200
120
45
2.9
Inis Meain
67
858
53.0748
-9.6151
Isolated
18.6
42
0.44
175
165
30
2.3
Inis Meain
67
859
53.0748
-9.6151
Isolated
18.6
42
0.44
175
140
35
2.3
Inis Meain
67
860
Ridge
18.6
42
0.44
190
125
30
1.9
Inis Meain
67
861
53.0748
-9.6151
Ridge
18.6
42
0.44
170
65
20
0.6
Inis Meain
67
862
C A
-9.6151
53.0748
-9.6151
Ridge
18.6
42
0.44
135
80
15
0.4
Inis Meain
67
863
53.0748
-9.6151
Ridge
18.6
42
0.44
210
100
40
2.2
Inis Meain
67
864
53.0748
-9.6151
Ridge
18.6
42
0.44
210
85
75
3.6
53.0748
D E
T P
E C
M
A
I R
C S
U N
T P
17.0
1.0
4.5
102
ACCEPTED MANUSCRIPT
Inis Meain
67
865
53.0748
-9.6151
Ridge
18.6
42
0.44
340
200
40
7.2
Inis Meain
67
866
53.0748
-9.6151
Ridge
18.6
42
0.44
210
125
40
2.8
Inis Meain
67
867
53.0748
-9.6151
Ridge
18.6
42
0.44
295
160
40
5.0
Inis Meain
67
868
53.0748
-9.6151
Ridge
18.6
42
0.44
155
55
50
1.1
Inis Meain
68
869
53.0753
-9.6148
Ridge
22.8
36
0.63
280
140
45
4.7
Inis Meain
68
870
53.0753
-9.6148
Ridge
22.8
36
0.63
220
130
50
3.8
Inis Meain
68
871
53.0753
-9.6148
Ridge
22.8
36
0.63
165
90
40
1.6
Inis Meain
68
872
53.0753
-9.6148
Ridge
22.8
36
0.63
225
220
30
4.0
Inis Meain
68
873
53.0753
-9.6148
Ridge
22.8
36
0.63
235
170
50
5.3
Inis Meain
68
874
53.0753
-9.6148
Ridge
22.8
36
0.63
130
130
20
0.9
Inis Meain
68
875
53.0753
-9.6148
Ridge
22.8
36
0.63
215
100
45
2.6
Inis Meain
68
876
53.0753
-9.6148
Ridge
22.8
36
0.63
320
180
45
6.9
Inis Meain
68
877
53.0753
-9.6148
Ridge
22.8
36
0.63
135
100
50
1.8
Inis Meain
68
878
53.0753
-9.6148
Ridge
22.8
36
0.63
180
90
50
2.2
Inis Meain
68
879
53.0753
-9.6148
Ridge
22.8
36
0.63
290
100
40
3.1
Inis Meain
68
880
53.0753
-9.6148
Ridge
22.8
36
0.63
160
60
50
1.3
Inis Meain
68
881
Ridge
22.8
36
0.63
160
85
30
1.1
Inis Meain
68
882
53.0753
-9.6148
Ridge
22.8
36
0.63
215
90
25
1.3
Inis Meain
69
883
C A
-9.6148
53.0758
-9.6150
Ridge
17.9
34
0.53
110
70
65
1.3
Inis Meain
69
884
53.0758
-9.6150
Ridge
17.9
34
0.53
145
115
85
3.8
Inis Meain
69
885
53.0758
-9.6150
Ridge
17.9
34
0.53
145
105
40
1.6
53.0753
D E
T P
E C
M
A
I R
C S
U N
T P
1.5
103
ACCEPTED MANUSCRIPT
Inis Meain
69
886
53.0758
-9.6150
Ridge
17.9
34
0.53
150
125
40
2.0
Inis Meain
69
887
53.0758
-9.6150
Ridge
17.9
34
0.53
185
100
25
1.2
Inis Meain
69
888
53.0758
-9.6150
Isolated
17.9
34
0.53
145
110
30
1.3
Inis Meain
69
889
53.0758
-9.6150
Ridge
17.9
34
0.53
220
120
55
3.9
Inis Meain
69
890
53.0758
-9.6150
Ridge
17.9
34
0.53
230
180
55
6.1
Inis Meain
69
891
53.0758
-9.6150
Ridge
17.9
34
0.53
325
105
45
4.1
Inis Meain
69
892
53.0758
-9.6150
Ridge
17.9
34
0.53
210
110
40
2.5
Inis Meain
69
893
53.0758
-9.6150
Ridge
17.9
34
0.53
150
80
40
1.3
Inis Meain
69
894
53.0758
-9.6150
Ridge
17.9
34
0.53
220
210
45
5.5
Inis Meain
69
895
53.0758
-9.6150
Ridge
17.9
34
0.53
230
170
80
8.3
Inis Meain
69
896
53.0758
-9.6150
Ridge
17.9
34
0.53
260
220
25
3.8
Inis Meain
69
897
53.0758
-9.6150
Ridge
17.9
34
0.53
185
