Flat centroaffine surfaces with parallel second fundamental form in R4

Flat centroaffine surfaces with parallel second fundamental form in R4

Applied Mathematics and Computation 243 (2014) 775–788 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

432KB Sizes 0 Downloads 20 Views

Applied Mathematics and Computation 243 (2014) 775–788

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Flat centroaffine surfaces with parallel second fundamental form in R4 Yun Yang, Yanhua Yu ⇑, Huili Liu Department of Mathematics, Northeastern University, Shenyang, Liaoning 110004, PR China

a r t i c l e

i n f o

Keywords: Centroaffine surfaces Curvature Pick invariant The second fundamental form

a b s t r a c t By solving certain partial differential equations, we obtain some classification results for flat centroaffine surfaces in R4 , under the condition of parallel second fundamental form and vanishing Pick invariant. We also get some examples for flat centroaffine umbilical surface with parallel second fundamental form. Ó 2014 Elsevier Inc. All rights reserved.

1. Introduction The main purpose of affine differential geometry, as we know, is to study the properties of submanifolds M n of Rm that are invariant under the group of all affine transformations [9,3]. The classical theory for affine hypersurfaces was developed by Blaschke and his school [1], and has been reorganized in the last 20 years as geometry of affine immersions [8]. Similarly, the centroaffine differential geometry is the study of the properties of submanifolds that are invariant under the centroaffine transformation group, which is the subgroup of the affine transformation group that keeps the origin invariant. In centroaffine differential geometry, the theory of hypersurfaces has a long history. The notion of centroaffine minimal hypersurfaces was introduced by Wang [11] as extremals for the area integral of the centroaffine metric. The third author of this paper got the classification of surfaces in R3 which are both centroaffine-minimal and equiaffine-minimal [4], for hypersurfaces, see [7]. See also [13,14,16] for the classification results about centroaffine translation surfaces and centroaffine ruled surfaces in R3 . However, relatively little has been achieved in the study of centroaffine immersions with higher codimensions. For a centroaffine immersion into the affine space, the position vector yields its first canonical transversal vector field. A standard method of choosing a second one was proposed in 1950 by Lops˘ic (see Walter [10]). Reorganizing geometry of equi-centroaffine immersions of codimension two, Nomizu and Sasaki [8] took the prenormalized Blaschke normal field as the second canonical transversal vector field, and using this structure Furuhata [2] proved that an equi-centroaffine immersion is minimal if and only if the trace of the affine shape operator with respect to the prenormalized Blaschke normal field vanishes identically. On the other hand, the third author of this paper gave another structure to study the centroaffine immersions of codimension two [5,6]. He defined the centroaffine metric g of centroaffine immersions with codimension two in a new way and then chose Dg x as the second transversal vector field, where Dg denotes the Laplacian of g. According to this structure and using the efficacious moving frames method, the authors of this paper compared these different normalizations and defined the minimal centroaffine immersions of codimension two [12]. Recently, the authors of this paper also obtained some classification results for flat centroaffine surfaces in R4 with the condition of degenerate second fundamental form and vanishing Pick invariant [15]. In this paper, we further consider the centroaffine invariants of centroaffine

⇑ Corresponding author. E-mail addresses: [email protected] (Y. Yang), [email protected] (Y. Yu), [email protected] (H. Liu). http://dx.doi.org/10.1016/j.amc.2014.06.062 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

776

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

immersion x : M ¼ Mn ! Rnþ2 ðn P 2Þ, and find that the parallel property of the second fundamental form and umbilical property for centroaffine immersions of codimension two are invariant under centroaffine transformation. Then by solving certain systems of partial differential equations, we obtain a complete classification of flat centroaffine surfaces with parallel second fundamental form and vanishing Pick invariant in R4 . At the same time, we also get some examples for flat centroaffine umbilical surface with parallel second fundamental form. This paper is organized as follows. In Section 2 we recall the basic theory and notions for centroaffine immersions of codimension 2 with normalization fx; Dg xg. Note, there are some new definitions. In Section 3 we consider centroaffine surfaces with rh ¼ 0 in R4 , and then get a complete classification ~ h ¼ 0 in R4 , and also get a for flat surfaces with rh ¼ 0 and J ¼ 0. In Section 4 we talk about centroaffine surfaces with r ~ complete classification for flat surfaces with rh ¼ 0 and J ¼ 0. Furthermore, some flat centroaffine umbilical surfaces with parallel second fundamental form are obtained in Sections 3 and 4. Finally, in Section 5, we will give some more details for centroaffine surfaces with parallel second fundamental form appearing in Sections 3 and 4. 2. Centroaffine immersions in Rnþ2 We will recall the basic centroaffine theory in Rnþ2 . More details can be found in [12,15]. Let x : M ¼ M n ! Rnþ2 ðn P 2Þ be an oriented immersed submanifold such that xðpÞ R dxðT p MÞ for all p 2 M, and xðMÞ be not contained in a hyperplane containing the origin of Rnþ2 . Our convention for the range of indices is the following

