Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits

Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits

Accepted Manuscript Extraordinary boulder transport by storm waves (West of Ireland, Winter 2013–2014), and criteria for analysing coastal boulder dep...

157MB Sizes 0 Downloads 34 Views

Accepted Manuscript Extraordinary boulder transport by storm waves (West of Ireland, Winter 2013–2014), and criteria for analysing coastal boulder deposits

Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, Peter Cox PII: DOI: Reference:

S0012-8252(17)30235-0 https://doi.org/10.1016/j.earscirev.2017.12.014 EARTH 2555

To appear in:

Earth-Science Reviews

Received date: Revised date: Accepted date:

30 April 2017 8 December 2017 18 December 2017

Please cite this article as: Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, Peter Cox , Extraordinary boulder transport by storm waves (West of Ireland, Winter 2013–2014), and criteria for analysing coastal boulder deposits. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Earth(2017), https://doi.org/10.1016/j.earscirev.2017.12.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

EXTRAORDINARY BOULDER TRANSPORT BY STORM WAVES (WEST OF IRELAND, WINTER 2013-2014), AND CRITERIA FOR ANALYSING COASTAL

T

BOULDER DEPOSITS

CR

IP

Rónadh Cox, Kalle L. Jahn, Oona G. Watkins, and Peter Cox

US

Geosciences Department, Williams College, Williamstown MA 01267

AN

Corresponding author: Rónadh Cox

AC

CE

PT

ED

M

[email protected]

1

ACCEPTED MANUSCRIPT ABSTRACT There has been much debate about whether very large boulders in coastal settings can be moved by storm waves. New data, in conjunction with literature review, shed light on this question. Before-and-after photos of supratidal coastal boulder deposits (CBD) in the

T

west of Ireland show that storms in the winter of 2013-214 transported boulders at

IP

elevations up to 29 m above high water, and at inland distances up to 222 m. Among the

CR

clasts transported are eighteen weighing more than 50 t, six of which exceed 100 t. The

US

largest boulder moved during those storms weighs a fairly astonishing 620 t.

AN

The boulders moved in these recent storms provide pinning points for mapping stormwave energies on the coast: their topographic positions mark the elevations and distances

M

inland reached by wave energies sufficient to dislocate those specific masses. Taken

ED

together, the CBD data reveal general relationships that shed light on storm-wave

PT

hydrodynamics. These include a robust correlation (inverse exponential) between maximum boulder mass transported and emplacement height above high water: the

CE

greater the elevation, the smaller the maximum boulder size, with a dependency exponent of about -0. 2 times the elevation (in metres). There is a similar relationship, although

AC

with a much smaller rate-of-change (exponent -0. 02), between boulder mass and distance inland, which holds from the shoreline in to about 120 m. Coastal steepness (calculated as the ratio of elevation to inland distance) seems to exert the strongest control, with an inverse power-law relationship between maximum boulder mass and slope ratio: the more gentle the topography, the larger the moved boulders.

2

ACCEPTED MANUSCRIPT Quantifying CBD dynamics helps us understand the transmission of wave energies inshore during high-energy storm events The transported boulders documented here are larger than many of those interpreted to have been moved by tsunami in other locations, which means that boulder size alone cannot be used as a criterion for distinguishing

T

between tsunami and storm emplacement of CBD. The biggest blocks—up to 620 t—are

IP

new maxima for boulder mass transported by storm waves. We predict, however, that this

CR

record will not last long: the 2013-2014 storms were strong but not extreme, and there are larger boulders in these deposits that didn’t move on this occasion. Bigger storms will

US

surely move larger clasts, and clasts at greater distances from the shoreline. These

AN

measurements and relationships emphasise the extreme power of storm waves impacting exposed coastlines, and require us to rethink the upper limits of storm wave energy at

ED

M

coasts.

PT

Keywords: Coastal boulder deposits, storm waves, coastal erosion, megagravel, coastal

AC

CE

hazard, coastal geomorphology

1. INTRODUCTION A series of unusually strong storms battered the eastern Atlantic in the winter of 20132014. Spectacular photographs of wave impacts on coasts and infrastructure appeared at the time in newspapers and scientific blogs (e.g. Duell and Brady, 2014; Petley, 2014), and resultant geomorphologic effects have been documented in the literature (Castelle et al., 2015; Earlie et al., 2015; Autret et al., 2016; Burvingt et al., 2016; Masselink et al.,

3

ACCEPTED MANUSCRIPT 2016). But some of the most dramatic changes were not shown in the newspapers. They occurred far from the public eye, on inhospitable and uninhabited rocky coastlines characterised by cliffs and open-ocean deep-water exposure. These are the sites of coastal boulder deposits (CBD: Fig. 1), which are poorly understood piles of clasts (including, in

T

some locations, blocks weighing 10s to 100s of tonnes) that can occur at elevations up to

IP

50 m AHW in some places, and can be up to a quarter of a kilometre inland in others

CR

(Williams and Hall, 2004).

US

Archives of high-energy wave events, CBD are not activated very often (Hansom and

AN

Hall, 2009; Scheffers et al., 2010). Because of this, and because of their remote locations, few direct observations of clast motions exist. The lack of data has led some workers to

M

argue that large boulders have stayed in place for hundreds or thousands of years of

ED

storm-wave attack (Scheffers and Kinis, 2014), and to conclude that “the larger 80% of individual boulders in ridges have not been moved recently or within the last centuries”

PT

(Erdmann et al., 2017). The winter of 2013-2014 provided a unique opportunity to

CE

examine the response of CBD to high-energy storm waves, because the storms struck an area for which detailed observations had been built up over the previous decade (e.g.

AC

Williams and Hall, 2004; Zentner, 2009; Cox et al., 2012; Jahn, 2014). Rapid-response field work demonstrated that not only were western Ireland’s CBD substantially reorganised, but that large new boulders were created and added to the deposits (Cox et al., 2014; Cox et al., 2016). Documenting these changes matters because CBD, in the west of Ireland and elsewhere in the world, are at the centre of ongoing debate about the absolute power of storm waves.

4

ACCEPTED MANUSCRIPT

Large waves can send water surging across coastal platforms or cliff tops, and this flow—referred to as a bore (Hibberd and Peregrine, 1979; Nott, 2003b)—may dislodge and entrain clasts, sweeping them inland. But whether storm waves can generate

T

sufficient force to move very large rocks, or whether the biggest boulders require tsunami

IP

to activate them, has been controversial. So although some CBD were interpreted as

CR

storm deposits (e.g. Williams and Hall, 2004; Hall et al., 2008; Goto et al., 2010; Hall et al., 2010), the sheer size of many blocks seemed to indicate that storm wave transport

US

was unlikely (Nott, 2003a; Noormets et al., 2004; Scheffers et al., 2009; Hoffmann et al.,

AN

2013; Scheffers and Kinis, 2014). Only very recently have before-and-after observations proven that storm waves can and do move giant boulders (May et al., 2015; Cox et al.,

M

2016; Kennedy et al., 2017), but still we know very little about the dynamics of block and

ED

boulder transport, or about how storm wave energy is distributed with respect to coastal

PT

topography.

CE

In this contribution we review CBD in general: the different kinds, where they occur, and the background to the storm-versus-tsunami debate. We then report the storm-driven

AC

displacement of 1153 individual boulders— including some with masses in the 100s of tonnes—on Ireland’s western coasts during the winter of 2013-2014. We relate boulder movements to coastal topography and derive quantitative relationships that may be used as baseline comparison measures for CBD worldwide. The before-and-after comparisons not only encompass a spectrum of topographic settings—from the tops of sheer cliffs to low-lying coastal platforms—but incorporate the full range of boulder sizes, permitting

5

ACCEPTED MANUSCRIPT detailed quantitative analysis. These data show definitively that storm waves can move blocks >600 t mass, and that they can transmit forces sufficient to move megagravel at substantial elevations and distances inland.

IP

T

2. SUPRATIDAL COASTAL BOULDER DEPOSITS: AN OVERVIEW

CR

CBD are emplaced by ocean waves above the local high water mark (Fig. 1, and see also Supp. Figs. 1-4). They occur worldwide, mostly along high-energy coastlines exposed to

US

the open ocean (e.g. Nott, 1997; Morton et al., 2008; Etienne and Paris, 2010; Goto et al., 2010; Fichaut and Suanez, 2011; Richmond et al., 2011; May et al., 2015). Some include

AN

Very Large Boulders (VLB, defined by Scheffers et al. (2009) as having mass in excesss

M

of 50 t), with clasts greater than100 t reported from many sites. CBD are found at

ED

elevations up to 50 m above high water, and as much as 300 m inland (e.g. Williams and

PT

Hall, 2004; Goto et al., 2011; Cox et al., 2012; May et al., 2015; Cox et al., 2017).

CE

CBD include cliff-top deposits (e.g. Hall et al., 2006; Hall et al., 2008) (Fig. 1A), but are not limited to that environment: they also occur in the absence of cliffs, at the back of

AC

inclined or stepped coastal platforms (e.g. Scheffers et al., 2010; Hall, 2011; Cox et al., 2012) (Fig. 1B,). Coastal profiles at CBD sites vary (e.g. Suanez et al., 2009; Etienne and Paris, 2010; Cox et al., 2012) . Many are steep, with either a single cliff or series of bedrock steps descending to the ocean (Fig. 1A, Supp. Figs. 2, 4); but in other cases the topography can be gradually sloping, with CBD forming a boulder ridge at the back of a broad platform (Fig. 1B. Supp. Figs. 1, 3).

6

ACCEPTED MANUSCRIPT Whatever the local topography, CBD are generally separated from the ocean by a bedrock surface (Hall et al., 2006; Suanez et al., 2009) and are not connected with any kind of beach deposit (Fig. 1). They are distinctly different from those deposits referred to as boulder beaches or storm beaches, which form in the swash zone as higher-energy

T

analogues to sandy beaches (Emery, 1955; Oak, 1984; Lorang, 2000; Buscombe and

IP

Masselink, 2006). As they are not graded to the water’s edge, and as most are located out

CR

of reach of workaday waves, they record extreme wave activity in those locations where

US

they occur.

AN

There are three kinds of supratidal CBD: boulder ridges, isolated platform boulders, and cliff-detachment blocks (Fig. 2). Boulder ridges, which contain most of the CBD material

M

(Fig. 1, Supp. Figs. 1-4), are structured, organised, coast-parallel accumulations

ED

(Williams and Hall, 2004; Cox et al., 2012) built of clasts that range from small pebbles to megagravel (sensu Blair and McPherson, 1999). Boulders vary in their degree of

PT

rounding, but are angular on average, attesting to infrequent movement (Cox et al., 2017).

CE

Size distributions generally show moderate sorting, consistent with organised emplacement by fluid flow (Etienne and Paris, 2010; Cox et al., 2012; Jahn, 2014).

AC

Boulder ridges are 1-7 m high and asymmetric, with a more steeply inclined (up to 35°) upstream (ocean side) face and a gentle (<14°) lee slope that usually grades landward into a scattered boulder field (Hall et al., 2006; Zentner, 2009). They may extend for hundreds of m or even several km along the coast (e.g. on the Aran Islands: Williams and Hall, 2004, Cox et al. 2012), or they may simply form discontinuous clusters (e.g. on Eleuthera in the Bahamas: Kelletat et al. 2004, or on Shetland: Hall et al. 2008). Ridges are

7

ACCEPTED MANUSCRIPT separated from the ocean by wave-scoured bedrock, clean of sediment and vegetation, on which large isolated boulders may sit (Hall et al., 2006; Etienne and Paris, 2010).

Isolated platform boulders are usually found seaward of a boulder ridge, sitting on

T

bedrock (Figs. 1, 2, Supp. Figs 2 and 3). Most are solitary, although small clusters may

IP

also occur (Williams and Hall, 2004; Morton et al., 2006). They tend to be bigger than

CR

most ridge boulders, and are commonly in the megagravel size category (sensu Blair and McPherson, 1999). The clusters (e.g. Supp. Fig. 3) may in some cases represent former

US

locations of the boulder ridge front, stranded by their greater mass as the rest of the

AN

boulder population migrated inland (although this has yet to be demonstrated).

M

Cliff detachment forms the very largest clasts (masses in the multiple hundreds of tonnes)

ED

(Fig. 2, 4, Supp. Fig. 8). These giant blocks calve from the adjacent rock face along planes of weakness that are surely exploited and opened by waves, but with the final

PT

separation largely due to gravity. They sit close to sea level. Once separated from the

CE

cliff they may simply wear away in place, unless wave energy is sufficient to move them, in which case they may scoot across the platform. In addition to examples described later

AC

in this paper, one of the largest clasts transported during Supertyphoon Haiyan (≈180 t: May et al., 2015) is an example of a cliff-detachment clast.

Most boulders (cliff-detachment blocks are an exception) are wave-quarried from subjacent supratidal bedrock (Williams and Hall, 2004; Herterich et al., in press). Where deposits sit atop a vertical cliff (Fig. 1 A), clasts come from the upper part of the cliff,

8

ACCEPTED MANUSCRIPT extracted and transported inland by the highest-reaching waves. At less-steep sites (e.g. Fig. 1B, Supp. Figs. 1, 3)—where deposits also tend to be farther inland— lithologic comparisons show that most boulders are quarried close to their resting location, by peeling of subjacent bedrock at 10s to 100s of m from the ocean (e.g. Supp. Fig. 6, also

T

starred clast in Supp. Fig. 7). Thus boulder creation generally happens quite close to the

IP

site of deposition, so although clasts are deposited in many cases quite far inland and well

CR

above the high water mark, net transport distances are often not that large.

US

In exception to that general rule, a small proportion of clasts is sourced at considerable

AN

horizontal distance (10s to 100s of m) from the deposition site. These intertidal or subtidal clasts can be recognised by adhering fauna (barnacles, mussels, coralline algae,

M

etc.), or may have other traces of biologic activity, such as borings by sponges or bivalves

ED

(Cox et al., 2012; Erdmann et al., 2017). Although attached organisms will decay and fall off with time, the effects of boring organisms persist for much longer. This mechanism

PT

for identifying inter- or subtidal clasts is lithology dependent, however: limestones and

CE

some sandstones are easily exploited by borers, for example, but volcanic or metamorphic rocks are harder and less soluble; so it may be more difficult to discern

AC

whether CBD in those lithologies had submarine sources.

Regardless, however, of whether bedrock is quarried close to the site of deposition or whether excavated blocks are transported long horizontal distances, the wave-generated forces being applied in these supratidal settings are considerable. And (with the exception of cliff-detachment blocks) the work to detach and move these clasts is done against

9

ACCEPTED MANUSCRIPT gravity: the vast majority are transported both landward and upward.

2. 1 How often do the boulders move? This is an open question Because CBD are activated only by unusually strong waves,

IP

T

they show little or no change from year to year. The biggest boulders can sit unmoved for

CR

decades or maybe even centuries (Hansom and Hall, 2009; Scheffers et al., 2010; Hall, 2011; Cox et al., 2012), and as they occur along desolate coastlines where people do not

US

build and spend little time, their transport has generally gone unrecorded. In comparison with other coastal environments, CBD are relatively unstudied, and thus there are few

M

AN

data to illustrate whether, how, and when they move.

ED

2. 1 Storms or tsunami?

The oldest CBD observations of which we are aware (Hibbert-Ware, 1822; O'Donovan,

PT

1839; Stevenson, 1845; Kinahan et al., 1878; Süssmilch, 1912) all concluded firmly—

CE

based on field observations—that storm waves create and transport boulders weighing many tons. The record include general statements about events such as “the late

AC

memorable storm, which hurled the waves in mountains over those high cliffs, (and) cast rocks of amazing size over the lower ones to the east of them” (O’Donovan, 1839), as well as precise determinations, e.g. “In the winter of 1802, a tabular-shaped mass, 8 feet 2 inches by 7 feet, and 5 feet 1 inch thick, was dislodged from its bed, and removed to a distance of from 80-90 feet” (Hibbert-Ware, 1922).

There were few such studies, however, and CBD were largely ignored for most of the

10

ACCEPTED MANUSCRIPT 20th century. So when interest arose in late 1990s and early 2000s (with the work of Young et al., 1996; Bryant and Nott, 2001a; Scheffers, 2002; Felton and Crook, 2003; Kelletat et al., 2004; Noormets et al., 2004; and Williams and Hall, 2004, among others), there were no long-term observational records on which to draw. Workers trying to

T

interpret CBD therefore had to depend primarily on numerical approaches. A number of

IP

innovative studies derived hydrodynamic equations relating boulder masses to the forces

CR

required to move them (e.g. Young et al., 1996; Nott, 2003b; Noormets et al., 2004), and used those as the basis for hindcasting wave heights needed. These calculations, when

US

applied to the largest boulders in CBD at various locations, returned storm wave heights

AN

that seemed unrealistic in the context of then-available wave spectral data (Nott, 2003a; Noormets et al., 2004), and thus appeared to indicate that storm waves were incapable of

M

emplacing boulders that were very large or too high above sea level. In contrast, the

ED

required tsunami heights that fell out of the calculations were far smaller and more credible. Tsunami action was therefore deemed the most likely mechanism for CBD

CE

PT

emplacement.

Extensive application of these approaches resulted in interpretation of many CBD as

AC

tsunamigenic, or probably tsunamigenic, with hydrodynamic analysis based on boulder size being the most commonly applied determinant (Young et al., 1996; Bryant, 2001; Whelan and Kelletat, 2005; Mastronuzzi et al., 2007; Scicchitano et al., 2007; Barbano et al., 2010; Medina et al., 2011; Mottershead et al., 2014; Prizomwala et al., 2015). Since the CBD themselves showed little evidence for activity on the timescales of investigation, and calculations suggested that storm waves were insufficiently powerful, the conclusion

11

ACCEPTED MANUSCRIPT that tsunami were the most likely agents of CBD emplacement seemed reasonable, and persisted in the literature (e.g. Nott, 1997; Bryant and Nott, 2001b; Scheffers and Kelletat, 2003; Scheffers et al., 2009).

T

Other sedimentologic interpretations cascaded from that interpretation, and many

IP

characteristics of CBD—including clast size, organisation into sorted groups,

CR

imbrication, and supra-tidal location—were asserted to be signatures of tsunami emplacement (Bryant, 2014; Scheffers and Kinis, 2014). In an influential, widely cited

US

paper, Bryant and Nott (2001) concluded that “imbricated boulder piles are the

AN

unmistakable signature of tsunami overwash”, and Courtney et al. (2012) reported that boulder ridges are frequently taken as diagnostic indicators of tsunami activity. Bryant

M

(2014) asserted that storm waves are unlikely to transport boulders and deposit them in

ED

imbricated piles at the top of cliffs, and Scheffers and Kinnis (2014) held that “good imbrication, as well as balancing boulders in delicate positions perched on top of boulder

CE

PT

clusters or boulder ridges…are indicative of tsunami impact and exclude storm waves”.

Some workers pointed out evidence tying imbricated CBD to storm processes (e.g.

AC

Williams and Hall, 2004; Hall et al., 2006; Hansom et al., 2008; Hansom and Hall, 2009; Etienne and Paris, 2010; Hall, 2011). It was also argued that existing hydrodynamic equations largely ignore non-linear effects that can dramatically change wave behaviour, and that they did not adequately capture the complexities of storm-wave dynamics at coasts, which might promote dramatic increases in wave height (e.g. Hansom et al., 2008, Cox et al., 2012). But the tsunami narrative was strong, and in the absence of direct

12

ACCEPTED MANUSCRIPT observational data, the numerical arguments were difficult to refute.

The data landscape has changed, however, as our understanding of wave dynamics grows apace. There are more oceanographic data buoys providing more data about wave

T

spectra, and wave modeling codes become ever more sophisticated (e.g. Roland and

IP

Ardhuin, 2014; Forget et al., 2015; Beisiegel and Dias, 2017; Brennan et al., 2017).

CR

Marine buoy data gathered over the last couple of decades reveal that very large storm waves occur regularly. In the North Atlantic, for example, significant wave heights

US

(SWH)1 in excess of 18 m have been measured (Turton and Fenna, 2008), with maximum

AN

heights up to twice the SWH (Burgers et al., 2008.). And it seems that as more data become available, measured wave heights increase in tandem, suggesting that we have

ED

maxima with any confidence.

M

not been collecting records for long enough to have gauged near-shore storm wave

PT

The record for highest wave measured offshore of Ireland, for example, keeps going up:

CE

from 20.4 m in December 2011 to 23.4 in January 2014, then to 25 m in February 2014 (O'Brien et al., 2013; Met Éireann, 2014; Atan et al., 2016), and most recently to 26.1 m

AC

during storm Ophelia in October 2017 (Siggins, 2017). In addition, there is a growing appreciation that interactions at steep coasts can generate very large waves, including “rogue waves”, defined as having at least twice the local significant wave height (e.g. Didenkulova and Anderson, 2006; Soomere, 2010; Didenkulova, 2011). The greatest

1

SWH = 4 x the square root of the variance of the time series of the wave signal, and approximates the mean height of the largest third of waves measured in a given time period. Generally, the height of the largest 1% of waves is ≈ 1. 7 x SWH.

13

ACCEPTED MANUSCRIPT wave amplifications tend to occur at coasts with deep water close to shore (Tsai et al., 2004)—a characteristic of many coastal boulder-ridge sites (Bryant and Nott, 2001b; Cox et al., 2012)—and this dovetails with recent modeling work showing that abrupt bathymetric transitions can produce dramatic wave amplifications (e.g. Carbone et al.,

T

2013; Viotti et al., 2014; Viotti and Dias, 2014; Brennan et al., 2017). Finally, the role of

IP

infragravity waves, which can magnify these effects by raising the local sea surface

CR

several metres, is emerging as important (e.g. Sheremet et al., 2014; Autret et al., 2016).

US

It is now well demonstrated that storm wave heights—especially when amplified near

AN

steep coasts—can be much greater than predicted by simple wave theory (O'Brien et al., 2013; Viotti and Dias, 2014; Akrish et al., 2016). Recent data show unequivocally that

M

storm waves are routinely larger than had previously been recognised (Flanagan et al.,

ED

2016; Rueda et al., 2016; Santo et al., 2016). In addition, application of hydrodynamic equations to boulders transported during specific storm events (for which wave heights

PT

are known) has shown that hydrodynamic calculations can significantly overestimate the

CE

wave heights required to move those blocks (e.g. Switzer and Burston, 2010). Thus cracks have appeared in the argument that storms cannot generate waves sufficiently

AC

large to move CBD megaclasts: in fact, they can.

At the same time, direct evidence for storm-wave emplacement of large boulders has accumulated (Courtney et al., 2012). In addition to plastic objects of recent vintage being found inextricably trapped beneath large boulders (Williams and Hall, 2004; Hall et al., 2006) and GIS analysis demonstrating boulder ridge mobility in the absence of tsunami

14

ACCEPTED MANUSCRIPT (Cox et al., 2012), there is a growing number of field observations in the wake of large recent storms. Before-and-after image analysis records displacement—at sites well inboard of the high-tide line, and elevations substantially above sea level—of boulders weighing many tens of tonnes (Goto et al., 2009; Fichaut and Suanez, 2011; May et al.,

T

2015; Watkins, 2015; Causon Deguara and Gauci, 2016; Cox et al., 2016; Kennedy et al.,

IP

2016a), and also near-sea-level movement of 100+ tonne megagravel (May et al., 2015;

CR

Cox et al., 2016; Kennedy et al., 2017). It is increasingly clear that storms can—and do—

US

move large boulders.

AN

But still, direct measurements have been few, and mostly limited to boulders sufficiently large that their pre-storm locations were visible in satellite imagery (May et al., 2015;

M

Kennedy et al., 2016b; Kennedy et al., 2017). These observations open a window on the

ED

energies unleashed by storm waves in the coastal zone, but provide little constraint on the way in which those energies dissipate as the ocean waters move inland; nor do they

PT

provide insight into the sedimentology and dynamics of CBD in general. To do that

CE

requires detailed measurement of clasts at all scales, at a site with precise topographic

event.

AC

information, and documentation of CBD configurations both before and after the storm

The west of Ireland is that site. From locations along the western coasts (Fig. 3) there are systematic sets of surveyed CBD transects, with associated sedimentologic and photographic data (Zentner, 2009; Cox et al., 2012; Jahn, 2014; Watkins, 2015; Cox et al., 2017), collected in the years before the 2013-2014 storms. We went back out to these

15

ACCEPTED MANUSCRIPT sites in the summer of 2014 to see whether the winter storms had wrought any changes. The before-and-after comparisons encompass a spectrum of topographic settings—from the tops of sheer cliffs to low-lying coastal platforms—and also incorporate the full range of boulder sizes, permitting detailed and quantitative sedimentologic analysis. Not only

T

can we show that storm waves move enormous rocks, but by examining the relationships

IP

between boulder size and distance from the ocean, we can interrogate how storm wave

US

CR

energy is transmitted inland.

3. WESTERN IRELAND’S CBD: A CLASSIC EXAMPLE

AN

Ireland’s high-energy Atlantic coasts (Fig. 3) have several well-developed CBD sites

M

(Williams and Hall, 2004; Scheffers et al., 2009; Cox et al., 2012). The most spectacular

ED

examples—with large clast sizes and well developed boulder ridges— occur at Annagh Head in Co. Mayo (Supp. Fig. 1), on the three Aran Islands (Inishmore, Inishmaan, and

PT

Inisheer) (examples are shown in Fig. 1, Supp. Figs. 2 and 3), and along the coast

CE

between Doolin and Fanore in Co. Clare (e.g. Supp. Fig. 3).

AC

Kinahan et al. (1871) were the first to document these deposits. They reported stormwave emplacement of boulders up to 53 t mass, but no further work was done until Williams and Hall (2004) described the geomorphology and sedimentology of the Aran Islands boulder ridges. Subsequent studies provided measurements of topographic setting, dimensions, and clast-size distributions of CBD at several locations in Western Ireland (Zentner, 2009; Cox et al., 2012; Jahn, 2014), as well as radiocarbon ages constraining boulder emplacement (Scheffers et al., 2009; Cox et al., 2012). These

16

ACCEPTED MANUSCRIPT datasets became the baseline for ongoing annual observations (Zentner and Cox, 2008; Zentner, 2009; Cox et al., 2012; Jahn, 2014; Watkins, 2015), coupled with comparative analysis using historical image sources (Cox, 2013). designed to track changes in the

T

CBD over time.

IP

Each field season revealed limited movement of smaller clasts (up to a few tonnes) and

CR

various lines of evidence showed that VLB were clearly shifting on decadal to centennial timescales (Hall et al., 2008; Cox et al., 2012; Cox, 2013). Little of significance,

US

however, was happening in response to the common-or-garden winter storms that

AN

happened year-to-year. We were beginning to wonder whether we would ever catch the

M

CBD in the act. But then we got lucky with the 2013-2014 storms.

ED

4. THE WINTER 2013-2014 “STORM FACTORY’ The period November 2013 to March 2014 was exceptionally stormy in northwest

PT

Europe, both because of the many closely-spaced storm events and their severity

CE

(Matthews et al., 2014; Masselink et al., 2015; Masselink et al., 2016). Wave periods greater than 20 s were measured off the southwest coast of England, and there were ten

AC

storms with peak SWH greater than 8 m, two of which had peak values greater than10 m (Masselink et al., 2015). SWH reached 14. 7 m on January 6th, 2014, and an individual wave 23. 4 m high was measured on that day at the M4 buoy off Ireland’s NW coast (Gallagher et al., 2016a). Directly west of the Aran Islands, the M6 buoy registered a SWH of 13. 6 m on January 26th, 2014, but broke its moorings in heavy seas shortly thereafter (Marine Institute pers. comm.), and so was out of commission when larger storms directly impacted the Aran Islands the following month. On February 20th,

17

ACCEPTED MANUSCRIPT however (during storm Darwin), the Kinsale Energy gas platform off the SW coast registered a 25 m wave against a background SWH of 12 m (Gallagher et al., 2016b). Peak wave periods throughout the winter were unusually long, and associated with record

T

wave heights (Met Éireann, 2014).

IP

Coastal impacts were magnified by storm surge effects. The December 5th “Xavier”

CR

storm, for example, coincided with high spring tides, maximising surge and wave heights (Met Éireann, 2014; Wadey et al., 2015). Remarkable coastal geomorphic responses that

US

were reported at the time (e.g. Duell and Brady, 2014; Petley, 2014) attested to the

AN

strength of the waves, and suggested that CBD might also have been re-arranged. We therefore mobilised a team to re-visit previously documented CBD sites in western

M

Ireland, with the specific aim of evaluating whether boulder movements had occurred.

ED

5. METHODS

PT

In summer 2014 a seven-person field team carried out a comprehensive inventory of

CE

boulder transport at 100 survey sites in western Ireland (Fig. 3). Clast movement was measured by comparison with baseline data collected in previous field seasons, so there

AC

are two sets of methodologies: the baseline surveys (collected prior to winter 2013-2014), and the post-storm data (collected in summer 2014). 5. 1 Baseline transects and photo-documentation Site surveys (collected between 2008 and 2013) used methods described in Cox et al. (2012). At each location, we recorded the topographic profile and CBD locations (horizontal distance inland and elevation above sea level), as well as heights, widths, and slope angles of boulder ridges. Topographic details were measured using surveying 18

ACCEPTED MANUSCRIPT compasses and laser rangefinders. Each survey was anchored by GPS points at the water’s edge, the ocean-side base of the ridge, the ridge crest, and the landward end of the deposit. Positional data were time-stamped so they could be corrected for tide height and referenced to local high-water level: all distances and elevations are reported as

T

Above High Water (AHW) (Zentner, 2009; Jahn, 2014). These pre-surveyed transects

CR

IP

provide elevation AHW and distance inland for all boulders measured in this study.

Systematic suites of photographs, recording boulder arrangements at each location, were

US

part of each survey. A set of photos was taken on the platform near the ridge base,

AN

looking inland, out to sea, and along the ridge in both directions; and a second set was taken from the ridge crest, also in four directions (looking inland, seaward, and up and

M

down the ridge). Additional contextual shots or views were also taken, so that there were

ED

10-20 photographs of the deposits at each surveyed site. The photos were linked to GPS points. Established sites were visited and re-photographed periodically in subsequent

PT

years, resulting in an extensive database of precisely located reference images showing

CE

boulder arrangements.