120
20
1.2
Inis Meain
69
898
53.0758
-9.6150
Ridge
17.9
34
0.53
250
80
25
1.3
Inis Meain
70
899
53.0761
-9.6152
Ridge
18.5
16
1.16
185
100
40
2.0
Inis Meain
70
900
53.0761
-9.6152
Ridge
18.5
16
1.16
165
85
45
1.7
Inis Meain
70
901
53.0761
-9.6152
Ridge
18.5
16
1.16
180
30
20
0.3
Inis Meain
70
902
Ridge
18.5
16
1.16
200
115
35
2.1
Inis Meain
70
903
53.0761
-9.6152
Ridge
18.5
16
1.16
150
150
25
1.5
Inis Meain
70
904
C A
-9.6152
53.0761
-9.6152
Ridge
18.5
16
1.16
125
55
40
0.7
Inis Meain
70
905
53.0761
-9.6152
Ridge
18.5
16
1.16
95
85
25
0.5
Inis Meain
71
906
53.0766
-9.6153
Ridge
17.2
14
1.23
230
110
35
2.4
53.0761
D E
T P
E C
M
A
I R
C S
U N
T P
6.3
-1.0
0.8
0.5
2.5
104
ACCEPTED MANUSCRIPT
Inis Meain
71
907
53.0766
-9.6153
Ridge
17.2
14
1.23
200
65
30
1.0
1.0
Inis Meain
71
908
53.0766
-9.6153
Ridge
17.2
14
1.23
170
65
50
1.5
6.0
3.0
Inis Meain
71
909
53.0766
-9.6153
Ridge
17.2
14
1.23
160
140
45
2.7
4.5
1.0
Inis Meain
71
910
53.0766
-9.6153
Ridge
17.2
14
1.23
180
115
35
1.9
4.0
1.0
Inis Meain
71
911
53.0766
-9.6151
Ridge
17.0
17
0.99
155
60
40
1.0
Inis Meain
71
912
53.0766
-9.6151
Ridge
17.0
17
0.99
155
110
30
1.4
Inis Meain
71
913
53.0766
-9.6151
Ridge
17.0
17
0.99
105
70
30
0.6
Inis Meain
72
914
53.0769
-9.6153
Ridge
18.1
36
0.50
190
140
85
6.0
Inis Meain
72
915
53.0769
-9.6153
Ridge
18.1
36
0.50
100
55
45
0.7
Inis Meain
72
916
53.0769
-9.6153
Ridge
18.1
36
0.50
130
75
45
1.2
Inis Meain
72
917
53.0769
-9.6153
Ridge
18.1
36
0.50
110
70
40
0.8
Inis Meain
72
918
53.0769
-9.6153
Ridge
18.1
36
0.50
240
65
40
1.7
Inis Meain
72
919
53.0769
-9.6153
Ridge
18.1
36
0.50
130
65
40
0.9
Inis Meain
73
920
53.0773
-9.6150
Ridge
20.5
59
0.35
190
60
55
1.7
Inis Meain
73
921
53.0773
-9.6150
Ridge
20.5
59
0.35
125
105
40
1.4
Inis Meain
73
922
53.0773
-9.6150
Ridge
20.5
59
0.35
185
50
45
1.1
Inis Meain
73
923
Ridge
20.5
59
0.35
85
65
35
0.5
Inis Meain
73
924
53.0773
-9.6150
Ridge
20.5
59
0.35
130
65
35
0.8
Inis Meain
73
925
C A
-9.6150
53.0773
-9.6150
Ridge
20.5
59
0.35
100
85
40
0.9
Inis Meain
73
926
53.0773
-9.6150
Ridge
20.5
59
0.35
120
105
25
0.8
Inis Meain
73
927
53.0773
-9.6150
Ridge
20.5
59
0.35
55
50
20
0.1
53.0773
D E
T P
E C
M
A
I R
C S
U N
T P
1.0
105
ACCEPTED MANUSCRIPT
Inis Meain
73
928
53.0773
-9.6150
Ridge
20.5
59
0.35
125
100
40
1.3
3.5
Inis Meain
73
929
53.0773
-9.6150
Ridge
20.5
59
0.35
205
70
40
1.5
2.5
1.5
Inis Meain
73
930
53.0773
-9.6150
Ridge
20.5
59
0.35
380
90
35
3.2
4.5
2.0
Inis Meain
73
931
53.0773
-9.6150
Ridge
20.5
59
0.35
150
75
50
1.5
0.5
Inis Meain
74
932
53.0778
-9.6152
Ridge
20.2
52
0.39
80
80
20
0.3
1.5
Inis Meain
74
933
53.0778
-9.6152
Ridge
20.2
52
0.39
65
55
15
0.1
Inis Meain
74
934
53.0778
-9.6152
Ridge
20.2
52
0.39
265
60
45
1.9
Inis Meain
74
935
53.0778
-9.6152
Ridge
20.2
52
0.39
160
95
60
2.4
Inis Meain
74
936
53.0778
-9.6152
Ridge
20.2
52
0.39
345
150
40
5.5
Inis Meain
74
937
53.0778
-9.6152