1 6 i; j; k; . . . 6 n; n þ 1 6 a; b; c; . . . 6 n þ 2; 1 6 A; B; C; . . . 6 n þ 2 and we shall follow the usual Einstein summation convention. For any local oriented basis r ¼ fE1 ; E2 ; . . . ; En g of TM with dual basis fh1 ; h2 ; . . . ; hn g we define 2

G :¼ ½E1 ðxÞ; . . . ; En ðxÞ; x; d x ¼ Gij hi  hj ;

ð2:1Þ nþ2

where ½      is the standard determinant in R that G is nondegenerate. We define

g :¼ g ij hi  hj ;

, Gij :¼ ½E1 ðxÞ; . . . ; En ðxÞ; x; Ei Ej ðxÞ. G is a symmetric 2-form and we assume

1

g ij ¼ j det Gpq jnþ2 Gij :

ð2:2Þ

Then g is independent of the choice of the basis r and thus a globally defined symmetric 2-form. From Eq. (2.1) we know that the conformal class of g is a centroaffine invariant [5,6]. Definition 2.1. g is called the centroaffine metric of centroaffine immersion x : M ! Rnþ2 . Remark. x is called a nondegenerate centroaffine submanifold if g is nondegenerate and x is definite or indefinite if g is definite or indefinite, respectively. n o D x Definition 2.2. Let Dg denote the Laplacian of g. x; ng is called the centroaffine normalization of centroaffine immersion x : M ! Rnþ2 . Let U be a connected open subset of manifold M. If no confusion is possible, we will identify U with its image xðUÞ and T u M n o D x with x ðT u MÞ. We denote the canonical flat connection on Rnþ2 by D. With respect to the frame E1 ðxÞ; . . . ; En ðxÞ; x; ng , the structure equations for arbitrary tangential vector fields X; Y 2 XðUÞ can be written in the form [12]:

Dg x DY X ¼ rY X þ hðX; YÞx þ gðX; YÞ ; n   Dg x ¼ SðXÞ þ qðXÞx: DX n

ð2:3Þ ð2:4Þ

A standard proof shows that r is a torsion free affine connection, h are symmetric bilinear forms, shape operator S is a (1, 1)-tensor field and q are 1-forms defined on U[12]. If we denote by Rr the curvature tensor of r, i.e., for arbitrary tangent vector fields X; Y; Z 2 XðUÞ; Rr ðX; YÞZ ¼ rX rY Z  rY rX Z  r½X;Y Z, then the centroaffine integrability conditions are

Rr ðX; YÞZ ¼ gðY; ZÞSðXÞ  hðY; ZÞX  gðX; ZÞSðYÞ þ hðX; ZÞY;

ð2:5Þ

ðrX gÞðY; ZÞ ¼ ðrY gÞðX; ZÞ;

ð2:6Þ

ðrX SÞðYÞ þ qðXÞY ¼ ðrY SÞðXÞ þ qðYÞX;

ð2:7Þ

hðX; SðYÞÞ  hðY; SXÞ ¼ ðrX qÞðYÞ  ðrY qÞðXÞ;

ð2:8Þ

gðX; SðYÞÞ  gðY; SðXÞÞ ¼ 0:

ð2:9Þ

777

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

~ ¼ fC ~ k g be the induced connection and the Levi–Civita connection of centroaffine In local coordinates, let r ¼ fCkij g and r ij metric g, and then we define the Fubini-Pick form C by

~k; C kij :¼ Ckij  C ij C ijk :¼

ð2:10Þ

g il C ljk :

ð2:11Þ

The Pick invariant is defined by



1 g ij C lik C klj : nðn  1Þ

In [12] we obtained that C kij is symmetric for i and j and C ijk is symmetric for i; j and k. Furthermore we have

g ij C kij ¼ 0;

g ij hij ¼ 0;

C iij ¼ 0:

ð2:12Þ

~ij ¼ g Sl and H ~ij Þ, ~ ¼ ðh Introducing now h il j



~ trg H trS ¼ n n

ð2:13Þ

is called the centroaffine mean curvature of centroaffine immersion x : M n ! Rnþ2 , and the centroaffine immersion x is centroaffine minimal if and only if H ¼ 0 [12]. Certainly, we also have the centroaffine theorema egregium [15]



~ jk g jk R R ¼ ¼ J  H; nðn  1Þ nðn  1Þ

ð2:14Þ

where R is the scalar curvature, v is the normalized scalar curvature of the metric g. Here we can give the following two definitions for centroaffine immersion of codimension two. Definition 2.3

L ¼ hij dxi  dxj is call the second fundamental form of centroaffine immersion x : M ! Rnþ2 . Then centroaffine immersion x is said to have ~ h ¼ 0. parallel second fundamental form if rh ¼ 0 or r Definition 2.4. A surface in R4 is called centroaffine umbilical if the shape operator S has only one eigenvalue.  : M ! Rnþ2 are centroaffine equivalent, then g ¼ kg, where k is constant, and it Remark. If two centroaffine immersion x; x ~ is easy to verify rh ¼ 0; rh ¼ 0 and umbilical property are invariant under centroaffine transformation from the structure Eqs. (2.3) and (2.4).

3. Flat centroaffine surfaces with $h ¼ 0 In this section we will deduce the following theorem which is a complete classification for flat centroaffine surfaces with J ¼ 0 and rh ¼ 0 in R4 . Theorem 3.1. Let x : M ! R4 be a flat centroaffine surface with J ¼ 0 and rh ¼ 0, then x is centroaffinely equivalent to one of the following surfaces in R4 : 1. 2. 3. 4. 5. 6.

Tran

x ¼ ðu2 þ v 2 ; u; v ; 1Þ ; Tran ðcosh u; sinh u; cos v ; sin v Þ ; Tran ðcosh u; sinh u; cosh v ; sinh v Þ ; Tran ðcos u; sin u; cos v ; sin v Þ ; Tran ðcosh u cos v ; cosh u sin v ; sinh u cos v ; sinh u sin v Þ ; x ¼ v V 1 ðuÞ þ V 2 ðuÞ where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector   kðuÞ lðuÞ ; kðuÞ and lðuÞ are arbitrary 1-variable functions. ðV 001 ðuÞ; V 002 ðuÞÞ ¼ ðV 1 ðuÞ; V 2 ðuÞÞ 0 c

fields

satisfying

that

Remark. From the centroaffine theorema egregium (2.14), we know flat centroaffine surfaces with vanishing Pick invariant are centroaffine minimal, so the surfaces included in Theorem 3.1 all are centroaffine minimal.

778

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

Especially, in this section, we also find the following examples of flat centroaffine umbilical surfaces with rh ¼ 0: Tran

ðu2 þ v 2 ; u; v ; 1Þ ;  Tran 1 u; v ; ;1 ; uv  Tran 1 1 u2 ; sin v ; cos v ; 1 ; u u

ð3:1Þ ð3:2Þ ð3:3Þ

v V 1 ðuÞ þ V 2 ðuÞ;

ð3:4Þ V 001 ðuÞ

V 002 ðuÞ

where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that ¼ kðuÞV 1 ðuÞ; ¼ lðuÞV 1 ðuÞ, and kðuÞ; lðuÞ are arbitrary 1-variable functions. Exactly, in following Section 3.1 we will get the classifications of definite centroaffine surfaces with J ¼ 0 and rh ¼ 0. Then under the same condition, the classifications of indefinite centroaffine surfaces will be obtained in Section 3.2. At the same time, the umbilical surfaces will be considered in Sections 3.1 and 3.2. 3.1. Definite centroaffine surfaces in R4 Let x : M ! R4 be a centroaffine surface with definite centroaffine metric g. Hence we can choose a local basis r ¼ fE1 ; E2 g of TM such that

g ¼ ex ðdu2 þ dv 2 Þ;

ð3:5Þ

where  ¼ 1. Obviously, g 11 ¼ g 22 ¼  From Eq. (2.12) we get

ex ;

4

g 12 ¼ g 21 ¼ 0, and fE1 ðxÞ; E2 ðxÞ; x; Dg xg forms a local moving frame for R along M.

g ij hij ¼ ex ðh11 þ h22 Þ ¼ 0;

ð3:6Þ

that is

h11 þ h22 ¼ 0:

ð3:7Þ

By a direct calculation, we know that the coefficients of the Levi–Civita connection of the centroaffine metric g are

~1 ¼ C 11 ~1 ¼ C 12

xu 2

;