AC

5. 2 Post “Storm Factory” field observations Our summer 2014 observations used the pre-2014 photos as baseline data. Using the iPad-based GISKit software, we imported the reference images and linked them to the survey site locations. Field teams navigated to each point using GPS, and then—by comparing the image on the iPad screen with the view in front of them, and adjusting position until objects in the field of view aligned exactly as they did in the photograph— re-occupied the exact stance from which each photograph had been taken (Supplementary

19

ACCEPTED MANUSCRIPT Figs. 5-7). By comparing the reference image with the disposition of boulders on-site, we could determine what changes had occurred.

Boulders that had moved within the field of view, or ones that were newly added, were

T

tagged with a number, measured, and recorded. We targeted the largest five or six moved

IP

clasts in most cases (although where many large rocks had moved we tagged more). The

CR

index photo was then re-taken, showing the tagged boulders for subsequent comparison with the original photos (Supplementary Figs. 5-7). Each tagged boulder was measured

US

(X, Y and Z dimensions) and the values entered in a datasheet. The tag number allowed

AN

us to associate each measurement in the datasheet with a specific identifiable boulder in the field photograph. In this way we assembled a catalogue of 1153 moved boulders

M

(Table 1).

ED

5. 3 Estimating boulder size and weight

PT

Boulder masses (Table 1) were calculated based on the field measurements of X, Y and Z axis length, and using a density value of 2.61 t/m3 (measured from hand samples: Jahn,

CE

2014). Clearly—because boulder shapes are not perfectly regular—the volumes thus

AC

computed (and hence the masses) are imprecise. Recent studies comparing field approximations with 3D modeling techniques confirm the common-sense expectation that XYZ-based estimates generally over-estimate volume (e.g. Spiske et al., 2008; Gienko and Terry, 2014).

But we are not worried about this effect, for two reasons. First, boulders used as examples in the afore-referenced studies are generally irregular and/or highly porous,

20

ACCEPTED MANUSCRIPT which amplifies the difference between estimated and actual volume. In contrast, the well-lithified, pervasively jointed bedrock in our study sites yields boulders with userfriendly orthogonal shapes (Fig. 1, Supplementary Figs. 5-7) such that the X, Y and Z dimensions should yield a good approximation of actual volume; and the measured

T

density (2.61 t/m3: Jahn, 2014) is about the same as the constituent mineral density,

IP

indicating very low porosity. Second, our analysis does not require very accurate mass

CR

determinations: in the context of knowing where the largest boulders are moving, the difference between 4 and 5 t, or 18 and 20 t or between 95 and 105 t is immaterial to our

AN

US

analysis. An error of order 10% in the estimates therefore would not matter.

We tested whether our XYZ-based volume estimates could meet the 10% accuracy

M

criterion by making photogrammetric Structure-from-Motion (SfM) 3D models of a

ED

subset of boulders, and comparing the software-computed volumes with those calculated from the field measurements (see e.g. Gienko and Terry, 2014, for a fuller description of

PT

this approach). We targeted isolated boulders surrounded by bare platform so that we

CE

could capture full 360° imagery unimpeded by obstacles (precise 3D models can’t be made if parts of the boulder are occluded by other rocks). We walked around each of

AC

these boulders with a GPS-enabled digital camera, taking overlapping images to capture all sides of the boulder, the upper surface, and—to the extent possible—the base (this latter by “duck walking” in a crouch around the rock, imaging as much of the underside as we could). We used Agisoft PhotoScan Pro 1.3.0 to align the georeferenced images and construct precise spatially referenced 3D digital models of the test boulders using standard approaches (e.g. Niederheiser et al., 2016). Comparison of photogrammetric

21

ACCEPTED MANUSCRIPT volumes with those estimated from XYZ measurements (Table 2) shows differences ranging from 2-10%. Adding 10% error bars to the masses in the data figures would not change any of the trends, so we conclude that the low-tech XYZ tape-measure approach

T

provides sufficiently accurate first-order assessments of boulder volume.

IP

Dimensions of the two largest blocks (Boulders 293 and 297: Fig. 4) had to be measured

CR

remotely, because they sit on cliff-base platforms inaccessible without ropes. We flew a Phantom 3 UAV to capture the SfM photogrammetric datasets (e.g. Gienko and Terry,

US

2014; Zhang et al., 2016), imaging each boulder thoroughly (106 and 175 photos,

AN

respectively), with at least 60% overlap between photographs to minimise occlusion and

M

ensure precise modeling.

ED

Creating stand-alone 3D models for objects in a landscape involves interacting with the data, and accuracy therefore is influenced by operator choices as well as data quality. The

PT

SfM point cloud must be edited to isolate the object of interest, which involves deleting

CE

extraneous points, and in effect carving out the object from its surroundings. Furthermore, boulder undersides are unavoidably occluded where in contact with the

AC

bedrock surface. Occlusions manifest as “holes” in the 3D model, requiring extrapolation of surfaces to create a closed solid (Zhang et al., 2016). Exactness of the model therefore depends on how precisely the operator can identify the contact between the boulder and the bedrock when editing the point cloud, and on parameters chosen for the “close holes” procedure in the software. To ensure that we were capturing the uncertainty in the

22

ACCEPTED MANUSCRIPT process, we had different operators carry out these procedures several times on each boulder, and report the range of volumes and associated mass estimates for each.

5. 4 Measuring boulder displacement

IP

T

Identifying moved boulders was simple—clasts in new positions were easy to recognise

CR

in before-and-after comparisons. But figuring out how far they had moved was trickier, because that involved being able to identify both the original position and the final resting

US

place. In cases where new clasts simply appeared in the archive photograph field of view, it was impossible to determine precisely where they had come from. Similarly, locating

AN

boulders that had moved out of the picture was challenging at best. Even rocks that

M

remained within the frame could effectively be disguised if they rotated during transport, presenting a different side to the camera so that we had no chance of recognising them.

ED

We measured transport distances only in cases where we could unambiguously identify

PT

both the original and final clast locations based on the photographic evidence. We therefore report displacement values for only about a third of the database (374 of the

AC

CE

1153 clasts: Table 1)

We used tapes to measure short displacements, and laser rangefinders when transport distances were >30 m. To determine displacement of the two largest blocks (Boulders 293 and 297: Fig. 4), which are clearly visible in high-altitude orthophotography, we overlaid recent Digital Globe orthoimages (in Bing Maps and on Google Earth) with

23

ACCEPTED MANUSCRIPT Ordnance Survey Ireland (OSI) archival aerial imagery2, georeferenced and scaled them, and then measured the distance between the starting positions and the post-2014 locations (e.g. Supp. Fig. 8 A and B). 6. RESULTS AND DISCUSSION

IP

T

We photo-documented dislocation of 1153 boulders across the 100 sites, and recorded

CR

dimensions and estimated mass of each (Table 1). For 374 of these, we were able to determine not just that they had moved, but where they had come from, so in those cases

US

we also report horizontal and vertical travel distances. The amount of activity varied from site to site, ranging from a single moved boulder (at the high-elevation locations 80 and

AN

82, Table 1), to forty-two transported clasts (at Location 4). Moved clasts include pre-

M

existing boulders translocated on the coastal platform or redistributed within boulder

(e.g. Supplementary Fig. 6).

ED

ridges (e.g. Supplementary Figs. 5, 7, 8), and also boulders newly created from bedrock

PT

By combining the data from all 100 sites, we gain a synoptic view of the work done by

CE

storm waves over a wide range of elevations and inland distances. No single site includes all settings, but among the sites there are sheer cliffs (e.g. Fig 1A), broad sloping

AC

platforms (e.g. Fig. 1B, Supp. Figs. 1 and 3), and stepped coasts (Supp. Figs. 2 and 4). Thus the dataset provides an integrated view of storm-wave transport capabilities across a wide spectrum of coastal topography. The locations cover many linear km of coastline (Fig. 3). Full data, including geographic co-ordinates, are provided in Table 1, and the

2

OSI makes historical imagery available online through its GeoHive site: map. geohive. ie/mapviewer. html

24

ACCEPTED MANUSCRIPT reader can export the lat-long data to Google Earth, permitting zoomed-in examination of the topographic details of each data-collection site. 6. 1 Overview of boulder movements Masses of moved boulders span several orders of magnitude, from < 10-1 to > 0. 5 x 103

T

tonnes. Among the moved clasts are eighty-three with masses ≥ 20 t, including eighteen

CR

IP

VLB ≥ 50 t. Seven of the boulders are >100 t. The two largest blocks (Table 1, boulder numbers 267 and 293, each weighing several hundred tonnes) are located close to sea

US

level. At greater elevations, the clasts that moved are smaller—but “smaller” is a relative term: boulders up to 20 t mass were transported at 20 m AHW. The highest elevation at

AN

which we recorded displacement is 26 m AHW (at 18 m inland, maximum clast size 1. 2

M

t: Location 24 in Table 1), and the farthest distance inland is 222 m (at 20 m AHW,

ED

maximum clast size 28. 5 t, Location 54).

PT

Some boulders moved very little, others moved 10s of m. The largest horizontal transport distance we measured is 95 m (a 49 t block, which moved from a starting location in the

CE

intertidal zone to a final location 2. 3 m AHW and 45 m inland: Boulder 1088 in Table

AC

1), and the largest vertical displacement is 4. 5 m (an 18 t boulder that was transported from a ridge base at 17 m AWH to the crest of the ridge, with a starting location 120 m inland, and a final resting place 132 m inland and 21. 5 m AHW: Boulder 745 in Table 1).

Among the largest clasts, transport distances range from small nudges to substantial shunts along the coastal platform. In the 50-100 t category, boulders moved as little as 0.5

25

ACCEPTED MANUSCRIPT m (Boulder 1153, a 57 t clast, at 4 m AHW and 15 m inland) and as much as 22 m (Boulder 1095, at 75 t, moved along shore, just above high water and a few m inland). For boulders greater than 100 t, the minimum transport distance is 2 m (Boulder 1151, a 157 t rock, 3 m AHW and 30 m inland) and the largest translation measured is 23 m

CR

IP

T

(Boulder 261, 210 t at 6 m AHW and 27 m inland).

6. 2 The biggest movers

US

The two largest clasts (Boulders 267 and 293 in Table 1; Fig. 4) are located on the island of Inishmore (Fig. 1). Boulder number 267 was tricky to model because its rectilinear

AN

shape (Fig. 4A) is somewhat deceptive, and there is a deep undercut beneath the block’s

M

southern edge (right-hand side in Fig. 4A). That side is very close to the adjacent cliff, which made it difficult to image with the UAV: we were able to image all parts of the

ED

block, but the camera-to-object distance was variable, and with the busy background, that

PT

resulted in a noisy point cloud. Repeat iterations of the modeling protocols by different operators returned volumes between 180 and 185 m3, which (using density of 2.61 t/m3:

AC

CE

Jahn, 2015) correspond to mass in the range 470 to 482 t.

Boulder number 293, being more regular in shape and being farther from the cliff (Fig. 4B), was easier to measure. Repeat models produced consistent volume estimates between 237 and 239 m3, giving a mass between 619 and 624 t. To be conservative, we rounded the mean mass estimate for each block down to the nearest 5 t. Thus we report 475 t as the representative mass for Boulder number 267, and for boulder number 293 we report 620 t (Table 1) .

26

ACCEPTED MANUSCRIPT

Both the 475 t and the 620 t boulders calved from adjacent rock faces at some unknown point in the past. Both are visible as isolated blocks in OSI 1995 aerial imagery, so we know they have been there for more than twenty years, but they may be much older. The

T

sheer size of these rocks makes verification of their displacement particularly significant,

IP

so we show before-and-after image pairs for each in Supplementary Fig. 8. During winter

CR

2013-2014 each was shoved several metres along the supratidal platform: The 475 t block moved about 4 m along shore (just above high water and a few m inland: Supplementary

US

Fig. 8 A,B), and the 620 t block shifted about 3. 5 m seaward (from a starting position ≈2.

AN

5 m AHW and 75 m inland: Supplementary Fig. 8 C,D).

M

6. 3 Topographic controls on the size of boulders that are transported To a first approximation, we expect that the greater the elevation and the farther the

ED

distance inland, the lower the transmitted wave energy. Boulders close to the ocean

PT

should move more readily than hydrodynamically equivalent boulders inland, and the

CE

maximum transportable size should decrease the farther you are from the shoreline.

AC

We quantify that by examining relationships between boulder masses and their topographic setting. The biggest boulders repositioned at each study site constrain the maximum energy available at that location. There was a big range of clast sizes at these study sites, and in most cases there were larger, unmoved boulders. We are therefore confident that, for the set of storms in winter 2013-2014, we have accurately captured the relationships between topography and expended wave energy.

27

ACCEPTED MANUSCRIPT 6. 3 1. Elevation Unsurprisingly, there is a strong inverse correlation between elevation and maximum boulder mass moved. Blocks weighing hundreds of tonnes are restricted to just a few metres AHW, whereas at the highest elevations the largest clasts were two orders of

T

magnitude smaller (Fig. 5A). A regression analysis using the largest moved boulders at

CR

IP

each site yields the exponential relationship:

Equation 1

US

Mass (t) = 150 * ℮- 0.15*Elevation (m)

AN

The highest elevation in Fig. 5A is 26 m, but this does not represent the limit for boulder movements: there are CBD at higher elevation in the study areas (up to 50 m AHW:

M

Williams and Hall, 2004; Cox et al., 2012). Although the clasts at elevations >26 m did

ED

not move in this set of storms, they are contiguous with deposits where movement was recorded, so we infer that they are also storm-wave activated, and further infer that

CE

PT

future, larger storms will induce activity in those highest CBD.

6. 3. 2 Distance inland

AC

The relationship between boulder size and distance inland from the high water mark is less simple (Fig. 5B). Maximum boulder mass decreases exponentially, from greater than 500 t near the shore to something around 20 t at about 120 m inland, given by the relationship:

Mass (t) = 164 * ℮- 0.02*Distance (m)

Equation 2

28

ACCEPTED MANUSCRIPT

The rates of change shown in Fig. 5A and 5B differ by an order of magnitude: maximum transported boulder mass decreases in proportion to the 0.2 power with increasing elevation, whereas for distance inland the decrease is proportional to the 0.02 power (for

T

elevation in units of metres). This is not too surprising, as it requires more work to hoist

CR

IP

mass against gravity than to push it horizontally.

We expected to see the initial strong decrease in maximum size with inland distance, as

US

the inrushing flow loses energy. But beyond 120 m inland, the upper surface of the

AN

distribution flattens, and there is no subsequent trend in the data. From 120-220 m inland the upper limit on boulder size is consistently ≈20-35 t. This flattening of the curve was

ED

M

not predicted.

The topographic context of the data points provides some insight: the suite of locations

PT

greater than120 m inland are generally at low elevation relative to their distance from the

CE

coast, and these CBD are at the back of broad, very gently sloping coastal platforms (e.g. Fig. 1B). Ocean water this far inland is best modeled as a unidirectional bore (Cox and

AC

Machemehl, 1986), analogous to flow generated by green-water overtopping of decks and seawalls (Shao et al., 2006). As it rushes inland across a shallow coastal platform, the bore is little affected by gravity, and can therefore sustain velocity, or even increase in speed (Cox and Ortega, 2002; Ryu et al., 2007). The inland flattening of the massdistance curve (Fig. 5B) may therefore be telling us something specific about mass transport in areas with wide planar coastal topography.

29

ACCEPTED MANUSCRIPT

6. 3. 3 Steepness Neither elevation nor inland distance alone can capture the topographic relationship of a clast to the ocean: a boulder perched 20 m AWH on a cliff top is closer to the ocean than

T

one 20 m AHW at the back of a shore platform. So to incorporate both the vertical and

IP

horizontal components of the CBD setting we use the slope ratio (elevation AHW :

CR

distance inland) as a measure of the steepness of the boulder setting. This yields the strongest trend in the data: an inverse power-law relationship between steepness and

AN

US

maximum transported mass (Fig. 5C).

Equation 3

M

Mass (t) = 8. 17 * Steepness- 0.92

ED

Although we refer to this as “steepness”, we emphasise that the slope ratio does not describe an actual gradient: for example, CBD sitting on a level platform 5 m inland from

PT

the edge of a vertical 50 m cliff would register a 1-in-5 slope, with a steepness ratio of 5.

CE

In fact the cliff is much steeper than that, and the cliff-top platform much flatter. But computing the slope ratio provides a measure of both the superelevation of the storm-

AC

water surface above datum and its horizontal travel distance, giving an integrated sense of the overall work being done by the storm waves. The take-home message is that the ability of the wave to transport mass is far greater when the coastal topography is more gentle, and drops of dramatically as steepness increases.

30

ACCEPTED MANUSCRIPT 6. 4 Topographic controls on how far boulders move Clasts can move small distances at any elevation and along any kind of slope, but the greater the distance from the fairweather shoreline (vertical or horizontal) or the steeper the coastal profile, the smaller the maximum transport distance (Fig. 6). The effects are

T

strong: all relationships (computed by regression through the dark blue points in Fig. 6,

IP

which define the upper bounds on the data) are either exponential (Fig. 6A, B) or power-

CR

law (Fig. 6C).

US

The maximum measured transport distance is 95 m (Boulder 1088: a 41t clast). This

AN

boulder is one of a group (numbers 1088-1094, 35-49 t), all of which were transported more than 70 m on a broad, almost horizontal platform close to sea level (sloping 0. 05-

M

0. 07). The farthest-travelled clasts are within a few m of high water: clasts that moved

ED

more than 50 m are all at elevations below 3 m (Fig. 6A).

PT

But relocation distances at higher elevations are also non-negligible: for example,

CE

Boulder 830, a 19 t clast, moved 12 m at 21 m AHW (the location was also 83 m inland). Even at 26 m AHW, we measured transportation distances up to 4 m. There is, however,

AC

a dramatic dropoff in maximum transport distance with elevation, defined by the exponential relationship:

Transport distance (m) = 52. 5 * ℮-- 0.11*Elevation (m)

Equation 4

31

ACCEPTED MANUSCRIPT The relationship between transport length and distance inland (Fig. 6B) is less striking but nonetheless strong. The longest transport paths were closest to the fairweather shoreline (all clasts that travelled >50 m were located <45 m inland). Although transport distances decrease further inland, they remain substantial: even at 220 m inland, a 4 t

T

boulder was transported 13 m. The overall decline in maximum transport length with

IP

inland distance is, however, exponential. Although the data are noisy (R2 = 0. 56), the

CR

correlation is highly significant (p <0. 0001). The trend is similar to the transport-

US

elevation relationship in Fig. 6A but with an order-of-magnitude smaller exponent:

Equation 5

AN

Transport distance (m) = 36. 6 * ℮-- 0.01*Distance Inland (m)

M

In contrast to the boulder mass-inland distance relationship (Fig 5B), the transport length-

ED

inland distance curve does not seem to flatten inland, suggesting (maybe) a progressive decrease in sustained flow strength: although overland bores may be able to budge large

PT

boulders at long distances inland, perhaps their ability to maintain the force needed for

CE

protracted transport becomes progressively less the farther they are from the shoreline. We recognise, however, that the transport-distance regression line is less steep overall

AC

than the mass-distance line (spanning three rather than four orders of magnitude in the Y axis), which, combined with the noise inherent in the data, may be obscuring nuance or detail in the relationships.

There is a power-law relationship between transport distance and steepness (Fig. 6C):

32

ACCEPTED MANUSCRIPT Transport distance (m) = 6. 3 * Steepness-0. 74

Equation 6

which echoes the relationship between boulder mass and steepness (Fig. 5C), and scales similarly. At the steepest sites, the maximum transport was only 4 m. Transport distances

IP

T

>70 m were achieved only where steepness was < 0. 1.

CR

In general, isolated platform blocks racked up the largest transport distances, probably because they were able to skid unimpeded across bedrock. Boulders within ridges tended

US

to move less far, although some that were at the ocean-facing kerbs of boulder ridges

AN

moved substantial distances laterally along the front of the ridge. Although some boulders on ridge faces moved downward and oceanward, inland-directed transport was

M

more common: ridge boulders tended to move upward and inland on ridge faces, and

ED

some were transferred across ridge crests, ending up on the back of the ridge or even in

PT

the scattered boulder field on the landward side (Nagle-McNaughton and Cox, 2016).

CE

7. THE DOG(S) THAT DIDN’T BARK IN THE NIGHT… In focusing on the big boulders that moved in the winter of 2013-2014 we should not lose

AC

sight of those that stayed exactly where they were. Many big rocks—both isolated platform boulders and clasts within ridges—were unmoved. By remaining in place, these clasts also convey information about CBD dynamics. At most sites, the largest boulders that moved were not the largest available. This means that the biggest rocks that storm waves can transport have not yet been recorded.

33

ACCEPTED MANUSCRIPT The largest coastal boulder we know of (located at 53. 1367°N, 9. 8261°W) is not in Table 1 because it stayed absolutely stationary in 2013-2014. With mass estimated at 780 t, this clast sits 25-30 m from the cliff face where it originated. It teeters on a small bedrock step (Fig 7), demonstrating that is a cliff-detachment block dragged seaward,

T

rather than a fragment stranded by cliff retreat. We do not know at what point in the past

IP

this enormous rock was mobilised—nor can we be sure that it was moved by storm

CR

waves and not by some long-past tsunami. There are robust sedimentological arguments, however, to suggest that storm waves may have moved it. Size-wise, this block (with Y

US

axis ≈11m) is classified as a medium block (per the criteria of Blair and McPherson,

AN

1999), which is just one size category up from fine blocks, the grade in which the seven largest transported clasts fall. Hydrodynamically, it’s not much of a stretch to imagine

M

that storms more energetic than the 2013-2014 events might produce waves capable of

ED

moving such a block. We are not asserting that storm waves can do such work, but we are hypothesising that it seems probable. And we will continue to monitor this rock in future

CE

PT

years.

Some boulders that should or could have moved, did not budge. Supplementary Fig. 7

AC

shows a block excavated from the subjacent bedrock step and hoisted to lean across the ridge front by storm waves in the past (probably in 1991: Cox et al., 2012). The 20132014 storms had no effect on this block, however, despite the fact that, at 78 t, 17 m AHW and 120 m inland, its vital statistics fall well within the moved-boulder zones in the reference parameter spaces (Fig. 5).

34

ACCEPTED MANUSCRIPT The immobility of this clast during storms that moved comparable masses in comparable topographic situations speaks to the stochastic nature of storm-wave transport dynamics. Some CBD express the full capabilities of the storm, and others do not. The angle at which waves approach the shoreline will affect amplification, breaking, and inland bore

T

generation, so different storms can be expected to have varying impact on boulder

IP

deposits, depending on coastline orientation (at both the regional and the very local

CR

scale). We predict that this boulder (Supplementary Fig. 7) will move in some future storm, and our data (Fig. 5) indicate that—given the right wave approach angle—it could

AN

8. CONCLUSIONS AND IMPLICATIONS

US

happen with storms no stronger than those of winter 2013-2014.

M

Coastal boulder deposits (CBD) are archives of information about the effects of extreme

ED

waves and storm-water incursions along exposed deep-water coasts. Incorporating boulders that weigh in the 10s and even 100s of tonnes, and located above the high-water

PT

mark—some at elevations up to 50 m, some up to a quarter of a km inland—CBD are

CE

both spectacular and geomorphologically significant. They represent the inland transfer of extraordinary wave energies. As CBD record the highest energy coastal processes,

coasts.

AC

they are key elements in trying to model and forecast interactions between waves and

CBD locations, being inhospitable, bear no dwellings and have little infrastructure of any kind, and one might conclude that studying these deposits has little societal relevance. But that would be wrong. Nailing down conditions under which very big boulders are moved is not just about storm impacts on remote coasts: it has direct bearing on

35

ACCEPTED MANUSCRIPT understanding storm-coast interactions in the broadest sense. In the first place, measuring these transported boulders reveals the true scale of storm-wave energy. Until very recently, as discussed earlier, it could legitimately be argued that storm waves have not the power to move colossal boulders. We now know that they do, and we measuring

IP

T

CBD allows us to quantify that power.

CR

Second, these data may contribute to hazard modeling for different kinds of coasts under different climate scenarios. Whereas forces this extreme rarely affect the more sheltered

US

coasts where people generally live, that may change. Given that the future may bring

AN

increased storminess (Zappa et al., 2013; Brown et al., 2014; Elliott et al., 2014; Slingo et al., 2014) and will surely bring higher sea level, there is an expectation of greater

M

inundation of coastal environments in general (e.g. Vose et al., 2014; Vousdoukas et al.,

ED

2016). It is therefore timely to document as well as we can the upper limits of storm wave energy at coasts. Understanding CBD dynamics is essential part of understanding the full

PT

spectrum of wave power so that policy makers can plan forward for potential impacts of

CE

increased storm energy.

AC

Third, these kinds of data are useful for offshore wave-risk evaluation. Marine locations with abundant wave power, some in the vicinity of this study area (Gallagher et al., 2016b), are targeted for renewable-energy installations. Understanding the forces to which such devices would be subjected is critical (Tiron et al., 2013; Tiron et al., 2015), but direct measurements are difficult, and most high-resolution records are short time series (e.g. Flanagan et al., 2016). The onshore boulder movements preserve a record of

36

ACCEPTED MANUSCRIPT forces unleashed at these coasts, and may therefore serve as a proxy for the kind of pounding that near-coast offshore installations might have to endure.

Where CBD occur they provide an eloquent and nuanced record of large-wave events,

T

and their topographic locations are pinning points recording the forces exerted at those

IP

elevations and inland distances from the high-water mark. The data presented here

CR

underscore that point. The 2013-2014 storms caused boulder dislocation and transport at elevations up to 26 m AHW, and at distances up to 222 m inland (Figs. 5 and 6). Many of

US

the clasts that were transported are very big, including eighteen VLB weighing more than

AN

50 t, with six exceeding 100 t. The largest boulder that moved weighs about 620 t. These data show clearly that storm waves have the capacity to do extraordinary work at high

M

elevations and considerable distances from the fairweather shoreline. The boulder mass-

ED

topography relationships presented here—and analogous ones that we hope will be generated for other sites and other storm sets in the future—permit extrapolation and

PT

estimation of maximum transport capacities. Thus we can better constrain and understand

CE

the storm-waves forces to which exposed coasts are regularly subjected.

AC

The boulders moved in western Ireland during the 2013-2014 storms are the largest yet recorded that were unambiguously transported by waves. But we have certainly not yet captured the maximum storm-wave transport capability. At almost every site that we measured there were larger clasts, unmoved by these storms, that had been transported previously by waves. One could argue that large static boulders might be relics of longpast tsunami (Scheffers et al., 2009; Scheffers et al., 2010), but the storms of winter

37

ACCEPTED MANUSCRIPT 2013-2014, while many and impressive, were not record-breaking. Stronger individual storms have impacted these coasts in the past (e.g. Shields and Fitzgerald, 1989; Met Éireann, 1991; Cooper et al., 2004) and the 2013-2014 storm sea states were not the greatest on record for the North Atlantic region (Cardone et al., 2011; de León and

T

Soares, 2014; de León et al., 2015). Add to that other records showing wholesale

IP

migration of CBD in the last century (Cox et al., 2012), and the conclusion must be that

CR

there have been—and will be in the future—storm waves sufficiently energetic to move

US

even larger clasts.

AN

If different storms would move different boulders—and maybe larger ones—do these trends and equations (Fig. 5, 6) have any general applicability? We believe the answer is

M

yes. In areas where both storms and tsunami occur, and where there is debate as to

ED

whether CBD are influenced by one or the other, these relationships can serve as a firstorder baseline. Areas where storm emplacement has been dismissed because boulder

PT

sizes seem too large (e.g. Young et al., 1996; Whelan and Kelletat, 2005; Mastronuzzi et

CE

al., 2007; Scicchitano et al., 2007; Barbano et al., 2010; Medina et al., 2011; Mottershead et al., 2014; Prizomwala et al., 2015) can be compared with these data. If clasts fall below

AC

the lines of fit in Fig. 5, then storm wave emplacement cannot be dismissed as a potential mechanism.

It is no longer possible, in the face of these data, to conclude that CBD were deposited by tsunami based on boulder mass alone. Hydrodynamic models for boulder transport, which underpinned arguments that storm waves could not move very large boulders (e.g.

38

ACCEPTED MANUSCRIPT Young et al., 1996; Nott, 2003b; Noormets et al., 2004), clearly need revision and reanalysis. Similarly, CBD interpreted as tsunamigenic based on hydrodynamic transport equations (e.g. Bryant, 2001; Kelletat et al., 2004; Whelan and Kelletat, 2005; Bryant and Haslett, 2007; Mastronuzzi et al., 2007; Maouche et al., 2009; Barbano et al., 2010; and

T

others) should be re-evaluated. It’s entirely possible that tsunami emplaced such deposits;

IP

but the interpretation must be based on more diverse sedimentologic criteria, and not on

CR

boulder size alone. There is no one-size-fits-all criterion for determining whether a boulder was emplaced by storm waves or tsunami. But if boulder masses plot on or below

US

the reference lines on Fig. 5 A-C, the possibility of storm-wave transport cannot be

AN

excluded, and—unless there is strong evidence to the contrary—should probably be the

M

default interpretation.

ED

In the space of just a few years, discussions of boulder transport have flipped from a state where there was no observational evidence for storm wave dislocation of boulders in

PT

excess of 50 t (as was pointed out by Scheffers et al., 2009) to the current situation, where

CE

new reports of boulders exceeding those criteria are published every year (e.g. May et al., 2015; Kennedy et al., 2016b; Kennedy et al., 2017). The data presented here ratchet the

AC

ceiling for storm-wave transport up another notch. We are sure, however, that these new record masses will soon be exceeded, because although the 2013-2014 storms were powerful, from a long-term perspective they were not that special. Stronger storms have hit Ireland in the past and will again: all indicators are that larger boulder movements will be documented in the future.

39

ACCEPTED MANUSCRIPT Documenting boulder creation and transport during these events is one step in a long journey. Showing that storms can move giant rocks is one thing. Understanding the hydrodynamics behind the data is quite another. These data contribute to the growing realisation that CBD are dynamic and that storms are a more powerful sedimentologic

T

force than was hitherto recognised. But we are as yet only scratching the surface, and

CR

IP

there is a lot of work still to do.

