F-Binomial Coefficients and Related Combinatorial Topics: Perfect Matroid Designs, Posets of Full Binomial Type and F-Geodetic Graphs

F-Binomial Coefficients and Related Combinatorial Topics: Perfect Matroid Designs, Posets of Full Binomial Type and F-Geodetic Graphs

Annals of Discrete Mathematics 30 (1986) 143-1 58 0 Elsevier Science Publishers B.V. (North-Holland) 143 F-BINOMIAL COEFFICIENTS AND RELATED COMBINA...

870KB Sizes 0 Downloads 34 Views

Annals of Discrete Mathematics 30 (1986) 143-1 58 0 Elsevier Science Publishers B.V. (North-Holland)

143

F-BINOMIAL COEFFICIENTS AND RELATED COMBINATORIAL TOPICS: PERFECT MATROID DESIGNS, POSETS OF FULL BINOMIAL TYPE AND F-GEODETIC GRAPHS P i e r V i t t o r i o C e c c h e r i n i and Anna Sappa D i p a r t i m e n t o d i Matematica "G. Castelnuovo" Uni v e r s i t l d i Roma "La Sapi enza" C i t t a U n i v e r s i t a r i a , 00100 Roma, I t a l y

We i n t r o d u c e F-binomial c o e f f i c i e n t s as a n a t u r a l g e n e r a l i z a t i o n o f b i n o m i a l and q - b i n o m i a l c o e f f i c i e n t s . A g e n e r a l c a l c u l u s w i t h these numbers l e a d s t o u n i f y t h e a r i t h m e t i c a l p r o p e r t i e s o f ( f i n i t e ) p r o j e c t i v e and a f f i n e spaces and o f S t e i n e r systems S(t,k,v) i n t o those o f p e r f e c t matroid designs ( 5 2 ) . P a r t i a l l y o r d e r e d s e t o f f u l l b i n o m i a l t y p e ( 5 3 ) and graphs such t h a t t h e number o f geodesics between any two v e r t i c e s depends o n l y on t h e i r d i s t a n c e ( 5 4 ) a r e a l s o s t u d i e d by means o f t h i s f o r m a l c a l c u l u s .

1. F-BINOMIAL COEFFICIENTS Let N (resp.

Q ) denote t h e s e t o f non n e g a t i v e i n t e g e r s ( r e s p . r a t i o n a l

numbers) and l e t be N* = N \ ( O I , L e t F: N

+

Q*

=

Q\rO).

Q* be any f u n c t i o n such t h a t F ( 0 )

any f u n c t i o n such t h a t f ( 0 ) = 0, f ( 1 )

=

1 and f ( N * )

=

F ( 1 ) = 1 and l e t f : N

+

Q be

5 Q*.

F and f w i l l be f u n c t i o n s s a t i s f y i n g t h e above c o n d i t i o n s .

I n what f o l l o w s ,

Given an F, t h e a s s o c i a t e d f w i l l be d e f i n e d by: f(0)

0, f ( n )

F(n)/F(n-l) for n 1 1 .

=

Given an f, t h e a s s o c i a t e d F w i l l be d e f i n e d by: F ( 0 ) = 1, F ( n ) = f ( n ) F ( n - 1 )

i . e . F(n) = f ( n ) f ( n - l ) . . , f ( l )

Two such f u n c t i o n s F and f a r e t h e n m u t u a l l y associated,

f o r n 31.

and sometimes below t h e y

w i l l be used i n t e r c h a n g e a b l y . DEFINITION 1.1.

Given a p a i r ( F , f ) o f m u t u a l l y a s s o c i a t e d f u n c t i o n s and g i v e n

any i n t e g e r s k,n w i t h

OC

n

k < n , we s h a l l d e f i n e t h e F-binomial c o e f f i c i e n t ( o r

b i n o m i a l c o e f f i c i e n t ) I 1 as t h e r a t i o n a l number k F

f-

144

P. V. Ceccherini and A. Sappa

These numbers t u r n o u t t o be p o s i t i v e i n t e g e r s i n t h e f o l l o w i n g examples ( i n which f and F a l s o t a k e i n t e g e r v a l u e s ) .

EXAMPLE 1.2.

Binomial c o e f f i c i e n t s . Consider t h e p a i r o f m u t u a l l y a s s o c i -

ated functions

fl(t)

=

and

t

F ( t ) = t! 1

for a l l tEN.

Then n

in)= k F1

= Ik} i s t h e usual b i n o m i a l c o e f f i c i e n t

k fl

(O
EXAMPLE 1.3. Gaussian numbers. Given an i n t e g e r q > 1 , c o n s i d e r t h e p a i r o f m u t u a l l y associated f u n c t i o n s

f (t) = [ t l 9 9 where [ ]

9

[Ol,!

F ( t ) = [t],! 9

and [ ] ! a r e d e f i n e d by q

9

[OI

and

=

[ll

0,

=

=

9

[ll ! q

[tlq

1,

= q

t-1

t

... + q t l ,

[ t l q l= [ t l [ t - 1 1

= 1,

q

q

... [ llq,

t 22.

Then

n - n I k I F - ikIf 9 q

n

[,Iq i s

the q-binomial coefficient

EXAMPLE 1.4. Constant c o e f f i c i e n t s .

( g a u s s i a n number, c f . 141).

Given an i n t e g e r a z 1, c o n s i d e r t h e

p a i r o f mutually associated functions f(0) = 0,

f(1)

=

1,

f ( t ) = a;

F ( 0 ) = F ( 1 ) = 1,

F ( t ) = at - ’

(tz2).

Then n n I 1 = i l =1, n F OF

and

n

IkjF =

a

for

Usual b i n o m i a l i d e n t i t i e s and q-binomial

O < k
are p a r t i c u -

I45

F-Binomial Coefficients and Related Combinatorial Topics l a r cases o f F-binomial i d e n t i t i e s ( o b t a i n e d f o r F

F

=

1 g i v e now some o f them, w r i t t e n a s f - b i n o m i a l i d e n t i t i e s .

and f o r F

=

F r e s p . ) . We q

P R O P O S I T I O N 1.5. The f o l l o w i n g f - b i n o m i a l i d e n t i t i e s h o l d :

n ‘k’f

- f(n) - fo

n

-

Ikff

-

n-1

I k

{

If +

n-1 k If

-

f(n)

fo

f(n)-f(n-k) f(k)

n-1 ‘k-l’f

- f(n-k+l) n f(k) ‘k-l’f

(O< k tn),

n-1 (k-l’f

These f o r m u l a s suggest t h e f o l l o w i n g DEFINITION 1.6. Given a f u n c t i o n f and any i n t e g e r s k,n w i t h 0 < k
PROPOSITIONS 1.7. L e t

equivalent: (a)

dfn,k

(c)

be as Def. 1.6. The f o l l o w i n g c o n d i t i o n s a r e

i s independent o f n;

n,k

(b) f = f

n,k

9

f o r some q E Q * (where f

= qk

f o r some

f (n)-f (k) 9 9 f q(n-k) bf

n,l

f(n) =

=

=

9

n-1

+ . . . +q

..+q+l

qn-k-1,.

i s f o r m a l l y d e f i n e d as i n Ex. 1 . 3 ) .

q E Q*.