~ 2 ¼  xv ; C 11

;

~2 ¼ C 12

xv 2

xu

~1 ¼  C 22

2

xu

ð3:9Þ

;

2

~2 ¼ C 22

;

ð3:8Þ

2

xv 2

ð3:10Þ

:

Again from Eq. (2.12) it is easy to find

C111 þ C212 ¼ xu ;

C112 þ C222 ¼ xv ;

C111 þ C122 ¼ 0;

C211 þ C222 ¼ 0:

ð3:11Þ

Then the Pick invariant



ex 2

2

2

ððxu  2C111 Þ þ ðxv  2C222 Þ Þ:

ð3:12Þ

By the flatness assumption of x we can choose the coordinates such that x  0, which leads to

C111 ¼ C212 ¼ C122 ¼ aðu; v Þ; 2 22

C

¼ C 2

1 12

¼ C

2 11

¼ bðu; v Þ;

2

J ¼ 2ða þ b Þ;

ð3:13Þ ð3:14Þ ð3:15Þ

where the notations a; b are mainly for simplification. According to the assumption rh ¼ 0 and Eq. (3.7), a direct calculation yields

@h11 ¼ 2ðah11  bh12 Þ; @u @h11 ¼ 2ðah11  bh12 Þ;  @u @h11 ¼ 2ðbh11  ah12 Þ; @v @h11  ¼ 2ðbh11  ah12 Þ; @v

ð3:16Þ ð3:17Þ ð3:18Þ ð3:19Þ

779

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

@h12 ¼ 0; @u @h12 ¼ 0: @v

ð3:20Þ ð3:21Þ

It immediately follows that h12 is constant and



a b b



a



h11 h12

¼ 0:

ð3:22Þ 2

Surely, the direct result of Eq. (3.22) is a2 þ b ¼ 0 or h11 ¼ h12 ¼ 0. In the following we consider them respectively. 2

Case 1. a2 þ b ¼ 0. 2 According to Eq. (3.15), it is clear that a2 þ b ¼ 0 is equivalent to J ¼ 0, and also a ¼ b ¼ 0. Again from Eqs. (3.16)–(3.21), we can find hij are constants, where i; j 2 f1; 2g. Therefore, the structure equations can be changed as

xuu ¼ h11 x þ 

Dg x ; 2

ð3:23Þ

xuv ¼ h12 x;

ð3:24Þ

Dg x ; xvv ¼ h22 x þ  2   D x  g ¼ h22 xu þ h12 xv ; 2 u   D x  g ¼ h12 xu  h11 xv : 2 v

ð3:25Þ ð3:26Þ ð3:27Þ

If h12 ¼ 0, we can get a system of partial differential equations from Eqs. (3.23) and (3.24),

xuv ¼ 0;

ð3:28Þ

xuu  xvv ¼ ðh11  h22 Þx:

ð3:29Þ

The condition h11  h22 ¼ 0 implies the surface is centroaffinely equivalent to [15] Tran

ðu2 þ v 2 ; u; v ; 1Þ

ð3:30Þ

:

On the other hand, the condition h11  h22 – 0 deduces the surface is centroaffinely equivalent to [6] Tran

ðcosh u; sinh u; cos v ; sin v Þ

:

ð3:31Þ

Obviously, these two surfaces are (1) and (2) in Theorem 3.1. Tran

Remark. Eq. (3.7) and h11  h22 ¼ 0 can lead to h11 ¼ h22 ¼ 0, so it is easy to see the surface ðu2 þ v 2 ; u; v ; 1Þ is a centroaffine umbilical surface with shape operator S ¼ 0. If h12 – 0 and h11  h22 ¼ 0, which implies h11 ¼ h22 ¼ 0 from Eq. (3.7), then parameter transformation  ¼ u þ v; v  ¼ u  v changes the structure Eqs. (3.23)–(3.25) to u

xuu  xv v ¼ h12 x;

ð3:32Þ

xuv ¼ 0:

ð3:33Þ

This surface, indeed, is centroaffinely equivalent to (3.31). If h12 – 0 and h11  h22 – 0, which means h11 ¼ h22 – 0 from Eq. (3.7), we can take

0

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1  2 h h11 A 11 ¼@  1þ u þ v; u h12 h12 0 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1  2 h11 h11 A @ v ¼ þ 1þ u þ v: h12 h12

ð3:34Þ

ð3:35Þ

Then Eqs. (3.23)–(3.25), that is, the system

xuv ¼ h12 x;

ð3:36Þ

xuu  xvv ¼ 2h11 x;