Ridge
20.2
52
0.39
350
125
45
5.2
3.0
-1.2
Inis Meain
74
938
53.0778
-9.6152
Ridge
20.2
52
0.39
250
120
55
4.4
2.5
-0.5
Inis Meain
74
939
53.0778
-9.6152
Ridge
20.2
52
0.39
135
105
40
1.5
8.0
Inis Meain
75
940
53.0783
-9.6153
Isolated
17.5
61
0.29
300
200
30
4.8
Inis Meain
75
941
53.0783
-9.6153
Isolated
17.5
61
0.29
165
75
25
0.8
Inis Meain
75
942
53.0783
-9.6153
Isolated
17.5
61
0.29
155
115
60
2.8
Inis Meain
75
943
53.0783
-9.6153
Isolated
17.5
61
0.29
240
210
70
9.4
Inis Meain
76
944
Ridge
15.4
76
0.20
125
55
20
0.4
Inis Meain
76
945
53.0787
-9.6153
Ridge
15.4
76
0.20
155
120
25
1.2
Inis Meain
76
946
C A
-9.6153
53.0787
-9.6153
Ridge
15.4
76
0.20
110
70
30
0.6
Inis Meain
76
947
53.0787
-9.6153
Ridge
15.4
76
0.20
120
60
15
0.3
Inis Meain
76
948
53.0787
-9.6153
Ridge
15.4
76
0.20
140
70
25
0.7
53.0787
D E
T P
E C
M
A
I R
C S
U N
T P
-1.5
1.0
2.0
106
ACCEPTED MANUSCRIPT
Inis Meain
76
949
53.0787
-9.6153
Ridge
15.4
76
0.20
280
250
65
12.1
Inis Meain
76
950
53.0787
-9.6153
Ridge
15.4
76
0.20
290
105
65
5.3
Inis Meain
76
951
53.0787
-9.6153
Ridge
15.4
76
0.20
130
110
20
0.8
Inis Meain
76
952
53.0787
-9.6153
Ridge
15.4
76
0.20
270
100
70
5.0
Inis Meain
76
953
53.0787
-9.6153
Ridge
15.4
76
0.20
170
120
50
2.7
Inis Meain
76
954
53.0787
-9.6153
Ridge
15.4
76
0.20
135
65
50
1.2
Inis Meain
76
955
53.0787
-9.6153
Isolated
15.4
76
0.20
160
80
30
1.0
Inis Meain
76
956
53.0787
-9.6153
Ridge
15.4
76
0.20
195
155
20
1.6
Inis Meain
76
957
53.0787
-9.6153
Ridge
15.4
76
0.20
155
50
50
1.0
Inis Meain
76
958
53.0787
-9.6153
Ridge
15.4
76
0.20
200
70
50
1.9
11.0
Inis Meain
76
959
53.0787
-9.6153
Ridge
15.4
76
0.20
220
130
15
1.1
8.5
Inis Meain
76
960
53.0787
-9.6153
Ridge
15.4
76
0.20
300
150
45
5.4
Inis Meain
76
961
53.0787
-9.6153
Ridge
15.4
76
0.20
160
60
35
0.9
Inis Meain
77
962
53.0791
-9.6150
Ridge
16.8
120
0.14
145
80
15
0.5
Inis Meain
77
963
53.0791
-9.6150
Ridge
16.8
120
0.14
170
130
25
1.5
Inis Meain
77
964
53.0791
-9.6150
Ridge
16.8
120
0.14
115
70
15
0.3
Inis Meain
77
965
Ridge
16.8
120
0.14
110
50
30
0.4
Inis Meain
78
966
53.0795
-9.6149
Ridge
23.0
115
0.20
215
165
30
2.8
Inis Meain
78
967
C A
-9.6150
53.0795
-9.6149
Ridge
23.0
115
0.20
140
95
40
1.4
Inis Meain
78
968
53.0795
-9.6149
Ridge
23.0
115
0.20
155
105
45
1.9
Inis Meain
78
969
53.0795
-9.6149
Ridge
23.0
115
0.20
130
80
45
1.2
53.0791
D E
T P
E C
M
A
I R
C S
U N
T P
3.0
3.0
1.0
107
ACCEPTED MANUSCRIPT
Inis Meain
78
970
53.0796
-9.6152
Ridge
17.5
38
0.46
255
185
55
6.9
Inis Meain
79
971
53.0800
-9.6147
Ridge
23.0
72
0.32
120
95
15
0.5
Inis Meain
79
972
53.0800
-9.6147
Ridge
23.0
72
0.32
125
100
45
1.5
Inis Meain
79
973
53.0800
-9.6147
Ridge
23.0
72
0.32
145
85
55
1.8
Inis Meain
79
974
53.0800
-9.6147
Ridge
23.0
72
0.32
165
190
40
Inis Meain
79
975
53.0800
-9.6147
Ridge
23.0
72
0.32
175
45
Inis Meain
79
976
53.0800
-9.6147
Ridge
23.0
72
0.32
110
Inis Meain