US

ACKNOWLEDGEMENTS

We are grateful for support from NSF awards 0921962 and 1529756, as well as the

AN

Williams College Class of 1963 Sustainability Fund. We are also grateful for anonymous

M

reviewer comments on the manuscript. Many Williams College undergraduate students

ED

collected field data: baseline measurements were made by Danielle Zentner, Rebecca Gilbert, Brian Kirchner, Nari Miller, Miranda Bona, and David Rapp, and 2014 post-

PT

storm movements were recorded by Team Boulder: Kelly Tellez, Kelsey Adamson,

AC

CE

Laura Stamp, Jorge Castro, Caroline Atwood and Spencer Irvine.

40

ACCEPTED MANUSCRIPT

FIGURE CAPTIONS

Fig. 1

Coastal boulder deposits (CBD) in different settings. Arrows indicate people (adults) for scale. A. Cliff-top CBD at locations 68-69 (Figure 3, Table 1) on

IP

T

Inishmaan. The cliffs in this field of view are about 20 m high, and the

CR

seaward edge of the boulder ridge is 32-42 m inland from the cliff edge. B. Locations 47-49 on Inishmaan are at the back of a broad, gently sloping

US

coastal platform. The seaward edge of the boulder ridge is 10-11 m AHW and 150-160 m inland, and the ridge itself is about 3 m tall. The paler-

AN

coloured bedrock at the toe of the boulder pile was newly exposed when this

M

CBD migrated inland by 1-2 m in winter 2013-2014. The large isolated

ED

boulder in the foreground (with person next to it) has mass ≈19 t (see Table 2, Boulder 3). Both photographs were taken in summer 2016. In addition to

PT

showcasing different kinds of CBD setting, these images speak to ongoing

CE

boulder transport: the isolated clasts with people next to them (two in A, one in B) all moved between 2014 and 2016. Additional site images can be

Fig. 2

AC

found in Supplemental Figures XXX

Diagrammatic representation of the different kinds of CBD. Boulder ridges may form at a range of elevations, from 1-50 m AHW and are built of clasts ranging in size from fine pebbles to medium blocks (per the Blair and McPherson, 1999 size scale). Isolated platform boulders are usually large relative to clasts in the ridge (>95th percentile in grain size). Both boulder

41

ACCEPTED MANUSCRIPT ridges and isolated platform boulders are excavated and transported inland by wave, with some component of work done against gravity. Cliffdetachment blocks fall or are separated from superjacent cliff faces, and are moved along the shore platform with little or no vertical component to the

Locations from which data were collected are wide spread on the west coast

CR

Fig. 3

IP

T

transport.

of Ireland. Base map © maproom. net. Geographic co-ordinates for all

US

locations are given in Table 1. The reader can export the latitude and

AN

longitude data to Google Earth or Bing Maps to view detailed topography

ED

Feld photographs of the two largest blocks to have moved during winter 2013-2014. Both are on the island of Inishmore. A: Boulder 267, on the

PT

lower platform, weighs ≈475 t. The yellow box outlines two full-size adults

CE

on the upper platform. B: Boulder 293 weighs ≈620 t The white patch on its upper surface marks the previous location of a 60-ton slab that was dislodged during the recent storms. Supplementary Fig. 4 shows before-and-

AC

Fig. 4

M

and geomorphology of all sites, or of any specific site.

after location images for both. boulders. See section 6.2 for details on the mass determinations.

The platforms on which these blocks are sitting are close to sea level, but above the high-water mark. The ponds near the boulders are not tide pools,

42

ACCEPTED MANUSCRIPT but contain fresh water (made slightly brackish by sea spray), which flows onto the platform via springs emerging along bedding planes in the limestone. The bright green algae in both images are non-marine, salttolerant terrestrial species. In B, the tide is partially out and the upper

T

intertidal (lowest platform) is visible. In A, the tide is almost fully in, and

CR

Masses of transported boulders as a function of topography. Y axis labels in

US

panel A apply to all panels. The graphs show all data; the points included in

AN

the regression analysis (i.e. the two or three largest masses at each elevation) are highlighted in dark blue. Of the 1153 measured boulders, 41 were

M

excluded from the steepness analysis in panel C: because our topographic

ED

measurements are accurate only to about 1 m, steepness estimates are imprecise for locations close to sea level where both elevation and inland

PT

distance values approach the error on our measurements. We therefore

CE

exclude boulders close to the shoreline, because in those locations our “steepness” estimates are not meaningful. Cutoff values are 10 m inland and 4 m AHW: boulder settings must exceed one or both of those values to be

AC

Fig. 5

IP

that lowermost platform is inundated.

included. Boulder no. 267, one of the two largest clasts moved, barely meets the criteria for inclusion: it is only about 1 m AHW, and its centre of mass is about 11 m inland. The dotted line connecting two points at the upper left corner of the graph shows the range in steepness values for this block based on the limits of topographic accuracy. The different locations of this point

43

ACCEPTED MANUSCRIPT do not materially affect the regression line (co-efficients change only in the second decimal place).

Fig. 6

Horizontal clast transport distance as a function of topographic steepness

T

(elevation AHW/ distance inland). Where there is a large distance between

IP

the origin and resting place of the clast, the starting topographic setting is

CR

used. Total N = 367: this is the subset of the dataset for which we were able to measure robust transport distances. The darker points (N = 24) are the

US

three highest transport-distance values per X-axis value, and define the

AN

upper limits of the data distributions. The regression line through these points provides a relationship between coastal steepness and likely

Fig. 7

ED

M

maximum transport distance.

This ~780 t cliff-detachment block, at the northwestern end of Inishmore in

PT

the Aran Islands, near location 33 (Fig. 3), did not move during the 2013-

CE

2014 storms, but was transported to it its current location at some point in

Table 1 Table 2

AC

the past.

Main data table with all moved boulders Comparison of photogrammetric and field measurements of mass

44

ACCEPTED MANUSCRIPT BIBLIOGRAPHY Akrish, G., Rabinovitch, O., Agnon, Y., 2016. Extreme run-up events on a vertical wall due to nonlinear evolution of incident wave groups. Journal of Fluid Mechanics 797, 644-664. Atan, R., Goggins, J., Harnett, M., Agostinho, P., Nash, S., 2016. Assessment of wave

T

characteristics and resource variability at a 1/4-scale wave energy test site in

IP

Galway Bay using waverider and high frequency radar (CODAR) data. Ocean

CR

Engineering 117, 272-291.

Autret, R., Dodet, G., Fichaut, B., Suanez, S., David, L., Leckler, F., Ardhuin, F., Ammann, J., Grandjean, P., Allemand, P., 2016. A comprehensive hydro-

US

geomorphic study of cliff-top storm deposits on Banneg Island during winter 2013–2014. Marine Geology.

AN

Barbano, M.S., Pirrotta, C., Gerardi, F., 2010. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Marine Geology 275, 140-154.

M

doi: 10.1016/j.margeo.2010.05.005

Beisiegel, N., Dias, F., 2017. A Pseudo-Spectral Method for Extreme Storm Waves, The

ED

27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers: ISOPE-I-17-597.

PT

Blair, T.C., McPherson, J.G., 1999. Grain-size and textural classification of coarse sedimentary particles. Journal of Sedimentary Research 69, 6-19.

CE

Brennan, J., Clancy, C., Harrington, J., Cox, R., Dias, F., 2017. Analysis of the pressure at a vertical barrier due to extreme wave run-up over variable bathymetry.

AC

Theoretical and Applied Mechanics Letters in review. Brown, S., Nicholls, R.J., Hanson, S., Brundrit, G., Dearing, J.A., Dickson, M.E., Gallop, S.L., Gao, S., Haigh, I.D., Hinkel, J., Jimenez, J.A., Klein, R.J.T., Kron, W., Lazar, A.N., Neves, C.F., Newton, A., Pattiaratachi, C., Payo, A., Pye, K., Sanchez-Arcilla, A., Siddall, M., Shareef, A., Tompkins, E.L., Vafeidis, A.T., van Maanen, B., Ward, P.J., Woodroffe, C.D., 2014. Shifting perspectives on coastal impacts and adaptation. Nature Clim. Change 4, 752-755. 10.1038/nclimate2344 Bryant, E., Nott, J., 2001a. Geological indicators of large tsunami in Australia. Natural Hazards 24, 231-249. 45

ACCEPTED MANUSCRIPT Bryant, E., 2014. Tsunami: the underrated hazard, Third ed. Springer, United Kingdom. Bryant, E.A., Nott, J., 2001b. Geological indicators of large tsunami in Australia. Natural Hazards 24, 231-249. Bryant, E.A., 2001. Tsunami —The Underrated Hazard. Cambridge University Press, Melbourne. Bryant, E.A., Haslett, S.K., 2007. Catastrophic wave erosion, Bristol Channel, United

T

Kingdom: Impact of tsunami? Journal of Geology 115, 253-269.

IP

Burgers, G., Koek, F., Vries, H., Stam, M., 2008. Searching for Factors that Limit

CR

Observed Extreme Maximum Wave Height Distributions in the North Sea, in: Pelinovsky, E., Kharif, C. (Eds.), Extreme Ocean Waves. Springer Netherlands,

US

pp. 127-138.

Burvingt, O., Masselink, G., Russell, P., Scott, T., 2016. Beach response to consecutive

AN

extreme storms using LiDAR along the SW coast of England. Journal of Coastal Research 75, 1052-1056.

M

Buscombe, D., Masselink, G., 2006. Concepts in gravel beach dynamics. Earth-Science Reviews 79, 33-52.

ED

Carbone, F., Dutykh, D., Dudley, J.M., Dias, F., 2013. Extreme wave runup on a vertical cliff. Geophysical Research Letters 40, 3138-3143.

PT

Cardone, V.J., Cox, A.T., Morrone, M.A., Swail, V.R., 2011. Global distribution and associated synoptic climatology of very extreme sea states (VESS), Proceedings

CE

12th International workshop on wave hindcasting and forecasting, Hawaii. Castelle, B., Marieu, V., Bujan, S., Splinter, K.D., Robinet, A., Sénéchal, N., Ferreira, S.,

AC

2015. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 238, 135-148. Causon Deguara, J., Gauci, R., 2016. Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean). Natural Hazards, 1-26. 10.1007/s11069-016-2525-4 Cooper, J., Jackson, D., Navas, F., McKenna, J., Malvarez, G., 2004. Identifying storm impacts on an embayed, high-energy coastline: examples from western Ireland. Marine Geology 210, 261-280.

46

ACCEPTED MANUSCRIPT Courtney, C., Dominey-Howes, D., Goff, J., Chagué-Goff, C., Switzer, A.D., McFadgen, B., 2012. A synthesis and review of the geological evidence for palaeotsunamis along the coast of southeast Australia: The evidence, issues and potential ways forward. Quaternary Science Reviews 54, 99-125. doi: 10.1016/j.quascirev.2012.06.018 Cox, D.T., Ortega, J.A., 2002. Laboratory observations of green water overtopping on a

T

fixed deck. Ocean Engineering 29, 1827-1840.

IP

Cox, J.C., Machemehl, J., 1986. Overload bore propagation due to an overtopping wave.

CR

Journal of Waterway, Port, Coastal and Ocean Engineering 112, 161-163. Cox, R., Zentner, D.B., Kirchner, B.J., Cook, M.S., 2012. Boulder ridges on the Aran

US

Islands (Ireland): Recent movements caused by storm waves, not tsunami. Journal of Geology 120, 249-272. doi: 10.1086/664787

AN

Cox, R., 2013. 1930s movie "Man of Aran" as documentary source for studying boulder transport by storm waves. Geological Society of America Abstracts with

M

Programs 45, 52.

Cox, R., Watkins, O.G., Tellez, K., Stamp, L.K., Irvine, S.W., Castro, J.A., Atwood,

ED

C.E., Adamson, K.P., 2014. Measuring the effects of winter storms (2013-2014) on boulder and megagravel accumulations in western Ireland. Geological Society

PT

of America Abstracts with Programs 46, 453. Cox, R., Jahn, K.L., Watkins, O.G., 2016. Movement of boulders and megagravel by

CE

storm waves. Geophysical Research Abstracts 18, EGU2016-10535. meetingorganizer.copernicus.org/EGU2016/EGU2016-10535.pdf

AC

Cox, R., Lopes, W.A., Jahn, K.L., 2017. Roundness measurements in coastal boulder deposits. Marine Geology. http://dx.doi.org/10.1016/j.margeo.2017.03.003 de León, S.P., Soares, C.G., 2014. Extreme wave parameters under North Atlantic extratropical cyclones. Ocean Modelling 81, 78-88. de León, S.P., Bettencourt, J.H., Brennan, J., Dias, F., 2015. Evolution of the Extreme Wave Region in the North Atlantic Using a 23 Year Hindcast, ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, pp. V003T002A019-V003T002A019.

47

ACCEPTED MANUSCRIPT Didenkulova, I., Anderson, C., 2006. Freak waves in 2005. Natural Hazards and Earth System Science 6, 1007-1015. Didenkulova, I., 2011. Shapes of freak waves in the coastal zone of the Baltic Sea (Tallinn Bay). Boreal Environment Research 16 (suppl. A), 138-148. Duell, M., Brady, T., 2014. Obliterated: Cliff stack reduced to sad-looking pile of rubble by raging seas, Daily Mail, 6 January, United Kingdom.

T

Earlie, C.S., Young, A.P., Masselink, G., Russell, P.E., 2015. Coastal cliff ground

IP

motions and response to extreme storm waves. Geophysical Research Letters 42,

CR

847-854.

Elliott, M., Cutts, N.D., Trono, A., 2014. A typology of marine and estuarine hazards and

US

risks as vectors of change: A review for vulnerable coasts and their management. Ocean & Coastal Management 93, 88-99.

AN

http://dx.doi.org/10.1016/j.ocecoaman.2014.03.014

Emery, K.O., 1955. Grain size of marine beach gravels. Journal of Geology 63, 39-49.

M

Erdmann, W., Kelletat, D., Kuckuck, M., 2017. Boulder Ridges and Washover Features in Galway Bay, Western Ireland. Journal of Coastal Research.

ED

Etienne, S., Paris, R., 2010. Boulder accumulations related to storms on the south coast of the Reykjanes Peninsula (Iceland). Geomorphology 114, 55-70.

PT

doi:10.1016/j.geomorph.2009.02.008 Felton, E.A., Crook, K.A.W., 2003. Evaluating the impacts of huge waves on rocky

CE

shorelines: an essay review of the book ‘Tsunami—The Underrated Hazard’. Marine Geology 197, 1-12. doi:10.1016/S0025-3227(03)00086-0

AC

Fichaut, B., Suanez, S., 2011. Quarrying, transport and deposition of cliff-top storm deposits during extreme events: Banneg Island, Brittany. Marine Geology 283, 36-55. doi:10.1016/j.margeo.2010.11.003 Flanagan, J.D., Dias, F., Terray, E., Strong, B., Dudley, J., 2016. Extreme Water Waves off the West Coast of Ireland: Analysis of ADCP Measurements, The 26th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers. Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., Wunsch, C., 2015. ECCO version 4: an integrated framework for non-linear inverse modeling and global

48

ACCEPTED MANUSCRIPT ocean state estimation. Geoscientific Model Development 8, 3071–3104. http://dx.doi.org/10.5194/gmd-8-3071-2015 Gallagher, S., Gleeson, E., Tiron, R., McGrath, R., Dias, F., 2016a. Wave climate projections for Ireland for the end of the 21st century including analysis of EC‐ Earth winds over the North Atlantic Ocean. International Journal of Climatology.

T

Gallagher, S., Tiron, R., Whelan, E., Gleeson, E., Dias, F., McGrath, R., 2016b. The

IP

nearshore wind and wave energy potential of Ireland: a high resolution assessment of availability and accessibility. Renewable Energy 88, 494-516.

CR

Gienko, G.A., Terry, J.P., 2014. Three‐dimensional modeling of coastal boulders using multi‐view image measurements. Earth Surface Processes and Landforms 39,

US

853-864.

Goto, K., Okada, K., Imamura, F., 2009. Characteristics and hydrodynamics of boulders

AN

transported by storm waves at Kudaka Island, Japan. Marine Geology 262, 14-24. http://dx.doi.org/10.1016/j.margeo.2009.03.001

M

Goto, K., Miyagi, K., Kawamata, H., Imamura, F., 2010. Disrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology

ED

269, 34-45. doi:10.1016/j.margeo.2009.12.004 Goto, K., Miyagi, K., Kanawa, T., Takahashi, J., Imanmura, F., 2011. Emplacement and

PT

movement of boulders by known storm waves — Field evidence from the Okinawa Islands, Japan. Marine Geology 283, 66-78. doi:

CE

10.1016/j.margeo.2010.09.007 Hall, A.M., Hansom, J.D., Williams, D.M., Jarvis, J., 2006. Distribution, geomorphology

AC

and lithofacies of cliff-top storm deposits: Examples from the high-energy coasts of Scotland and Ireland. Marine Geology 232, 131-155. doi:10.1016/j.margeo.2006.06.008 Hall, A.M., Hansom, J.D., Jarvis, J., 2008. Patterns and rates of erosion produced by high energy wave processes on hard rock headlands: The Grind of the Navir, Shetland, Scotland. Marine Geology 248, 28-46. doi: 10.1016/j.margeo.2007.10.007 Hall, A.M., Hansom, J.D., Williams, D.M., 2010. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral

49

ACCEPTED MANUSCRIPT environment: A Discussion. Journal of Geology 118, 699-704. doi: 10.1086/656356 Hall, A.M., 2011. Storm wave currents, boulder movement and shore platform development: a case study from East Lothian, Scotland. Marine Geology 283, 98105. Hansom, J.D., Barltrop, N.D.P., Hall, A.M., 2008. Modelling the processes of cliff-top

T

erosion and deposition under extreme storm waves. Marine Geology 253, 36-50.

IP

doi: 10.1016/j.margeo.2008.02.015

CR

Hansom, J.D., Hall, A.M., 2009. Magnitude and frequency of extra-tropical North Atlantic cyclones: A chronology from cliff-top storm deposits. Quaternary

US

International 195, 42-52. doi:10.1016/j.quaint.2007.11.010

Herterich, J.G., Cox, R., Dias, F., in press. Mechanics of very large boulder creation via

AN

hydraulic fracture. Marine Geology.

Hibberd, S., Peregrine, D.H., 1979. Surf and run-up on a beach: a uniform bore. Journal

M

of Fluid Mechanics 95, 323-345. 10.1017/S002211207900149X Hibbert-Ware, S., 1822. A description of the Shetland Islands : comprising an account of

ED

their scenery, antiquities and superstitions. Constable & Co., Edinburgh. Hoffmann, G., Reicherter, K., Wiatr, T., Grützner, C., Rausch, T., 2013. Block and

PT

boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains? Natural Hazards 65, 851-873.

CE

doi:10.1007/s11069-012-0399-7 Jahn, K.L., 2014. The sedimentology of storm-emplaced coastal boulder deposits in the

AC

Northeastern Atlantic region, Geosciences. Williams College, Williamstown, p. 90.

Kelletat, D., Scheffers, A., Scheffers, S., 2004. Holocene tsunami deposits on the Bahaman Islands of Long Island and Eleuthera. Zeitschrift für Geomorphologie 48, 519-540. Kennedy, A.B., Mori, N., Yasuda, T., Shimozono, T., Tomiczek, T., Donahue, A., Shimura, T., Imai, Y., 2016a. Extreme Block and Boulder Transport along a Cliffed Coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Marine Geology. http://dx.doi.org/10.1016/j.margeo.2016.11.004

50

ACCEPTED MANUSCRIPT Kennedy, A.B., Mori, N., Zhang, Y., Yasuda, T., Chen, S.-E., Tajima, Y., Pecor, W., Toride, K., 2016b. Observations and modeling of coastal boulder transport and loading during Super Typhoon Haiyan. Coastal Engineering Journal 58, 1640004. Kennedy, A.B., Mori, N., Yasuda, T., Shimozono, T., Tomiczek, T., Donahue, A., Shimura, T., Imai, Y., 2017. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Marine

T

Geology 383, 65-77.

IP

Kinahan, G., Nolan, J., Leonard, H., Cruise, R., 1878. Explanatory Memoir to

CR

Accompany Sheets 93 and 94, with the Adjoining Portions of Sheets 83, 84, and 103, of the Maps of the Geological Survey of Ireland. Memoir of the Geological

US

Survey of Ireland. HM Stationery Office, Dublin, available on Google Books https://books.google.com/books?id=XToiAQAAMAAJ.

AN

Kinahan, G.H., Leonard, H., Cruise, R.J., 1871. Explanatory memoir to accompany Sheets 104 and 113 with the adjoining portions of sheets 103 and 122 (Killkieran

M

and Aran sheets) of the Geological Survey of Ireland, Memoirs of the Geological Survey. p.

ED

Lorang, M.S., 2000. Predicting threshold entrainment mass for a boulder beach. Journal of Coastal Research 16, 432-445.

PT

Maouche, S., Morhange, C., Meghraoui, M., 2009. Large boulder accumulation on the Algerian coast evidence tsunami events in the western Mediterranean. Marine

CE

Geology 262, 96-104. doi:10.1016/j.margeo.2009.03.013 Masselink, G., Scott, T., Poate, T., Russell, P., Davidson, M., Conley, D., 2015. The

AC

extreme 2013/2014 winter storms: hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surface Processes and Landforms, n/a-n/a. 10.1002/esp.3836 Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., Floc'h, F., 2016. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters 43, 2135-2143. Mastronuzzi, G., Pignatelli, C., Sanso, P., Selleri, G., 2007. Boulder accumulations produced by the 20th of February, 1743 tsunami along the coast of southeastern

51

ACCEPTED MANUSCRIPT Salento (Apulia region, Italy). Marine Geology 242, 191-205. doi: 10.1016/j.margeo.2006.10.025 Matthews, T., Murphy, C., Wilby, R.L., Harrigan, S., 2014. Stormiest winter on record for Ireland and UK. Nature Climate Change 4, 738-740. 10.1038/nclimate2336 May, S.M., Engel, M., Brill, D., Cuadra, C., Lagmay, A.M.F., Santiago, J., Suarez, J.K., Reyes, M., Brückner, H., 2015. Block and boulder transport in Eastern Samar

T

(Philippines) during Supertyphoon Haiyan. Earth Surf. Dynam. Discuss. 3, 739-

IP

771. 10.5194/esurfd-3-739-2015

CR

Medina, F., Mhammdi, N., Chiguer, A., Akil, M., Jaaidi, E.B., 2011. The Rabat and Larache boulder fields; new examples of high-energy deposits related to storms

US

and tsunami waves in north-western Morocco. Natural Hazards 59, 725-747. doi: 10.1007/s11069-011-9792-x

AN

Met Éireann, 1991. Storm causes death and destruction. Monthly Weather Bulletin, February issue, 1-5.

M

Met Éireann, 2014. Winter 2013/2014. Monthly Weather Bulletin, December issue, 1-5. Morton, R.A., Richmond, B.M., Jaffe, B.E., Gelfenbaum, G., 2006. Reconnaissance

ED

investigation of Caribbean extreme wave deposits—Preliminary observations, interpretations, and research directions, USGS Open-File Report 2006-1293. 46 p.

PT

Morton, R.A., Richmond, B.M., Jaffe, B.E., Gelfenbaum, G., 2008. Coarse-clast ridge complexes of the Caribbean: A preliminary basis for distinguishing tsunami and

CE

storm-wave origins. Journal of Sedimentary Research 78, 624-637. doi: 10.2110/jsr.2008.068

AC

Mottershead, D., Bray, M., Soar, P., Farres, P.J., 2014. Extreme wave events in the central Mediterranean: Geomorphic evidence of tsunami on the Maltese Islands. Zeitschrift f??r Geomorphologie 58, 385-411. 10.1127/0372-8854/2014/0129 Nagle-McNaughton, T.P., Cox, R., 2016. Inland migration of coastal boulder deposits on Inishmaan, Ireland, measured using structure-from-motion photogrammetry. Geological Society of America Abstracts with Programs 48. doi: 10.1130/abs/2016AM-281197 Niederheiser, R., Mokroš, M., Lange, J., Petschko, H., Prasicek, G., Elberink, S.O., 2016. Deriving 3D Point Clouds from Terrestrial Photographs-Comparison of Different

52

ACCEPTED MANUSCRIPT Sensors and Software. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 685-692. Noormets, R., Crook, K.A.W., Felton, A., 2004. Sedimentology of rocky shorelines: 3. Hydrodynamics of megalast emplacement and transport on a shore platform, Oahu, Hawaii. Sedimentary Geology 172, 41-65. doi:10.1016/j.sedgeo.2004.07.006

T

Nott, J., 1997. Extremely high-energy wave deposits inside the Great Barrier Reef,

IP

Australia: determining the cause—tsunami or tropical cyclone. Marine Geology

CR

141, 193-207.

Nott, J., 2003a. Tsunami or storm waves?—Determining the origin of a spectacular field

US

of wave emplaced boulders using numerical storm surge and wave models and hydrodynamic transport equations. Journal of Coastal Research 19, 348-356.

AN

Nott, J., 2003b. Waves, coastal boulder deposits and the importance of the pre-transport setting. Earth and Planetary Science Letters 210, 269-276. doi: 10.1016/S0012-

M

821X(03)00104-3

O'Brien, L., Dudley, J.M., Dias, F., 2013. Extreme wave events in Ireland: 14 680 BP-

ED

2012. Natural Hazards and Earth System Sciences 13, 625-648. O'Donovan, J., 1839. Letters containing information relative to the antiquities of the

PT

County of Galway, collected during the progress of the Ordnance Survey in 1839; reproduced in 1928 under the direction of Rev. M. O'Flanagan.

CE

Oak, H.L., 1984. The Boulder Beach: A Fundamentally Distinct Sedimentary Assemblage. Annals of the Association of American Geographers 74, 71-82.

AC

10.1111/j.1467-8306.1984.tb01435.x Petley, D., 2014. Remarkable coastal change from the recent UK storms. American Geophysical Union AGU Blogosphere. http://blogs.agu.org/landslideblog/2014/01/08/uk-storms/ Prizomwala, S.P., Gandhi, D., Ukey, V.M., Bhatt, N., Rastogi, B.K., 2015. Coastal boulders as evidences of high-energy marine events from Diu Island, west coast of India: storm or palaeotsunami? Natural Hazards 75, 1187-1203. 10.1007/s11069-014-1371-5

53

ACCEPTED MANUSCRIPT Richmond, B.M., Watt, S., Buckley, M., Jaffe, B.E., Gelfenbaum, G., Morton, R.A., 2011. Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawaiʻi. Marine Geology 283, 79-89. Roland, A., Ardhuin, F., 2014. On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dynamics 64, 833-846. Rueda, A., Camus, P., Méndez, F.J., Tomás, A., Luceño, A., 2016. An extreme value

IP

Geophysical Research (Oceans) 121, 1262-1273.

T

model for maximum wave heights based on weather types. Journal of

CR

Ryu, Y., Chang, K.-A., Mercier, R., 2007. Runup and green water velocities due to breaking wave impinging and overtopping. Experiments in Fluids 43, 555-567.

US

doi: 10.1007/s00348-007-0332-0

Santo, H., Taylor, P.H., Gibson, R., 2016. Decadal variability of extreme wave height

AN

representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society. Proceedings of the Royal Society A:

M

Mathematical, Physical and Engineering Science 472. 10.1098/rspa.2016.0376 Scheffers, A., 2002. Paleotsunami evidence from boulder deposits on Aruba, Curaçao,

ED

and Bonaire. Science of Tsunami Hazards 20, 26-37. Scheffers, A., Kelletat, D., 2003. Sedimentologic and geomorphologic tsunami imprints

PT

worldwide—a review. Earth-Science Reviews 63, 83-92. doi:10.1016/S00128252(03)00018-7

CE

Scheffers, A., Scheffers, S., Kelletat, D., Browne, T., 2009. Wave-emplaced coarse debris and megaclasts in Ireland and Scotland: Boulder transport in a high-energy littoral

AC

enviroment. Journal of Geology 117, 553-573. doi: 10.1086/600865 Scheffers, A., Kelletat, D., Haslett, S.K., Scheffers, S., Browne, T., 2010. Coastal boulder deposits in Galway Bay and the Aran Islands, western Ireland. Zeitschrif für Geomorphologie 54, Suppl. 3, 247-279. doi: 10.1127/0372-8854/2010/0054S30027 Scheffers, A.M., Kinis, S., 2014. Stable imbrication and delicate/unstable settings in coastal boulder deposits: Indicators for tsunami dislocation? Quaternary International 332, 73-84. http://dx.doi.org/10.1016/j.quaint.2014.03.004

54

ACCEPTED MANUSCRIPT Scicchitano, G., Monaco, C., Tortorici, L., 2007. Large boulder deposits by tsunami waves along the Ionian coast of south-eastern Sicily (Italy). Marine Geology 238, 75-91. doi: 10.1016/j.margeo.2006.12.005 Shao, S., Ji, C., Graham, D.I., Reeve, D.E., James, P.W., Chadwick, A.J., 2006. Simulation of wave overtopping by an incompressible SPH model. Coastal Engineering 53, 723-735.

T

Sheremet, A., Staples, T., Ardhuin, F., Suanez, S., Fichaut, B., 2014. Observations of

CR

Letters 41, 976-982. 10.1002/2013GL058880

IP

large infragravity wave runup at Banneg Island, France. Geophysical Research

Shields, L., Fitzgerald, D., 1989. The 'Night of the Big Wind' in Ireland, 6-7 January

US

1839. Irish Geography 22, 31-43. doi: 10.1080/00750778909478784 Siggins, L., 2017. Storm Ophelia: record 26m wave at Kinsale gas platform off south

AN

coast, The Irish Times, October 19th

https://www.irishtimes.com/news/ireland/irish-news/storm-ophelia-record-26m-

M

wave-at-kinsale-gas-platform-off-south-coast-1.3262198. Slingo, J., Belcher, S., Scaife, A., McCarthy, M., Saulter, A., McBeath, K., Jenkins, A.,

ED

Huntingford, C., Marsh, T., Hannaford, J., 2014. The recent storms and floods in the UK, 29 p.

