VACUUM Classified A b s t r a c t s
II - -
Vacuum
Apparatus
and
Auxiliaries
--
Abstract No. and References
II
Contd.
Table to Abstract 2 1 / I I
Properties of Non-Metallic Materials (All properties depend on impurities and fabrication nmthod)
Material
Alumina, fused Beryllia,
Melting Point, ° F 3,722
4,568
~]lax, Operating Temp. in High Vacuum, ° F
Cocf. of Ther. Exp. Per ° F
Thermal Cond. i Btu/Hr/Sq Ft / Ft, '° F
3,270
4 . 5 × 1 0 -~ (68~2,3()0F)
0.4-0.5
Excellent
9
0.35
3,630
I 5 . 1 - 5 . 2 × 1 ()-6 , (68-2,550F)
1.1-2.1
Excellent
9
[ 1 . 8 × 1 0 -3
4 . 3 × 1 0 -s (77-104F)
4.4 14.4
Excellent
0.571.0
7 . 9 - 8 . 3 × 1[) ~ ! (68-3,100K)
0.4 0.8
Poor
6
High
2 . 5 - 2 . . q X 1 0 -~ (68-2,600F)
0.2-0.3
Good
6
--
0.2 0.35
Excellent
5---7
9 . 9 ~, 1 0 ~
1,830
5×10 a
fused
Graphite Magnesia Mullite
O
Silica,
4,530 5,072
2,910
a,250 3,335 2,730-3,090
!
l 0 -s
3,720
3,775
Elect Resistivity at2,2OO~F, oh m-cm 104
1 0 la
5 > 10 -n
Fused, good; sintered, poor
--
--
Excellent
4,900
5.2-5.3 × 10 6 {68-2,550F)
Very low
Poor
7
3 × 1 0 -=
4,71(I
1 0 ~°
Zircon
4,622
3,090
2.0-3.7 × 10 6 (68-1475F)
0.2-0.3
Good
8
--
--
104
4,600-4,700
3,990
2 . 8 6 . 0 × 1 0 -6 (68 2,275F)
0.36
Fair to good
8.5
--
--
Lava, fired
~
3,990
2,190-2,280
2 . 5 - 2 . 6 x 1 0 -~ ~ (32-3,090F)
1.1 2 . 4
5 . 8 - 6 . 4 >~ 1 0 -6 I (77-2,(100F)
--
Good
Good
~ 3,630
5,180
~ 4,900
Good
Excellent
Thor(a, fused
Silicon Carbide
Load Bearing at 2 , 2 0 0 ° F
7 . 9 >( 10 ~4
3,630
2,010
Zircon(a, stabilised
O
Hardness Vapour Pressure Mobs' ] Scale ] ram. of Temp Hg F
3,110
fused
0 . 3 × 1 0 -6 (68-2,280F)
Thermal Shock R,'xistance
--
Fair
Good Good
[ 9-10
--
--
2.5
Excellent
I --
6
---
--
10 ~
Good
I
22/n
Use of P.T.F.E. In Impregnating P o r o u s Materials United Kingdom. In c o n n e c t i o n w i t h w o r k necessitating t h e electrolysis of m o l t e n s o d i u m h y d r o x i d e / p o t a s s i u m h y d r o x i d e m i x t u r e s no m e t a l s could be found suitable for use as anode material. E v e n graphite crucibles released appreciable a m o u n t s of iron into the m e l t w i t h t h e a t t e n d a n t danger of c o n t a m i n a t i n g t h e cathode. The difficulty was e v e n t u a l l y o v e r c o m e b y i m p r e g n a t i n g the graphite under v a c u u m w i t h a dispersion of P o l y t e t r a f l u o r e t h y l e n e (Teflon). The a m o u n t of iron released from anodes, treated in this m a n n e r was g r e a t l y reduced. A t t h e s a m e t i m e t h e anodes were n o t a t t a c k e d b y the m o l t e n m i x t u r e s e v e n at t e m p e r a t u r e s near 250°C. It is suggested t h a t P . T . F , E . m a y be suitable for t h e i m p r e g n a t i o n of other porous materials subject to c h e m i c a l attack.
Letter by It. Hughes
Sommaire : Apr~s une 6rude poussde sur les m a t d r i a u x appropriSs p o u r Ia fabrication d'anode, on a trouv5 que
Chem. & lndust~'.
les anodes, faites en graphite impr~gne de Teflon sous vide, d o n n e n t des rdsultats satisfaisants dans l'electrolyse de m61anges de N a O H / K O t t fondus.
12.12. 1953 1342
Fine Structure in Polyethylene Terephthalate Fibres United Kingdom. K a s s e n b e c k d e m o n s t r a t e d t h a t d r a w n p o I y e t h y l e n e t e r e p h t h a l a t e fibres possessed a surface s k i n a b o u t 2,500 ,£~ t h i c k b y m a k i n g and p h o t o g r a p h i n g in t h e electron microscope polystyrene-silica replicas of specially prepared sections. H e also s h o w e d t h a t b e n e a t h this skin lies a fine structure of oriented fibrils w h i c h appear to v a r y in d i a m e t e r b e t w e e n 250 ~ and 750 ]k. The a u t h o r s h a v e e x t e n d e d these investigations b y t e a r i n g open t h e m o n o f i l a m e n t along the axis and m a k i n g g e r m a n i u m replicas of t h e exposed surface by t h e v a c u u m e v a p o r a t i o n technique. The latter t e c h n i q u e is simpler t h a n the polystyrene-silica m e t h o d . In addition, g e r m a n i u m yields a c o m p l e t e l y structure-free replica and does n o t t e n d to crystallise in the electron beam. The results suggest t h a t there are ' f u n d a m e n t a l ' fibrils of a b o u t 200 2~ d i a m e t e r and t h a t s o m e of these group t o g e t h e r resulting in fibrils of up to a b o u t 1,000 e~_ diameter. Sommaire : La s t r u c t u r e des fibres de p o l y e t h y l e n e t e r e p h t h a l a t e pass6es 5~ Ia fili~re a dtd examinde avec l'aide de repliques de g e r m a n i u m o b t e n u e s par la t e c h n i q u e de l'6vaporation sous vide.
23/II
Density of Deposited Carbon United Kingdom. A m e t h o d is described of depositing e l e m e n t a l carbon from gaseous c o m p o u n d s c o n t a i n i n g carbon, sucl~ as m e t h a n e b y passing the gas in a closed vessel over a heated graphite rod of S ram. d i a m e t e r at an initial pressure of 15 cm. Hg. The c o a t i n g obtained was 1 2 ram. t h i c k and its m a x i m u m d e n s i t y w a s f o u n d to be 2.22 g . / c m 3 (the theoretical lattice d e n s i t y is 2,265 g./cmS). V a r y i n g the t e m p e r a t u r e s of the graphite rods and t h e initial pressures of the m e t h a n e gas it w a s found t h a t the d e n s i t y of the deposits rose w i t h the t e m p e r a t u r e of the rods and that, at c o n s t a n t t e m p e r a t u r e , the d e n s i t y of the deposit rose w i t h the initial
January, 1954
Vacuum Vol. I V No. 1
Letter by R.
A . Cobboht de P. Daubeny K. Deutseh & P. Markey
Nature I7z , 31.10. 806
1953
24/II
104