79
977
53.0800
-9.6147
Ridge
23.0
72
0.32
Inis Meain
80
978
53.0804
-9.6146
Isolated
24.8
39
Inis Meain
81
979
53.0809
-9.6146
Ridge
25.0
Inis Meain
81
980
53.0809
-9.6146
Ridge
25.0
Inis Meain
81
981
53.0809
-9.6146
Ridge
Inis Meain
81
982
53.0809
-9.6146
Inis Meain
81
983
53.0809
Inis Meain
82
984
53.0816
Inis Meain
83
985
53.0883
Inis Meain
83
986
Inis Meain
83
987
Inis Meain
83
Inis Meain Inis Meain
0.5
-1.0
3.3
9.5
1.0
30
0.6
2.5
1.0
90
35
0.9
1.5
-0.5
250
80
30
1.6
2.5
-0.5
0.64
105
55
20
0.3
20
1.25
130
65
20
0.4
0.5
20
1.25
125
80
30
0.8
0.5
25.0
20
1.25
145
125
10
0.5
1.5
Ridge
25.0
20
1.25
130
85
20
0.6
2.5
-9.6146
Ridge
25.0
20
1.25
180
80
15
0.6
3.0
-9.6140
Ridge
25.9
13
1.99
95
55
15
0.2
0.6
-9.6042
Ridge
3.6
15
0.24
175
110
60
3.1
Ridge
3.6
15
0.24
135
110
65
2.6
53.0883
-9.6042
Ridge
3.6
15
0.24
220
185
85
9.2
4.5
988
C A
-9.6042
53.0883
-9.6042
Ridge
3.6
15
0.24
360
200
70
13.4
8.0
83
989
53.0883
-9.6042
Ridge
3.6
15
0.24
205
160
50
4.4
4.5
83
990
53.0883
-9.6042
Ridge
3.6
15
0.24
100
60
45
0.7
53.0883
D E
T P
E C
M
A
I R
C S
U N
T P
108
ACCEPTED MANUSCRIPT
Inis Meain
83
991
53.0883
-9.6042
Ridge
3.6
15
0.24
230
110
65
4.4
Inis Meain
83
992
53.0883
-9.6042
Ridge
3.6
15
0.24
180
140
80
5.4
Inis Meain
83
993
53.0883
-9.6042
Ridge
3.6
15
0.24
195
120
80
5.0
Inis Meain
83
994
53.0883
-9.6042
Isolated
3.6
15
0.24
450
190
180
40.9
Inis Meain
83
995
53.0883
-9.6042
Isolated
3.6
15
0.24
235
190
75
8.9
Inis Meain
83
996
53.0883
-9.6042
Isolated
3.6
15
0.24
265
190
110
14.7
Inis Meain
83
997
53.0883
-9.6042
Isolated
3.6
15
0.24
185
145
75
5.4
Inis Meain
84
998
53.0890
-9.6031
Ridge
1.4
10
0.15
165
120
60
3.2
Inis Meain
84
999
53.0890
-9.6031
Ridge
1.4
10
0.15
150
75
50
1.5
Inis Meain
84
1000
53.0890
-9.6031
Ridge
1.4
10
0.15
200
160
110
9.4
Inis Meain
84
1001
53.0890
-9.6031
Ridge
1.4
10
0.15
210
150
110
9.2
Inis Meain
84
1002
53.0890
-9.6031
Ridge
1.4
10
0.15
120
40
25
0.3
Inis Meain
84
1003
53.0890
-9.6031
Ridge
1.4
10
0.15
100
85
45
1.0
Inis Meain
84
1004
53.0890
-9.6031
Ridge
1.4
10
0.15
110
70
70
1.4
Inis Meain
84
1005
53.0890
-9.6031
Ridge
1.4
10
0.15
90
65
40
0.6
Inis Meain
84
1006
53.0890
-9.6031
Ridge
1.4
10
0.15
90
50
35
0.4
Inis Meain
84
1007
Ridge
1.4
10
0.15
130
80
55
1.5
Inis Meain
84
1008
53.0890
-9.6031
Ridge
1.4
10
0.15
85
60
40
0.5
Inis Meain
84
1009
C A
-9.6031
53.0890
-9.6031
Ridge
1.4
10
0.15
110
70
40
0.8
Inis Meain
85
1010
53.0897
-9.6026
Ridge
1.0
11
0.09
160
70
65
1.9
Inis Meain
85
1011
53.0897
-9.6026
Ridge
1.0
11
0.09
165
120
80
4.2
53.0890
D E
T P
E C
M
A
I R
C S
U N
T P
2.0
0.5
3.0
0.5
3.0
109
ACCEPTED MANUSCRIPT
Inis Meain
85
1012
53.0897
-9.6026
Ridge
1.0
11
0.09
105
70
65
1.3
Inis Meain
85
1013
53.0897
-9.6026
Ridge
1.0
11
0.09
145
60
45
1.0
Inis Meain
85
1014
53.0897
-9.6026
Ridge
1.0
11
0.09
130
65
40
0.9
Inis Meain
85
1015
53.0897
-9.6026
Ridge
1.0
11
0.09
115
100
35
1.1