P r o o f . O b v i o u s l y ( c ) = + ( a ) . We have ( b ) -

q

f 9

( c ) because

=

gf

n,k

A

n,k

k

(b).

= qk. We prove now t h a t ( a )

=

L e t us p u t

q f o r a l l n, Then f ( 1 ) = 1 and f o r a l l i n t e g e r s n 3 2 we g e t Af

n,l

f(n-l)+f(l),

so t h a t t h e e q u a l i t y f ( n )

=

q

n-1

+

...

+ q+l f o l l o w s by

induction.

2 . PERFECT M A T R O I O DESIGNS A c o m b i n a t o r i a l geometry ( o r s i m p l e m a t r o i d ) M on a f i n i t e s e t S i s a m a t r o i d

P.V. Ceccherini and A. Sappa

146

0, S andevery s i n g l e t o n o f S a r e f l a t s o f M ( c f . [ 2 1 , [911. A p e r f e c t m a t r o i d d e s i g n (PMD) i s a c o m b i n a t o r i a l geometry M such t h a t e v e r y k - f l a t ( f l a t of rank k ) has t h e same number f ( k ) o f p o i n t s , k = O,l, ...,r k M

on S such t h a t

[lo],

(cf. f(0)

[ 1 2 ] , [ 1 4 1 ) . We s h a l l say t h a t f i s t h e s i z e - f u n c t i o n o f M. Obviously

n

0 and f ( 1 ) = 1, so t h a t f - b i n o m i a l c o e f f i c i e n t s t k l f can be

=

considered

(Osk(n4r-k MI. X PMDs i n c l u d e boolean s e t s 2 , p r o j e c t i v e spaces, a f f i n e spaces, t - ( v , k , l )

designs ( c f . [ 1 4 ] ) . PROPOSITION 2.1.

L e t M be a PMD on a f i n i t e s e t S w i t h s i z e - f u n c t i o n f .

I n t h i s case ( a ) M i s t h e m a t r o i d o f a l l subsets o f S i f and o n l y i f f = f 1' n n f f ( n ) = n, 1 ~ = 1( k ) ~ and = 1.

( b ) M i s t h e m a t r o i d o f f l a t s o f a p r o j e c t i v e space o f o r d e r q i f and o n l y n n-1 n i f f = f ( w i t h q a 2 ) . I n t h i s case f ( n ) = q t ... t q t l , 1 ~ = 1[ 1 ~ and f ",k

9

k q

(Conversely, each o f t h e s e e q u a l i t i e s i m p l i e s f = f 1. 9 n-1. ( c ) IfM i s thematroid o f f l a t s o f an a f f i n e space o f o r d e r q, t h e n f ( n ) = q , n f k 2k-n t h e converse i s t r u e when q a 4. I n t h i s case { k ] f = qk(n-kl and = q - q . n-1 1. (Conversely, each o f these e q u a l i t i e s i m p l i e s f ( n ) = q

q

=

*

P r o o f . ( a ) i s obvious. For ( b ) ( r e s p . ( c ) ) , we have t o prove o n l y t h e " i f " p a r t . A s i m p l e c o u n t i n g argument shows t h a t e v e r y 3 - f l a t i s a p r o j e c t i v e ( r e s p . an a f f i n e ) p l a n e o f o r d e r q, so t h a t t h e r e s u l t f o l l o w s f r o m a w e l l known charact e r i z a t i o n o f p r o j e c t i v e ( r e s p . a f f i n e ) spaces by means o f planes, c f . [ Z ] ( r e s p .

[ll).

0

With an argument which i s s t a n d a r d f o r f i n i t e p r o j e c t i v e spaces ( c f . [14] one can prove t h e f o l l o w i n g PROPOSITION 2.2.

L e t M be a PMD w i t h s i z e - f u n c t i o n f.

( a ) The number o f k - f l a t s i n c l u d e d i n a r - f l a t ( w i t h O < k 6 r ) i s g i v e n by

- 'r, 1 " ' ' r , k - l A k, 1 * k, k-1

'

...f ( r - k + l )

f(r)

.

f(k). .f(l)

--

A ~ , ~ . . . A ~ , ~ - ~

'k, 1

"

'Ak,k-l

'k'f'

( b ) When a k - f l a t i s i n c l u d e d i n a r - f l a t , t h e number o f j - f l a t s between them

(01:k < j c r ) i s g i v e n by

147

F-Binomial Coefficients and Related Cornbinatorial Topics

I n p a r t i c u l a r B(O,j,r) B(k,ktl,r)

= cr(j,r)

and

"" f ( r - k ) A

=

k+l, k

( c ) When a k - f l a t A i s i n c l u d e d i n a r - f l a t 6, t h e number o f maximal c h a i n s

s g i v e n by

o f f l a t s between them ;(k,r)

...B ( r - 2 , r - l , r )

r ) B(ktl,kt2,r)

B(k,ktl

=

=

Ar,k.'.Ar,r-2 Ak

t l ,k ' * ' A r -,lr - 2

F(r-k)

where F i s a s s o c i a t e d t o f . L e t M be a PMD on a f i n i t e s e t S w i t h s i z e - f u n c t i o n f (and

PROPOSITIONS 2.3.

a s s o c i a t e d f u n c t i o n F ) and l e t a ( k , r ) , t i o n 2.2.

B(k,j,r),

;(k,r)

be d e f i n e d as i n p r o p o s-i

The f o l l o w i n g c o n d i t i o n s a r e e q u i v a l e n t :

( 1 ) M i s t h e PMD o f a g r a p h i c space S o f o r d e r q ( i . e . a p r o j e c t i v e space o f o r d e r q ( p o s s i b l y a " l i n e " ) , when 9 2 2 , o r t h e boolean s e t PS, when q

r-k =(j-k~

(lb) B(k,j,r)

( l b ' ) B(k,k+l,r) ( l c ) ;(k,r)

=

Moreover, i f c o n d i t i o n ( 1 (2) f

=

f

q'

for all

= f r-k)

F(r-k)

a(k,r)

D < k.S r

for all

( l a ) a ( k , r ) = {;If

1);

c r k M;

0 6 k < ;i < r s r k M;

for all

for a l l

=

O s k i r s r k M;

O < k < r < r k M.

i s s a t i s f i e d , then r k q'

= [ ]

l3(k,j,r)

=

[;][I,,

;(k,r)

= [r-kl!