PT

Soomere, T., 2010. Rogue waves in shallow water. European Physical Journal Special Topics 185, 81-96. doi:10.1140/epjst/e2010-01240-1

CE

Spiske, M., Böröcz, Z., Bahlburg, H., 2008. The role of porosity in discriminating between tsunami and hurricane emplacement of boulders — A case study from

AC

the Lesser Antilles, southern Caribbean. Earth and Planetary Science Letters 268, 384-396. doi:10.1016/j.epsl.2008.01.030 Stevenson, T., 1845. IV.—Account of Experiments upon the Force of the Waves of the Atlantic and German Oceans. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 16, 23-32. Suanez, S., Fichaut, B., Magne, R., 2009. Cliff-top storm deposits on Banneg Island, Briggany, France: Effects of giant waves in the Eastern Atlantic Ocean. Sedimentary Geology 220, 12-28. doi:10.1016/j.sedgeo.2009.06.004

55

ACCEPTED MANUSCRIPT Süssmilch, C.A., 1912. Note on some recent marine erosion at Bondi. Journal and Proceedings of the Royal Society of New South Wales 46, 155-158. Switzer, A.D., Burston, J.M., 2010. Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorphology 114, 42-54. doi:10.1016/j.geomorph.2009.02.009 Tiron, R., Gallagher, S., Dias, F., 2013. Influence of coastal morphology on the wave

T

climate and wave energy resource of the west Irish coast, Proceedings of the 10th

IP

European Wave and Tidal Energy Conference Series EWTEC, Aalborg,

CR

Denmark.

Tiron, R., Mallon, F., Dias, F., Reynaud, E.G., 2015. The challenging life of wave energy

US

devices at sea: A few points to consider. Renewable and Sustainable Energy Reviews 43, 1263-1272.

AN

Tsai, C.-H., Su, M.-Y., Huang, S.-J., 2004. Observations and conditions for occurrence of dangerous coastal waves. Ocean Engineering 31, 745-760. doi:10.1016/S0029-

M

8018(03)00113-6

Turton, J., Fenna, P., 2008. Observations of extreme wave conditions in the north-east

ED

Atlantic during December 2007. Weather 63, 352-355. doi: 10.1002/wea.321 Viotti, C., Carbone, F., Dias, F., 2014. Conditions for extreme wave runup on a vertical

PT

barrier by nonlinear dispersion. Journal of Fluid Mechanics 748, 768-788. Viotti, C., Dias, F., 2014. Extreme waves induced by strong depth transitions: Fully

CE

nonlinear results. Physics of Fluids 26, 051705. doi:http://dx.doi.org/10.1063/1.4880659

AC

Vose, R.S., Applequist, S., Bourassa, M.A., Pryor, S.C., Barthelmie, R.J., Blanton, B., Bromirski, P.D., Brooks, H.E., DeGaetano, A.T., Dole, R.M., Easterling, D.R., Jensen, R.E., Karl, T.R., Katz, R.W., Klink, K., Kruk, M.C., Kunkel, K.E., MacCracken, M.C., Peterson, T.C., Shein, K., Thomas, B.R., Walsh, J.E., Wang, X.L., Wehner, M.F., Wuebbles, D.J., Young, R.S., 2014. Monitoring and Understanding Changes in Extremes: Extratropical Storms, Winds, and Waves. Bulletin of the American Meteorological Society 95, 377-386. 10.1175/bams-d12-00162.1

56

ACCEPTED MANUSCRIPT Vousdoukas, M.I., Voukouvalas, E., Annunziato, A., Giardino, A., Feyen, L., 2016. Projections of extreme storm surge levels along Europe. Climate Dynamics 47, 3171-3190. Wadey, M., Brown, J., Haigh, I., Dolphin, T., Wisse, P., 2015. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions. Natural Hazards and Earth System Science 15, 2209-

T

2225.

CR

Williams College, Williamstown, p. 133.

IP

Watkins, O.G., 2015. Boulder movements on the cliffs of western Ireland, Geosciences.

Whelan, F., Kelletat, D., 2005. Boulder deposits on the southern Spanish Atlantic coast:

US

Possible evidence for the 1755 AD Lisbon tsunami? Science of Tsunami Hazards 23, 25-38.

AN

Williams, D.M., Hall, A.M., 2004. Cliff-top megaclast deposits of Ireland, a record of extreme waves in the North Atlantic—storms or tsunamis? Marine Geology 206,

M

101-117. doi:10.1016/j.margeo.2004.02.002

Young, R.W., Bryant, E.A., Price, D.M., 1996. Catastrophic wave (tsunami?) transport of

ED

boulders in New South Wales, Australia. Zeitschrif für Geomorphologie 40, 191207.

PT

Zappa, G., Shaffrey, L.C., Hodges, K.I., Sansom, P.G., Stephenson, D.B., 2013. A multimodel assessment of future projections of North Atlantic and European

5862.

CE

extratropical cyclones in the CMIP5 climate models. Journal of Climate 26, 5846-

AC

Zentner, D., Cox, R., 2008. Characteristics and hydrodynamic interpretation of stormemplaced cliff-top boulder ridges on Inishmore, Aran Islands, Ireland, AGU Fall Meeting Abstracts, p. 1293. Zentner, D., 2009. Geospatial, hydodynamic, and field evidence for the storm-wave emplacement of boulder ridges on the Aran Islands, Ireland, Geosciences. Williams College, Williamstown, p. 190. Zhang, R., Schneider, D., Strauß, B., 2016. Generation and Comparison of TLS and SfM Based 3D Models of Solid Shapes in Hydromechanic Research. Proceedings of

57

ACCEPTED MANUSCRIPT the ISPRS-International Archives of the Photogrammetry, Remote Sensing and

AC

CE

PT

ED

M

AN

US

CR

IP

T

Spatial Information Sciences, Prague, Czech Republic, 12-19.

58

ACCEPTED MANUSCRIPT

Table 1: field measuements of moved boulders. Height AHW and Distance Inland are tide-corrected and referenced to the highest spring tide. In the case of large clasts, the centre of mass is the reference point for measuring distance inland. Steepness is the ratio of Height AHW and Distance Inland. Masses are estimates, based on rock density (2.66 t/m3) measured from hand samples, and field measurements of boulder dimensions (X,Y, and Z axes). Transport distances are reported only in cases where the original location of the moved clast could be determined wtih certainty: empty cells mean that the amount of movement could not be determined. Horizontal Transport is the absolute amount of transport (inland, seaward, or coast-parallel). Vertical Transport is positive for elevation gain and negative for downslope movement.

T P

Location

Location Boulder Latitude Longitude No.

No.

Deposit

Height

type

AHW

Inland

(m)

AHW

I R

C S

Distance Steepness

U N

X

Y

Z

(cm) (cm) (cm)

Mass

Horizontal

Vertical

(t)

Transport

Transport

(m)

(m)

A

(m)