Inis Meain
85
1016
53.0897
-9.6026
Ridge
1.0
11
0.09
155
135
60
3.3
Inis Meain
86
1017
53.0901
-9.6012
Ridge
2.3
23
0.10
215
140
130
10.4
Inis Meain
86
1018
53.0901
-9.6012
Ridge
2.3
23
0.10
275
165
105
12.7
Inis Meain
86
1019
53.0901
-9.6012
Ridge
2.3
23
0.10
380
280
120
34.0
Inis Meain
86
1020
53.0901
-9.6012
Ridge
2.3
23
0.10
230
105
55
3.5
Inis Meain
86
1021
53.0901
-9.6012
Ridge
2.3
23
0.10
250
140
50
4.7
Inis Meain
86
1022
53.0901
-9.6012
Ridge
2.3
23
0.10
250
240
95
15.2
Inis Meain
86
1023
53.0901
-9.6012
Ridge
2.3
23
0.10
130
90
60
1.9
Inis Meain
86
1024
53.0901
-9.6012
Ridge
2.3
23
0.10
140
100
80
3.0
Inis Meain
86
1025
53.0901
-9.6012
Ridge
2.3
23
0.10
220
210
90
11.1
Inis Meain
86
1026
53.0901
-9.6012
Ridge
2.3
23
0.10
200
190
50
5.1
Inis Meain
86
1027
53.0901
-9.6012
Ridge
2.3
23
0.10
210
120
120
8.0
Inis Meain
86
1028
Ridge
2.3
23
0.10
170
120
55
3.0
Inis Meain
86
1029
53.0901
-9.6012
Ridge
2.3
23
0.10
135
100
65
2.3
Inis Meain
86
1030
C A
-9.6012
53.0901
-9.6012
Ridge
2.3
23
0.10
135
105
50
1.9
Inis Meain
86
1031
53.0901
-9.6012
Ridge
2.3
23
0.10
170
100
90
4.1
Inis Meain
86
1032
53.0901
-9.6012
Ridge
2.3
23
0.10
270
160
50
5.7
53.0901
D E
T P
E C
M
A
I R
C S
U N
T P
6.0
0.5
110
ACCEPTED MANUSCRIPT
Inis Meain
86
1033
53.0901
-9.6012
Ridge
2.3
23
0.10
130
120
80
3.3
Inis Meain
86
1034
53.0901
-9.6012
Ridge
2.3
23
0.10
200
100
65
3.5
Inis Meain
86
1035
53.0901
-9.6012
Ridge
2.3
23
0.10
240
135
70
6.0
Inis Meain
86
1036
53.0901
-9.6012
Ridge
2.3
23
0.10
150
110
80
3.5
Inis Meain
86
1037
53.0901
-9.6012
Ridge
2.3
23
0.10
160
120
90
4.6
Inis Meain
86
1038
53.0901
-9.6012
Ridge
2.3
23
0.10
160
110
100
4.7
Inis Meain
86
1039
53.0901
-9.6012
Ridge
2.3
23
0.10
120
80
40
1.0
Inis Meain
87
1040
53.0910
-9.6006
Ridge
2.9
40
0.07
220
160
60
5.6
Inis Meain
87
1041
53.0910
-9.6006
Ridge
2.9
40
0.07
140
110
90
3.7
Inis Meain
87
1042
53.0910
-9.6006
Ridge
2.9
40
0.07
130
95
75
2.5
Inis Meain
87
1043
53.0910
-9.6006
Ridge
2.9
40
0.07
160
95
35
1.4
Inis Meain
87
1044
53.0910
-9.6006
Ridge
2.9
40
0.07
235
140
65
5.7
Inis Meain
87
1045
53.0910
-9.6006
Ridge
2.9
40
0.07
180
110
55
2.9
Inis Meain
87
1046
53.0910
-9.6006
Ridge
2.9
40
0.07
205
140
50
3.8
Inis Meain
87
1047
53.0910
-9.6006
Ridge
2.9
40
0.07
95
75
55
1.0
Inis Meain
87
1048
53.0910
-9.6006
Ridge
2.9
40
0.07
140
130
60
2.9
Inis Meain
87
1049
Ridge
2.9
40
0.07
350
190
75
13.3
Inis Meain
87
1050
53.0910
-9.6006
Ridge
2.9
40
0.07
160
155
55
3.6
Inis Meain
87
1051
C A
-9.6006
53.0910
-9.6006
Ridge
2.9
40
0.07
260
230
55
8.7
Inis Meain
88
1052
53.0918
-9.5998
Ridge
4.2
12
0.37
140
65
55
1.3
Inis Meain
88
1053
53.0918
-9.5998
Ridge
4.2
12
0.37
145
85
50
1.6
53.0910
D E
T P
E C
M
A
I R
C S
U N
T P
1.0
0.5
0.5
111
ACCEPTED MANUSCRIPT
Inis Meain
88
1054
53.0918
-9.5998
Ridge
4.2
12
0.37
240
125
70
5.6
Inis Meain
88
1055
53.0918
-9.5998
Ridge
4.2
12
0.37
75
65
50
0.6