P r o o f . I t i s w e l l known ( c f . [ 3 ] , [ 1 6 ] ) t h a t ( 1 ) i m p l i e s ( l a ) - ( l c ) and ( 2 ) . (la)-(l).

By Prop. 2.2,

we g e t

Ar,l r r a ( 2 , r ) = A* {21f -- 121f

231

s

P.V. Ceccherini and A. Sappa

148

(Ib')

=,

( 1 ) . By Prop. 2.2,

we g e t R ( k , k t l , r )

=

'r k 'ktl

4

r,k

=

'k+l,k'

.

f o r k = l we o b t a i n a(k,r)

A

= A

r,l

= R(O,k,rl

f(r-k)

= f(r-k)

and ( 1 ) f o l l o w s as above.

2,l

r-0 I k-O'f

=

,k

r - 'k'f' -

(lb)

=,

(la).

(Ic)

=)

( l b ) . I n each maximal c h a i n of f l a t s between a k - f l a t A and a r - f l a t

B t h e r e e x i s t s e x a c t l y one j - f l a t C ( 0 k ~c j < r ( r k M ) ; g i v e n such a C, t h e j o i n -

i n g of a maximal c h a i n between A and C and o f a maximal c h a i n between C and El i s a maximal c h a i n between A and B. {(C,$):C

between A and B), g i v e s :

i s a j - f l a t belonging t o a chain 0

F(r-k)

Nk,j,r)

=

REMARK 2.4. define

The double c o u n t i n g argument, a p p l i e d t o t h e s e t

a(k,r),

F(j-k)F(r-j),

B(k,j,r)

- {r-k j-kff.

F(r-k)

= F(r-jlF(j-kl

0

L e t M be t h e m a t r o i d o f f l a t s o f an a f f i n e space o f o r d e r q and R(k,j,r)

+

and v ( k , r ) as i n Prop. 2.2. From ( 2 ) o f Prop. 2.3,

f o l l o w s t h a t f ( 0 ) = 0, f ( t ) = qt-', r-k a(k,r) = q REMARK 2.5. such t h a t

i.e.

(k,r)

F ( t ) = qt(t-1)'2

r-1

[k-llq, B ( k , j , r )

=

[;:;Iq,

;(k,r)

it

and f o r k > O = [r-kl

q

!.

We g i v e now an o t h e r example o f a PMD M with s i z e - f u n c t i o n f

# F ( r - k ) . L e t S be a S t e i n e r system S(Z,k,n)

(e.g. t h e S t e i n e r

system whose b l o c k s a r e t h e l i n e s o f a p r o j e c t i v e ( r e s p . a f f i n e ) space S o f o r d e r q w i t h k = q t l ( r e s p . k = q ) ) and l e t M be t h e PMD ( o f r a n k 3 ) whose f l a t s a r e t h e empty s e t ,

the s i n g l e points,

t h e b l o c k s and t h e f u l l s e t o f p o i n t s . The s i z e

f u n c t i o n f i s such t h a t f ( 0 ) = 0, f ( 1 ) = 1, f ( 2 ) = k, f ( 3 ) = n; t h e a s s o c i a t e d f u n c t i o n F i s such t h a t F(0) = F ( 1 ) = 1, F ( 2 ) = k, F ( 3 ) = nk; moreover =

= 1,

A

2,l

= k-1,

A

3,l

=-

'-' . k

=

Therefore

2 whenever n f k - k + l ( i n t h e p r e v i o u s examples, whenever t h e space S i s n o t a p r o j e c t i v e plane).

149

F-Binomial Coefficients and Related Combinatorial Topics 3. POSETS OF FULL

BINOMIAL TYPE

These s t r u c t u r e s have been i n t r o d u c e d i n [111, ( c f . a l s o [71). We s h a l l use t h e n o t a t i o n o f $1.

(P,*.) be a p a r t i a l l y o r d e r e d s e t ( p o s e t ) w i t h minimum 0, and l e t a,b be elements o f P. I f a 4 b, t h e i n t e r v a l between them i s d e f i n e d by I ( a , b ) = Let

=

f c ~ P :a < c c b l . I f a < b a maximal c h a i n between a and b i s a c h a i n

a = a < a <...< an = b o f I ( a , b ) which i s n o t i n c l u d e d i n a l o n g e r c h a i n o f 0 1 I ( a , b ) ; t h e number n i s c a l l e d t h e l e n g t h o f t h e c h a i n . We s h a l l denote by ;(a,b) t h e number o f maximal c h a i n s o f I ( a , b ) , We s h a l l say t h a t (JD)

and we s h a l l assume

;(a,b)

=

1 when a=b.

P i s a JD-poset i f i t s a t i s f i e s t h e f o l l o w i n g c o n d i t i o n

(Jordan-Dedeking c h a i n c o n d i t i o n ) : i f a,b

E

f

w i t h a < b, a l l t h e maximal

c h a i n s o f I ( a , b ) have one and t h e same l e n g t h , denoted by d(a,b)

and c a l l e d t h e

d i s t a n c e between a and b ( o r t h e l e n g t h o f t h e i n t e r v a l ( I ( a , b ) ) . If a=b, we p u t d(a,b)

=

If

0.

P i s a JD-poset w i t h minimum 0, t h e n t h e rank o f an element a

d e f i n e d by r k a=d(O,a), and t h e rank o f We n o t e t h a t i f a,bEP

there exists a function F : f O , l , ;(a,b)

interval o f length n o f that

i s d e f i n e d by r k

w i t h a < b, t h e n d(a,b)<

We s h a l l say t h a t a JD-poset a < b, t h e number

P

rk

P

P

P.

P ( w i t h minimum 0 ) has a c h a i n f u n c t i o n if

...,r k

PI

+

N such t h a t , f o r a l l a,b E 2 w i t h i.e.

every

has F ( n ) maximal c h a i n s . I n t h i s case we s h a l l say

p i s an F-chain p o s e t . A poset

DEFINITION 3.1. (1)

P

i s c a l l e d a poset o f f u l l b i n o m i a l t y p e i f

P has minimum 0,

(2) P

i s a JD-poset,

(3)

P i s a F - c h a i n poset, f o r some F.

If

f i s a JD-poset w i t h minimum 0, f o r each i n t e r v a l I ( a , b )

each i n t e g e r k, w i t h O s k s d ( a , b ) , Ik(a,b)

= I c E I(a,b)

We s h a l l say t h a t f : IO,1,

...,r k

+ .