Annagh Head

1

1

54.2483

-10.0942

4.9

48

0.10

170

100

60

2.7

4.5

1.2

1

2

54.2483

-10.0942

Ridge

4.9

48

0.10

145

70

30

0.8

3.0

0.5

1

3

Ridge

4.9

48

0.10

155

130

40

2.1

3.3

4

C A

-10.0942

1

54.2483

-10.0942

Ridge

4.9

48

0.10

160

130

25

1.4

3.3

1

5

54.2483

-10.0942

Ridge

4.9

48

0.10

150

110

30

1.3

T P

Annagh Head

E C

Annagh Head Annagh Head

D E

54.2483

Ridge

M

Annagh Head

59

ACCEPTED MANUSCRIPT

Annagh Head

1

6

54.2483

-10.0942

Ridge

4.9

48

0.10

160

85

1

7

54.2483

-10.0942

Ridge

4.9

48

0.10

80

80

1

8

54.2483

-10.0942

Ridge

4.9

48

0.10

120

1

9

54.2483

-10.0942

Ridge

4.9

48

0.10

1

10

54.2483

-10.0942

Ridge

4.9

48

1

11

54.2483

-10.0942

Ridge

4.9

1

12

54.2489

-10.0944

Ridge

1

13

54.2489

-10.0944

1

14

54.2489

C A

2

15

54.2421

Annagh Head

0.5

90

40

1.1

150

110

40

1.8

0.10

116

116

116

4.2

48

0.10

135

130

55

2.6

10.3

103

0.10

115

35

10

0.1

Ridge

10.3

103

0.10

70

50

25

0.2

-10.0944

Ridge

10.3

103

0.10

95

65

25

0.4

-10.1051

Ridge

5.9

109

0.05

100

35

30

0.3

I R

C S

Annagh Head

U N

Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head

T P

1.1

30

Annagh Head

30

D E

T P

E C

M

A

8.0

1.4

3.0

0.7

3.5

60

ACCEPTED MANUSCRIPT

Annagh Head

2

16

54.2421

-10.1051

Ridge

5.9

109

0.05

60

35

2

17

54.2421

-10.1051

Ridge

5.9

109

0.05

70

40

2

18

54.2421

-10.1051

Ridge

5.9

109

0.05

60

2

19

54.2421

-10.1051

Ridge

5.9

109

0.05

2

20

54.2421

-10.1051

Ridge

5.9

109

2

21

54.2421

-10.1051

Ridge

5.9

2

22

54.2421

-10.1051

Ridge

2

23

54.2421

-10.1051

2

24

54.2421

C A

2

25

54.2421

Annagh Head

35

30

0.2

55

30

30

0.1

0.05

80

45

10

0.1

109

0.05

105

85

25

0.6

5.9

109

0.05

200

85

40

1.8

Ridge

5.9

109

0.05

100

90

55

1.3

-10.1051

Ridge

5.9

109

0.05

85

55

40

0.5

1.5

-10.1051

Ridge

5.9

109

0.05

60

50

40

0.3

0.3

I R

C S

U N

Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head

1.0

0.1

Annagh Head

T P

0.1

20

Annagh Head

15

D E

T P

E C

M

A

2.0

61

ACCEPTED MANUSCRIPT

Annagh Head

2

26

54.2421

-10.1051

Ridge

5.9

109

0.05

185

110

2

27

54.2421

-10.1051

Ridge

5.9

109

0.05

60

40

2

28

54.2421

-10.1051

Ridge

5.9

109

0.05

100

2

29

54.2421

-10.1051

Ridge

5.9

109

0.05

2

30

54.2421

-10.1051

Ridge

5.9

109

2

31

54.2421

-10.1051

Ridge

5.9

2

32

54.2421

-10.1051

Ridge

2

33

54.2421

-10.1051

2

34

54.2421

C A

2

35

54.2421

Annagh Head

0.2

45

20

0.2

65

55

20

0.2

0.05

60

30

25

0.1

109

0.05

180

125

20

1.2

5.9

109

0.05

100

80

35

0.7

3.5

Ridge

5.9

109

0.05

150

120

25

1.2

0.5

-10.1051

Ridge

5.9

109

0.05

150

70

55

1.5

-10.1051

Ridge

5.9

109

0.05

210

125

70

4.9

I R

C S

Annagh Head

U N

Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head Annagh Head

T P

2.2

25

Annagh Head

40

D E

T P

E C

M

A

1.0

0.5

62

ACCEPTED MANUSCRIPT

Annagh Head

2

36

54.2424

-10.1048

Ridge

6.1

54

0.11

130

65

2

37

54.2424

-10.1048

Ridge

6.1

54

0.11

130

60

2

38

54.2424

-10.1048

Ridge

6.1

54

0.11

110

2

39

54.2424

-10.1048

Ridge

6.1

54

0.11

2

40

54.2424

-10.1048

Ridge

6.1

54

2

41

54.2424

-10.1048

Ridge

6.1

2

42

54.2424

-10.1048

Ridge

2

43

54.2424

-10.1048

Head

2

44

54.2424

Inis Mor

3

45

C A

Inis Mor

3

Inis Mor

3

Annagh Head

0.5

95

70

40

0.7

5.0

0.11

320

75

70

4.5

2.0

54

0.11

130

40

35

0.5

6.1

54

0.11

90

50

35

0.4

Ridge

6.1

54

0.11

230

165

40

4.0

-10.1048

Ridge

6.1

54

0.11

115

90

40

1.1

1.0

53.0963

-9.6689

Ridge

9.4

95

0.10

274

135

20

2.0

6.3

46

53.0963

-9.6689

Ridge

9.4

95

0.10

87

85

30

0.6

47

53.0963

-9.6689

Ridge

9.4

95

0.10

198

111

51

3.0

Annagh Head Annagh Head

0.5

30

Annagh Head

1.0

55

I R

C S

U N

Annagh Head

4.5

1.0

Annagh Head

T P

0.3

50

Annagh Head

15

Annagh

D E

T P

E C

M

A

63

ACCEPTED MANUSCRIPT

Inis Mor

3

48

53.0963

-9.6689

Ridge

9.4

95

0.10

166

103

26

1.2

Inis Mor

3

49

53.0963

-9.6689

Ridge

9.4

95

0.10

145

70

21

0.6

Inis Mor

4

50

53.0975

-9.6700

Ridge

12.4

94

0.13

155

150

25

1.5

Inis Mor

4

51

53.0975

-9.6700

Ridge

12.4

94

0.13

222

200

23

2.7

Inis Mor

4

52

53.0975

-9.6700

Ridge

12.4

94

0.13

103

160

29

1.3

Inis Mor

4

53

53.0975

-9.6700

Ridge

12.4

94

0.13

350

150

75

10.5

Inis Mor

4

54

53.0975

-9.6700

Ridge

12.4

94

0.13

210

180

100

10.1

Inis Mor

4

55

53.0975

-9.6700

Ridge

12.4

94

0.13

200

110

70

4.1

Inis Mor

4

56

53.0975

-9.6700

Ridge

12.4

94

0.13

105

60

20

0.3

Inis Mor

4

57

53.0975

-9.6700

Ridge

12.4

94

0.13

205

140

80

6.1

Inis Mor

4

58

53.0975

-9.6700

Ridge

12.4

94

0.13

250

130

30

2.6

Inis Mor

4

59

53.0975

-9.6700

Ridge

12.4

94

0.13

215

135

50

3.9

Inis Mor

4

60

53.0975

-9.6700

Ridge

12.4

94

0.13

215

145

40

3.3

Inis Mor

4

61

53.0975

-9.6700

Ridge

12.4

94

0.13

315

140

15

1.8

Inis Mor

4

62

53.0975

-9.6700

Ridge

12.4

94

0.13

195

110

35

2.0

Inis Mor

4

63

53.0975

-9.6700

Ridge

12.4

94

0.13

600

210

30

Inis Mor

4

64

Ridge

12.4

94

0.13

425

85

Inis Mor

4

65

53.0977

-9.6701

Ridge

12.4

94

0.13

200

Inis Mor

4

66

C A

-9.6700

53.0977

-9.6701

Ridge

12.4

94

0.13

Inis Mor

4

67

53.0977

-9.6701

Ridge

12.4

94

Inis Mor

4

68

53.0978

-9.6702

Ridge

12.4

93

53.0975

D E

T P

E C

M

A

I R

C S

U N

T P

8.5

2.5

10.1

6.3

1.7

25

2.4

6.8

2.0

155

50

4.1

155

110

35

1.6

1.0

0.13

165

115

30

1.5

4.0

0.13

264

127

44

3.9

-1.0

64

ACCEPTED MANUSCRIPT

Inis Mor

4

69

53.0978

-9.6702

Ridge

12.4

93

0.13

164

88

45

1.7

8.3

1.5

Inis Mor

4

70

53.0978

-9.6702

Ridge

12.4

93

0.13

140

80

40

1.2

Inis Mor

4

71

53.0978

-9.6702

Ridge

12.4

93

0.13

180

135

35

2.3

Inis Mor

4

72

53.0978

-9.6702

Ridge

12.4

93

0.13

165

105

55

2.5

Inis Mor

4

73

53.0978

-9.6702

Ridge

12.4

93

0.13

140

95

50

1.8

Inis Mor

4

74

53.0978

-9.6702

Ridge

12.4

93

0.13

140

95

30

1.1

Inis Mor

4

75

53.0974

-9.6702

Ridge

11.9

85

0.14

325

135

15

1.8

9.0

2.5

Inis Mor

4

76

53.0974

-9.6702

Ridge

11.9

85

0.14

440

270

35

11.1

7.9

1.7

Inis Mor

4

77

53.0974

-9.6702

Ridge

11.9

85

0.14

620

220

40

14.5

5.6

1.5

Inis Mor

4

78

53.0974

-9.6702

Ridge

11.9

85

0.14

235

130

50

4.1

Inis Mor

4

79

53.0974

-9.6702

Ridge

11.9

85

0.14

280

180

40

5.4

Inis Mor

4

80

53.0974

-9.6702

Ridge

11.9

85

0.14

200

145

60

4.6

Inis Mor

4

81

53.0971

-9.6702

Ridge

11.9

100

0.12

390

260

135

36.4

Inis Mor

4

82

53.0971

-9.6702

Ridge

11.9

105

0.11

135

125

45

2.0

Inis Mor

4

83

53.0971

-9.6702

Ridge

11.9

105

0.11

110

85

70

1.7

Inis Mor

4

84

53.0971

-9.6702

Ridge

11.9

105

0.11

155

75

30

0.9

Inis Mor

4

85

Ridge

11.9

108

0.11

375

195

95

18.5

53.0971

-9.6702

Isolated

11.9

95

0.13

420

300

110

36.9

87

C A

-9.6702

Inis Mor

4

86

Inis Mor

4

53.0971

-9.6702

Isolated

11.9

98

0.12

470

350

110

48.1

Inis Mor

4

88

53.0971

-9.6702

Isolated

11.9

98

0.12

285

255

130

25.1

7.0

Inis Mor

4

89

53.0971

-9.6702

Isolated

11.9

103

0.12

400

260

120

33.2

5.0

53.0971

D E

T P

E C

M

A

I R

C S

U N

T P

14.5

9.5

0.5

65

ACCEPTED MANUSCRIPT

Inis Mor

4

90

53.0971

-9.6702

Isolated

11.9

105

0.11

260

245

105

17.8

3.0

0.5

Inis Mor

4

91

53.0971

-9.6702

Isolated

11.9

105

0.11

275

180

70

9.2

3.0

0.5

Inis Mor

5

92

53.1034

-9.6843

Ridge

23.2

7

3.57

90

65

15

0.2

1.6

-0.3

Inis Mor

5

93

53.1034

-9.6843

Ridge

23.2

7

3.57

115

110

45

1.5

3.2

-0.5

Inis Mor

5

94

53.1031

-9.6843

Ridge

22.0

18

1.22

110

100

25

0.7

Inis Mor

5

95

53.1031

-9.6843

Ridge

22.0

18

1.22

130

90

15

0.5

Inis Mor

5

96

53.1031

-9.6843

Ridge

22.0

18

1.22

160

120

15

0.8

Inis Mor

5

97

53.1031

-9.6843

Isolated

22.0

18

1.22

195

90

65

3.0

Inis Mor

5

98

53.1031

-9.6843

Isolated

22.0

18

1.22

160

115

70

3.4

Inis Mor

5

99

53.1031

-9.6843

Isolated

22.0

18

1.22

110

60

40

0.7

Inis Mor

5

100

53.1031

-9.6843

Isolated

22.0

18

1.22

180

140

35

2.3

Inis Mor

6

101

53.1213

-9.7467

Ridge

1.2

6

0.20

155

85

80

2.8

Inis Mor

6

102

53.1213

-9.7467

Ridge

1.2

6

0.20

220

220

120

15.4

Inis Mor

6

103

53.1213

-9.7467

Ridge

1.2

6

0.20

200

140

80

6.0

Inis Mor

6

104

53.1213

-9.7467

Ridge

1.2

6

0.20

180

115

75

4.1

Inis Mor

6

105

53.1213

-9.7467

Ridge

1.2

6

0.20

95

65

40

0.7

0.5

0.5

Inis Mor

6

106

Ridge

1.2

6

0.20

105

95

50

1.3

0.5

0.5

Inis Mor

6

107

53.1215

-9.7473

Ridge

1.2

6

0.20

280

220

90

14.7

3.0

Inis Mor

6

108

C A

-9.7467

53.1215

-9.7473

Ridge

1.2

6

0.20

198

198

198

20.7

0.8

Inis Mor

6

109

53.1215

-9.7473

Ridge

1.2

6

0.20

160

105

35

1.6

2.0

1.5

Inis Mor

6

110

53.1214

-9.7502

Isolated

4.0

25

0.16

230

230

230

32.4

9.5

-0.3

53.1213

D E

T P

E C

M

A

I R

C S

U N

T P

6.5

1.3

66

ACCEPTED MANUSCRIPT

Inis Mor

6

111

53.1214

-9.7502

Isolated

4.0

25

0.16

195

180

170

15.9

12.0

Inis Mor

6

112

53.1216

-9.7485

Isolated

3.0

10

0.30

505

440

150

88.7

3.5

Inis Mor

6

113

53.1215

-9.7489

Isolated

2.5

15

0.17

510

450

155

94.6

Inis Mor

6

114

53.1217

-9.7490

Ridge

3.6

29

0.12

220

155

70

6.3

Inis Mor

6

115

53.1217

-9.7490

Ridge

3.6

29

0.12

170

170

30

2.3

Inis Mor

6

116

53.1217

-9.7490

Ridge

3.6

29

0.12

230

115

60

4.2

13.5

Inis Mor

6

117

53.1217

-9.7490

Ridge

3.6

29

0.12

140

110

55

2.3

1.0

Inis Mor

6

118

53.1217

-9.7490

Ridge

3.6

29

0.12

135

130

50

2.3

Inis Mor

6

119

53.1217

-9.7490

Ridge

3.6

29

0.12

145

75

50

1.4

Inis Mor

6

120

53.1217

-9.7490

Ridge

3.6

29

0.12

140

75

70

2.0

5.0

Inis Mor

6

121

53.1217

-9.7490

Ridge

3.6

29

0.12

190

140

70

5.0

2.8

Inis Mor

6

122

53.1217

-9.7488

Isolated

3.6

26

0.14

355

240

85

19.3

4.0

Inis Mor

6

123

53.1217

-9.7488

Ridge

3.6

26

0.14

170

115

105

5.5

3.5

-2.0

Inis Mor

6

124

53.1217

-9.7488

Ridge

3.6

26

0.14

120

95

75

2.3

Inis Mor

6

125

53.1217

-9.7488

Ridge

3.6

26

0.14

180

160

130

10.0

Inis Mor

6

126

53.1217

-9.7488

Ridge

3.6

26

0.14

200

115

115

7.0

Inis Mor

6

127

Ridge

3.6

26

0.14

110

85

25

0.6

1.0

0.5

Inis Mor

6

128

53.1217

-9.7488

Ridge

3.6

26

0.14

155

85

60

2.1

1.0

0.5

Inis Mor

6

129

C A

-9.7488

53.1217

-9.7488

Ridge

3.6

26

0.14

150

125

45

2.2

0.5

-0.5

Inis Mor

6

130

53.1216

-9.7487

Ridge

3.6

24

0.15

125

95

80

2.5

Inis Mor

7

131

53.0913

-9.6585

Ridge

6.0

10

0.60

245

155

70

7.1

3.0

-0.5

53.1217

D E

T P

E C

M

A

I R

C S

U N

T P

-0.3

0.5

2.0

67

ACCEPTED MANUSCRIPT

Inis Mor

7

132

53.0913

-9.6585

Ridge

6.0

10

0.60

370

310

75

22.9

5.2

0.5

Inis Mor

7

133

53.0913

-9.6585

Ridge

6.0

10

0.60

290

190

75

11.0

2.5

0.5

Inis Mor

7

134

53.0913

-9.6585

Ridge

6.0

10

0.60

170

100

25

1.1

3.0

1.0

Inis Mor

7

135

53.0913

-9.6585

Ridge

6.0

10

0.60

445

355

20

8.4

2.0

0.5

Inis Mor

7

136

53.0913

-9.6585

Ridge

6.0

10

0.60

430

320

25

9.2

7.0

4.0

Inis Mor

7

137

53.0913

-9.6585

Ridge

6.0

10

0.60

210

120

30

2.0

7.0

4.0

Inis Mor

7

138

53.0913

-9.6585

Isolated

6.0

10

0.60

520

200

125

34.6

0.8

Inis Mor

7

139

53.0913

-9.6585

Isolated

6.0

10

0.60

340

295

135

36.0

2.5

1.5

Inis Mor

7

140

53.0913

-9.6585

Ridge

6.0

10

0.60

695

250

90

41.6

7.0

0.0

Inis Mor

7

141

53.0913

-9.6585

Ridge

6.0

10

0.60

265

160

25

2.8

Inis Mor

7

142

53.0913

-9.6585

Ridge

6.0

10

0.60

290

240

50

9.3

13.2

2.0

Inis Mor

7

143

53.0913

-9.6585

Ridge

6.0

10

0.60

370

195

100

19.2

3.9

Inis Mor

7

144

53.0913

-9.6585

Ridge

6.0

10

0.60

300

185

55

8.1

Inis Mor

7

145

53.0913

-9.6585

Ridge

6.0

10

0.60

175

125

50

2.9

Inis Mor

7

146

53.0913

-9.6585

Ridge

6.0

10

0.60

320

200

40

6.8

Inis Mor

7

147

53.0913

-9.6585

Ridge

6.0

10

0.60

385

290

30

8.9

Inis Mor

7

148

Ridge

6.0

10

0.60

270

165

25

3.0

Inis Mor

7

149

53.0913

-9.6585

Ridge

6.0

10

0.60

200

110

40

2.3

Inis Mor

7

150

C A

-9.6585

53.0913

-9.6585

Ridge

6.0

10

0.60

155

85

30

1.1

Inis Mor

7

151

53.0913

-9.6585

Ridge

6.0

10

0.60

150

110

25

1.1

Inis Mor

7

152

53.0913

-9.6585

Ridge

6.0

10

0.60

135

100

30

1.1

53.0913

D E

T P

E C

M

A

I R

C S

U N

T P

1.5

-0.5

1.0

0.5

68

ACCEPTED MANUSCRIPT

Inis Mor

7

153

53.0912

-9.6583

Ridge

7.2

14

0.51

135

90

25

0.8

Inis Mor

7

154

53.0912

-9.6583

Ridge

7.2

14

0.51

125

100

15

0.5

Inis Mor

7

155

53.0912

-9.6583

Ridge

7.2

14

0.51

135

80

15

0.4

Inis Mor

7

156

53.0912

-9.6583

Ridge

7.2

14

0.51

155

100

35

1.4

Inis Mor

7

157

53.0912

-9.6583

Ridge

7.2

14

0.51

355

340

70

22.5

1.0

Inis Mor

7

158

53.0912

-9.6583

Ridge

7.2

14

0.51

110

110

51

1.6

1.0

Inis Mor

7

159

53.0912

-9.6583

Ridge

7.2

14

0.51

155

85

30

1.1

Inis Mor

7

160

53.0912

-9.6583

Ridge

7.2

14

0.51

150

110

25

1.1

Inis Mor

7

161

53.0912

-9.6583

Ridge

7.2

14

0.51

135

100

35

1.3

Inis Mor

7

162

53.0913

-9.6586

Ridge

6.0

14

0.43

115

60

15

0.3

2.0

Inis Mor

7

163

53.0910

-9.6580

Ridge

6.0

18

0.33

395

210

115

25.4

1.0

Inis Mor

7

164

53.0910

-9.6580

Ridge

6.0

18

0.33

205

135

75

5.5

1.0

Inis Mor

7

165

53.0910

-9.6580

Ridge

6.0

18

0.33

210

120

20

1.3

Inis Mor

7

166

53.0910

-9.6580

Ridge

6.0

18

0.33

350

350

90

29.3

Inis Mor

8

167

53.0904

-9.6420

Ridge

23.2

14

1.66

125

95

25

0.8

Inis Mor

8

168

53.0904

-9.6420

Ridge

23.2

14

1.66

125

65

20

0.4

Inis Mor

8

169

Ridge

23.2

14

1.66

90

65

15

0.2

Inis Mor

8

170

53.0904

-9.6420

Ridge

23.2

14

1.66

60

45

5

0.0

2.6

Inis Mor

8

171

C A

-9.6420

53.0904

-9.6420

Ridge

23.2

14

1.66

90

60

15

0.2

2.3

Inis Mor

8

172

53.0904

-9.6420

Ridge

23.2

14

1.66

100

80

15

0.3

Inis Mor

8

173

53.0904

-9.6420

Ridge

23.2

14

1.66

90

75

20

0.4

53.0904

D E

T P

E C

M

A

I R

C S

U N

T P

0.5

0.3

69

ACCEPTED MANUSCRIPT

Inis Mor

8

174

53.0904

-9.6420

Ridge

23.2

14

1.66

120

95

15

0.5

Inis Mor

9

175

53.1220

-9.7562

Ridge

19.3

74

0.26

100

95

25

0.6

Inis Mor

9

176

53.1220

-9.7562

Ridge

19.3

74

0.26

140

70

70

1.8

Inis Mor

9

177

53.1220

-9.7562

Ridge

19.3

74

0.26

110

65

40

0.8

Inis Mor

9

178

53.1220

-9.7562

Ridge

19.3

74

0.26

145

70

50

1.3

Inis Mor

9

179

53.1220

-9.7562

Ridge

19.3

74

0.26

115

55

30

0.5

Inis Mor

9

180

53.1220

-9.7562

Ridge

19.3

74

0.26

185

120

40

2.4

1.0

Inis Mor

9

181

53.1224

-9.7564

Ridge

19.6

12

1.63

200

40

30

0.6

2.7

Inis Mor

9

182

53.1224

-9.7564

Ridge

19.6

12

1.63

65

70

30

0.4

1.0

Inis Mor

9

183

53.1224

-9.7564

Ridge

19.6

12

1.63

105

65

20

0.4

Inis Mor

9

184

53.1237

-9.7568

Ridge

25.0

15

1.72

65

55

25

0.2

Inis Mor

9

185

53.1237

-9.7568

Ridge

25.0

15

1.72

90

65

20

0.3

Inis Mor

9

186

53.1237

-9.7568

Ridge

25.0

15

1.72

100

70

15

0.3

Inis Mor

9

187

53.1237

-9.7568

Ridge

25.0

15

1.72

130

55

50

1.0

4.0

Inis Mor

9

188

53.1237

-9.7568

Ridge

11.6

15

0.80

85

50

35

0.4

8.0

Inis Mor

10

189

53.1195

-9.7455

Ridge

17.6

23

0.77

75

60

45

0.5

Inis Mor

10

190

Ridge

17.6

23

0.77

150

100

45

1.8

2.0

Inis Mor

10

191

53.1195

-9.7455

Ridge

17.6

23

0.77

125

60

35

0.7

0.5

Inis Mor

10

192

C A

-9.7455

53.1195

-9.7455

Ridge

17.6

23

0.77

165

70

65

2.0

Inis Mor

10

193

53.1195

-9.7455

Ridge

17.6

23

0.77

145

55

40

0.8

Inis Mor

10

194

53.1195

-9.7455

Ridge

17.6

23

0.77

140

100

55

2.0

53.1195

D E

T P

E C

M

A

I R

C S

U N

T P

1.0

1.0

70

ACCEPTED MANUSCRIPT

Inis Mor

10

195

53.1195

-9.7455

Ridge

17.6

23

0.77

95

90

70

1.6

Inis Mor

10

196

53.1195

-9.7455

Ridge

17.6

23

0.77

105

65

30

0.5

Inis Mor

11

197

53.1174

-9.7421

Ridge

20.2

22

0.92

200

250

25

3.3

Inis Mor

11

198

53.1174

-9.7421

Ridge

20.2

22

0.92

100

30

30

0.2

Inis Mor

11

199

53.1174

-9.7421

Ridge

20.2

22

0.92

100

40

25

0.3

Inis Mor

11

200

53.1174

-9.7421

Ridge

20.2

22

0.92

60

30

30

0.1

Inis Mor

11

201

53.1174

-9.7421

Ridge

20.2

22

0.92

115

75

35

0.8

Inis Mor

11

202

53.1174

-9.7421

Ridge

20.2

22

0.92

45

35

25

0.1

Inis Mor

11

203

53.1174

-9.7421

Ridge

20.2

22

0.92

205

55

25

0.7

Inis Mor

11

204

53.1174

-9.7421

Ridge

20.2

22

0.92

90

80

50

1.0

Inis Mor

11

205

53.1174

-9.7421

Ridge

20.2

22

0.92

90

70

60

1.0

Inis Mor

11

206

53.1174

-9.7421

Ridge

20.2

22

0.92

180

45

45

1.0

Inis Mor

11

207

53.1174

-9.7421

Ridge

20.2

22

0.92

90

60

40

0.6

Inis Mor

11

208

53.1174

-9.7421

Ridge

20.2

22

0.92

100

70

30

0.6

Inis Mor

11

209

53.1174

-9.7421

Ridge

20.2

22

0.92

120

30

30

0.3

Inis Mor

11

210

53.1174

-9.7421

Ridge

20.2

22

0.92

120

40

35

0.4

Inis Mor

12

211

Ridge

8.7

18

0.48

130

60

30

0.6

Inis Mor

12

212

53.0889

-9.6406

Ridge

8.7

18

0.48

130

50

30

0.5

Inis Mor

12

213

C A

-9.6406

53.0889

-9.6406

Ridge

8.7

18

0.48

155

70

45

1.3

Inis Mor

13

214

53.1051

-9.6902

Ridge

25.1

16

1.57

80

50

15

0.2

Inis Mor

13

215

53.1051

-9.6902

Isolated

25.1

16

1.57

120

80

10

0.3

53.0889

D E

T P

E C

M

A

I R

C S

U N

T P

2.5

1.0

2.5

1.0

2.5

71

ACCEPTED MANUSCRIPT

Inis Mor

13

216

53.1051

-9.6902

Ridge

25.1

16

1.57

290

165

35

4.5

Inis Mor

13

217

53.1051

-9.6902

Ridge

25.1

16

1.57

175

110

30

1.5

3.5

Inis Mor

13

218

53.1050

-9.6902

Ridge

24.5

7

3.50

85

55

15

0.2

0.5

Inis Mor

13

219

53.1050

-9.6902

Ridge

24.5

7

3.50

60

60

25

0.2

Inis Mor

13

220

53.1050

-9.6902

Ridge

24.5

7

3.50

140

50

30

0.6

Inis Mor

13

221

53.1050

-9.6902

Ridge

24.5

7

3.50

55

40

20

0.1

Inis Mor

13

222

53.1050

-9.6902

Ridge

24.5

7

3.50

150

75

20

0.6

1.0

Inis Mor

13

223

53.1054

-9.6903

Ridge

24.6

5

4.92

220

55

50

1.6

2.0

Inis Mor

13

224

53.1054

-9.6903

Ridge

24.6

5

4.92

110

65

30

0.6

Inis Mor

13

225

53.1054

-9.6903

Ridge

24.6

4.92

125

120

60

2.4

2.5

Inis Mor

13

226

53.1054

-9.6903

Ridge

24.6

5

4.92

165

85

45

1.7

1.0

Inis Mor

13

227

53.1054

-9.6903

Ridge

24.6

5

4.92

170

75

45

1.5

1.0

Inis Mor

13

228

53.1054

-9.6903

Ridge

24.6

5

4.92

190

90

30

1.4

Inis Mor

13

229

53.1054

-9.6903

Ridge

24.6

5

4.92

130

80

30

0.8

Inis Mor

13

230

53.1054

-9.6903

Ridge

24.6

5

4.92

215

100

30

1.7

3.4

Inis Mor

13

231

53.1054

-9.6903

Ridge

24.6

5

4.92

240

170

50

5.4

5.1

0.0

Inis Mor

14

232

Ridge

19.8

38

0.52

175

145

25

1.7

Inis Mor

14

233

53.0897

-9.6430

Ridge

19.8

38

0.52

100

60

30

0.5

1.5

-1.0

Inis Mor

14

234

C A

-9.6430

53.0897

-9.6430

Ridge

19.8

38

0.52

225

155

15

1.4

5.0

Inis Mor

14

235

53.0897

-9.6430

Ridge

19.8

38

0.52

170

75

15

0.5

Inis Mor

14

236

53.0897

-9.6430

Ridge

19.8

38

0.52

180

75

15

0.5

53.0897

D E

T P

E C

M

A 5

I R

C S

U N

T P

-0.5

-0.5

72

ACCEPTED MANUSCRIPT

Inis Mor

15

237

53.0891

-9.6488

Ridge

7.5

5

1.50

150

140

35

2.0

Inis Mor

15

238

53.0891

-9.6488

Ridge

7.5

5

1.50

210

110

25

1.5

Inis Mor

16

239

53.0907

-9.6564

Ridge

5.4

30

0.18

440

170

45

9.0

5.5

Inis Mor

16

240

53.0907

-9.6564

Isolated

5.4

27

0.20

310

200

75

12.4

8.5

Inis Mor

17

241

53.0920

-9.6611

Ridge

6.0

31

0.19

70

55

30

0.3

Inis Mor

17

242

53.0920

-9.6611

Ridge

6.0

31

0.19

120

60

30

0.6

Inis Mor

17

243

53.0920

-9.6611

Ridge

6.0

31

0.19

130

20

20

0.1

Inis Mor

17

244

53.0920

-9.6611

Ridge

6.0

31

0.19

70

70

25

0.3

Inis Mor

17

245

53.0920

-9.6611

Ridge

6.0

31

0.19

130

65

25

0.6

Inis Mor

17

246

53.0920

-9.6611

Ridge

6.0

31

0.19

130

75

20

0.5

Inis Mor

17

247

53.0920

-9.6611

Ridge

6.0

31

0.19

130

85

20

0.6

2.0

Inis Mor

18

248

53.0923

-9.6625

Ridge

9.6

21

0.46

480

250

140

44.7

5.1

Inis Mor

18

249

53.0923

-9.6625

Ridge

9.6

21

0.46

330

260

75

17.1

Inis Mor

18

250

53.0923

-9.6625

Ridge

9.6

21

0.46

125

105

35

1.2

Inis Mor

18

251

53.0923

-9.6625

Ridge

9.6

21

0.46

135

100

60

2.2

Inis Mor

18

252

53.0923

-9.6625

Ridge

9.6

21

0.46

200

100

25

1.3

Inis Mor

18

253

Ridge

9.6

21

0.46

185

80

40

1.6

Inis Mor

18

254

53.0923

-9.6625

Ridge

9.6

21

0.46

180

110

30

1.6

Inis Mor

18

255

C A

-9.6625

53.0923

-9.6625

Ridge

9.6

21

0.46

190

150

45

3.4

Inis Mor

18

256

53.0923

-9.6625

Ridge

9.6

21

0.46

790

440

150

138.7

3.0

Inis Mor

19

257

53.0930

-9.6632

Ridge

7.3

61

0.12

430

285

35

11.4

22.5

53.0923

D E

T P

E C

M

A

I R

C S

U N

T P

0.5

73

ACCEPTED MANUSCRIPT

Inis Mor

19

258

53.0930

-9.6632

Ridge

7.3

61

0.12

160

145

20

1.2

Inis Mor

19

259

53.0930

-9.6632

Ridge

7.3

61

0.12

195

120

30

1.9

18.0

Inis Mor

19

260

53.0930

-9.6632

Ridge

7.3

61

0.12

165

100

20

0.9

17.2

Inis Mor

19

261

53.0930

-9.6634

Isolated

5.8

27

0.21

930

630

135

210.4

23.0

Inis Mor

19

262

53.0930

-9.6632

Ridge

7.3

61

0.12

430

285

35

11.4

22.5

Inis Mor

19

263

53.0930

-9.6632

Ridge

7.3

61

0.12

220

100

25

1.5

4.0

Inis Mor

20

264

53.0938

-9.6640

Ridge

8.4

48

0.18

135

65

40

0.9

Inis Mor

20

265

53.0938

-9.6640

Ridge

8.4

48

0.18

185

125

30

1.8

0.5

Inis Mor

20

266

53.0938

-9.6640

Ridge

8.4

48

0.18

95

65

20

0.3

2.5

A

11

0.18

940

650

320

520

4.0

Cliff

M

Inis Mor

20

267

53.0933

-9.6645

detach

Inis Mor

20

268

53.0936

-9.6639

Isolated

9.5

48

0.20

215

225

35

4.5

1.3

Inis Mor

20

269

53.0936

-9.6639

Isolated

9.5

48

0.20

490

305

40

15.9

5.6

Inis Mor

20

270

53.0936

-9.6639

Isolated

9.5

48

0.20

340

340

90

27.7

0.5

Inis Mor

20

271

53.0936

-9.6639

Isolated

9.5

48

0.20

400

210

90

20.1

2.0

Inis Mor

21

272

53.0946

-9.6641

Ridge

11.0

64

0.17

120

90

65

1.9

1.0

Inis Mor

21

273

Ridge

11.0

64

0.17

145

85

55

1.8

11.0

Inis Mor

21

274

53.0946

-9.6641

Ridge

11.0

64

0.17

160

80

45

1.5

Inis Mor

21

275

C A

-9.6641

53.0946

-9.6641

Ridge

11.0

64

0.17

145

55

50

1.1

Inis Mor

21

276

53.0946

-9.6641

Ridge

11.0

64

0.17

250

225

30

4.5

Inis Mor

21

277

53.0946

-9.6641

Ridge

11.0

64

0.17

170

110

40

2.0

53.0946

D E

T P

E C

2.0

I R

C S

U N

T P

3.0

1.0

0.0

1.0

74

ACCEPTED MANUSCRIPT

Inis Mor

21

278

53.0946

-9.6641

Ridge

11.0

64

0.17

180

95

30

1.4

Inis Mor

21

279

53.0946

-9.6641

Ridge

11.0

64

0.17

125

90

35

1.0

Inis Mor

21

280

53.0946

-9.6641

Ridge

11.0

64

0.17

230

185

70

7.9

Inis Mor

21

281

53.0946

-9.6641

Ridge

11.0

64

0.17

175

135

60

3.8

Inis Mor

21

282

53.0948

-9.6644

Ridge

12.0

48

0.25

300

170

70

9.5

Inis Mor

21

283

53.0948

-9.6644

Ridge

12.5

45

0.28

280

145

85

9.2

Inis Mor

21

284

53.0948

-9.6644

Ridge

12.0

48

0.25

225

205

120

14.7

Inis Mor

21

285

53.0948

-9.6644

Ridge

11.0

48

0.23

540

325

125

58.4

12.2

Inis Mor

21

286

53.0948

-9.6644

Ridge

12.0

48

0.25

475

265

120

40.2

1.0

0.0

Inis Mor

21

287

53.0948

-9.6644

Ridge

15.0

60

0.25

250

155

90

9.3

3.0

2.0

Inis Mor

21

288

53.0948

-9.6644

Isolated

12.0

45

0.27

420

290

120

38.9

1.6

0.0

Inis Mor

21

289

53.0948

-9.6644

Isolated

11.0

48

0.23

275

155

55

6.2

1.6

0.0

Inis Mor

21

290

53.0948

-9.6644

Isolated

11.0

48

0.23

380

305

110

33.9

0.5

0.0

Inis Mor

21

291

53.0948

-9.6644

Ridge

11.0

48

0.23

160

115

80

3.9

Inis Mor

21

292

53.0948

-9.6644

Ridge

11.0

48

0.23

590

260

95

38.8

0.5

0.0

3.3

-0.4

D E

T P

E C

M

A

I R

C S

U N

T P

3.0

25

0.12

850

600

380

515

53.0945

-9.6646

Isolated

6.0

26

0.23

550

316

130

60.1

295

C A

detach

53.0959

-9.6661

Ridge

10.4

62

0.17

115

50

50

0.8

22

296

53.0959

-9.6661

Ridge

10.4

62

0.17

75

50

30

0.3