Inis Meain
88
1056
53.0918
-9.5998
Ridge
4.2
12
0.37
340
230
70
14.6
Inis Meain
88
1057
53.0918
-9.5998
Ridge
4.2
12
0.37
240
155
140
13.9
Inis Meain
88
1058
53.0918
-9.5998
Ridge
4.2
12
0.37
290
130
65
6.5
Inis Meain
88
1059
53.0918
-9.5998
Ridge
4.2
12
0.37
115
115
110
3.9
Inis Meain
88
1060
53.0918
-9.5998
Ridge
4.2
12
0.37
155
115
100
4.7
Inis Oirr
89
1061
53.0525
-9.5538
Isolated
2.0
50
0.04
360
205
50
9.8
Inis Oirr
89
1062
53.0529
-9.5537
Ridge
2.0
43
0.05
150
120
50
2.4
Inis Oirr
89
1063
53.0529
-9.5537
Ridge
2.0
43
0.05
270
255
45
8.2
Inis Oirr
90
1064
53.0522
-9.5542
Ridge
1.8
30
0.06
265
180
35
4.4
Inis Oirr
90
1065
53.0522
-9.5542
Ridge
1.8
30
0.06
255
175
85
10.1
Inis Oirr
90
1066
53.0522
-9.5542
Ridge
1.8
30
0.06
325
120
90
9.3
Inis Oirr
90
1067
53.0522
-9.5542
Ridge
1.8
30
0.06
230
160
30
2.9
Inis Oirr
90
1068
53.0522
-9.5542
Ridge
1.8
30
0.06
155
130
60
3.2
Inis Oirr
90
1069
53.0522
-9.5542
Ridge
1.8
30
0.06
130
75
50
1.3
Inis Oirr
91
1070
Ridge
3.0
68
0.04
295
215
100
16.9
Inis Oirr
91
1071
53.0505
-9.5544
Ridge
3.0
68
0.04
150
105
75
3.1
Inis Oirr
91
1072
C A
-9.5544
53.0505
-9.5544
Ridge
3.0
68
0.04
225
190
70
8.0
Inis Oirr
91
1073
53.0505
-9.5544
Ridge
3.0
68
0.04
165
115
105
5.3
Inis Oirr
92
1074
53.0502
-9.5549
Ridge
3.0
52
0.06
210
160
35
3.1
53.0505
D E
T P
E C
M
A
I R
C S
U N
T P
8.0
29.5
16.5
2.0
2.2
112
ACCEPTED MANUSCRIPT
Inis Oirr
92
1075
53.0502
-9.5549
Ridge
3.0
52
0.06
110
95
65
1.8
7.8
1.7
Inis Oirr
92
1076
53.0502
-9.5549
Ridge
3.0
52
0.06
95
90
80
1.8
Inis Oirr
93
1077
53.0499
-9.5550
Ridge
3.6
69
0.05
245
205
95
12.7
17.9
0.5
Inis Oirr
93
1078
53.0500
-9.5550
Ridge
3.6
69
0.05
260
230
50
8.0
1.0
1.0
Inis Oirr
93
1079
53.0500
-9.5551
Ridge
3.8
73
0.05
350
215
100
20.0
1.0
0.5
Inis Oirr
93
1080
53.0497
-9.5549
Ridge
3.6
69
0.05
310
185
65
9.9
2.0
-1.0
Inis Oirr
93
1081
53.0497
-9.5549
Ridge
3.6
69
0.05
100
100
50
1.3
5.0
Inis Oirr
93
1082
53.0497
-9.5549
Ridge
3.6
69
0.05
430
125
105
15.0
0.0
Inis Oirr
93
1083
53.0497
-9.5549
Ridge
3.6
69
0.05
260
125
115
9.9
0.0
Inis Oirr
93
1084
53.0497
-9.5549
Ridge
3.6
69
0.05
215
120
110
7.5
Inis Oirr
93
1085
53.0497
-9.5549
Ridge
3.6
69
0.05
315
210
60
10.6
Inis Oirr
93
1086
53.0497
-9.5549
Ridge
3.6
69
0.05
190
180
120
10.9
Inis Oirr
93
1087
53.0497
-9.5549
Ridge
3.6
69
0.05
300
200
125
20.0
8.0
Inis Oirr
94
1088
53.0484
-9.5545
Isolated
0.2
3
0.07
370
280
150
41.3
95.0
0.2
Inis Oirr
94
1089
53.0484
-9.5545
Isolated
0.1
2
0.07
500
260
135
46.7
93.0
0.2
Inis Oirr
94
1090
53.0487
-9.5549
Isolated
0.6
13
0.05
475
320
115
46.5
76.0
1.6
Inis Oirr
94
1091
Isolated
0.6
13
0.05
500
250
110
36.6
79.0
1.7
53.0489
-9.5548
Isolated
1.9
37
0.05
430
295
135
45.6
82.0
3.0
1093
C A
-9.5549
Inis Oirr
94
1092
Inis Oirr
94
53.0489
-9.5548
Isolated
2.0
40
0.05
355
240
155
35.1
86.0
3.0
Inis Oirr
94
1094
53.0489
-9.5548
Isolated
2.3
45
0.05
525
250
140
48.9