ð3:37Þ

xuu  xvv  2

h11 xu v ¼ 0 h12

ð3:38Þ

780

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

can be changed to

xuv ¼ 0; 0 0 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1  2  2 h h h h11 A 11 11 11 @ Axuu þ @ xv v ¼ h12 x:  1þ þ 1þ h12 h12 h12 h12

ð3:39Þ ð3:40Þ

By solving this system of partial differential equations, we know this surface is also centroaffinely equivalent to (3.31). 2

Case 2. a2 þ b – 0. 2 From Eq. (3.22), we know a2 þ b – 0 implies h11 ¼ h12 ¼ 0. Together with Eq. (3.7), it is direct to see hij ¼ 0, where i; j 2 f1; 2g. Then the structure equations can be rewritten as

xuu ¼ axu  bxv þ 

Dg x ; 2

ð3:41Þ

xuv ¼ bxu  axv ;

ð3:42Þ

Dg x xvv ¼ axu þ bxv þ  ; 2   D x 2  g ¼ ð2a2 þ 2b þ au  bv Þxu þ ðav  bu Þxv ; 2 u   D x 2  g ¼ ðav  bu Þxu þ ð2a2 þ 2b þ bv  au Þxv : 2 v

ð3:43Þ ð3:44Þ ð3:45Þ

Here we assume x is a centroaffine umbilical surface, which implies the shape operator S has only one eigenvalue kðu; v Þ. From Eqs. (3.44) and (3.45), we have

ðSij Þ

¼

ð2a2 þ 2b þ au  bv Þ

2

av þ bu

av þ bu

ð2a2 þ 2b þ bv  au Þ

2

! :

ð3:46Þ

It immediately follows that

8 > < au ¼ bv ; av ¼ bu ; > : 2 2 2a þ 2b ¼ k: Then by



with u and





Dg x 2 uv

au av

¼



Dg x 2



vu

ð3:47Þ we get ku ¼ kv ¼ 0, i.e., k is nonzero constant. Differentiating both sides of the above last equation

v respectively, we have bu bv

  a b

¼ 0:

ð3:48Þ

2

Together with a2 þ b – 0, the first two equations of (3.47) generate

a2u þ a2v ¼ 0: It immediately deduces a and b are constants. Then from Eqs. (3.41) and (3.42), we obtain

ðeauþbv xÞuv ¼ abðeauþbv xÞ;

ð3:49Þ 2

ðeðauþbv Þ xÞuu  ðeðauþbv Þ xÞvv ¼ ða2  b Þðeðauþbv Þ xÞ:

ð3:50Þ

Remark. Obviously, if x is a solution of Eqs. (3.49) and (3.50), so is x þ V, where V is an arbitrary constant vector. In the following, we will give a solution for Eqs. (3.49) and (3.50) get a flat centroaffine umbilical surface with parallel second fundamental form. (1) If ab ¼ 0, then x ¼ eðauþbv Þ ðV 1 ðuÞ þ V 2 ðv ÞÞ, where V 1 ðuÞ; V 2 ðv Þ are 1-variable vector fields with respect to u and v respectively. Without loss of generality, we may assume that a ¼ 0 and x ¼ ebv ðV 1 ðuÞ þ V 2 ðv ÞÞ. Combining of Eqs. (3.41) and (3.43) leads to xuu  xvv ¼ 2bxv , so it follows that

V 1 ðuÞ ¼ e

pffiffi 3bu  bv

3 þ e V 2 ðv Þ ¼ e V

3bv

pffiffi 3bu 

V 2  V 0 ; V 4 þ V 0 ;

V 1 þ e

ð3:51Þ ð3:52Þ

781

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

 i ; i 2 f0; 1; 2; 3; 4g are constant vectors and V 1 ; V 2 ; V 3 ; V 4 are linearly independent. Thus the surface is centroaffwhere V inely equivalent to

ðeuþv ; euv ; e2u ; 1Þ

Tran

ð3:53Þ

:

By a parameter transformation, this surface is equivalent to

 Tran 1 u; v ; ;1 ; uv

ð3:54Þ

which is an example of flat centroaffine umbilical surfaces with parallel second fundamental form. 2  ¼ au þ bv ; v  ¼ au  bv , we can obtain the same surface as Eq. (2) If ab – 0 and a2 ¼ b , by using variable substitution u (3.53). 3.2. Indefinite centroaffine surfaces in R4 Let x : M ! R4 be a centroaffine surface with indefinite centroaffine metric g. By choosing the asymptotic local basis

r ¼ fE1 ; E2 g of TM such that g ¼ 2ex ðdudv Þ ¼ ex du  dv þ ex dv  du; we get g 11 ¼ g 22 ¼ 0; g 12 ¼ g 21 ¼ Eq. (2.12) we get

ex ,

ð3:55Þ 4

and fE1 ðxÞ; E2 ðxÞ; x; Dg xg forms a local moving frame for R along M. Again from

g ij hij ¼ ew ðh12 þ h21 Þ ¼ 0;