P and f o r

of

we s h a l l p u t

: d(a,c) = k)

P has a s i z e f u n c t i o n _ i f t h e r e e x i s t s a f u c n t i o n

P)

is

= max t r k a: a € $ , .

o f maximal c h a i n s between them i s F ( d ( a , b ) ) ,

P

E

N such t h a t , f o r a l l i n t e r v a l s I ( a , b ) o f f ,

f,

I50

P.V. Ceccherini and A . Sappa IIl(a,b)I

= f(d(a,b)).

I n t h i s case we s h a l l say t h a t

P

i s an f - s i z e poset. The f o l l o w i n g p r o p o s i -

t i o n y i e l d s o t h e r e q u i v a l e n t d e f i n i t i o n s o f poset o f f u l l b i n o m i a l t y p e . PROPOSITION 3.2.

P

Let

be a JD-poset w i t h minimum 0; t h e f o l l o w i n g c o n d i -

t i o n s a r e e q u i v a l e n t , where f and F a r e m u t u a l l y a s s o c i a t e d f u n c t i o n s : (a)

( b l IIk(a,b)I (c)

P

P i s an F-chain poset ( i . e .

i s a poset o f f u l l binomial type).

(Oc k c d(a,b)).

= t d(a,b)]

P i s an f - s i z e poset.

Proof. Let a , b E P , (a) * ( b ) . e x a c t l y one c E

acb.

L e t be O < k < d ( a , b ) .

I n each maximal c h a i n o f I ( a , b ) t h e r e e x i s t s

P such t h a t d(a,c)

= k.

I f c i s such an element o f I ( a , b ) ,

the

j o i n i n g o f a maximal c h a i n o f I ( a , c ) and o f a maximal c h a i n o f I ( c , b ) i s a maximal c h a i n o f I ( a , b ) . CL

The double c o u n t i n g argument a p p l i e d t o t h e s e t I ( c , o ) :

i s a maximal c h a i n o f I ( a , b ) , F(d(a,b)) = IIk(a,b)

I

d(a,c)

= k)

C E ~ ,

gives:

F ( k ) F(d(a,b)-k),

so t h a t ( b ) f o l l o w s .

( b ) * ( c ) . For k = l we o b t a i n I1 ( a , b ) I = I d(;yb))f = f ( d ( a , b ) . 1 ( c ) * ( a ) . A c t u a l l y I 1 ( a , b ) I = f ( d ( a , b ) ) . We now a p p l y i n d u c t i o n on d ( a , b ) ; 1 i f d(a,b) = 0,1, t h e n 1 = ;(a,b) = F ( d ( a , b ) ) . I f d(a,b),2, a p p l y t h e double coun t i n g argument t o t h e s e t { ( c , ~ ) : c E

U,U

i s a maximal c h a i n o f I ( a , b ) ,

d(a,c)=ll.

By t h e p r e v i o u s argument and b y t h e i n d u c t i o n h y p o t h e s i s , we have ;(a,bl

= (Il(a,b)I

EXAMPLE 3.3.

F(1) F(d(a,bl-l)

= f(d(a,b))

P= 2

I f X i s a f i n i t e s e t and i f

o f X o r d e r e d by i n c l u s i o n , t h e n

P

F(d(a,b)-l)

X

= F(d(a,bl).

i s the set o f a l l

0

subsets

i s a poset o f f u l l b i n o m i a l type, w i t h s i z e

f u n c t i o n f ( t ) = t and c h a i n f u n c t i o n F ( t ) = t ! ( 0 t ~c

1x1)

any such f u n c t i o n s f and F ( w i t h dom f = dom F = t O , l ,

...,n l ) ,

(cf.

[ 1 3 1 ) . Conversely

( c f . example 1.21, X can be c o n s i d e r e d as s i z e f u n c t i o n and c h a i n f u n c t i o n o f a boolean s e t p = 2 w i t h 1x1 = n. We n o t e t h a t , i f P = I X I U ( ox ) U ( ,x) U...U ( Xk ) w i t h 2 4 k < 1x1 - 1, t h e n t h e

P i s n o t of f u l l b i n o m i a l t y p e : i f Y

poset

= d(Z,X)

z

to

x.

= 2, b u t t h e r e a r e

X

E ( 2 ) and

2 c h a i n s from 0 t o Y and

Z E(krl)l

1x1

-

t h e n d(0,Y)

=

(k-1) > 2 chains from

F-Binomial Coefficients and Related Combinatorial Topics EXAMPLE 3.4. dimension n-1

IS1

If X i s a f i n i t e p r o j e c t i v e space PG(n-1.q)

o f o r d e r q and

2 and i f ?' i s t h e s e t o f f l a t s o f X o r d e r e d by i n c l u s i o n , t h e n ?

i s a poset o f f u l l b i n o m i a l t y p e w i t h s i z e f u n c t i o n f ( t ) = [ t ]

and c h a i n f u n c t i o n q Conversely, any such f u n c t i o n s f = [ ] and

F ( t ) = [ t ] !. ( c f . [ 3 ] , prop. 3.3.). 9 h F = [ I ! w i t h q = p ( h h l , p p r i m e 3 2 1 and dom f = d a n F = 10.1

,...,n l

f-l

q

( c f . exaE

p l e 1 . 3 ) can be c o n s i d e r e d as t h e s i z e and t h e c h a i n f u n c t i o n s o f t h e poset o f t h e subspaces of a p r o j e c t i v e space X = PG(n-l,q) We n o t e t h a t , if with i

=

P

o f o r d e r q and dimension n-1.

i s t h e s e t of a l l t h e i - d i m e n s i o n a l f l a t s o f X = PG(n-l,q),

-l,O,...,k,n-1

where 1 4 k < n - 2 , t h e n t h e poset

P i s not o f f u l l binomial

t y p e : i f Y i s a l i n e and 2 i s a ( k - 1 ) - d i m e n s i o n a l f l a t , t h e n d(0,Y) b u t t h e r e a r e q + l c h a i n s f r o m 0 t o Y and q wk-' +

EXAMPLE 3.5. I f

$=

...+q+l > q + l

,,..., xla ,..., xnl ,...,x na 1

{xo,xl

elements (a,n a l ) , o r d e r e d by assuming xo as minimum and x

= d(Z,X)

= 2

c h a i n s f r o m Z t o X.

i s any s e t w i t h a n t 1 ij

< x

hk

i f f i < h, t h e n

2 i s a p o s e t o f f u l l b i n o m i a l t y p e w i t h s i z e f u n c t i o n f ( O ) = O , f ( l ) = l , f ( t ) ad with t-1 chain functionF(O)=F(l)=l,F(t) = a ( 2 6 t < n ) . Conversely, any such f u n c t i o n s f and F ( c f . example 1.3.) can be c o n s i d e r e d as t h e s i z e and t h e c h a i n f u n c t i o n s o f a poset o f f u l l b i n o m i a l t y p e p as above. REMARK 3.6.