90.0
3.2
Inis Oirr
95
1095
53.0454
-9.5258
Isolated
0.2
1
0.20
560
280
180
75.1
21.5
0.5
53.0487
D E
T P
E C
M
A
I R
C S
U N
T P
3.5
2.0
113
ACCEPTED MANUSCRIPT
Inis Oirr
95
1096
53.0454
-9.5258
Isolated
0.2
1
0.20
340
255
120
27.7
Inis Oirr
95
1097
53.0454
-9.5258
Isolated
0.1
1
0.10
340
235
105
22.3
10.0
Inis Oirr
95
1098
53.0454
-9.5258
Isolated
0.5
2
0.25
455
230
100
27.8
8.0
Inis Oirr
95
1099
53.0454
-9.5258
Isolated
0.5
3
0.17
325
315
90
24.5
5.0
Inis Oirr
95
1100
53.0454
-9.5258
Isolated
0.1
1
0.10
490
180
45
10.6
Inis Oirr
96
1101
53.0454
-9.5269
Ridge
2.0
10
0.20
240
200
95
12.1
Inis Oirr
96
1102
53.0454
-9.5269
Ridge
2.0
10
0.20
245
190
85
10.5
Inis Oirr
96
1103
53.0454
-9.5269
Ridge
2.0
10
0.20
390
270
70
19.6
Inis Oirr
96
1104
53.0454
-9.5269
Ridge
2.0
10
0.20
190
110
30
1.7
Inis Oirr
96
1105
53.0454
-9.5269
Ridge
2.0
10
0.20
215
130
30
2.2
Inis Oirr
96
1106
53.0454
-9.5269
Ridge
2.0
10
0.20
160
95
35
1.4
Fanore
97
1107
53.0989
-9.3093
Isolated
4.0
30
0.13
190
150
95
7.2
Fanore
97
1108
53.0989
-9.3093
Isolated
4.0
30
0.13
200
165
130
11.4
Fanore
97
1109
53.0989
-9.3093
Isolated
4.0
30
0.13
290
170
130
17.0
Fanore
97
1110
53.0989
-9.3093
Isolated
4.0
30
0.13
290
185
100
14.3
Fanore
97
1111
53.0989
-9.3093
Isolated
4.0
30
0.13
105
90
85
2.1
Fanore
97
1112
Ridge
4.0
30
0.13
225
160
120
11.5
Fanore
97
1113
53.0989
-9.3093
Isolated
4.0
30
0.13
160
65
30
0.8
Fanore
97
1114
C A
-9.3093
53.0989
-9.3093
Ridge
4.0
30
0.13
240
165
130
13.7
Fanore
97
1115
53.0989
-9.3093
Ridge
4.0
25
0.16
265
150
80
8.5
Fanore
97
1116
53.0989
-9.3093
Ridge
4.0
25
0.16
145
100
75
2.9
53.0989
D E
T P
E C
M
A
I R
C S
U N
T P
1.0
0.0
2.0
13.0
13.0
114
ACCEPTED MANUSCRIPT
Fanore
97
1117
53.0989
-9.3093
Ridge
4.0
25
0.16
155
140
110
6.3
1.0
0.5
Fanore
97
1118
53.0989
-9.3093
Ridge
4.0
25
0.16
170
105
45
2.1
1.0
0.5
Fanore
97
1119
53.0989
-9.3093
Ridge
4.0
25
0.16
165
160
80
5.6
1.0
0.5
Fanore
97
1120
53.0989
-9.3093
Ridge
4.0
25
0.16
130
115
35
1.4
1.0
0.5
Fanore
97
1121
53.0989
-9.3093
Ridge
4.0
25
0.16
160
135
45
2.6
Fanore
97
1122
53.0989
-9.3093
Isolated
4.0
25
0.16
195
145
85
6.4
Fanore
97
1123
53.0989
-9.3093
Ridge
4.0
20
0.20
155
80
75
2.5
Fanore
97
1124
53.0984
-9.3093
Isolated
4.0
20
0.20
220
190
70
7.8
39.0
1.5
Fanore
97
1125
53.0984
-9.3093
Isolated
4.0
20
0.20
245
160
115
12.0
Fanore
97
1126
53.0984
-9.3093
Isolated
4.0
20
0.20
190
130
60
3.9
Fanore
97
1127
53.0984
-9.3093
Isolated
4.0
20
0.20
258
258
258
45.5
Fanore
97
1128
53.0984
-9.3093
Isolated
4.0
20
0.20
270
215
125
19.3
Fanore
97
1129
53.0984
-9.3093
Isolated
4.0
20
0.20
300
220
120
21.1
Fanore
97
1130
53.0984
-9.3093
Isolated
4.0
20
0.20
280
170
100
12.7
Fanore
98
1131
53.0577
-9.3648
Isolated
4.0
5
0.80
335
175
135
21.1
8.5
Fanore
98
1132
53.0577
-9.3648
Ridge
4.0
5
0.80
230
65
35
1.4
4.0
Fanore
98
1133
Ridge
4.0
5
0.80
320
125
30
3.2
1.1
Fanore
98
1134
53.0577