22

297

53.0959

-9.6661

Ridge

10.4

62

0.17

80

60

35

0.4

21

293

Inis Mor

21

294

Inis Mor

22

Inis Mor Inis Mor

53.0945

-1.0

Cliff

-9.6646

Inis Mor

4.0

75

ACCEPTED MANUSCRIPT

Inis Mor

22

298

53.0959

-9.6661

Ridge

10.4

62

0.17

70

50

35

0.3

Inis Mor

22

299

53.0959

-9.6661

Ridge

10.4

62

0.17

80

60

20

0.3

Inis Mor

22

300

53.0959

-9.6661

Ridge

10.4

62

0.17

120

55

25

0.4

Inis Mor

23

301

53.0983

-9.6710

Ridge

10.4

62

0.17

190

145

20

1.5

Inis Mor

23

302

53.0983

-9.6710

Ridge

22.4

42

0.53

110

100

40

1.2

Inis Mor

23

303

53.0983

-9.6710

Ridge

22.4

42

0.53

110

90

20

0.5

Inis Mor

23

304

53.0983

-9.6710

Ridge

22.4

42

0.53

150

95

30

1.1

Inis Mor

23

305

53.0983

-9.6710

Ridge

22.4

42

0.53

140

110

10

0.4

Inis Mor

23

306

53.0983

-9.6710

Ridge

22.4

42

0.53

100

80

15

0.3

Inis Mor

23

307

53.0983

-9.6710

Ridge

22.4

42

0.53

150

90

20

0.7

Inis Mor

23

308

53.0983

-9.6710

Ridge

22.4

42

0.53

145

125

90

4.3

Inis Mor

23

309

53.0983

-9.6710

Ridge

22.4

42

0.53

115

70

40

0.9

Inis Mor

23

310

53.0983

-9.6710

Ridge

22.4

42

0.53

70

65

35

0.4

Inis Mor

24

311

53.0991

-9.6735

Ridge

17.0

25

0.68

100

75

35

0.7

Inis Mor

24

312

53.0991

-9.6735

Ridge

17.0

25

0.68

145

70

15

0.4

Inis Mor

24

313

53.0991

-9.6735

Ridge

17.0

25

0.68

145

95

20

0.7

Inis Mor

24

314

Ridge

17.0

25

0.68

170

165

25

1.9

Inis Mor

24

315

53.0991

-9.6735

Ridge

17.0

25

0.68

65

55

5

0.0

2.0

-1.0

Inis Mor

24

316

C A

-9.6735

53.0991

-9.6735

Ridge

17.0

25

0.68

75

50

10

0.1

3.0

-3.0

Inis Mor

25

317

53.0996

-9.6744

Ridge

16.9

46

0.37

135

115

50

2.1

Inis Mor

25

318

53.0996

-9.6744

Ridge

16.9

46

0.37

360

290

35

9.7

53.0991

D E

T P

E C

M

A

I R

C S

U N

T P

0.5

-0.5

76

ACCEPTED MANUSCRIPT

Inis Mor

25

319

53.0996

-9.6744

Ridge

16.9

46

0.37

430

295

55

18.6

Inis Mor

25

320

53.0996

-9.6744

Ridge

16.9

46

0.37

255

160

45

4.9

Inis Mor

25

321

53.0996

-9.6744

Ridge

16.9

46

0.37

410

160

20

3.5

Inis Mor

25

322

53.0996

-9.6744

Ridge

16.9

46

0.37

185

120

25

1.5

Inis Mor

25

323

53.0996

-9.6744

Ridge

16.9

46

0.37

205

190

70

7.3

2.0

Inis Mor

26

324

53.1001

-9.6761

Ridge

16.6

73

0.23

300

230

80

14.7

7.5

Inis Mor

26

325

53.1001

-9.6761

Ridge

10.3

73

0.14

295

120

100

9.4

5.5

Inis Mor

26

326

53.1001

-9.6761

Ridge

10.3

73

0.14

215

190

30

3.3

Inis Mor

26

327

53.1001

-9.6761

Ridge

10.3

73

0.14

160

120

30

1.5

Inis Mor

26

328

53.1001

-9.6761

Ridge

10.3

73

0.14

145

40

50

0.8

Inis Mor

26

329

53.0998

-9.6755

Isolated

9.8

10

0.98

505

240

115

37.1

2.5

0.0

Inis Mor

27

330

53.1001

-9.6761

Isolated

10.3

56

0.18

490

270

120

42.2

4.5

2.0

Inis Mor

27

331

53.1003

-9.6777

Isolated

11.8

54

0.22

680

430

165

128.3

7.4

Inis Mor

27

332

53.1003

-9.6777

Ridge

13.9

72

0.19

225

90

55

3.0

Inis Mor

27

333

53.1003

-9.6777

Ridge

13.9

72

0.19

105

55

35

0.5

Inis Mor

27

334

53.1003

-9.6777

Ridge

13.9

72

0.19

100

60

30

0.5

Inis Mor

28

335

Ridge

14.1

94

0.15

120

90

50

1.4

Inis Mor

28

336

53.1008

-9.6788

Ridge

14.1

94

0.15

120

90

25

0.7

0.5

Inis Mor

28

337

C A

-9.6788

53.1008

-9.6788

Ridge

13.2

59

0.22

145

70

35

0.9

0.5

Inis Mor

28

338

53.1008

-9.6788

Ridge

13.2

59

0.22

90

85

25

0.5

Inis Mor

28

339

53.1015

-9.6797

Ridge

17.5

54

0.32

170

75

30

1.0

53.1008

D E

T P

E C

M

A

I R

C S

U N

T P

77

ACCEPTED MANUSCRIPT

Inis Mor

28

340

53.1015

-9.6797

Ridge

17.5

54

0.32

115

95

20

0.6

Inis Mor

28

341

53.1015

-9.6797

Ridge

17.5

54

0.32

100

85

25

0.6

Inis Mor

28

342

53.1015

-9.6797

Ridge

17.5

54

0.32

120

60

35

0.7

Inis Mor

28

343

53.1015

-9.6797

Isolated

17.5

54

0.32

280

130

130

12.6

Inis Mor

28

344

53.1015

-9.6797

Isolated

17.5

54

0.32

120

105

30

1.0

Inis Mor

29

345

53.1021

-9.6809

Ridge

17.9

36

0.50

185

95

15

0.7

Inis Mor

29

346

53.1021

-9.6809

Ridge

17.9

36

0.50

130

65

35

0.8

Inis Mor

29

347

53.1021

-9.6809

Ridge

17.9

36

0.50

110

65

30

0.6

Inis Mor

29

348

53.1021

-9.6809

Ridge

17.9

36

0.50

105

65

40

0.7

Inis Mor

29

349

53.1021

-9.6809

Ridge

17.9

36

0.50

105

75

15

0.3

Inis Mor

29

350

53.1021

-9.6809

Ridge

17.9

36

0.50

125

90

35

1.0

Inis Mor

29

351

53.1021

-9.6809

Ridge

17.9

36

0.50

180

70

25

0.8

Inis Mor

30

352

53.1027

-9.6837

Ridge

23.6

64

0.37

230

150

60

5.5

Inis Mor

30

353

53.1027

-9.6837

Ridge

23.6

64

0.37

90

85

40

0.8

Inis Mor

30

354

53.1027

-9.6837

Ridge

23.6

64

0.37

155

130

45

2.4

Inis Mor

30

355

53.1027

-9.6837

Ridge

23.6

64

0.37

110

70

30

0.6

Inis Mor

30

356

Ridge

23.6

64

0.37

110

60

45

0.8

Inis Mor

30

357

53.1027

-9.6837

Ridge

23.6

64

0.37

140

80

35

1.0

Inis Mor

30

358

C A

-9.6837

53.1027

-9.6837

Ridge

23.6

64

0.37

200

110

50

2.9

Inis Mor

30

359

53.1027

-9.6837

Ridge

23.6

64

0.37

100

90

45

1.1

Inis Mor

30

360

53.1027

-9.6837

Ridge

23.6

64

0.37

130

45

50

0.8

53.1027

D E

T P

E C

M

A

I R

C S

U N

T P

3.5

2.5

1.0

2.2

78

ACCEPTED MANUSCRIPT

Inis Mor

31

361

53.1375

-9.8229

Ridge

4.0

19

0.21

325

135

80

9.3

Inis Mor

31

362

53.1375

-9.8229

Ridge

4.0

19

0.21

185

150

135

10.0

Inis Mor

31

363

53.1375

-9.8229

Ridge

4.0

19

0.21

175

160

65

4.8

Inis Mor

31

364

53.1375

-9.8229

Ridge

4.0

19

0.21

145

90

70

2.4

Inis Mor

31

365

53.1375

-9.8229

Ridge

4.0

19

0.21

220

150

35

3.1

Inis Mor

31

366

53.1375

-9.8229

Ridge

4.0

19

0.21

135

110

50

2.0

Inis Mor

31

367

53.1375

-9.8229

Ridge

4.0

19

0.21

195

90

80

3.7

Inis Mor

31

368

53.1375

-9.8229

Ridge

4.0

19

0.21

250

100

60

4.0

Inis Mor

31

369

53.1375

-9.8229

Ridge

4.0

19

0.21

180

75

55

2.0

Inis Mor

31

370

53.1375

-9.8229

Ridge

4.0

19

0.21

200

70

60

2.2

Inis Mor

31

371

53.1375

-9.8229

Isolated

4.0

19

0.21

190

260

185

Inis Mor

31

372

53.1375

-9.8229

Ridge

4.0

19

0.21

290

245

Inis Mor

31

373

53.1373

-9.8237

Ridge

4.5

45

0.10

130

Inis Mor

31

374

53.1373

-9.8237

Isolated

4.5

45

0.10

Inis Mor

31

375

53.1373

-9.8237

Isolated

4.5

45

Inis Mor

31

376

53.1373

-9.8237

Isolated

4.5

Inis Mor

31

377

Isolated

Inis Mor

31

378

53.1373

-9.8237

Inis Mor

31

379

C A

-9.8237

53.1373

Inis Mor

31

380

Inis Mor

31

381

T P

I R

6.0

2.0

2.0

1.0

24.3

4.0

0.0

75

14.2

2.7

1.5

90

80

2.5

265

230

140

22.7

0.10

280

210

80

12.5

45

0.10

200

180

170

16.3

4.5

45

0.10

150

130

120

6.2

Isolated

4.5

45

0.10

180

160

50

3.8

-9.8237

Isolated

4.5

45

0.10

260

230

160

25.5

53.1373

-9.8237

Isolated

4.5

45

0.10

230

180

150

16.5

53.1373

-9.8237

Isolated

4.5

45

0.10

170

150

75

5.1

53.1373

D E

T P

E C

U N

A

M

C S

3.0

1.0

6.0

79

ACCEPTED MANUSCRIPT

Inis Mor

31

382

53.1373

-9.8237

Isolated

5.0

45

0.11

250

170

120

13.6

0.5

Inis Mor

31

383

53.1373

-9.8237

Isolated

5.0

45

0.11

160

140

100

6.0

2.5

Inis Mor

31

384

53.1372

-9.8247

Isolated

4.5

70

0.06

253

253

253

43.0

5.0

Inis Mor

31

385

53.1372

-9.8247

Isolated

4.5

45

0.10

215

210

130

15.6

Inis Mor

31

386

53.1372

-9.8247

Isolated

4.5

45

0.10

200

140

35

2.6

Inis Mor

31

387

53.1372

-9.8247

Isolated

4.5

45

0.10

220

150

75

6.6

Inis Mor

31

388

53.1372

-9.8247

Isolated

4.5

55

0.08

360

300

180

51.7

2.0

Inis Mor

31

389

53.1372

-9.8247

Isolated

4.5

45

0.10

290

190

100

14.7

5.0

Inis Mor

31

390

53.1372

-9.8247

Isolated

4.5

45

0.10

230

200

100

12.2

5.4

Inis Mor

32

391

53.1371

-9.8206

Ridge

7.4

31

0.24

90

80

40

0.8

1.5

Inis Mor

32

392

53.1371

-9.8206

Ridge

7.4

31

0.24

130

85

50

1.5

Inis Mor

32

393

53.1371

-9.8206

Ridge

7.4

31

0.24

130

75

40

1.0

Inis Mor

32

394

53.1371

-9.8206

Ridge

7.4

31

0.24

155

115

45

2.1

Inis Mor

32

395

53.1371

-9.8206

Ridge

7.4

31

0.24

145

55

40

0.8

Inis Mor

32

396

53.1371

-9.8206

Ridge

7.4

31

0.24

115

100

25

0.8

Inis Mor

32

397

53.1371

-9.8206

Ridge

7.4

31

0.24

145

140

40

2.2

Inis Mor

32

398

Ridge

7.4

31

0.24

185

80

25

1.0

Inis Mor

32

399

53.1377

-9.8219

Ridge

4.0

65

0.06

130

125

65

2.8

Inis Mor

32

400

C A

-9.8206

53.1377

-9.8219

Isolated

4.0

65

0.06

190

160

55

4.4

Inis Mor

32

401

53.1377

-9.8219

Ridge

4.0

65

0.06

155

125

60

3.1

Inis Mor

32

402

53.1377

-9.8219

Ridge

4.0

65

0.06

235

120

30

2.3

53.1371

D E

T P

E C

M

A

I R

C S

U N

T P

2.6

1.0

80

ACCEPTED MANUSCRIPT

Inis Mor

32

403

53.1377

-9.8219

Ridge

4.0

65

0.06

240

160

50

5.1

Inis Mor

32

404

53.1377

-9.8219

Ridge

4.0

65

0.06

150

115

40

1.8

Inis Mor

32

405

53.1377

-9.8219

Ridge

4.0

65

0.06

100

80

90

1.9

1.3

Inis Mor

32

406

53.1377

-9.8219

Isolated

4.0

65

0.06

190

160

55

4.4

1.0

Inis Mor

32

407

53.1377

-9.8219

Ridge

4.0

65

0.06

255

215

100

14.6

1.0

Inis Mor

32

408

53.1377

-9.8219

Ridge

4.0

65

0.06

330

270

60

14.2

Inis Mor

32

409

53.1377

-9.8219

Ridge

4.0

65

0.06

100

60

50

0.8

Inis Mor

32

410

53.1377

-9.8219

Ridge

4.0

65

0.06

105

60

65

1.1

Inis Mor

32

411

53.1377

-9.8219

Ridge

4.0

65

0.06

210

170

35

3.3

Inis Mor

32

412

53.1375

-9.8229

Ridge

5.5

21

0.26

170

155

65

4.6

Inis Mor

32

413

53.1375

-9.8229

Ridge

5.5

21

0.26

145

95

75

2.7

Inis Mor

32

414

53.1375

-9.8229

Ridge

5.5

21

0.26

195

90

85

4.0

Inis Mor

32

415

53.1375

-9.8229

Ridge

5.5

21

0.26

135

110

50

2.0

Inis Mor

32

416

53.1375

-9.8229

Ridge

5.5

21

0.26

170

60

60

1.6

Inis Mor

33

417

53.1374

-9.8239

Ridge

4.8

72

0.07

210

200

125

14.0

Inis Mor

33

418

53.1374

-9.8239

Ridge

4.8

72

0.07

220

150

30

2.6

Inis Mor

33

419

Ridge

4.8

72

0.07

235

175

175

19.1

Inis Mor

33

420

53.1374

-9.8239

Ridge

4.8

72

0.07

220

90

80

4.2

Inis Mor

33

421

C A

-9.8239

53.1374

-9.8239

Ridge

4.8

72

0.07

155

130

85

4.6

Inis Mor

33

422

53.1374

-9.8239

Ridge

4.8

72

0.07

435

215

140

34.8

Inis Mor

33

423

53.1374

-9.8239

Ridge

4.8

72

0.07

240

150

45

4.3

53.1374

D E

T P

E C

M

A

I R

C S

U N

T P

2.5

1.5

81

ACCEPTED MANUSCRIPT

Inis Mor

33

424

53.1374

-9.8239

Ridge

4.8

72

0.07

435

140

90

14.6

Inis Mor

33

425

53.1374

-9.8239

Ridge

4.8

72

0.07

105

120

105

3.5

Inis Mor

33

426

53.1374

-9.8239

Ridge

4.8

72

0.07

500

265

110

38.8

Inis Mor

33

427

53.1374

-9.8239

Ridge

4.8

72

0.07

270

240

120

20.7

Inis Mor

33

428

53.1374

-9.8239

Ridge

4.8

72

0.07

290

185

105

15.0

Inis Mor

34

429

53.1043

-9.6881

Ridge

26.0

18

1.44

75

30

20

0.1

2.0

Inis Mor

34

430

53.1043

-9.6881

Ridge

26.0

18

1.44

30

15

10

0.0

0.5

Inis Mor

34

431

53.1043

-9.6881

Ridge

26.0

18

1.44

120

110

20

0.7

3.5

Inis Mor

34

432

53.1043

-9.6881

Ridge

26.0

18

1.44

100

50

20

0.3

Inis Mor

34

433

53.1043

-9.6881

Ridge

26.0

18

1.44

90

80

10

0.2

0.5

Inis Mor

34

434

53.1043

-9.6881

Ridge

26.0

18

1.44

50

15

20

0.1

4.0

Inis Mor

34

435

53.1043

-9.6881

Isolated

26.0

18

1.44

85

70

15

0.2

Inis Mor

34

436

53.1043

-9.6881

Isolated

26.0

18

1.44

95

50

25

0.3

Inis Mor

34

437

53.1043

-9.6881

Ridge

26.0

18

1.44

75

50

20

0.2

Inis Mor

34

438

53.1043

-9.6881

Ridge

26.0

18

1.44

190

120

20

1.2

Inis Mor

34

439

53.1043

-9.6881

Ridge

26.0

18

1.44

135

85

10

0.3

Inis Mor

34

440

Ridge

26.0

18

1.44

120

70

20

0.4

Inis Mor

34

441

53.1043

-9.6881

Ridge

26.0

18

1.44

120

65

15

0.3

2.0

Inis Mor

34

442

C A

-9.6881

53.1043

-9.6881

Ridge

26.0

18

1.44

65

50

20

0.2

0.5

Inis Meain

35

443

53.0675

-9.6004

Ridge

1.9

13

0.15

170

50

50

1.1

Inis Meain

35

444

53.0675

-9.6004

Ridge

1.9

13

0.15

200

155

35

2.9

53.1043

D E

T P

E C

M

A

I R

C S

U N

T P

2.0

0.2

0.0

82

ACCEPTED MANUSCRIPT

Inis Meain

35

445

53.0675

-9.6004

Ridge

1.9

13

0.15

200

120

30

1.9

Inis Meain

35

446

53.0675

-9.6004

Ridge

1.9

13

0.15

190

135

30

2.0

Inis Meain

35

447

53.0675

-9.6004

Ridge

1.9

13

0.15

360

125

50

6.0

Inis Meain

35

448

53.0675

-9.6004

Isolated

1.9

13

0.15

300

200

35

5.6

Inis Meain

35

449

53.0675

-9.6004

Ridge

1.9

13

0.15

160

155

15

1.0

Inis Meain

35

450

53.0675

-9.6004

Ridge

1.9

13

0.15

110

80

15

0.4

Inis Meain

36

451

53.0670

-9.6015

Ridge

3.4

15

0.23

95

75

25

0.5

Inis Meain

36

452

53.0670

-9.6015

Ridge

3.4

15

0.23

170

65

10

0.3

Inis Meain

36

453

53.0670

-9.6015

Isolated

3.4

15

0.23

130

105

30

1.1

Inis Meain

36

454

53.0670

-9.6015

Ridge

3.4

15

0.23

100

85

25

0.6

Inis Meain

37

455

53.0667

-9.6021

Ridge

3.8

8

0.48

205

65

30

1.1

Inis Meain

37

456

53.0667

-9.6021

Ridge

3.8

8

0.48

85

70

20

0.3

Inis Meain

37

457

53.0667

-9.6021

Ridge

3.8

8

0.48

95

60

25

0.4

Inis Meain

37

458

53.0667

-9.6021

Ridge

3.8

8

0.48

90

75

15

0.3

Inis Meain

37

459

53.0667

-9.6021

Ridge

3.8

8

0.48

125

105

25

0.9

Inis Meain

37

460

53.0667

-9.6021

Ridge

3.8

8

0.48

100

90

15

0.4

Inis Meain

37

461

Ridge

3.8

8

0.48

80

80

30

0.5

Inis Meain

37

462

53.0667

-9.6021

Ridge

3.8

8

0.48

85

65

15

0.2

Inis Meain

37

463

C A

-9.6021

53.0667

-9.6021

Ridge

3.8

8

0.48

105

95

10

0.3

Inis Meain

37

464

53.0667

-9.6021

Isolated

3.8

8

0.48

105

70

40

0.8

Inis Meain

37

465

53.0667

-9.6021

Ridge

0.8

5

0.16

130

115

30

1.2

53.0667

D E

T P

E C

M

A

I R

C S

U N

T P

1.5

83

ACCEPTED MANUSCRIPT

Inis Meain

37

466

53.0667

-9.6021

Ridge

0.8

5

0.16

120

75

25

0.6

Inis Meain

37

467

53.0664

-9.6037

Ridge

3.0

32

0.10

100

45

35

0.4

Inis Meain

37

468

53.0664

-9.6037

Ridge

3.0

32

0.10

100

60

15

0.2

4.5

3.5

Inis Meain

37

469

53.0664

-9.6037

Ridge

3.0

32

0.10

110

90

15

0.4

4.5

4.0

Inis Meain

37

470

53.0664

-9.6037

Ridge

3.0

32

0.10

70

65

5

0.1

4.5

3.5

Inis Meain

37

471

53.0664

-9.6037

Isolated

3.0

32

0.10

195

160

65

5.4

29.0

2.0

Inis Meain

37

472

53.0664

-9.6037

Isolated

3.0

32

0.10

120

95

40

1.2

24.5

2.0

Inis Meain

37

473

53.0664

-9.6037

Ridge

3.0

32

0.10

135

110

15

0.6

21.0

0.5

Inis Meain

38

474

53.0665

-9.6029

Ridge

1.5

12

0.13

170

80

60

2.2

Inis Meain

38

475

53.0665

-9.6029

Ridge

1.5

12

0.13

210

150

35

2.9

Inis Meain

38

476

53.0665

-9.6029

Ridge

1.5

12

0.13

200

140

60

4.5

7.0

Inis Meain

38

477

53.0665

-9.6029

Ridge

1.5

12

0.13

220

140

40

3.3

4.7

Inis Meain

38

478

53.0665

-9.6029

Ridge

1.5

12

0.13

140

125

30

1.4

Inis Meain

38

479

53.0665

-9.6029

Ridge

1.5

12

0.13

120

110

65

2.3

Inis Meain

38

480

53.0665

-9.6029

Ridge

1.5

12

0.13

140

60

50

1.1

Inis Meain

38

481

53.0665

-9.6029

Ridge

1.5

12

0.13

160

110

40

1.9

Inis Meain

38

482

Ridge

4.2

21

0.20

230

110

30

2.0

Inis Meain

38

483

53.0662

-9.6045

Ridge

4.2

21

0.20

130

130

30

1.3

Inis Meain

38

484

C A

-9.6045

53.0662

-9.6045

Ridge

4.2

21

0.20

130

115

25

1.0

Inis Meain

38

485

53.0662

-9.6045

Isolated

4.2

21

0.20

210

200

65

7.3

Inis Meain

38

486

53.0662

-9.6045

Ridge

4.2

21

0.20

120

85

25

0.7

53.0662

D E

T P

E C

M

A

I R

C S

U N

T P

84

ACCEPTED MANUSCRIPT

Inis Meain

38

487

53.0662

-9.6045

Ridge

4.2

21

0.20

155

95

15

0.6

Inis Meain

38

488

53.0662

-9.6045

Ridge

4.2

21

0.20

135

110

15

0.6

Inis Meain

38

489

53.0662

-9.6045

Ridge

4.2

21

0.20

160

75

35

1.1

Inis Meain

38

490

53.0662

-9.6045

Ridge

4.2

21

0.20

145

85

50

1.6

Inis Meain

38

491

53.0662

-9.6045

Ridge

4.2

21

0.20

130

95

35

1.1

Inis Meain

38

492

53.0662

-9.6045

Ridge

4.2

21

0.20

150

90

40

1.4

Inis Meain

38

493

53.0662

-9.6045

Ridge

4.2

21

0.20

85

65

25

0.4

Inis Meain

39

494

53.0660

-9.6051

Ridge

2.4

24

0.10

90

70

30

0.5

Inis Meain

39

495

53.0660

-9.6051

Ridge

2.4

24

0.10

130

100

20

0.7

Inis Meain

39

496

53.0660

-9.6051

Ridge

2.4

24

0.10

110

85

20

0.5

Inis Meain

39

497

53.0660

-9.6051

Ridge

2.4

24

0.10

100

85

40

0.9

Inis Meain

39

498

53.0660

-9.6051

Ridge

2.4

24

0.10

160

105

30

1.3

Inis Meain

40

499

53.0659

-9.6059

Ridge

5.0

24

0.20

260

205

90

12.8

41.1

Inis Meain

40

500

53.0659

-9.6059

Ridge

5.0

24

0.20

270

260

150

28.0

29.6

Inis Meain

40

501

53.0659

-9.6059

Ridge

5.0

24

0.20

160

145

50

3.1

1.5

Inis Meain

40

502

53.0659

-9.6059

Ridge

5.0

24

0.20

210

205

60

6.9

Inis Meain

40

503

Ridge

5.0

24

0.20

120

75

30

0.7

Inis Meain

40

504

53.0659

-9.6059

Ridge

5.0

24

0.20

155

130

65

3.5

Inis Meain

40

505

C A

-9.6059

53.0659

-9.6059

Ridge

5.0

24

0.20

195

125

130

8.4

Inis Meain

40

506

53.0659

-9.6059

Ridge

5.0

24

0.20

195

150

50

3.9

Inis Meain

40

507

53.0659

-9.6059

Ridge

5.0

24

0.20

185

175

25

2.2

53.0659

D E

T P

E C

M

A

I R

C S

U N

T P

2.8

85

ACCEPTED MANUSCRIPT

Inis Meain

40

508

53.0659

-9.6059

Ridge

5.0

24

0.20

200

190

30

3.0

Inis Meain

40

509

53.0660

-9.6074

Isolated

1.0

10

0.10

330

265

75

17.4

Inis Meain

40

510

53.0660

-9.6074

Isolated

1.5

13

0.12

250

205

100

13.6

37.0

Inis Meain

40

511

53.0660

-9.6074

Ridge

1.3

15

0.09

300

220

120

21.1

1.0

0.3

Inis Meain

40

512

53.0660

-9.6074

Ridge

2.3

18

0.13

130

125

35

1.5

Inis Meain

41

513

53.0660

-9.6074

Ridge

5.0

40

0.13

120

80

35

0.9

23.0

1.0

Inis Meain

41

514

53.0660

-9.6074

Isolated

1.2

11

0.11

350

330

150

46.1

12.0

1.0

Inis Meain

42

515

53.0661

-9.6094

Isolated

8.4

45

0.19

210

185

60

6.2

Inis Meain

42

516

53.0661

-9.6094

Ridge

8.4

45

0.19

370

245

45

10.9

Inis Meain

42

517

53.0661

-9.6094

Ridge

8.4

45

0.19

120

60

25

0.5

Inis Meain

42

518

53.0661

-9.6094

Ridge

8.4

45

0.19

95

95

10

0.2

Inis Meain

42

519

53.0661

-9.6094

Ridge

8.4

45

0.19

100

95

20

0.5

Inis Meain

42

520

53.0661

-9.6094

Ridge

8.4

45

0.19

110

80

15

0.4

Inis Meain

42

521

53.0661

-9.6094

Ridge

8.4

45

0.19

130

110

15

0.6

Inis Meain

42

522

53.0661

-9.6094

Ridge

8.4

45

0.19

155

95

25

1.0

Inis Meain

42

523

53.0661

-9.6094

Ridge

8.4

45

0.19

245

150

45

4.4

Inis Meain

42

524

Ridge

8.4

45

0.19

130

70

35

0.8

Inis Meain

42

525

53.0661

-9.6094

Ridge

8.4

45

0.19

95

90

40

0.9

Inis Meain

42

526

C A

-9.6094

53.0661

-9.6094

Ridge

8.4

45

0.19

110

60

40

0.7

Inis Meain

42

527

53.0661

-9.6094

Ridge

8.4

45

0.19

125

105

40

1.4

Inis Meain

42

528

53.0661

-9.6094

Ridge

8.4

45

0.19

105

90

20

0.5

53.0661

D E

T P

E C

M

A

I R

C S

U N

T P

86

ACCEPTED MANUSCRIPT

Inis Meain

42

529

53.0661

-9.6094

Ridge

8.4

45

0.19

205

185

35

3.5

Inis Meain

42

530

53.0661

-9.6094

Isolated

8.4

45

0.19

210

200

30

3.4

Inis Meain

42

531

53.0661

-9.6094

Ridge

8.4

45

0.19

225

210

30

3.8

Inis Meain

42

532

53.0661

-9.6094

Ridge

8.4

45

0.19

135

120

35

1.5

Inis Meain

42

533

53.0661

-9.6094

Ridge

8.4

45

0.19

130

125

25

1.1

Inis Meain

43

534

53.0663

-9.6102

Ridge

7.7

105

0.07

80

80

20

0.3

Inis Meain

43

535

53.0663

-9.6102

Isolated

7.7

105

0.07

135

70

40

1.0

Inis Meain

43

536

53.0663

-9.6102

Ridge

7.7

105

0.07

220

115

35

2.4

Inis Meain

43

537

53.0663

-9.6102

Ridge

7.7

105

0.07

125

80

25

0.7

Inis Meain

43

538

53.0663

-9.6102

Ridge

7.7

105

0.07

90

90

25

0.5

Inis Meain

43

539

53.0663

-9.6102

Ridge

7.7

105

0.07

65

50

35

0.3

Inis Meain

43

540

53.0663

-9.6102

Isolated

7.7

105

0.07

190

165

40

3.3

Inis Meain

43

541

53.0663

-9.6102

Ridge

7.7

105

0.07

140

90

20

0.7

Inis Meain

43

542

53.0663

-9.6102

Ridge

7.7

105

0.07

180

130

50

3.1

Inis Meain

43

543

53.0663

-9.6102

Ridge

7.7

105

0.07

180

130

60

3.7

Inis Meain

43

544

53.0663

-9.6102

Ridge

7.7

105

0.07

100

90

25

0.6

Inis Meain

43

545

Isolated

7.7

105

0.07

220

150

55

4.8

Inis Meain

43

546

53.0663

-9.6102

Ridge

7.7

105

0.07

130

75

55

1.4

Inis Meain

43

547

C A

-9.6102

53.0663

-9.6102

Isolated

7.7

105

0.07

230

195

40

4.8

Inis Meain

43

548

53.0663

-9.6102

Ridge

7.7

105

0.07

195

190

50

4.9

Inis Meain

43

549

53.0663

-9.6102

Ridge

7.7

105

0.07

220

215

40

5.0

53.0663

D E

T P

E C

M

A

I R

C S

U N

T P

87

ACCEPTED MANUSCRIPT

Inis Meain

43

550

53.0663

-9.6102

Ridge

7.7

105

0.07

370

240

50

11.8

Inis Meain

44

551

53.0664

-9.6110

Ridge

8.2

110

0.07

190

135

50

3.4

Inis Meain

44

552

53.0664

-9.6110

Ridge

8.2

110

0.07

150

85

25

0.8

Inis Meain

44

553

53.0664

-9.6110

Ridge

8.2

110

0.07

110

70

20

0.4

Inis Meain

44

554

53.0664

-9.6110

Ridge

8.2

110

0.07

180

170

25

2.0

Inis Meain

44

555

53.0664

-9.6110

Ridge

8.2

110

0.07

160

90

25

1.0

Inis Meain

44

556

53.0664

-9.6110

Ridge

8.2

110

0.07

185

145

25

1.8

Inis Meain

44

557

53.0664

-9.6110

Ridge

8.2

110

0.07

130

65

25

0.6

Inis Meain

44

558

53.0664

-9.6110

Ridge

8.2

110

0.07

100

95

25

0.6

Inis Meain

45

559

53.0666

-9.6120

Ridge

8.4

100

0.08

140

85

35

1.1

Inis Meain

45

560

53.0666

-9.6120

Ridge

8.4

100

0.08

145

25

25

0.2

Inis Meain

45

561

53.0666

-9.6120

Ridge

8.4

100

0.08

85

75

20

0.3

Inis Meain

45

562

53.0666

-9.6120

Ridge

8.4

100

0.08

95

75

15

0.3

Inis Meain

45

563

53.0666

-9.6120

Ridge

8.4

100

0.08

165

70

35

1.1

Inis Meain

45

564

53.0666

-9.6120

Ridge

8.4

100

0.08

120

65

25

0.5

Inis Meain

45

565

53.0666

-9.6120

Ridge

8.4

100

0.08

130

65

25

0.6

Inis Meain

46

566

Ridge

8.3

99

0.08

75

50

10

0.1

Inis Meain

46

567

53.0666

-9.6128

Ridge

8.3

99

0.08

125

65

25

0.5

Inis Meain

46

568

C A

-9.6128

53.0666

-9.6128

Ridge

8.3

99

0.08

90

65

15

0.2

Inis Meain

46

569

53.0666

-9.6128

Ridge

8.3

99

0.08

100

70

10

0.2

Inis Meain

46

570

53.0666

-9.6128

Ridge

8.3

99

0.08

185

180

30

2.7

53.0666

D E

T P

E C

M

A

I R

C S

U N

T P

2.0

2.0

-1.0

3.3

-5.0

5.0

88

ACCEPTED MANUSCRIPT

Inis Meain

46

571

53.0666

-9.6128

Ridge

8.3

99

0.08

130

90

30

0.9

Inis Meain

47

572

53.0667

-9.6137

Ridge

10.7

156

0.07

120

95

25

0.8

Inis Meain

47

573

53.0667

-9.6137

Ridge

10.7

156

0.07

100

90

25

0.6

Inis Meain

47

574

53.0667

-9.6137

Ridge

10.7

156

0.07

225

110

20

1.3

Inis Meain

47

575

53.0667

-9.6137

Ridge

10.7

156

0.07

160

80

45

1.5

Inis Meain

47

576

53.0667

-9.6137

Ridge

10.7

156

0.07

100

60

25

0.4

Inis Meain

47

577

53.0667

-9.6137

Isolated

10.7

156

0.07

280

190

50

7.1

Inis Meain

47

578

53.0667

-9.6137

Isolated

10.7

156

0.07

280

230

95

16.3

Inis Meain

48

579

53.0669

-9.6144

Ridge

10.1

150

0.07

510

240

75

24.4

Inis Meain

48

580

53.0669

-9.6144

Isolated

10.1

150

0.07

225

160

40

3.8

Inis Meain

48

581

53.0669

-9.6144

Ridge

10.1

150

0.07

135

100

25

0.9

Inis Meain

48

582

53.0669

-9.6144

Ridge

10.1

150

0.07

145

75

40

1.2

Inis Meain

48

583

53.0669

-9.6144

Ridge

10.1

150

0.07

170

90

25

1.0

Inis Meain

48

584

53.0669

-9.6144

Ridge

10.1

150

0.07

230

160

35

3.4

Inis Meain

48

585

53.0669

-9.6144

Ridge

10.1

150

0.07

310

180

40

5.9

Inis Meain

48

586

53.0669

-9.6144

Ridge

10.1

150

0.07

390

315

45

14.7

Inis Meain

48

587

Isolated

10.1

150

0.07

75

230

130

6.0

Inis Meain

48

588

53.0699

-9.6164

Ridge

10.1

150

0.07

185

125

20

1.2

Inis Meain

48

589

C A

-9.6144

53.0699

-9.6164

Ridge

10.1

150

0.07

255

105

35

Inis Meain

48

590

53.0699

-9.6164

Ridge

10.1

150

0.07

205

120

Inis Meain

48

591

53.0699

-9.6164

Ridge

10.1

150

0.07

385

215

53.0669

D E

T P

E C

M

A

I R

C S

U N

T P

-1.5

14.1

1.0

2.5

3.5

-1.0

50

3.3

2.0

75

16.5

89

ACCEPTED MANUSCRIPT

Inis Meain

49

592

53.0672

-9.6149

Ridge