L e t M be t h e PMD o f t h e f l a t s o f an a f f i n e space X = AG(n-1,q) and l e t B

o f dimension n - 1 3 2 ,

not o f f u l l binomial type: t h e n d(0,Y)

z

to

= d(Z,X)

be t h e p o s e t o f t h e f l a t s o f X. The poset

P

is

i f Y i s a l i n e and Z i s an ( n - 3 ) - d i m e n s i o n a l f l a t ,

= 2 , b u t t h e r e a r e q c h a i n s f r o m 0 t o Y and q + l c h a i n s f r o m

x. Therefore,

if

M i s a PMD on a f i n i t e s e t X and if P i s t h e s e t of t h e f l a t s

o f M ordered by inclusion, then

P i s not necessarily a poset o f f u l l binomial

t y p e : t h e number o f maximal c h a i n s i n an i n t e r v a l I ( a , b ) does n o t depend o n l y on t h e l e n g t h o f t h e i n t e r v a l , b u t a l s o on t h e r a n k s o f a and b ( c f . a l s o Remark 2.5,

and Examples 3.3,

3.4).

The case when

P i s a poset o f f u l l b i n o m i a l t y p e

i s characterized by t h e f o l l o w i n g proposition. PROPOSITION 3.7.

L e t M be a PMD on a f i n i t e s e t X and l e t

t h e f l a t s o f M o r d e r e d b y i n c l u s i o n . The poset

P

P

be t h e poset o f

i s of f u l l b i n o m i a l t y p e i f and

o n l y i f M i s one o f t h e f o l l o w i n g PMD's: ( a ) M i s t h e t r i v i a l PMD o f r a n k 1 o r t h e t r i v i a l PMD o f r a n k 2 on X ( i . e .

M i s a t r i v i a l g r a p h i c space o f dimension 0 on 1 on X r e s p . ) ;

152

P.V. Ceccherini and A . Sappa (b) M i s t h e m a t r o i d 2

X

o f a l l subsets o f X, i . e . M i s t h e g r a p h i c space o f

o r d e r 1 and dimension 1x1-1;

( X I o f a l l f l a t s o f a p r o j e c t i v e space, o f dimenY q h a v i n g X as s e t o f p o i n t s .

( c ) M i s t h e m a t r o i d Mn-l s i o n n-1 and o r d e r q * 2 ,

P r o o f . I f M i s a PMD as i n ( a ) - ( c ) , t h e n t h e poset

P

o f i t s f l a t s i s a poset

o f f u l l b i n o m i a l t y p e ( c f . Ex. 3.3 and Ex. 3.4). L e t M b e a PMD on X such t h a t t h e p o s e t b i n o m i a l type. I f r k

M r 2,

B o f i t s f l a t s i s a poset o f f u l l

t h e n we a r e i n t h e case ( a ) . If r k

M > 2,

l e t f denote

t h e s i z e f u n c t i o n o f M. F o r any f l a t Y o f r a n k 2, we have t h a t lIl(O,Y)l

P

I n o t h e r words, t h e p o s e t

= ( Y I = f ( 2 ) = f(d(0,Y)).

has t h e same s i z e f u n c t i o n f t h a n t h e PMD M. Thus

c o n d i t i o n ( b ) o f Prop. 3.2 holds; i t means t h a t c o n d i t i o n ( l b ) o f Prop. 2.3 h o l d s . So c o n d i t i o n ( 1 ) o f Prop. 2.3 h o l d s too, and t h e r e s u l t ( b ) - ( c ) i s proved.

0

4. F-GEODETIC GRAPHS a l l graphs w i l l be f i n i t e w i t h o u t l o o p s o r m u l t i p l e edges,

I n what f o l l o w s ,

an:i a l l d i r e c t e d graphs w i l l be w i t h o u t d i r e c t e d c i r c u i t s . Any d i r e c t e d graph

p =

p(t) =

G'

(V,;)

=

i s o b v i o u s l y t h e Hasse diagram o f a poset

where x < y i f and o n l y if t h e r e e x i s t s a d i r e c t e d p a t h f r o m x

(V,<)

t o y; c o n v e r s e l y t h e Hasse diagram o f a poset p = (V,<)

6

= (V,:),

=

that

E

where ( x , y )

P(E) a r e

and

I f G = (V,E)

EE

i s a d i r e c t e d graph

i f and o n l y i f x i s covered by y. We s h a l l say

mutually associated.

(resp.

6

*

= (V,E))

i s a graph ( r e s p . d i r e c t e d graph) and i f two

v e r t i c e s x,yE V a r e j o i n e d by a p a t h ( r e s p . d i r e c t e d p a t h ) , t h e d i s t a n c e d ( x , y ) ( r e s p . i ( x , y ) ) i s d e f i n e d as t h e number o f edges i n a geodesic i . e . p a t h (resp. d i r e c t e d s h o r t e s t p a t h ) between x and y. We denote by (resp. b y

*

r (x,y)

+

= rG(x,y))

i n a shortest r(x,y) =rG(x,y)

t h e s e t o f d i s t i n c t geodesics o f G (resp.

of

between x and y; we p u t : v(x,y) q(x,x)

=

I

r(x,y)l

y(x,x)

= 1

diam G = max I d ( x , y )

and ;(x,y) and

=

;I

x,y)I +

d ( x , x ) = d x,x)

: x,y E

Vj,

d am

We s h a l l say t h a t a connected graph G =

E

V,E)

ifx # y; = 0;

= max ~+d(x,y) : x,y E W .

( r e s p . a d i r e c t e d graph

5

= (V,:))

El

153

F-Binomial Coefficients and Related Combinatorial Topics

...,diam

i s a graph w i t h a geodetic f u n c t i o n i f t h e r e e x i s t s a map F : ( O , l , (resp. F : ( O , l ,

*

...,diam

G)

N ) such t h a t u ( x , y ) = F ( d ( x , y ) ) ( r e s p .

+

+

GI

+

N

u(x,y) =

i) i s

= F(J(x,y))

f o r a l l x,y E V .

F-geodetic.

Note t h a t F(0) = 1 and t h a t F(n) # 0 f o r a l l n E dom F, so t h a t t h e as -

I n t h i s case we s h a l l a l s o say t h a t G (resp.

sociated f u n c t i o n f can be considered as i n $1. Let

2

= (V,;)

be a d i r e c t e d graph and l e t x , y ~ V be such t h a t x - < y . Then t h e

i n t e r v a l I ( x , y ) i s defined by I(x,y) := I z E V :

+

x < z - ( y l , i . e . I ( x , y ) i s defined as i n P ( G ) ,

and t h e geodetic i n t e r v a l I g ( x , y ) i s d e f i n e d by P(x,y)

:= t z e V:

Note t h a t I 9 (x,y)

C;(x,y) f o r some

ZE

5 I(x,y)

C; E r ( x , y ) ~ .

and t h a t I g (x,y) = t z e I ( x , y ) : i ( x , z )

= ;(x,y)-;(y,z)).