-9.3648
Ridge
4.0
5
0.80
155
150
35
2.2
3.0
Fanore
98
1135
C A
-9.3648
53.0577
-9.3648
Ridge
4.0
5
0.80
190
70
35
1.2
Fanore
99
1136
53.0563
-9.3658
Ridge
3.0
12
0.25
249
249
249
40.9
1.5
Fanore
99
1137
53.0563
-9.3658
Isolated
3.0
12
0.25
860
290
125
82.9
0.8
53.0577
D E
T P
E C
M
A
I R
C S
U N
T P
5.0
1.8
1.2
115
ACCEPTED MANUSCRIPT
Fanore
99
1138
53.0563
-9.3658
Isolated
3.0
12
0.25
280
200
115
17.1
Fanore
99
1139
53.0563
-9.3658
Ridge
3.0
12
0.25
335
195
55
9.6
Fanore
99
1140
53.0563
-9.3658
Ridge
3.0
12
0.25
225
150
105
9.4
Fanore
99
1141
53.0563
-9.3658
Ridge
3.0
12
0.25
245
165
60
6.5
Fanore
99
1142
53.0563
-9.3658
Ridge
3.0
12
0.25
420
220
95
23.3
1.5
Fanore
99
1143
53.0563
-9.3658
Isolated
3.0
12
0.25
265
215
115
17.4
5.0
Fanore
99
1144
53.0563
-9.3658
Ridge
4.5
17
0.26
310
160
70
9.2
1.5
Fanore
99
1145
53.0563
-9.3658
Ridge
4.5
17
0.26
300
215
55
9.4
1.0
Fanore
99
1146
53.0563
-9.3658
Ridge
4.5
17
0.26
250
100
85
5.7
Fanore
99
1147
53.0563
-9.3658
Ridge
4.5
17
0.26
550
300
85
37.3
9.5
Fanore
99
1148
53.0563
-9.3658
Ridge
4.0
8
0.50
680
300
135
73.3
10.0
2.0
Doolin
100
1149
53.0391
-9.3847
Ridge
1.9
30
0.06
385
320
280
91.8
1.0
0.5
Doolin
100
1150
53.0391
-9.3847
Ridge
5.7
30
0.19
520
240
200
66.4
Doolin
100
1151
53.0391
-9.3847
Isolated
1.3
30
0.04
580
340
300
157.4
2.0
-0.5
Doolin
100
1152
53.0391
-9.3847
Isolated
1.8
20
0.09
520
270
260
97.1
3.0
Doolin
100
1153
53.0391
-9.3847
Isolated
7.3
15
0.49
585
335
110
57.3
0.5
D E
E C
T P
M
A
I R
C S
U N
T P
25.0
11.0
2.3
C A
116
ACCEPTED MANUSCRIPT
Table ZZ. Comparing boulder masses based on field measrurements (X*Y*Z) with those computed using Structure-from-Motion photogrammetry (SfM). Measured density of 2.66 t/m3 is used in both cases. Boulder dimensions (X,Y,Z) are given to the nearest 5 cm. An asterisk next to the number indicates that the boulder is in the database of boulders moved during the 2013-2014 storms (Table 1). The other six are boulders that appeared on the platform in winter 2015-2016 and were measured for the first time in 2016. Boulder 3 is the isolated platform block in the foreground of Fig. 1.
T P
Boulder
Island
1 2* 3
Inishmaan Inishmaan Inishmaan
4 5 6 7* 8* 9* 10
Inishmaan Inishmaan Inishmaan Inisheer Inisheer Inisheer Inisheer
Location
IM 29IM30
X (m)
Y (m)
Z (m)
2.30 3.30 2.75
2.20 2.65 2.40
0.65 0.75 1.05
5.50 2.35 2.65 5.60 3.40 4.30 4.30
1.90 1.80 2.25 2.80 2.55 2.95 3.05
0.85 0.75 0.55 1.80 1.10 1.35 0.60
C A
E C
T P
D E
I R
C S
Volume SfM (m3)
Mass based on XYZ (t)
Mass based on SfM (t)
Difference between masses (%)
3.29 6.56 6.93
4.01 6.91 7.38
8.7 17.4 18.4
9.5 18.4 19.6
8 5 6
8.88 3.17 3.28 28.22 9.54 17.12 7.87
9.12 3.01 3.17 28.80 11.02 15.53 7.71
23.6 8.4 8.7 75.1 25.4 45.6 20.9
24.3 8.0 8.4 76.6 29.3 41.3 20.5
3 -5 -3 2 13 -10 -2
U N
A
M
Volume X*Y*Z (m3)
117
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15