11.6

158

0.07

150

105

10

0.4

Inis Meain

49

593

53.0672

-9.6149

Ridge

11.6

158

0.07

120

65

45

0.9

Inis Meain

49

594

53.0672

-9.6149

Ridge

11.6

158

0.07

125

85

30

0.8

Inis Meain

49

595

53.0672

-9.6149

Ridge

11.6

158

0.07

125

80

15

0.4

Inis Meain

49

596

53.0672

-9.6149

Ridge

11.6

158

0.07

105

65

40

0.7

Inis Meain

49

597

53.0672

-9.6149

Ridge

11.6

158

0.07

90

65

40

0.6

Inis Meain

49

598

53.0672

-9.6149

Ridge

11.6

158

0.07

125

60

20

0.4

Inis Meain

49

599

53.0672

-9.6149

Ridge

11.6

158

0.07

105

80

20

0.4

Inis Meain

49

600

53.0672

-9.6149

Ridge

11.6

158

0.07

105

70

35

0.7

Inis Meain

49

601

53.0672

-9.6149

Ridge

11.6

158

0.07

65

65

20

0.2

Inis Meain

49

602

53.0672

-9.6149

Ridge

11.6

158

0.07

70

60

20

0.2

Inis Meain

49

603

53.0672

-9.6149

Ridge

11.6

158

0.07

170

85

15

0.6

Inis Meain

49

604

53.0672

-9.6149

Ridge

11.6

158

0.07

155

75

15

0.5

Inis Meain

49

605

53.0672

-9.6150

Ridge

11.6

140

0.08

425

300

80

27.1

Inis Meain

49

606

53.0672

-9.6150

Ridge

11.6

158

0.07

170

170

20

1.5

Inis Meain

49

607

53.0672

-9.6150

Ridge

11.6

158

0.07

130

100

45

1.6

Inis Meain

49

608

Ridge

11.6

158

0.07

230

140

50

4.3

Inis Meain

49

609

53.0672

-9.6150

Ridge

11.6

158

0.07

130

100

40

1.4

Inis Meain

49

610

C A

-9.6150

53.0672

-9.6150

Ridge

11.6

158

0.07

320

90

45

3.4

Inis Meain

49

611

53.0672

-9.6150

Ridge

11.6

158

0.07

116

65

35

0.7

Inis Meain

49

612

53.0672

-9.6150

Ridge

11.6

158

0.07

100

80

15

0.3

53.0672

D E

T P

E C

M

A

I R

C S

U N

T P

29.5

0.8

90

ACCEPTED MANUSCRIPT

Inis Meain

50

613

53.0674

-9.6155

Ridge

12.8

123

0.10

430

260

50

14.9

Inis Meain

50

614

53.0674

-9.6155

Ridge

12.8

123

0.10

270

160

70

8.0

Inis Meain

50

615

53.0674

-9.6155

Ridge

12.8

123

0.10

270

120

40

3.4

11.5

Inis Meain

50

616

53.0674

-9.6155

Ridge

12.8

123

0.10

245

60

45

1.8

16.0

Inis Meain

50

617

53.0674

-9.6155

Ridge

12.8

123

0.10

240

60

60

2.3

17.0

Inis Meain

50

618

53.0674

-9.6155

Ridge

12.8

123

0.10

230

65

40

1.6

17.0

Inis Meain

50

619

53.0674

-9.6155

Ridge

12.8

123

0.10

200

120

25

1.6

Inis Meain

50

620

53.0674

-9.6155

Ridge

12.8

123

0.10

235

105

30

2.0

Inis Meain

50

621

53.0674

-9.6155

Ridge

12.8

123

0.10

185

140

40

2.8

Inis Meain

50

622

53.0674

-9.6155

Ridge

12.8

123

0.10

165

105

40

1.8

Inis Meain

50

623

53.0674

-9.6155

Ridge

12.8

123

0.10

250

130

55

4.8

Inis Meain

50

624

53.0674

-9.6155

Ridge

12.8

123

0.10

180

95

35

1.6

Inis Meain

50

625

53.0674

-9.6155

Ridge

12.8

123

0.10

125

120

30

1.2

Inis Meain

50

626

53.0674

-9.6155

Ridge

12.8

123

0.10

235

110

40

2.8

Inis Meain

50

627

53.0674

-9.6155

Ridge

12.8

123

0.10

170

120

65

3.5

Inis Meain

50

628

53.0674

-9.6155

Ridge

12.8

123

0.10

180

90

40

1.7

Inis Meain

50

629

Ridge

12.8

123

0.10

160

90

55

2.1

Inis Meain

50

630

53.0674

-9.6155

Ridge

12.8

123

0.10

280

195

20

2.9

Inis Meain

50

631

C A

-9.6155

53.0674

-9.6155

Ridge

12.8

123

0.10

140

110

10

0.4

Inis Meain

50

632

53.0674

-9.6155

Ridge

12.8

123

0.10

170

140

10

0.6

Inis Meain

50

633

53.0674

-9.6155

Ridge

12.8

123

0.10

90

85

20

0.4

53.0674

D E

T P

E C

M

A

I R

C S

U N

T P

91

ACCEPTED MANUSCRIPT

Inis Meain

51

634

53.0678

-9.6159

Isolated

11.5

135

0.09

280

155

55

6.3

Inis Meain

51

635

53.0678

-9.6159

Isolated

11.5

135

0.09

275

275

60

12.1

Inis Meain

51

636

53.0678

-9.6159

Isolated

11.5

135

0.09

370

155

60

9.2

Inis Meain

51

637

53.0678

-9.6159

Isolated

11.5

135

0.09

250

205

60

8.2

Inis Meain

51

638

53.0678

-9.6159

Isolated

11.5

135

0.09

200

195

60

6.2

Inis Meain

51

639

53.0678

-9.6159

Ridge

11.5

135

0.09

260

160

15

1.7

Inis Meain

52

640

53.0682

-9.6161

Ridge

13.9

175

0.08

240

165

25

2.6

6.0

Inis Meain

52

641

53.0682

-9.6161

Ridge

13.9

175

0.08

110

105

15

0.5

1.8

Inis Meain

52

642

53.0682

-9.6161

Ridge

13.9

175

0.08

180

125

30

1.8

Inis Meain

52

643

53.0682

-9.6161

Isolated

13.9

175

0.08

280

200

40

6.0

14.5

Inis Meain

53

644

53.0686

-9.6163

Ridge

15.5

200

0.08

200

60

70

2.2

1.0

Inis Meain

53

645

53.0686

-9.6163

Ridge

15.5

200

0.08

210

100

65

3.6

Inis Meain

53

646

53.0686

-9.6163

Ridge

15.5

200

0.08

350

230

10

2.1

Inis Meain

53

647

53.0686

-9.6163

Ridge

15.5

200

0.08

290

150

45

5.2

1.1

Inis Meain

53

648

53.0686

-9.6163

Ridge

15.5

200

0.08

280

250

60

11.2

1.8

Inis Meain

54

649

53.0686

-9.6163

Ridge

15.5

195

0.08

420

290

55

17.8

6.0

Inis Meain

54

650

Ridge

15.5

195

0.08

580

135

70

14.6

Inis Meain

54

651

53.0689

-9.6166

Ridge

19.6

222

0.09

230

190

50

5.8

Inis Meain

54

652

C A

-9.6163

53.0689

-9.6166

Ridge

19.6

222

0.09

260

100

55

3.8

Inis Meain

54

653

53.0689

-9.6166

Ridge

19.6

222

0.09

140

80

20

0.6

Inis Meain

54

654

53.0689

-9.6166

Ridge

19.6

222

0.09

155

120

40

2.0

53.0686

D E

T P

E C

M

A

I R

C S

U N

T P

0.5

3.3

3.4

92

ACCEPTED MANUSCRIPT

Inis Meain

54

655

53.0689

-9.6166

Ridge

19.6

222

0.09

160

160

35

2.4

Inis Meain

54

656

53.0689

-9.6166

Ridge

19.6

222

0.09

405

130

35

4.9

Inis Meain

54

657

53.0689

-9.6166

Isolated

19.6

222

0.09

550

300

65

28.5

Inis Meain

54

658

53.0689

-9.6166

Isolated

19.6

222

0.09

300

170

60

8.1

Inis Meain

54

659

53.0689

-9.6166

Ridge

19.6

222

0.09

250

240

25

4.0

12.7

Inis Meain

54

660

53.0689

-9.6166

Ridge

19.6

222

0.09

280

260

65

12.6

3.0

Inis Meain

54

661

53.0689

-9.6166

Ridge

19.6

222

0.09

270

150

45

4.8

Inis Meain

54

662

53.0689

-9.6166

Ridge

19.6

222

0.09

315

220

40

7.4

Inis Meain

54

663

53.0689

-9.6166

Ridge

19.6

222

0.09

145

120

30

1.4

Inis Meain

54

664

53.0689

-9.6166

Ridge

19.6

222

0.09

100

90

45

1.1

Inis Meain

54

665

53.0689

-9.6166

Ridge

19.6

222

0.09

130

50

45

0.8

Inis Meain

55

666

53.0694

-9.6165

Ridge

18.3

213

0.09

210

70

70

2.7

Inis Meain

55

667

53.0694

-9.6165

Ridge

18.3

213

0.09

495

205

60

16.2

Inis Meain

55

668

53.0694

-9.6165

Ridge

18.3

213

0.09

215

140

55

4.4

Inis Meain

55

669

53.0694

-9.6165

Ridge

18.3

213

0.09

190

120

35

2.1

Inis Meain

55

670

53.0694

-9.6165

Ridge

18.3

213

0.09

150

90

40

1.4

Inis Meain

55

671

Ridge

18.3

213

0.09

150

50

40

0.8

Inis Meain

55

672

53.0694

-9.6165

Ridge

18.3

213

0.09

145

65

15

0.4

Inis Meain

55

673

C A

-9.6165

53.0694

-9.6165

Ridge

18.3

213

0.09

500

315

70

29.3

Inis Meain

55

674

53.0694

-9.6165

Ridge

18.3

213

0.09

175

110

35

1.8

Inis Meain

55

675

53.0694

-9.6165

Ridge

18.3

213

0.09

205

165

50

4.5

53.0694

D E

T P

E C

M

A

I R

C S

U N

T P

6.0

-1.0

-4.0

3.3

3.4

4.5

93

ACCEPTED MANUSCRIPT

Inis Meain

55

676

53.0694

-9.6165

Ridge

18.3

213

0.09

245

100

40

2.6

Inis Meain

55

677

53.0694

-9.6165

Ridge

18.3

213

0.09

265

180

30

3.8

Inis Meain

55

678

53.0694

-9.6165

Ridge

18.3

213

0.09

315

170

35

5.0

Inis Meain

55

679

53.0694

-9.6165

Ridge

18.3

213

0.09

560

140

70

14.6

Inis Meain

55

680

53.0694

-9.6165

Ridge

18.3

213

0.09

190

150

35

2.7

Inis Meain

55

681

53.0694

-9.6165

Ridge

18.3

213

0.09

400

215

75

17.2

Inis Meain

55

682

53.0694

-9.6165

Ridge

18.3

213

0.09

100

95

25

0.6

Inis Meain

56

683

53.0699

-9.6164

Ridge

17.7

210

0.08

305

205

45

7.5

Inis Meain

56

684

53.0699

-9.6164

Ridge

17.7

210

0.08

178

135

25

1.6

Inis Meain

56

685

53.0699

-9.6164

Ridge

17.7

210

0.08

205

205

40

4.5

Inis Meain

56

686

53.0699

-9.6164

Ridge

17.7

210

0.08

675

320

60

34.5

Inis Meain

56

687

53.0699

-9.6164

Ridge

17.7

210

0.08

140

80

35

1.0

Inis Meain

56

688

53.0699

-9.6164

Ridge

17.7

210

0.08

290

140

65

7.0

Inis Meain

56

689

53.0699

-9.6164

Ridge

17.7

210

0.08

240

125

55

4.4

Inis Meain

56

690

53.0699

-9.6164

Ridge

17.7

210

0.08

155

145

15

0.9

Inis Meain

56

691

53.0699

-9.6164

Ridge

17.7

210

0.08

125

65

60

1.3

Inis Meain

57

692

Ridge

18.3

171

0.11

120

95

30

0.9

Inis Meain

57

693

53.0704

-9.6168

Ridge

18.3

171

0.11

170

70

50

1.6

Inis Meain

57

694

C A

-9.6168

53.0704

-9.6168

Ridge

18.3

171

0.11

250

85

55

3.1

Inis Meain

57

695

53.0704

-9.6168

Ridge

18.3

171

0.11

180

90

30

1.3

Inis Meain

57

696

53.0704

-9.6168

Ridge

18.3

171

0.11

570

230

75

26.2

53.0704

D E

T P

E C

M

A

I R

C S

U N

T P

5.5

2.5

3.3

-1.5

1.5

2.2

2.2

-0.5

1.0

1.5

1.5

94

ACCEPTED MANUSCRIPT

Inis Meain

57

697

53.0704

-9.6168

Ridge

18.3

171

0.11

140

85

20

0.6

Inis Meain

57

698

53.0704

-9.6168

Ridge

18.3

171

0.11

165

80

50

1.8

-1.5

Inis Meain

57

699

53.0704

-9.6168

Ridge

18.3

171

0.11

135

95

30

1.0

-1.0

Inis Meain

57

700

53.0704

-9.6168

Ridge

18.3

171

0.11

240

50

45

1.4

Inis Meain

57

701

53.0704

-9.6168

Ridge

18.3

171

0.11

365

290

75

21.1

5.0

-1.5

Inis Meain

57

702

53.0704

-9.6168

Ridge

18.3

171

0.11

300

150

40

4.8

2.0

-1.0

Inis Meain

57

703

53.0704

-9.6168

Ridge

18.3

171

0.11

150

130

55

2.9

5.5

Inis Meain

57

704

53.0704

-9.6168

Ridge

18.3

171

0.11

160

110

35

1.6

Inis Meain

57

705

53.0704

-9.6168

Ridge

18.3

171

0.11

95

60

40

0.6

Inis Meain

57

706

53.0704

-9.6168

Ridge

18.3

171

0.11

300

95

50

3.8

Inis Meain

57

707

53.0704

-9.6168

Ridge

18.3

171

0.11

210

125

50

3.5

Inis Meain

58

708

53.0707

-9.6168

Ridge

17.3

128

0.14

300

150

70

8.4

Inis Meain

58

709

53.0707

-9.6168

Ridge

17.3

128

0.14

420

135

45

6.8

Inis Meain

58

710

53.0707

-9.6168

Ridge

17.3

128

0.14

300

125

75

7.5

Inis Meain

58

711

53.0707

-9.6168

Ridge

17.3

128

0.14

240

160

45

4.6

Inis Meain

58

712

53.0707

-9.6168

Ridge

17.3

128

0.14

240

130

40

3.3

Inis Meain

58

713

Ridge

17.3

128

0.14

170

130

30

1.8

Inis Meain

58

714

53.0707

-9.6168

Ridge

17.3

128

0.14

165

120

45

2.4

7.1

Inis Meain

58

715

C A

-9.6168

53.0707

-9.6168

Ridge

17.3

128

0.14

550

160

65

15.2

1.0

Inis Meain

58

716

53.0707

-9.6168

Ridge

17.3

128

0.14

180

120

55

3.2

Inis Meain

58

717

53.0707

-9.6168

Ridge

17.3

128

0.14

280

120

35

3.1

53.0707

D E

T P

E C

M

A

I R

C S

U N

T P

10.5

2.0

2.8

-1.0

1.0

95

ACCEPTED MANUSCRIPT

Inis Meain

58

718

53.0707

-9.6168

Ridge

17.3

128

0.14

300

120

55

5.3

Inis Meain

58

719

53.0707

-9.6168

Ridge

17.3

128

0.14

460

240

60

17.6

Inis Meain

58

720

53.0707

-9.6168

Ridge

17.3

128

0.14

305

220

45

8.0

Inis Meain

58

721

53.0707

-9.6168

Isolated

17.3

128

0.14

215

75

35

1.5

Inis Meain

59

722

53.0712

-9.6166

Isolated

16.7

118

0.14

320

310

10

2.6

Inis Meain

59

723

53.0712

-9.6166

Isolated

16.7

118

0.14

215

75

30

1.3

Inis Meain

59

724

53.0712

-9.6166

Ridge

16.7

118

0.14

295

220

60

10.4

Inis Meain

59

725

53.0712

-9.6166

Ridge

16.7

118

0.14

430

210

40

9.6

Inis Meain

59

726

53.0712

-9.6166

Ridge

16.7

118

0.14

535

165

50

11.7

Inis Meain

59

727

53.0712

-9.6166

Ridge

16.7

118

0.14

315

125

70

7.3

Inis Meain

59

728

53.0712

-9.6166

Ridge

16.7

118

0.14

145

120

25

1.2

Inis Meain

59

729

53.0712

-9.6166

Ridge

16.7

118

0.14

135

80

35

1.0

Inis Meain

59

730

53.0712

-9.6166

Ridge

16.7

118

0.14

305

310

70

17.6

Inis Meain

59

731

53.0712

-9.6166

Ridge

16.7

118

0.14

200

165

45

4.0

Inis Meain

59

732

53.0712

-9.6166

Ridge

16.7

118

0.14

255

70

45

2.1

Inis Meain

59

733

53.0712

-9.6166

Ridge

16.7

118

0.14

335

175

50

7.8

Inis Meain

59

734

Ridge

16.7

118

0.14

565

180

60

16.2

Inis Meain

59

735

53.0712

-9.6166

Ridge

16.7

118

0.14

225

130

20

1.6

Inis Meain

59

736

C A

-9.6166

53.0712

-9.6166

Ridge

16.7

118

0.14

140

75

30

0.8

Inis Meain

59

737

53.0712

-9.6166

Ridge

16.7

118

0.14

175

65

40

1.2

Inis Meain

59

738

53.0712

-9.6166

Ridge

16.7

118

0.14

200

100

50

2.7

53.0712

D E

T P

E C

M

A

I R

C S

U N

T P

0.5

10.5

1.5

-0.5

96

ACCEPTED MANUSCRIPT

Inis Meain

59

739

53.0712

-9.6166

Ridge

16.7

118

0.14

185

170

45

3.8

Inis Meain

59

740

53.0712

-9.6166

Ridge

16.7

118

0.14

175

120

35

2.0

Inis Meain

59

741

53.0712

-9.6166

Ridge

16.7

118

0.14

200

95

40

2.0

Inis Meain

59

742

53.0714

-9.6164

Ridge

17.0

120

0.14

490

170

50

11.1

Inis Meain

59

743

53.0714

-9.6164

Ridge

17.0

120

0.14

710

190

70

25.1

1.0

Inis Meain

59

744

53.0714

-9.6164

Ridge

18.0

120

0.15

350

130

45

5.4

1.0

Inis Meain

59

745

53.0714

-9.6164

Ridge

21.5

132

0.16

560

190

65

18.4

12.3

Inis Meain

59

746

53.0714

-9.6164

Ridge

21.5

120

0.18

700

125

70

16.3

0.5

Inis Meain

60

747

53.0717

-9.6164

Ridge

17.5

144

0.12

165

95

40

1.7

Inis Meain

60

748

53.0717

-9.6164

Ridge

17.5

144

0.12

235

90

40

2.3

Inis Meain

60

749

53.0717

-9.6164

Ridge

17.5

144

0.12

430

80

70

6.4

Inis Meain

60

750

53.0717

-9.6164

Ridge

17.5

144

0.12

260

165

115

13.1

Inis Meain

60

751

53.0717

-9.6164

Ridge

17.5

144

0.12

295

125

75

7.4

Inis Meain

60

752

53.0717

-9.6164

Ridge

17.5

144

0.12

180

120

40

2.3

Inis Meain

60

753

53.0717

-9.6164

Ridge

17.5

144

0.12

255

130

65

5.7

Inis Meain

60

754

53.0717

-9.6164

Ridge

17.5

144

0.12

300

110

70

6.1

Inis Meain

60

755

Ridge

17.5

144

0.12

570

190

65

18.7

Inis Meain

60

756

53.0717

-9.6164

Ridge

17.5

144

0.12

690

120

65

14.3

Inis Meain

60

757

C A

-9.6164

53.0717

-9.6164

Ridge

17.5

144

0.12

160

105

45

2.0

Inis Meain

60

758

53.0717

-9.6164

Ridge

17.5

144

0.12

400

125

80

10.6

Inis Meain

60

759

53.0717

-9.6164

Ridge

17.5

144

0.12

200

180

65

6.2

53.0717

D E

T P

E C

M

A

I R

C S

U N

T P

10.2

4.5

-1.5

1.5

97

ACCEPTED MANUSCRIPT

Inis Meain

60

760

53.0717

-9.6164

Ridge

17.5

144

0.12

325

185

35

5.6

Inis Meain

60

761

53.0717

-9.6164

Ridge

17.5

144

0.12

440

90

45

4.7

Inis Meain

60

762

53.0717

-9.6164

Ridge

17.5

144

0.12

350

85

45

3.6

Inis Meain

60

763

53.0717

-9.6164

Ridge

17.5

144

0.12

355

80

50

3.8

Inis Meain

60

764

53.0714

-9.6164

Ridge

12.0

175

0.07

150

55

25

0.5

1.0

Inis Meain

60

765

53.0719

-9.6160

Ridge

19.0

166

0.11

255

120

25

2.0

1.0

Inis Meain

60

766

53.0719

-9.6160

Ridge

19.0

166

0.11

235

75

35

1.6

3.0

Inis Meain

60

767

53.0719

-9.6160

Ridge

19.0

166

0.11

90

60

20

0.3

Inis Meain

61

768

53.0722

-9.6165

Ridge

16.2

123

0.13

225

80

55

2.6

Inis Meain

61

769

53.0722

-9.6165

Ridge

16.2

123

0.13

235

125

70

5.5

Inis Meain

61

770

53.0722

-9.6165

Ridge

16.2

123

0.13

230

135

40

3.3

Inis Meain

61

771

53.0722

-9.6165

Ridge

16.2

123

0.13

200

140

55

4.1

Inis Meain

61

772

53.0722

-9.6165

Ridge

16.2

123

0.13

290

210

50

8.1

Inis Meain

61

773

53.0722

-9.6165

Ridge

16.2

123

0.13

405

100

55

5.9

Inis Meain

61

774

53.0722

-9.6165

Ridge

16.2

123

0.13

450

85

45

4.6

Inis Meain

61

775

53.0722

-9.6165

Ridge

16.2

123

0.13

295

120

55

5.2

Inis Meain

61

776

Ridge

16.2

123

0.13

100

85

30

0.7

Inis Meain

61

777

53.0722

-9.6165

Ridge

16.2

123

0.13

110

105

15

0.5

Inis Meain

61

778

C A

-9.6165

53.0722

-9.6165

Ridge

16.2

123

0.13

135

100

45

1.6

Inis Meain

61

779

53.0722

-9.6165

Ridge

16.2

123

0.13

280

90

40

2.7

Inis Meain

61

780

53.0722

-9.6165

Ridge

16.2

123

0.13

560

125

65

12.1

53.0722

D E

T P

E C

M

A

I R

C S

U N

T P

4.5

10.1

1.8

98

ACCEPTED MANUSCRIPT

Inis Meain

61

781

53.0722

-9.6165

Ridge

16.2

123

0.13

270

120

35

3.0

Inis Meain

61

782

53.0722

-9.6165

Ridge

16.2

123

0.13

205

110

40

2.4

Inis Meain

61

783

53.0722

-9.6165

Ridge

16.2

123

0.13

220

115

45

3.0

Inis Meain

61

784

53.0722

-9.6165

Ridge

16.2

123

0.13

115

60

50

0.9

Inis Meain

62

785

53.0726

-9.6164

Ridge

16.5

111

0.15

205

150

45

3.7

Inis Meain

62

786

53.0726

-9.6164

Ridge

16.5

111

0.15

90

85

25

0.5

Inis Meain

62

787

53.0726

-9.6164

Ridge

16.5

111

0.15

245

120

15

1.2

Inis Meain

62

788

53.0726

-9.6164

Ridge

16.5

111

0.15

150

85

45

1.5

Inis Meain

62

789

53.0726

-9.6164

Ridge

16.5

111

0.15

205

205

205

22.8

Inis Meain

62

790

53.0726

-9.6164

Ridge

16.5

111

0.15

205

125

65

4.4

Inis Meain

62

791

53.0726

-9.6164

Ridge

16.5

111

0.15

240

125

45

Inis Meain

62

792

53.0726

-9.6164

Ridge

16.5

111

0.15

140

125

Inis Meain

62

793

53.0726

-9.6164

Ridge

16.5

111

0.15

185

Inis Meain

62

794

53.0726

-9.6164

Ridge

16.5

111

0.15

Inis Meain

62

795

53.0726

-9.6164

Ridge

16.5

111

Inis Meain

62

796

53.0726

-9.6164

Ridge

16.5

Inis Meain

62

797

Ridge

Inis Meain

62

798

53.0726

-9.6164

Inis Meain

62

799

C A

-9.6164

53.0726

Inis Meain

62

800

Inis Meain

62

801

I R

C S

U N

T P

1.5

0.5

10.5

5.0

0.0

3.6

1.5

0.8

30

1.4

1.0

1.0

95

55

2.6

6.5

380

170

45

7.7

5.0

0.8

0.15

200

125

15

1.0

2.0

0.8

111

0.15

145

100

15

0.6

2.0

0.8

16.5

111

0.15

280

185

15

2.1

2.0

0.8

Ridge

16.5

111

0.15

200

135

50

3.6

6.0

1.5

-9.6164

Ridge

16.5

111

0.15

215

50

35

1.0

53.0726

-9.6164

Ridge

16.5

111

0.15

130

95

35

1.1

3.0

1.5

53.0726

-9.6164

Ridge

16.5

111

0.15

120

100

55

1.8

53.0726

D E

T P

E C

M

A

99

ACCEPTED MANUSCRIPT

Inis Meain

62

802

53.0726

-9.6164

Ridge

16.5

111

0.15

215

140

20

1.6

Inis Meain

63

803

53.0730

-9.6161

Ridge

19.0

124

0.15

95

90

20

0.5

Inis Meain

63

804

53.0730

-9.6161

Ridge

19.0

124

0.15

180

75

50

1.8

Inis Meain

63

805

53.0730

-9.6161

Ridge

19.0

124

0.15

400

240

50

12.8

Inis Meain

63

806

53.0730

-9.6161

Ridge

19.0

124

0.15

415

110

95

11.5

Inis Meain

63

807

53.0730

-9.6161

Ridge

19.0

124

0.15

295

135

85

9.0

Inis Meain

64

808

53.0736

-9.6156

Ridge

19.8

114

0.17

430

70

50

4.0

Inis Meain

64

809

53.0736

-9.6156

Ridge

19.8

114

0.17

235

110

25

1.7

Inis Meain

64

810

53.0736

-9.6156

Ridge

19.8

114

0.17

135

110

35

1.4

Inis Meain

64

811

53.0736

-9.6156

Ridge

19.8

114

0.17

170

100

25

1.1

1.5

Inis Meain

64

812

53.0736

-9.6156

Ridge

19.8

114

0.17

190

120

25

1.5

0.7

Inis Meain

64

813

53.0736

-9.6156

Ridge

19.8

114

0.17

205

115

15

0.9

Inis Meain

64

814

53.0736

-9.6156

Ridge

19.8

114

0.17

160

100

25

1.1

Inis Meain

64

815

53.0736

-9.6156

Ridge

19.8

114

0.17

195

120

35

2.2

Inis Meain

65

816

53.0738

-9.6155

Ridge

20.8

83

0.25

395

205

30

6.5

Inis Meain

65

817

53.0738

-9.6155

Ridge

20.8

83

0.25

165

145

30

1.9

Inis Meain

65

818

Ridge

20.8

83

0.25

170

120

35

1.9

Inis Meain

65

819

53.0738

-9.6155

Ridge

20.8

83

0.25

270

110

50

4.0

Inis Meain

65

820

C A

-9.6155

53.0738

-9.6155

Ridge

20.8

83

0.25

160

110

20

Inis Meain

65

821

53.0738

-9.6155

Isolated

20.8

83

0.25

180

180

Inis Meain

65

822

53.0738

-9.6155

Isolated

20.8

83

0.25

400

210

53.0738

D E

T P

E C

M

A

I R

C S

U N

T P

1.0

1.5

1.5

1.0

-1.0

0.9

2.5

0.3

180

15.4

1.6

90

20.1

1.5

100

ACCEPTED MANUSCRIPT

Inis Meain

65

823

53.0738

-9.6155

Isolated

20.8

83

0.25

195

90

50

2.3

Inis Meain

65

824

53.0738

-9.6155

Isolated

20.8

83

0.25

115

60

55

1.0

Inis Meain

65

825

53.0738

-9.6155

Ridge

20.8

83

0.25

140

130

30

1.5

1.0

Inis Meain

65

826

53.0738

-9.6155

Ridge

20.8

83

0.25

230

110

55

3.7

7.5

Inis Meain

65

827

53.0738

-9.6155

Ridge

20.8

83

0.25

185

110

70

3.8

Inis Meain

65

828

53.0738

-9.6155

Ridge

20.8

83

0.25

255

220

45

6.7

Inis Meain

65

829

53.0738

-9.6155

Ridge

20.8

83

0.25

240

125

60

4.8

Inis Meain

65

830

53.0738

-9.6155

Ridge

20.8

83

0.25

450

195

80

18.7

12.3

Inis Meain

65

831

53.0739

-9.6155

Ridge

20.8

58

0.36

325

290

25

6.3

11.0

Inis Meain

65

832

53.0739

-9.6155

Ridge

20.8

58

0.36

290

115

70

6.2

Inis Meain

66

833

53.0744

-9.6155

Ridge

19.9

32

0.62

145

60

35

0.8

Inis Meain

66

834

53.0744

-9.6155

Ridge

19.9

32

0.62

200

90

55

2.6

Inis Meain

66

835

53.0744

-9.6155

Ridge

19.9

32

0.62

190

115

45

2.6

Inis Meain

66

836

53.0744

-9.6155

Ridge

19.9

32

0.62

250

160

50

5.3

Inis Meain

66

837

53.0744

-9.6155

Ridge

19.9

32

0.62

140

110

40

1.6

Inis Meain

66

838

53.0744

-9.6155

Ridge

19.9

32

0.62

165

115

35

1.8

Inis Meain

66

839

Ridge

19.9

32

0.62

155

85

20

0.7

Inis Meain

66

840

53.0744

-9.6155

Ridge

19.9

32

0.62

120

50

40

0.6

Inis Meain

66

841

C A

-9.6155

53.0744

-9.6155

Ridge

19.9

32

0.62

165

90

20

0.8

Inis Meain

66

842

53.0744

-9.6155

Ridge

19.9

32

0.62

370

340

15

5.0

Inis Meain

66

843

53.0744

-9.6155

Ridge

19.9

32

0.62

300

190

95

14.4

53.0744

D E

T P

E C

M

A

I R

C S

U N

T P

1.0

9.5

5.0

-1.0

8.5

101

ACCEPTED MANUSCRIPT

Inis Meain

66

844

53.0744

-9.6155

Ridge

19.9

32

0.62

160

100

50

2.1

Inis Meain

66

845

53.0744

-9.6155

Ridge

19.9

32

0.62

100

85

15

0.3

Inis Meain

66

846

53.0742

-9.6160

Isolated

12.8

17

0.75

215

140

85

6.8

Inis Meain

67

847

53.0748

-9.6151

Ridge

18.6

42

0.44

130

60

40

0.8

Inis Meain

67

848

53.0748

-9.6151

Ridge

18.6

42

0.44

150

75

65

1.9

Inis Meain

67

849

53.0748

-9.6151

Ridge

18.6

42

0.44

205

120

30

2.0

Inis Meain

67

850

53.0748

-9.6151

Ridge

18.6

42

0.44

120

65

50

1.0

Inis Meain

67

851

53.0748

-9.6151

Ridge

18.6

42

0.44

220

70

70

2.9

Inis Meain

67

852

53.0748

-9.6151

Ridge

18.6

42

0.44

160

105

25

1.1

Inis Meain

67

853

53.0748

-9.6151

Ridge

18.6

42

0.44

95

70

40

0.7

Inis Meain

67

854

53.0748

-9.6151

Ridge

18.6

42

0.44

150

125

40

2.0

Inis Meain

67

855

53.0748

-9.6151

Ridge

18.6

42

0.44

130

80

30

0.8

Inis Meain

67

856

53.0748

-9.6151

Ridge

18.6

42

0.44

230

100

35

2.1

Inis Meain

67

857

53.0748

-9.6151

Ridge

18.6

42

0.44

200

120

45

2.9

Inis Meain

67

858

53.0748

-9.6151

Isolated

18.6

42

0.44

175

165

30

2.3

Inis Meain

67

859

53.0748

-9.6151

Isolated

18.6

42

0.44

175

140

35

2.3

Inis Meain

67

860

Ridge

18.6

42

0.44

190

125

30

1.9

Inis Meain

67

861

53.0748

-9.6151

Ridge

18.6

42

0.44

170

65

20

0.6

Inis Meain

67

862

C A

-9.6151

53.0748

-9.6151

Ridge

18.6

42

0.44

135

80

15

0.4

Inis Meain

67

863

53.0748

-9.6151

Ridge

18.6

42

0.44

210

100

40

2.2

Inis Meain

67

864

53.0748

-9.6151

Ridge

18.6

42

0.44

210

85

75

3.6

53.0748

D E

T P

E C

M

A

I R

C S

U N

T P

17.0

1.0

4.5

102

ACCEPTED MANUSCRIPT

Inis Meain

67

865

53.0748

-9.6151

Ridge

18.6

42

0.44

340

200

40

7.2

Inis Meain

67

866

53.0748

-9.6151

Ridge

18.6

42

0.44

210

125

40

2.8

Inis Meain

67

867

53.0748

-9.6151

Ridge

18.6

42

0.44

295

160

40

5.0

Inis Meain

67

868

53.0748

-9.6151

Ridge

18.6

42

0.44

155

55

50

1.1

Inis Meain

68

869

53.0753

-9.6148

Ridge

22.8

36

0.63

280

140

45

4.7

Inis Meain

68

870

53.0753

-9.6148

Ridge

22.8

36

0.63

220

130

50

3.8

Inis Meain

68

871

53.0753

-9.6148

Ridge

22.8

36

0.63

165

90

40

1.6

Inis Meain

68

872

53.0753

-9.6148

Ridge

22.8

36

0.63

225

220

30

4.0

Inis Meain

68

873

53.0753

-9.6148

Ridge

22.8

36

0.63

235

170

50

5.3

Inis Meain

68

874

53.0753

-9.6148

Ridge

22.8

36

0.63

130

130

20

0.9

Inis Meain

68

875

53.0753

-9.6148

Ridge

22.8

36

0.63

215

100

45

2.6

Inis Meain

68

876

53.0753

-9.6148

Ridge

22.8

36

0.63

320

180

45

6.9

Inis Meain

68

877

53.0753

-9.6148

Ridge

22.8

36

0.63

135

100

50

1.8

Inis Meain

68

878

53.0753

-9.6148

Ridge

22.8

36

0.63

180

90

50

2.2

Inis Meain

68

879

53.0753

-9.6148

Ridge

22.8

36

0.63

290

100

40

3.1

Inis Meain

68

880

53.0753

-9.6148

Ridge

22.8

36

0.63

160

60

50

1.3

Inis Meain

68

881