For any 1 < k < i ( x , y ) , l e t : = I z e I g ( x , y ) : ~ ( x , z )= k l

I;(x,y)

E

We say t h a t

= (V,:)

has a source

= (zE

I9 ( x , y ) : J ( Z , Y ) = i ( x , y ) - k l .

O E V i f f o r any

XE

V \ (01 t h e r e e x i s t s a d i r e c -

t e d path from 0 t o x.

A graph

6

= (V,i)

w i l l be c a l l e d a d i r e c t e d graph o f f u l l binomial t y p e ( w i t h

geodetic f u n c t i o n F ) i f : (a)

E

has a source 0,

( b ) f o r a l l x , y ~ Vw i t h x < y : (c)

Let

E

be t h e poset associated w i t h

(2)

= I(x,y),

G i s F-geodetic f o r some F.

PROPOSITION 4.1.

(1)

I 9 (x,y)

P has a minimum P i s a JO-poset

= (V,i)

6

be a d i r e c t e d graph and l e t P = P ( 6 ) = ( V , < )

(so t h a t

=

0 i f and o n l y i f

6(P)).

Then

has source 0;

i f and o n l y i f I g ( x , y )

I(x,y),

=

for a l l x , y ~ V

with x
6

P

i s a poset o f f u l l binomial type w i t h chain f u n c t i o n F i f and o n l y i f

i s a d i r e c t e d graph o f f u l l binomial type w i t h geodetic f u n c t i o n F. Proof. -

( 1 ) i s obvious. ( 2 ) :

s e t M(x,y) o f maximal chains o f G(x,y;of

E

P i s a JD-poset P i n I ( x , y ) i s the

O f o r a l l x , y ~ Vw i t h x c y

0

f o r a l l x , y ~ Vw i t h x < y t h e set

I(x,y) = Ig(x,y).

? ( x , y ) o f t h e geodesics

( 3 ) : P i s a poset

of

P.V . Ceccherini and A . Sappa

154

f u l l binomial type w i t h chain f u n c t i o n F

I

(M(x,y) Ig(x,y)

F(+d(x,y)) f o r a l l x < y i n V

=

= I(x,y)

and [;(x,y)(

= F(d(x,y))

t y p e w i t h g e o d e t i c f u n c t i o n F. The poset

p = (V,<),

o

O P has minimum 0, I' i s a JD-poset and

"G

has source 0, f o r a l l x < y i n V

E

i s a d i r e c t e d graph o f f u l l b i n o m i a l

0

where V = IO,x,y,z,tl

and O < x < z < y , O < t < y , i s n o t a

b u t t h e graph 6 ( p ) i s F-geodetic ( w i t h F = l ) ; n o t e t h a t Ig(O,y)

JD-poset, = {O,t,Yl

c I(0,y)

=

=

v.

PROPOSITION 4.2.

Let

"G

=

be a d i r e c t e d graph. The f o l l o w i n g c o n d i t i o n s

(V,i)

a r e e q u i v a l e n t (where F and f a r e m u t u a l l y a s s o c i a t e d ) : i s F-geodetic f o r some F,

(a)

( b ) f o r a l l x < y i n V and f o r a l l 1 g k c a ( x , y ) : (c) f o r a l l x < y i n V:

II~I=

*

(c)

=)

=

+

1

t o t h e s e t Z1 g i v e s : = F(a(~,y)).

If

2

ated t o

E.

gives:

F.

1.

( a ) . We a p p l y i n d u c t i o n on a ( x , y ) 3 1 . I f a ( x , y )

= F(i(z,y))

z(x,z) = k l

+

9 d ( x ,y so t h a t I k ( x , y ) = I

= 1 = F ( 1 ) . Suppose d ( x , y ) h 2 ; by t h e i n d u c t i o n hypothesis,

IT(z,y)

J(X,Y) k IF'

The double c o u n t i n g argument

(z,<(x$y)): z ~ < ( x , y ) ,ger(x,y),

=

F ( d ( x , y l ) = I I z ( x , y ) l F ( k ) F(a(x,y)-k), (b) * (c) for k

k

f(i(x,y)).

Proof, L e t x,y be elements o f V w i t h x < y . ( a ) - ( b ) . a p p l i e d t o t h e s e t Zk

9

( I (x,y)I = i

1

I

=

we have 1 Therefore t h e double c o u n t i n g argument a p p l i e d

= F(G(x,y)-l).

I?(x,y)

1, t h e n I;(x,y) when Z E Z

= IIg(x,y) l F ( l ) F ( i i ( ~ , y ) - l ) = f ( a ( x , y ) )

1

F(a(x,y)-l)=

0

i s a d i r e c t e d graph, we s h a l l denote by G t h e u n d i r e c t e d graph a s s o c i -

PROPOSITION 4.3.

Let

= (V,:)

be a d i r e c t e d graph w i t h source O S V . Suppose

t h a t f o r each x E V t h e p a r i t y o f t h e l e n g t h o f any d i r e c t e d path f r o m 0 t o x depends o n l y on x; w r i t e p ( x ) =O i f i t i s even and p ( x ) = 1 i f i t i s odd. Then +

t h e u n d i r e c t e d graph G a s s o c i a t e d t o G i s connected and b i p a r t i t e . P r o o f . G i s connected s i n c e 0 i s a source. We v e r i f y t h a t G i s b i p a r t i t e by 0 1 i assuming V = V U V where V = I x E V : p ( x ) = il, i = 0 , l . We have t o prove t h a t i f ( x , ~ ) EE then p ( x ) # p ( y ) . We can suppose w i t h o u t loss o f g e n e r a l i t y t h a t (X,Y)E

E.

I f G(0,x) and G(0,y)

a r e geodesics f r o m 0 t o x and t o y resp.,

then

F-Binomial Coefficients and Related Combinatorial Topics

155

g(0,y) and G(0,x) u (x,y) are both d i r e c t e d paths from 0 t o y, so t h a t t h e i r lengths have t h e same p a r i t y p ( y ) . It f o l l o w s t h a t p ( x ) # p ( y ) . PROPOSITION 4.4.

L e t G = (V,E) be a connected b i p a r t i t e graph and l e t 0 be

any vertex o f G. Then by s t a r t i n g from 0, a n a t u r a l o r i e n t a t i o n can be d e f i n e d

on E, i n such a way t h a t

= (V,:)

i s a d i r e c t e d graph w i t h source 0 (and w i t h o u t

d i r e c t e d c i r c u i t s ) . It f o l l o w s t h a t

$=

where x
E

Proof. I f x,y E V w i t h d(0,x)

-*

p(G)

=

(V,C) i s a poset w i t h minimum 0,

a d i r e c t e d path from x t o y .