ð3:56Þ

that is,

h12 þ h21 ¼ 2h12 ¼ 0:

ð3:57Þ

The structure equations can be rewritten as

xuu ¼ C111 xu þ C211 xv þ h11 x;   Dg x xuv ¼ C112 xu þ C212 xv þ ex ; 2

ð3:58Þ

xvv ¼ C122 xu þ C222 xv þ h22 x;   Dg x ¼ S11 xu  S21 xv þ q1 x; 2 u   Dg x ¼ S12 xu  S22 xv þ q2 x: 2 v

ð3:60Þ

ð3:59Þ

ð3:61Þ ð3:62Þ

By a direct calculation, we can get the coefficients of the Levi–Civita connection of the centroaffine metric g

~ 1 ¼ xu ; C 11 ~ 1 ¼ 0; C 12 ~ 1 ¼ 0; C 22

~ 2 ¼ 0; C 11 2 ~ C12 ¼ 0; ~ 2 ¼ xv : C

ð3:63Þ ð3:64Þ ð3:65Þ

22

According to Eq. (2.12) we have

C111 ¼ xu ;

C112 ¼ C212 ¼ 0;

C222 ¼ xv :

ð3:66Þ 4

Similarly, we get the Pick invariant of indefinite centroaffine surface x in R

J ¼ ex C211 C122 :

ð3:67Þ

Then by the assumption of flatness for x, we can choose the coordinates such that x  0. Thus combing of Eqs. (3.66) and (3.67) gives

C111 ¼ C112 ¼ C212 ¼ C222 ¼ 0:

ð3:68Þ

The assumption rh ¼ 0, together with Eq. (3.57), yields

@h11 ¼ 0; @u @h22 ¼ 0; @v

@h11 ¼ 0; @v

C122 h11 ¼ 0;

@h22 ¼ 0; @u

C211 h22 ¼ 0:

ð3:69Þ ð3:70Þ

782

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

It immediately follows that h11 and h22 are constants. Depending on J ¼ 0 and J – 0, in the following we will divide into two cases. Case 1. C211 C122 ¼ 0. From Eq. (3.67), it is clear that C211 C122 ¼ 0 is equivalent to J ¼ 0. According to the different situations of hij ; i; j 2 f1; 2g, we will have the following classifications. (1)

If h11 h22 – 0, Eq. (3.70) leads to C211 ¼ C122 ¼ 0. According to Eqs. (3.58)–(3.62), we have

xuu ¼ h11 x;

xu v ¼

  Dg x ¼ h11 xv ; 2 u

Dg x ; xvv ¼ h22 x; 2   Dg x ¼ h22 xu : 2 v

ð3:71Þ

ð3:72Þ

Firstly, if h11 > 0 and h22 > 0, by solving the system of partial equation (3.71) we have

pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi pffiffiffiffiffi x ¼ e h11 uþ h22 v V 1 þ e h11 u h22 v V 2 þ e h11 u h22 v V 3 þ e h11 uþ h22 v V 4 ; where V i ; i 2 f1; 2; 3; 4g are four linearly independent constant vectors, and this surface is centroaffinely equivalent to

ðcosh u; sinh u; cosh v ; sinh v Þ

Tran

ð3:73Þ

:

Then if h11 < 0 and h22 < 0, by solving the system of partial equation (3.71) we have

x ¼ cos u cos v V 1 þ cos u sin v V 2 þ sin u cos v V 3 þ sin u sin v V 4 ; where V i ; i 2 f1; 2; 3; 4g are four linearly independent constant vectors, and this surface is centroaffinely equivalent to

ðcos u; sin u; cos v ; sin v Þ

Tran

ð3:74Þ

:

Otherwise, if h11 h22 < 0, by solving the system of partial equation (3.71), the surface is centroaffinely equivalent to

ðcosh u cos v ; cosh u sin v ; sinh u cos v ; sinh u sin v Þ

Tran

:

ð3:75Þ

These three surfaces are surfaces (3), (4) and (5) in Theorem 3.1 respectively. (2) If h11 ¼ h22 ¼ 0 and C211 ¼ C122 ¼ 0, the structure Eqs. (3.58)–(3.61), can be rewritten as

Dg x xuu ¼ xvv ¼ 0; xu v ¼ ; 2     Dg x Dg x ¼ ¼ 0: 2 u 2 v

ð3:76Þ ð3:77Þ

By solving this system of partial differential equations, this surface is centroaffinely equivalent to

ðu; v ; uv ; 1ÞTran ;

ð3:78Þ

which is included in the surface (6) of Theorem 3.1. Obviously, its shape operator S ¼ 0, so this surface is one example of flat centroaffine umbilical surfaces with rh ¼ 0. (3) If h11 ¼ h22 ¼ 0 and one of C211 and C122 is not zero, without loss of generality we can assume C211 – 0. Eqs. (3.58) and (3.62) can be rewritten as

xuu ¼ C211 xv ;

xu v ¼

  Dg x @ C211 ¼ xv ; 2 u @v

Dg x ; 2

xvv ¼ 0;

ð3:79Þ

  Dg x ¼ 0: 2 v

ð3:80Þ @ 2 C2

Then we can get the integrability conditions @ v 211 ¼ 0, which implies C211 ¼ kðuÞv þ lðuÞ, where kðuÞ; lðuÞ are arbitrary 1-variable functions and k2 ðuÞ þ l2 ðuÞ – 0. Therefore, the surface is centroaffinely equivalent to

v V 1 ðuÞ þ V 2 ðuÞ; where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that V 001 ðuÞ ¼ kðuÞV 1 ðuÞ; V 002 ðuÞ ¼ lðuÞV 1 ðuÞ. Surely, this surfaces is also included in the surface (6) of Theorem 3.1. From Eq. (3.80) we know that this surface is also one of flat centroaffine umbilical surfaces. (4) If one of h11 and h22 is not zero, without loss of generality we can assume h22 ¼ 0 and h11 – 0. From Eq. (3.70) we obtain C122 ¼ 0. Eqs. (3.58) and (3.60) can be rewritten as

xuu ¼ C211 xv þ h11 x;

xvv ¼ 0:

ð3:81Þ

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

783

@ 2 C2

Using xuuvv ¼ xvv uu , we also get the integrability conditions @ v 211 ¼ 0, which implies C211 ¼ c1 ðuÞv þ c2 ðuÞ, where c1 ðuÞ; c2 ðuÞ are arbitrary 1-variable functions. Therefore, the surface is centroaffinely equivalent to

v V 1 ðuÞ þ V 2 ðuÞ; where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that

ðV 001 ðuÞ; V 002 ðuÞÞ ¼ ðV 1 ðuÞ; V 2 ðuÞÞ



c1 ðuÞ þ h11

c2 ðuÞ

0

h11

 :

Exactly, this surface is also included in (6) in Theorem 3.1. Case 2. C211 C122 – 0. From Eq. (3.70), it is clear that C211 C122 – 0 implies h11 ¼ h22 ¼ 0. Then the structure equations can be rewritten as

xuu ¼ C211 xv ; Dg x xuv ¼ ; 2 1 xvv ¼ C22 xu ;   Dg x @ C2 ¼ C211 C122 xu þ 11 xv ; 2 u @v   Dg x @ C122 2 ¼ xu þ C11 C122 xv : 2 v @u

ð3:82Þ ð3:83Þ ð3:84Þ ð3:85Þ ð3:86Þ

Here we also assume x is a centroaffine umbilical surface, that is, the shape operator S has only one eigenvalue kðu; v Þ. By a simple calculation, we obtain

C211 C122 ¼ k;

ðC211 Þv ðC122 Þu ¼ 0:

ð3:87Þ

The integrability condition generates

@ 2 C211 @ C122 2 @k ¼ C þ ; @v 2 @u 11 @u @ 2 C122 @ C211 1 @k ¼ C þ : @u2 @ v 22 @ v

ð3:88Þ ð3:89Þ

Especially, if k is nonzero constant, from Eqs. (3.87) and (3.89), we can deduce C211 and C122 are constants. Taking the notation a :¼ C211 ; b :¼ C122 for simplification, we obtain

xuu ¼ axv ;

xvv ¼ bxu :

ð3:90Þ

Due to a; b are constants, we have

xuuv ¼ axvv ¼ abxu ;

xvv u ¼ bxuu ¼ abxv ;

ð3:91Þ

which implies

ðxuv  abxÞu ¼ 0;