Ridge

22.8

36

0.63

160

85

30

1.1

Inis Meain

68

882

53.0753

-9.6148

Ridge

22.8

36

0.63

215

90

25

1.3

Inis Meain

69

883

C A

-9.6148

53.0758

-9.6150

Ridge

17.9

34

0.53

110

70

65

1.3

Inis Meain

69

884

53.0758

-9.6150

Ridge

17.9

34

0.53

145

115

85

3.8

Inis Meain

69

885

53.0758

-9.6150

Ridge

17.9

34

0.53

145

105

40

1.6

53.0753

D E

T P

E C

M

A

I R

C S

U N

T P

1.5

103

ACCEPTED MANUSCRIPT

Inis Meain

69

886

53.0758

-9.6150

Ridge

17.9

34

0.53

150

125

40

2.0

Inis Meain

69

887

53.0758

-9.6150

Ridge

17.9

34

0.53

185

100

25

1.2

Inis Meain

69

888

53.0758

-9.6150

Isolated

17.9

34

0.53

145

110

30

1.3

Inis Meain

69

889

53.0758

-9.6150

Ridge

17.9

34

0.53

220

120

55

3.9

Inis Meain

69

890

53.0758

-9.6150

Ridge

17.9

34

0.53

230

180

55

6.1

Inis Meain

69

891

53.0758

-9.6150

Ridge

17.9

34

0.53

325

105

45

4.1

Inis Meain

69

892

53.0758

-9.6150

Ridge

17.9

34

0.53

210

110

40

2.5

Inis Meain

69

893

53.0758

-9.6150

Ridge

17.9

34

0.53

150

80

40

1.3

Inis Meain

69

894

53.0758

-9.6150

Ridge

17.9

34

0.53

220

210

45

5.5

Inis Meain

69

895

53.0758

-9.6150

Ridge

17.9

34

0.53

230

170

80

8.3

Inis Meain

69

896

53.0758

-9.6150

Ridge

17.9

34

0.53

260

220

25

3.8

Inis Meain

69

897

53.0758

-9.6150

Ridge

17.9

34

0.53

185

120

20

1.2

Inis Meain

69

898

53.0758

-9.6150

Ridge

17.9

34

0.53

250

80

25

1.3

Inis Meain

70

899

53.0761

-9.6152

Ridge

18.5

16

1.16

185

100

40

2.0

Inis Meain

70

900

53.0761

-9.6152

Ridge

18.5

16

1.16

165

85

45

1.7

Inis Meain

70

901

53.0761

-9.6152

Ridge

18.5

16

1.16

180

30

20

0.3

Inis Meain

70

902

Ridge

18.5

16

1.16

200

115

35

2.1

Inis Meain

70

903

53.0761

-9.6152

Ridge

18.5

16

1.16

150

150

25

1.5

Inis Meain

70

904

C A

-9.6152

53.0761

-9.6152

Ridge

18.5

16

1.16

125

55

40

0.7

Inis Meain

70

905

53.0761

-9.6152

Ridge

18.5

16

1.16

95

85

25

0.5

Inis Meain

71

906

53.0766

-9.6153

Ridge

17.2

14

1.23

230

110

35

2.4

53.0761

D E

T P

E C

M

A

I R

C S

U N

T P

6.3

-1.0

0.8

0.5

2.5

104

ACCEPTED MANUSCRIPT

Inis Meain

71

907

53.0766

-9.6153

Ridge

17.2

14

1.23

200

65

30

1.0

1.0

Inis Meain

71

908

53.0766

-9.6153

Ridge

17.2

14

1.23

170

65

50

1.5

6.0

3.0

Inis Meain

71

909

53.0766

-9.6153

Ridge

17.2

14

1.23

160

140

45

2.7

4.5

1.0

Inis Meain

71

910

53.0766

-9.6153

Ridge

17.2

14

1.23

180

115

35

1.9

4.0

1.0

Inis Meain

71

911

53.0766

-9.6151

Ridge

17.0

17

0.99

155

60

40

1.0

Inis Meain

71

912

53.0766

-9.6151

Ridge

17.0

17

0.99

155

110

30

1.4

Inis Meain

71

913

53.0766

-9.6151

Ridge

17.0

17

0.99

105

70

30

0.6

Inis Meain

72

914

53.0769

-9.6153

Ridge

18.1

36

0.50

190

140

85

6.0

Inis Meain

72

915

53.0769

-9.6153

Ridge

18.1

36

0.50

100

55

45

0.7

Inis Meain

72

916

53.0769

-9.6153

Ridge

18.1

36

0.50

130

75

45

1.2

Inis Meain

72

917

53.0769

-9.6153

Ridge

18.1

36

0.50

110

70

40

0.8

Inis Meain

72

918

53.0769

-9.6153

Ridge

18.1

36

0.50

240

65

40

1.7

Inis Meain

72

919

53.0769

-9.6153

Ridge

18.1

36

0.50

130

65

40

0.9

Inis Meain

73

920

53.0773

-9.6150

Ridge

20.5

59

0.35

190

60

55

1.7

Inis Meain

73

921

53.0773

-9.6150

Ridge

20.5

59

0.35

125

105

40

1.4

Inis Meain

73

922

53.0773

-9.6150

Ridge

20.5

59

0.35

185

50

45

1.1

Inis Meain

73

923

Ridge

20.5

59

0.35

85

65

35

0.5

Inis Meain

73

924

53.0773

-9.6150

Ridge

20.5

59

0.35

130

65

35

0.8

Inis Meain

73

925

C A

-9.6150

53.0773

-9.6150

Ridge

20.5

59

0.35

100

85

40

0.9

Inis Meain

73

926

53.0773

-9.6150

Ridge

20.5

59

0.35

120

105

25

0.8

Inis Meain

73

927

53.0773

-9.6150

Ridge

20.5

59

0.35

55

50

20

0.1

53.0773

D E

T P

E C

M

A

I R

C S

U N

T P

1.0

105

ACCEPTED MANUSCRIPT

Inis Meain

73

928

53.0773

-9.6150

Ridge

20.5

59

0.35

125

100

40

1.3

3.5

Inis Meain

73

929

53.0773

-9.6150

Ridge

20.5

59

0.35

205

70

40

1.5

2.5

1.5

Inis Meain

73

930

53.0773

-9.6150

Ridge

20.5

59

0.35

380

90

35

3.2

4.5

2.0

Inis Meain

73

931

53.0773

-9.6150

Ridge

20.5

59

0.35

150

75

50

1.5

0.5

Inis Meain

74

932

53.0778

-9.6152

Ridge

20.2

52

0.39

80

80

20

0.3

1.5

Inis Meain

74

933

53.0778

-9.6152

Ridge

20.2

52

0.39

65

55

15

0.1

Inis Meain

74

934

53.0778

-9.6152

Ridge

20.2

52

0.39

265

60

45

1.9

Inis Meain

74

935

53.0778

-9.6152

Ridge

20.2

52

0.39

160

95

60

2.4

Inis Meain

74

936

53.0778

-9.6152

Ridge

20.2

52

0.39

345

150

40

5.5

Inis Meain

74

937

53.0778

-9.6152

Ridge

20.2

52

0.39

350

125

45

5.2

3.0

-1.2

Inis Meain

74

938

53.0778

-9.6152

Ridge

20.2

52

0.39

250

120

55

4.4

2.5

-0.5

Inis Meain

74

939

53.0778

-9.6152

Ridge

20.2

52

0.39

135

105

40

1.5

8.0

Inis Meain

75

940

53.0783

-9.6153

Isolated

17.5

61

0.29

300

200

30

4.8

Inis Meain

75

941

53.0783

-9.6153

Isolated

17.5

61

0.29

165

75

25

0.8

Inis Meain

75

942

53.0783

-9.6153

Isolated

17.5

61

0.29

155

115

60

2.8

Inis Meain

75

943

53.0783

-9.6153

Isolated

17.5

61

0.29

240

210

70

9.4

Inis Meain

76

944

Ridge

15.4

76

0.20

125

55

20

0.4

Inis Meain

76

945

53.0787

-9.6153

Ridge

15.4

76

0.20

155

120

25

1.2

Inis Meain

76

946

C A

-9.6153

53.0787

-9.6153

Ridge

15.4

76

0.20

110

70

30

0.6

Inis Meain

76

947

53.0787

-9.6153

Ridge

15.4

76

0.20

120

60

15

0.3

Inis Meain

76

948

53.0787

-9.6153

Ridge

15.4

76

0.20

140

70

25

0.7

53.0787

D E

T P

E C

M

A

I R

C S

U N

T P

-1.5

1.0

2.0

106

ACCEPTED MANUSCRIPT

Inis Meain

76

949

53.0787

-9.6153

Ridge

15.4

76

0.20

280

250

65

12.1

Inis Meain

76

950

53.0787

-9.6153

Ridge

15.4

76

0.20

290

105

65

5.3

Inis Meain

76

951

53.0787

-9.6153

Ridge

15.4

76

0.20

130

110

20

0.8

Inis Meain

76

952

53.0787

-9.6153

Ridge

15.4

76

0.20

270

100

70

5.0

Inis Meain

76

953

53.0787

-9.6153

Ridge

15.4

76

0.20

170

120

50

2.7

Inis Meain

76

954

53.0787

-9.6153

Ridge

15.4

76

0.20

135

65

50

1.2

Inis Meain

76

955

53.0787

-9.6153

Isolated

15.4

76

0.20

160

80

30

1.0

Inis Meain

76

956

53.0787

-9.6153

Ridge

15.4

76

0.20

195

155

20

1.6

Inis Meain

76

957

53.0787

-9.6153

Ridge

15.4

76

0.20

155

50

50

1.0

Inis Meain

76

958

53.0787

-9.6153

Ridge

15.4

76

0.20

200

70

50

1.9

11.0

Inis Meain

76

959

53.0787

-9.6153

Ridge

15.4

76

0.20

220

130

15

1.1

8.5

Inis Meain

76

960

53.0787

-9.6153

Ridge

15.4

76

0.20

300

150

45

5.4

Inis Meain

76

961

53.0787

-9.6153

Ridge

15.4

76

0.20

160

60

35

0.9

Inis Meain

77

962

53.0791

-9.6150

Ridge

16.8

120

0.14

145

80

15

0.5

Inis Meain

77

963

53.0791

-9.6150

Ridge

16.8

120

0.14

170

130

25

1.5

Inis Meain

77

964

53.0791

-9.6150

Ridge

16.8

120

0.14

115

70

15

0.3

Inis Meain

77

965

Ridge

16.8

120

0.14

110

50

30

0.4

Inis Meain

78

966

53.0795

-9.6149

Ridge

23.0

115

0.20

215

165

30

2.8

Inis Meain

78

967

C A

-9.6150

53.0795

-9.6149

Ridge

23.0

115

0.20

140

95

40

1.4

Inis Meain

78

968

53.0795

-9.6149

Ridge

23.0

115

0.20

155

105

45

1.9

Inis Meain

78

969

53.0795

-9.6149

Ridge

23.0

115

0.20

130

80

45

1.2

53.0791

D E

T P

E C

M

A

I R

C S

U N

T P

3.0

3.0

1.0

107

ACCEPTED MANUSCRIPT

Inis Meain

78

970

53.0796

-9.6152

Ridge

17.5

38

0.46

255

185

55

6.9

Inis Meain

79

971

53.0800

-9.6147

Ridge

23.0

72

0.32

120

95

15

0.5

Inis Meain

79

972

53.0800

-9.6147

Ridge

23.0

72

0.32

125

100

45

1.5

Inis Meain

79

973

53.0800

-9.6147

Ridge

23.0

72

0.32

145

85

55

1.8

Inis Meain

79

974

53.0800

-9.6147

Ridge

23.0

72

0.32

165

190

40

Inis Meain

79

975

53.0800

-9.6147

Ridge

23.0

72

0.32

175

45

Inis Meain

79

976

53.0800

-9.6147

Ridge

23.0

72

0.32

110

Inis Meain

79

977

53.0800

-9.6147

Ridge

23.0

72

0.32

Inis Meain

80

978

53.0804

-9.6146

Isolated

24.8

39

Inis Meain

81

979

53.0809

-9.6146

Ridge

25.0

Inis Meain

81

980

53.0809

-9.6146

Ridge

25.0

Inis Meain

81

981

53.0809

-9.6146

Ridge

Inis Meain

81

982

53.0809

-9.6146

Inis Meain

81

983

53.0809

Inis Meain

82

984

53.0816

Inis Meain

83

985

53.0883

Inis Meain

83

986

Inis Meain

83

987

Inis Meain

83

Inis Meain Inis Meain

0.5

-1.0

3.3

9.5

1.0

30

0.6

2.5

1.0

90

35

0.9

1.5

-0.5

250

80

30

1.6

2.5

-0.5

0.64

105

55

20

0.3

20

1.25

130

65

20

0.4

0.5

20

1.25

125

80

30

0.8

0.5

25.0

20

1.25

145

125

10

0.5

1.5

Ridge

25.0

20

1.25

130

85

20

0.6

2.5

-9.6146

Ridge

25.0

20

1.25

180

80

15

0.6

3.0

-9.6140

Ridge

25.9

13

1.99

95

55

15

0.2

0.6

-9.6042

Ridge

3.6

15

0.24

175

110

60

3.1

Ridge

3.6

15

0.24

135

110

65

2.6

53.0883

-9.6042

Ridge

3.6

15

0.24

220

185

85

9.2

4.5

988

C A

-9.6042

53.0883

-9.6042

Ridge

3.6

15

0.24

360

200

70

13.4

8.0

83

989

53.0883

-9.6042

Ridge

3.6

15

0.24

205

160

50

4.4

4.5

83

990

53.0883

-9.6042

Ridge

3.6

15

0.24

100

60

45

0.7

53.0883

D E

T P

E C

M

A

I R

C S

U N

T P

108

ACCEPTED MANUSCRIPT

Inis Meain

83

991

53.0883

-9.6042

Ridge

3.6

15

0.24

230

110

65

4.4

Inis Meain

83

992

53.0883

-9.6042

Ridge

3.6

15

0.24

180

140

80

5.4

Inis Meain

83

993

53.0883

-9.6042

Ridge

3.6

15

0.24

195

120

80

5.0

Inis Meain

83

994

53.0883

-9.6042

Isolated

3.6

15

0.24

450

190

180

40.9

Inis Meain

83

995

53.0883

-9.6042

Isolated

3.6

15

0.24

235

190

75

8.9

Inis Meain

83

996

53.0883

-9.6042

Isolated

3.6

15

0.24

265

190

110

14.7

Inis Meain

83

997

53.0883

-9.6042

Isolated

3.6

15

0.24

185

145

75

5.4

Inis Meain

84

998

53.0890

-9.6031

Ridge

1.4

10

0.15

165

120

60

3.2

Inis Meain

84

999

53.0890

-9.6031

Ridge

1.4

10

0.15

150

75

50

1.5

Inis Meain

84

1000

53.0890

-9.6031

Ridge

1.4

10

0.15

200

160

110

9.4

Inis Meain

84

1001

53.0890

-9.6031

Ridge

1.4

10

0.15

210

150

110

9.2

Inis Meain

84

1002

53.0890

-9.6031

Ridge

1.4

10

0.15

120

40

25

0.3

Inis Meain

84

1003

53.0890

-9.6031

Ridge

1.4

10

0.15

100

85

45

1.0

Inis Meain

84

1004

53.0890

-9.6031

Ridge

1.4

10

0.15

110

70

70

1.4

Inis Meain

84

1005

53.0890

-9.6031

Ridge

1.4

10

0.15

90

65

40

0.6

Inis Meain

84

1006

53.0890

-9.6031

Ridge

1.4

10

0.15

90

50

35

0.4

Inis Meain

84

1007

Ridge

1.4

10

0.15

130

80

55

1.5

Inis Meain

84

1008

53.0890

-9.6031

Ridge

1.4

10

0.15

85

60

40

0.5

Inis Meain

84

1009

C A

-9.6031

53.0890

-9.6031

Ridge

1.4

10

0.15

110

70

40

0.8

Inis Meain

85

1010

53.0897

-9.6026

Ridge

1.0

11

0.09

160

70

65

1.9

Inis Meain

85

1011

53.0897

-9.6026

Ridge

1.0

11

0.09

165

120

80

4.2

53.0890

D E

T P

E C

M

A

I R

C S

U N

T P

2.0

0.5

3.0

0.5

3.0

109

ACCEPTED MANUSCRIPT

Inis Meain

85

1012

53.0897

-9.6026

Ridge

1.0

11

0.09

105

70

65

1.3

Inis Meain

85

1013

53.0897

-9.6026

Ridge

1.0

11

0.09

145

60

45

1.0

Inis Meain

85

1014

53.0897

-9.6026

Ridge

1.0

11

0.09

130

65

40

0.9

Inis Meain

85

1015

53.0897

-9.6026

Ridge

1.0

11

0.09

115

100

35

1.1

Inis Meain

85

1016

53.0897

-9.6026

Ridge

1.0

11

0.09

155

135

60

3.3

Inis Meain

86

1017

53.0901

-9.6012

Ridge

2.3

23

0.10

215

140

130

10.4

Inis Meain

86

1018

53.0901

-9.6012

Ridge

2.3

23

0.10

275

165

105

12.7

Inis Meain

86

1019

53.0901

-9.6012

Ridge

2.3

23

0.10

380

280

120

34.0

Inis Meain

86

1020

53.0901

-9.6012

Ridge

2.3

23

0.10

230

105

55

3.5

Inis Meain

86

1021

53.0901

-9.6012

Ridge

2.3

23

0.10

250

140

50

4.7

Inis Meain

86

1022

53.0901

-9.6012

Ridge

2.3

23

0.10

250

240

95

15.2

Inis Meain

86

1023

53.0901

-9.6012

Ridge

2.3

23

0.10

130

90

60

1.9

Inis Meain

86

1024

53.0901

-9.6012

Ridge

2.3

23

0.10

140

100

80

3.0

Inis Meain

86

1025

53.0901

-9.6012

Ridge

2.3

23

0.10

220

210

90

11.1

Inis Meain

86

1026

53.0901

-9.6012

Ridge

2.3

23

0.10

200

190

50

5.1

Inis Meain

86

1027

53.0901

-9.6012

Ridge

2.3

23

0.10

210

120

120

8.0

Inis Meain

86

1028

Ridge

2.3

23

0.10

170

120

55

3.0

Inis Meain

86

1029

53.0901

-9.6012

Ridge

2.3

23

0.10

135

100

65

2.3

Inis Meain

86

1030

C A

-9.6012

53.0901

-9.6012

Ridge

2.3

23

0.10

135

105

50

1.9

Inis Meain

86

1031

53.0901

-9.6012

Ridge

2.3

23

0.10

170

100

90

4.1

Inis Meain

86

1032

53.0901

-9.6012

Ridge

2.3

23

0.10

270

160

50

5.7

53.0901

D E

T P

E C

M

A

I R

C S

U N

T P

6.0

0.5

110

ACCEPTED MANUSCRIPT

Inis Meain

86

1033

53.0901

-9.6012

Ridge

2.3

23

0.10

130

120

80

3.3

Inis Meain

86

1034

53.0901

-9.6012

Ridge

2.3

23

0.10

200

100

65

3.5

Inis Meain

86

1035

53.0901

-9.6012

Ridge

2.3

23

0.10

240

135

70

6.0

Inis Meain

86

1036

53.0901

-9.6012

Ridge

2.3

23

0.10

150

110

80

3.5

Inis Meain

86

1037

53.0901

-9.6012

Ridge

2.3

23

0.10

160

120

90

4.6

Inis Meain

86

1038

53.0901

-9.6012

Ridge

2.3

23

0.10

160

110

100

4.7

Inis Meain

86

1039

53.0901

-9.6012

Ridge

2.3

23

0.10

120

80

40

1.0

Inis Meain

87

1040

53.0910

-9.6006

Ridge

2.9

40

0.07

220

160

60

5.6

Inis Meain

87

1041

53.0910

-9.6006

Ridge

2.9

40

0.07

140

110

90

3.7

Inis Meain

87

1042

53.0910

-9.6006

Ridge

2.9

40

0.07

130

95

75

2.5

Inis Meain

87

1043

53.0910

-9.6006

Ridge

2.9

40

0.07

160

95

35

1.4

Inis Meain

87

1044

53.0910

-9.6006

Ridge

2.9

40

0.07

235

140

65

5.7

Inis Meain

87

1045

53.0910

-9.6006

Ridge

2.9

40

0.07

180

110

55

2.9

Inis Meain

87

1046

53.0910

-9.6006

Ridge

2.9

40

0.07

205

140

50

3.8

Inis Meain

87

1047

53.0910

-9.6006

Ridge

2.9

40

0.07

95

75

55

1.0

Inis Meain

87

1048

53.0910

-9.6006

Ridge

2.9

40

0.07

140

130

60

2.9

Inis Meain

87

1049

Ridge

2.9

40

0.07

350

190

75

13.3

Inis Meain

87

1050

53.0910

-9.6006

Ridge

2.9

40

0.07

160

155

55

3.6

Inis Meain

87

1051

C A

-9.6006

53.0910

-9.6006

Ridge

2.9

40

0.07

260

230

55

8.7

Inis Meain

88

1052

53.0918

-9.5998

Ridge

4.2

12

0.37

140

65

55

1.3

Inis Meain

88

1053

53.0918

-9.5998

Ridge

4.2

12

0.37

145

85

50

1.6

53.0910

D E

T P

E C

M

A

I R

C S

U N

T P

1.0

0.5

0.5

111

ACCEPTED MANUSCRIPT

Inis Meain

88

1054

53.0918

-9.5998

Ridge

4.2

12

0.37

240

125

70

5.6

Inis Meain

88

1055

53.0918

-9.5998

Ridge

4.2

12

0.37

75

65

50

0.6

Inis Meain

88

1056

53.0918

-9.5998

Ridge

4.2

12

0.37

340

230

70

14.6

Inis Meain

88

1057

53.0918

-9.5998

Ridge

4.2

12

0.37

240

155

140

13.9

Inis Meain

88

1058

53.0918

-9.5998

Ridge

4.2

12

0.37

290

130

65

6.5

Inis Meain

88

1059

53.0918

-9.5998

Ridge

4.2

12

0.37

115

115

110

3.9

Inis Meain

88

1060

53.0918

-9.5998

Ridge

4.2

12

0.37

155

115

100

4.7

Inis Oirr

89

1061

53.0525

-9.5538

Isolated

2.0

50

0.04

360

205

50

9.8

Inis Oirr

89

1062

53.0529

-9.5537

Ridge

2.0

43

0.05

150

120

50

2.4

Inis Oirr

89

1063

53.0529

-9.5537

Ridge

2.0

43

0.05

270

255

45

8.2

Inis Oirr

90

1064

53.0522

-9.5542

Ridge

1.8

30

0.06

265

180

35

4.4

Inis Oirr

90

1065

53.0522

-9.5542

Ridge

1.8

30

0.06

255

175

85

10.1

Inis Oirr

90

1066

53.0522

-9.5542

Ridge

1.8

30

0.06

325

120

90

9.3

Inis Oirr

90

1067

53.0522

-9.5542

Ridge

1.8

30

0.06

230

160

30

2.9

Inis Oirr

90

1068

53.0522

-9.5542

Ridge

1.8

30

0.06

155

130

60

3.2

Inis Oirr

90

1069

53.0522

-9.5542

Ridge

1.8

30

0.06

130

75

50

1.3

Inis Oirr

91

1070

Ridge

3.0

68

0.04

295

215

100

16.9

Inis Oirr

91

1071

53.0505

-9.5544

Ridge

3.0

68

0.04

150

105

75

3.1

Inis Oirr

91

1072

C A

-9.5544

53.0505

-9.5544

Ridge

3.0

68

0.04

225

190

70

8.0

Inis Oirr

91

1073

53.0505

-9.5544

Ridge

3.0

68

0.04

165

115

105

5.3

Inis Oirr

92

1074

53.0502

-9.5549

Ridge

3.0

52

0.06

210

160

35

3.1

53.0505

D E

T P

E C

M

A

I R

C S

U N

T P

8.0

29.5

16.5

2.0

2.2

112

ACCEPTED MANUSCRIPT

Inis Oirr

92

1075

53.0502

-9.5549

Ridge

3.0

52

0.06

110

95

65

1.8

7.8

1.7

Inis Oirr

92

1076

53.0502

-9.5549

Ridge

3.0

52

0.06

95

90

80

1.8

Inis Oirr

93

1077

53.0499

-9.5550

Ridge

3.6

69

0.05

245

205

95

12.7

17.9

0.5

Inis Oirr

93

1078

53.0500

-9.5550

Ridge

3.6

69

0.05

260

230

50

8.0

1.0

1.0

Inis Oirr

93

1079

53.0500

-9.5551

Ridge

3.8

73

0.05

350

215

100

20.0

1.0

0.5

Inis Oirr

93

1080

53.0497

-9.5549

Ridge

3.6

69

0.05

310

185

65

9.9

2.0

-1.0

Inis Oirr

93

1081

53.0497

-9.5549

Ridge

3.6

69

0.05

100

100

50

1.3

5.0

Inis Oirr

93

1082

53.0497

-9.5549

Ridge

3.6

69

0.05

430

125

105

15.0

0.0

Inis Oirr

93

1083

53.0497

-9.5549

Ridge

3.6

69

0.05

260

125

115

9.9

0.0

Inis Oirr

93

1084

53.0497

-9.5549

Ridge

3.6

69

0.05

215

120

110

7.5

Inis Oirr

93

1085

53.0497

-9.5549

Ridge

3.6

69

0.05

315

210

60

10.6

Inis Oirr

93

1086

53.0497

-9.5549

Ridge

3.6

69

0.05

190

180

120

10.9

Inis Oirr

93

1087

53.0497

-9.5549

Ridge

3.6

69

0.05

300

200

125

20.0

8.0

Inis Oirr

94

1088

53.0484

-9.5545

Isolated

0.2

3

0.07

370

280

150

41.3

95.0

0.2

Inis Oirr

94

1089

53.0484

-9.5545

Isolated

0.1

2

0.07

500

260

135

46.7

93.0

0.2

Inis Oirr

94

1090

53.0487

-9.5549

Isolated

0.6

13

0.05

475

320

115

46.5

76.0

1.6

Inis Oirr

94

1091

Isolated

0.6

13

0.05

500

250

110

36.6

79.0

1.7

53.0489

-9.5548

Isolated

1.9

37

0.05

430

295

135

45.6

82.0

3.0

1093

C A

-9.5549

Inis Oirr

94

1092

Inis Oirr

94

53.0489

-9.5548

Isolated

2.0

40

0.05

355

240

155

35.1

86.0

3.0

Inis Oirr

94

1094

53.0489

-9.5548

Isolated

2.3

45

0.05

525

250

140

48.9

90.0

3.2

Inis Oirr

95

1095

53.0454

-9.5258

Isolated

0.2

1

0.20

560

280

180

75.1

21.5

0.5

53.0487

D E

T P

E C

M

A

I R

C S

U N

T P

3.5

2.0

113

ACCEPTED MANUSCRIPT

Inis Oirr

95

1096

53.0454

-9.5258

Isolated

0.2

1

0.20

340

255

120

27.7

Inis Oirr

95

1097

53.0454

-9.5258

Isolated

0.1

1

0.10

340

235

105

22.3

10.0

Inis Oirr

95

1098

53.0454

-9.5258

Isolated

0.5

2

0.25

455

230

100

27.8

8.0

Inis Oirr

95

1099

53.0454

-9.5258

Isolated

0.5

3

0.17

325

315

90

24.5

5.0

Inis Oirr

95

1100

53.0454

-9.5258

Isolated

0.1

1

0.10

490

180

45

10.6

Inis Oirr

96

1101

53.0454

-9.5269

Ridge

2.0

10

0.20

240

200

95

12.1

Inis Oirr

96

1102

53.0454

-9.5269

Ridge

2.0

10

0.20

245

190

85

10.5

Inis Oirr

96

1103

53.0454

-9.5269

Ridge

2.0

10

0.20

390

270

70

19.6

Inis Oirr

96

1104

53.0454

-9.5269

Ridge

2.0

10

0.20

190

110

30

1.7

Inis Oirr

96

1105

53.0454

-9.5269

Ridge

2.0

10

0.20

215

130

30

2.2

Inis Oirr

96

1106

53.0454

-9.5269

Ridge

2.0

10

0.20

160

95

35

1.4

Fanore

97

1107

53.0989

-9.3093

Isolated

4.0

30

0.13

190

150

95

7.2

Fanore

97

1108

53.0989

-9.3093

Isolated

4.0

30

0.13

200

165

130

11.4

Fanore

97

1109

53.0989

-9.3093

Isolated

4.0

30

0.13

290

170

130

17.0

Fanore

97

1110

53.0989

-9.3093

Isolated

4.0

30

0.13

290

185

100

14.3

Fanore

97

1111

53.0989

-9.3093

Isolated

4.0

30

0.13

105

90

85

2.1

Fanore

97

1112

Ridge

4.0

30

0.13

225

160

120

11.5

Fanore

97

1113

53.0989

-9.3093

Isolated

4.0

30

0.13

160

65

30

0.8

Fanore

97

1114

C A

-9.3093

53.0989

-9.3093

Ridge

4.0

30

0.13

240

165

130

13.7

Fanore

97

1115

53.0989

-9.3093

Ridge

4.0

25

0.16

265

150

80

8.5

Fanore

97

1116

53.0989

-9.3093

Ridge

4.0

25

0.16

145

100

75

2.9

53.0989

D E

T P

E C

M

A

I R

C S

U N

T P

1.0

0.0

2.0

13.0

13.0

114

ACCEPTED MANUSCRIPT

Fanore

97

1117

53.0989

-9.3093

Ridge

4.0

25

0.16

155

140

110

6.3

1.0

0.5

Fanore

97

1118

53.0989

-9.3093

Ridge

4.0

25

0.16

170

105

45

2.1

1.0

0.5

Fanore

97

1119

53.0989

-9.3093

Ridge

4.0

25

0.16

165

160

80

5.6

1.0

0.5

Fanore

97

1120

53.0989

-9.3093

Ridge

4.0

25

0.16

130

115

35

1.4

1.0

0.5

Fanore

97

1121

53.0989

-9.3093

Ridge

4.0

25

0.16

160

135

45

2.6

Fanore

97

1122

53.0989

-9.3093

Isolated

4.0

25

0.16

195

145

85

6.4

Fanore

97

1123

53.0989

-9.3093

Ridge

4.0

20

0.20

155

80

75

2.5

Fanore

97

1124

53.0984

-9.3093

Isolated

4.0

20

0.20

220

190

70

7.8

39.0

1.5

Fanore

97

1125

53.0984

-9.3093

Isolated

4.0

20

0.20

245

160

115

12.0

Fanore

97

1126

53.0984

-9.3093

Isolated

4.0

20

0.20

190

130

60

3.9

Fanore

97

1127

53.0984

-9.3093

Isolated

4.0

20

0.20

258

258

258

45.5

Fanore

97

1128

53.0984

-9.3093

Isolated

4.0

20

0.20

270

215

125

19.3

Fanore

97

1129

53.0984

-9.3093

Isolated

4.0

20

0.20

300

220

120

21.1

Fanore

97

1130

53.0984

-9.3093

Isolated

4.0

20

0.20

280

170

100

12.7

Fanore

98

1131

53.0577

-9.3648

Isolated

4.0

5

0.80

335

175

135

21.1

8.5

Fanore

98

1132

53.0577

-9.3648

Ridge

4.0

5

0.80

230

65

35

1.4

4.0

Fanore

98

1133

Ridge

4.0

5

0.80

320

125

30

3.2

1.1

Fanore

98

1134

53.0577

-9.3648

Ridge

4.0

5

0.80

155

150

35

2.2

3.0

Fanore

98

1135

C A

-9.3648

53.0577

-9.3648

Ridge

4.0

5

0.80

190

70

35

1.2

Fanore

99

1136

53.0563

-9.3658

Ridge

3.0

12

0.25

249

249

249

40.9

1.5

Fanore

99

1137

53.0563

-9.3658

Isolated

3.0

12

0.25

860

290

125

82.9

0.8

53.0577

D E

T P

E C

M

A

I R

C S

U N

T P

5.0

1.8

1.2

115

ACCEPTED MANUSCRIPT

Fanore

99

1138

53.0563

-9.3658

Isolated

3.0

12

0.25

280

200

115

17.1

Fanore

99

1139

53.0563

-9.3658

Ridge

3.0

12

0.25

335

195

55

9.6

Fanore

99

1140

53.0563

-9.3658

Ridge

3.0

12

0.25

225

150

105

9.4

Fanore

99

1141

53.0563

-9.3658

Ridge

3.0

12

0.25

245

165

60

6.5

Fanore

99

1142

53.0563

-9.3658

Ridge

3.0

12

0.25

420

220

95

23.3

1.5

Fanore

99

1143

53.0563

-9.3658

Isolated

3.0

12

0.25

265

215

115

17.4

5.0

Fanore

99

1144

53.0563

-9.3658

Ridge

4.5

17

0.26

310

160

70

9.2

1.5

Fanore

99

1145

53.0563

-9.3658

Ridge

4.5

17

0.26

300

215

55

9.4

1.0

Fanore

99

1146

53.0563

-9.3658

Ridge

4.5

17

0.26

250

100

85

5.7

Fanore

99

1147

53.0563

-9.3658

Ridge

4.5

17

0.26

550

300

85

37.3

9.5

Fanore

99

1148

53.0563

-9.3658

Ridge

4.0

8

0.50

680

300

135

73.3

10.0

2.0

Doolin

100

1149

53.0391

-9.3847

Ridge

1.9

30

0.06

385

320

280

91.8

1.0

0.5

Doolin

100

1150

53.0391

-9.3847

Ridge

5.7

30

0.19

520

240

200

66.4

Doolin

100

1151

53.0391

-9.3847

Isolated

1.3

30

0.04

580

340

300

157.4

2.0

-0.5

Doolin

100

1152

53.0391

-9.3847

Isolated

1.8

20

0.09

520

270

260

97.1

3.0

Doolin

100

1153

53.0391

-9.3847

Isolated

7.3

15

0.49

585

335

110

57.3

0.5

D E

E C

T P

M

A

I R

C S

U N

T P

25.0

11.0

2.3

C A

116

ACCEPTED MANUSCRIPT

Table ZZ. Comparing boulder masses based on field measrurements (X*Y*Z) with those computed using Structure-from-Motion photogrammetry (SfM). Measured density of 2.66 t/m3 is used in both cases. Boulder dimensions (X,Y,Z) are given to the nearest 5 cm. An asterisk next to the number indicates that the boulder is in the database of boulders moved during the 2013-2014 storms (Table 1). The other six are boulders that appeared on the platform in winter 2015-2016 and were measured for the first time in 2016. Boulder 3 is the isolated platform block in the foreground of Fig. 1.

T P

Boulder

Island

1 2* 3

Inishmaan Inishmaan Inishmaan

4 5 6 7* 8* 9* 10

Inishmaan Inishmaan Inishmaan Inisheer Inisheer Inisheer Inisheer

Location

IM 29IM30

X (m)

Y (m)

Z (m)

2.30 3.30 2.75

2.20 2.65 2.40

0.65 0.75 1.05

5.50 2.35 2.65 5.60 3.40 4.30 4.30

1.90 1.80 2.25 2.80 2.55 2.95 3.05

0.85 0.75 0.55 1.80 1.10 1.35 0.60

C A

E C

T P

D E

I R

C S

Volume SfM (m3)

Mass based on XYZ (t)

Mass based on SfM (t)

Difference between masses (%)

3.29 6.56 6.93

4.01 6.91 7.38

8.7 17.4 18.4

9.5 18.4 19.6

8 5 6

8.88 3.17 3.28 28.22 9.54 17.12 7.87

9.12 3.01 3.17 28.80 11.02 15.53 7.71

23.6 8.4 8.7 75.1 25.4 45.6 20.9

24.3 8.0 8.4 76.6 29.3 41.3 20.5

3 -5 -3 2 13 -10 -2

U N

A

M

Volume X*Y*Z (m3)

117

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15