= d(O,y),

then x and y cannot be adjacent be-

cause G i s b i p a r t i t e . Let ( x , y ) be an edge o f G. We have e i t h e r d(0,y) = d(O,x)+l o r d(O,x)

= d(0,y)tl.

Orient t h e edge from x t o y i n the f i r s t case, from y t o +

x i n t h e second. It i s easy t o show t h a t , whenever t h e r e i s an edge (x,y) EE, then (x,y)

i s t h e o n l y d i r e c t e d path from x t o y, and t h a t whenever t h e r e e x i s t s

a d i r e c t e d path from x t o y then t h e r e i s no d i r e c t e d path from y t o x; indeed i s a d i r e c t e d path, then we have

(by i n d u c t i o n on i ) , i f (xo,x l,...,xi) (xo,xl)

,..., ( X ~ - ~1 , X . and ) E ~d(O,xi)

THEOREM 4.5.

= d(O,xo) t i.

0 +

+

L e t G = (V,E) be a connected b i p a r t i t e graph and l e t G = (V,E)

be the d i r e c t e d graph obtained by s t a r t i n g from a given vertex OEV as i n Prop.

4.4. Then, whenever x and y are elements o f

V w i t h x < y , the f o l l o w i n g c o n d i t i o n s

are e q u i v a l e n t : (a

p(x,y) i s a d i r e c t e d path from x t o y i n

(b

p(x,y)

(C

p(x,y) i s a geodesic from x t o y i n G.

Proof.

t,

i s a geodesic from x t o y i n 6, *

be any d i r e c a) * ( b ) . Assume x = 0 f i r s t . L e t p(0,y) = (O=x",,.,,x.=y) 1

t e d path o f lenght i from x t o y i n

5.

We have d(O,y)=i, by t h e i n d u c t i o n argu-

ment sketched a t the end o f t h e p r o o f o f Prop. 4.4.

Therefore p(0,y) = p ( x , y ) i s

a geodesic i n G. Assume now 0 < x < y . L e t p(0,x)

and p ( x , y ) be any d i r e c t e d paths i n

8

from

0 t o x and from x t o y resp. By g l u e i n g p(0,x) and p(x,y) we get a d i r e c t e d path p(0,y)

in

'G.

For t h e previous case p(0,y)

i s a geodesic i n G. Thus i t s subpath

p(x,y) must a l s o be a geodesic i n 6.

(b)

=)

( a ) . I n d u c t i o n on i = d ( x , y ) .

x < y . so t h a t p(x,y)

When i = l , we have p(x,y) = ( x , y ) ~ isince *

i s a d i r e c t e d path i n G. Assume now i Z 2 and suppose t h a t

P.V. Ceccherini and A . Sappa

156

any geodesic o f G o f l e n g t h j w i t h 1 6 j < i i s a d i r e c t e d p a t h i n

,...,x 1. - 1

p ( x , y ) = ( x =x,x

,xi=y)

and ( X ~ - ~ , Xo f~ G. ) These a r e b o t h d i r e c t e d p a t h s i n Then p ( x , y ) i s a d i r e c t e d p a t h i n (c) *(a)

obviously.

(b)*(c).

I f p(x,y)

6.

The geodesic

i s o b t a i n e d by g l u e i n g t h e geodesics p(x.xi-,)

6

by t h e i n d u c t i o n h y p o t h e s i s .

E.

...,x .1= y ) i s a geodesic i n G, t h e n p(x,y) i s 0 1' because (because ( b ) = . ( a ) ) , and i t must be a geodesic i n

a d i r e c t e d path i n

= ( x =x,x

6,

+

any s h o r t e r d i r e c t e d p a t h p ' ( x , y )

i n G would be a p a t h o f G s h o r t e r t h a n p ( x , y ) ,

which i s i m p o s s i b l e s i n c e p ( x , y ) i s a geodesic i n G. COROLLARY 4.6. L e t G

(V,E)

=

0

be t h e

be a connected b i p a r t i t e graph and l e t

d i r e c t e d graph o b t a i n e d by s t a r t i n g f r o m a g i v e n v e r t e x O E V as i n Prop. 4.4. Then ( 1 ) whenever x , y ~ V w i t h x r y , we have d ( x , y ) that

= +d(x,y), r ( x , y )

= ?(x,y)

so

r(x,y) = t(x,y); ( 2 ) G i s F-geodetic i f and o n l y i f

Proof.

E

i s F-geodetic f o r a l l O E V .

( 1 ) i s obvious. For ( 2 ) i t i s enough t o n o t e t h a t ;(x,y)

= r ( x , y ) when we

assume 0 = x. COROLLARY 4.7.

Let G

=

be a connected b i p a r t i t e graph. Then t h e f o l -

(V,E)

l o w i n g c o n d i t i o n s a r e e q u i v a l e n t , where F and f a r e m u t u a l l y a s s o c i a t e d f u n c t i o n s : ( a ) G i s F-geodetic,

IIzEV:

d(x,y)

( b ) x,yEV,

Otkcd(x,y)*

( c ) x,yEV

*

REMARK 4.8.

The statement o f C o r o l l a r y 4.7 also h o l d s i f G i s n o t b i p a r t i t e ;

~ [ Z E V :d(x,z)

d ( x , z ) = k, d(z,y)

= 1,

d(z,y)

= d(~,yl-kl(=

d(x,y)-llI

I

= f(d(x,y)).

)f,

0

i t can be proved by a d i r e c t argument ( c f . [ 1 6 1 ) . T h i s can a l s o be o b t a i n e d f r o m

t h e p r o o f o f Prop. 4.2, r(x,y), (zEV:

d(x,y)

-t

by r e p l a c i n g g(x,y),

+

r(x,y),

+

d(x,y)

(and by exchanging consequently t h e s e t I!(x,y)

r e s p . w i t h g(x,y), and t h e s e t

d ( x , z ) = k, d ( z , y ) = d ( x , y ) - k ) ) .

EXAMPLE 4.9.

The complete graph Kn, a t r e e G , t h e ( 2 k t l ) - c i r c u i t G a r e F-geo-

d e t i c graphs w i t h F = l . An F-geodetic graph w i t h F-1 i s c a l l e d g e o d e t i c - g r a p h ( c f . [161, [ l a ] ) . The i l k - c i r c u i t G i s F - g e o d e t i c w i t h F ( t ) = l , f o r t < k , and w i t h F ( 2 ) = 2 otherwise. EXAMPLE 4.10.

The complete b i p a r t i t e graph Kn,,=(V,E)

with V =

V'UV",

157

F-Binomial Coefficients and Related Combinatorial Topics

IV'(

=

IV"I

= n i s F-geodetic w i t h F ( 0 ) = F ( 1 ) = 1, F ( 2 ) = n.

A hypercube i s an F-graph w i t h F ( t ) = t ! . Conversely any con-

EXAMPLE 4.11.

131).

n e c t e d b i p a r t i t e F-graph w i t h F ( t ) = t ! i s a hypercube ( c f .

(cf. (51,

= t (0

The graph Kn x Km i s F - g e o d e t i c w i t h F ( t

EXAMPLE 4.12.

< t s 2 cn,m)

[151 1 -

I f Qn i s t h e n-cube, t h e graph Qn x K

EXAMPLE 4.13.

s

m

F-geodetic

with

F ( t ) = t ! ( O s t < n t l ) ( c f . [51, Prop. 3.1).

i s F - g e o d e t i c f o r some F

I f G i s a connected graph and i f GxK,

EXAMPLE 4.14.

and some m x 2 , t h e n F ( t ) = t ! . Moreover, i f G i s b i p a r t i t e , t h e n G i s a hypercube (and GxK i s a l s o a hypercube i f and o n l y i f m = 2 ) ( c f . [ 5 ] , Prop. 3.1, Cor. 3.2) m EXAMPLE 4.15. L e t G be t h e d i r e c t e d graph whose v e r t i c e s a r e t h e subspaces ~o f a g r a p h i c space o f dimension n and o f o r d e r q 3 1 and ( x , y f l a t x i s covered b y t h e f l a t y. Then

6

i s F-geodesic w i t h F ( t

i s an edge i f t h e =

[tlq!( c f .

[31,

Prop. 3.3).

REMARK 4.16.

E

L e t G be t h e u n d i r e c t e d graph a s s o c i a t e d t o t h e d i r e c t e d graph

c o n s i d e r e d i n t h e Ex. 4.15.

I n o t h e r words, G i s t h e q-analogue o f Qn-,.

Note

t h a t when q a 2, G i s n o t F-geodesic: i f x,y a r e two p o i n t s and z i s a p l a n e cont a i n i n g x, t h e n d(x,y)

= d(x,z)

t h a t t h e d i r e c t e d graph

5

graph o f Example 4.15;

=

2, b u t 2 = v(x,y)

#

u ( x , z ) = q t l . Note a l s o

o b t a i n e d f r o m G by s t a r t i n g f r o m t h e empty f l a t i s t h e

when we s t a r t from a f l a t O f 0 , t h e n

E

i s F - g e o d e t i c i f and

only i f q=l. EXAMPLE 4.17. o f Ex, 3.5.

Then

Let

6

6

=

6(P) be

t h e d i r e c t e d graph a s s o c i a t e d t o t h e p o s e t

p

i s F-geodetic a c c o r d i n g l y t o Prop, 4.1 ( b u t G i s n o t F-geode-

tic). ACKNOWLEDGEMENT.

T h i s r e s e a r c h was p a r t i a l l y supported by GNSAGA o f CNR and by

MPI.

BIBLIOGRAPHY [ 1 1 F. Buekenhout, Une c h a r a c t e r i z a t i o n des espaces a f f i n s basee s u r l a n o t i o n de d r o i t e , Math. Z. 111 (1969) 367-371. [ 21 P . V . C e c c h e r i n i , 78-98.

S u l l a nozione d i s p a z i o g r a f i c o , Rend.

Mat.

( 5 ) 6 (1967)

P.V , Ceccherini and A . Sappa

158

[ 3 ] P.V. C e c c h e r i n i , A q-analogous o f t h e c h a r a c t e r i z a t i o n o f hypercubes as graphs, J. Geometry 22 (1984) 57-74. [ 4 1 P.V. Ceccherini, A. Dragomir, Combinazioni g e n e r a l i z z a t e , q - c o e f f i c i e n t i b i n o m i a l i e spazi g r a f i c i , A t t i Convegno Geometria Combinatoria e sue a p p l i c a z i o n i (Peruaia. Settembre 1970) 137-158.

-~

[ 5 1 P.V.

Ceccherini, A. Sappa, A new c h a r a c t e r i z a t i o n o f hypercubes,Annals D i s c r e t e Math. ( t h i s volume).

[6

1 L.

[7

1 L.

C e r l i e n c o , F. P i r a s , C o e f f i c i e n t i b i n o m i a l i g e n e r a l i z z a t i , Fac. S c i . C a g l i a r i 52 (1982) 47-56.

Rend.

Sem.

C e r l i e n c o , F. Piras, G-R-Sequences and i n c i d e n c e coalgebras o f p o s e t s o f f u l l b i n o m i a l t y p e , ( t o appear).

[ 8 ] R.J. Cook, D.G. [ 9 ] H. Crapo, G.C.

Pryce, U n i f o r m l y g e o d e t i c graphs, t o appear. Rota, C o m b i n a t o r i a l geometries, MIT Press, Cambridge (1970).

[ 1 0 1 M. Deza, N.M. S i n g h i , Some p r o p e r t i e s o f p e r f e c t m a t r o i d designs, Annals D i s c r e t e Math. 6 (1980) 57-76. [ 11 ] P. D o u b i l e t , G.C. Rota, R.P. SRanley, On t h e f o u n d a t i o n s o f C o m b i n a t o r i a l t h e o r y V I : t h e i d e a o f g e n e r a t i n g f u n c t i o n , i n G.C. Rota ( e d . ) , F i n i t e Oper a t o r Calculus, Academic Press, New York (1975) 83-134. [ 12 1 J. Edmonds, U.S.R. Murti, P. Young, E q u i c a r d i n a l m a t r o i d s and m a t r o i d d e s i gns, i n "Combinatorial Mathematics and i t s A p p l i c a t i o n s " , Second Chapel H i 11 Conference ( 1 9 7 0 ) .

[ 1 3 1 S. Foldes, A 159.

c h a r a c t e r i z a t i o n o f hypercubes, D i s c r e t e Math. 17 (1977) 155-

[ 14 1 B.L. R o t h s c h i l d , N.M. S i n g h i , C h a r a c t e r i z i n g k - f l a t s i n geometric designs, J. Comb. Theory A 20 (19761, 398-403. [ 15 1 A. Sappa, C a r a t t e r i z z a z i o n e d i g r a f i t r a m i t e geodetiche, Tesi, Univ. d i Roma, D i p a r t i m e n t o d i Matematica (1984). [ 16

I R.

S c a p e l l a t o , On g e o d e t i c graphs o f diameter two and some r e l a t e d s t r u c t u r e s ( t o appear).

[ 1 7 1 B. Segre, L e c t u r e s on modern geometry. With an Appendix by L. Lombardo-Rad i c e , Cremonese, Roma (1961).

[ 1 8 ] J.C. Stempe, 266-280.

Geodetic graphs o f diameter two, J. Comb. Theory

B 17 (1974)