ðxv u  abxÞv ¼ 0:

ð3:92Þ

Therefore, we get

xuv  abx ¼ abV 1 ;

ð3:93Þ

where V 1 is arbitrary constant vector. Together with Eq. (3.90), it follows that

ðx  V 1 Þuu ¼ aðx  V 1 Þv ;

ðx  V 1 Þuv ¼ abðx  V 1 Þ;

ðx  V 1 Þvv ¼ bðx  V 1 Þu :

ð3:94Þ

Assume a ¼ b. Obviously,

x ¼ V1 þ e

aðuþv Þ

V2 þ e

2aðuþv Þ

! ! pffiffiffi pffiffiffi 3a 3a 2aðuþv Þ cos  ðu  v Þ V 3 þ e sin  ðu  v Þ V 4 2 2

ð3:95Þ

gives a solution of Eq. (3.94), where V 1 ; V 2 ; V 3 ; V 4 are four linearly independent constant vectors. By parameter transformation and centroaffine transformation, this surface is equivalent to

 Tran 1 1 u2 ; sin v ; cos v ; 1 ; u u which also is an example of flat centroaffine umbilical surfaces with parallel second fundamental form.

ð3:96Þ

784

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

~ ¼0 4. Flat centroaffine surfaces with $h ~ h ¼ 0 implies all hij are constants, where i; j 2 f1; 2g. From the structure equaSince the centroaffine surface x is flat, r ~ h ¼ 0. tions in Section 3 it is not difficult to verify the surfaces (3.1)–(3.4) are also flat centroaffine umbilical surfaces with r For definite centroaffine surfaces with J ¼ 0, we can obtain its structure equations

xuu ¼ h11 x þ 

  Dg x ; 2

ð4:1Þ

xuv ¼ h12 x;

ð4:2Þ

  Dg x xvv ¼ h11 x þ  ; 2   D x  g ¼ h12 xu  h11 xv ; 2 u   D x  g ¼ h22 xu þ h12 xv : 2 v

ð4:3Þ ð4:4Þ ð4:5Þ

Then we get equations

xuv ¼ h12 x;

ð4:6Þ

xuu  xvv ¼ 2h11 x:

ð4:7Þ

According to the calculations in Case 1 of Section 3.1, we know the surface is centroaffinely equivalent to Tran

ðcosh u; sinh u; cos v ; sin v Þ

ð4:8Þ

or

ðu2 þ v 2 ; u; v ; 1Þ

Tran

ð4:9Þ

:

For indefinite centroaffine surfaces with J ¼ 0, we get its structure equations

xuu ¼ C211 xv þ h11 x; xuv ¼

ð4:10Þ

Dg x ; 2

ð4:11Þ

xvv ¼ C122 xu þ h22 x; !   Dg x @ C211 ¼ þ h11 xv þ h22 C211 x; 2 u @v !   Dg x @ C122 ¼ þ h22 xu þ h11 C122 x; 2 u @u

ð4:12Þ ð4:13Þ

ð4:14Þ

where C122 C211 ¼ 0. Without loss of generality, we may assume that C122 ¼ 0. The integrability condition gives @ 2 C211 @v 2

@ C2

¼ 0; @v11 h22 ¼ 0. If h22 ¼ 0, the surface is centroaffinely equivalent to

v V 1 ðuÞ þ V 2 ðuÞ; where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that

 kðuÞ ðV 001 ðuÞ; V 002 ðuÞÞ ¼ ðV 1 ðuÞ; V 2 ðuÞÞ 0

lðuÞ c

 ; @ C2

7kðuÞ; lðuÞ are arbitrary 1-variable functions, and c is constant. If h22 – 0, then @v11 ¼ 0 and we may assume C211 ¼ f ðuÞ, where f ðuÞ is an arbitrary 1-variable function. Then if h22 > 0, the surface is centroaffinely equivalent to

pffiffiffiffiffiffiffi pffiffiffiffiffiffiffi sinhð h22 v ÞV 1 ðuÞ þ coshð h22 v ÞV 2 ðuÞ; where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that V 001 ðuÞ ¼ ðh11 þ pffiffiffiffiffiffiffi V 002 ðuÞ ¼ ðh11  h22 f ðuÞÞV 2 ðuÞ. Otherwise, if h22 < 0, the surface is centroaffinely equivalent to

sin

pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffi h22 v V 1 ðuÞ þ cos h22 v V 2 ðuÞ;

pffiffiffiffiffiffiffi h22 f ðuÞÞV 1 ðuÞ and

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

785

where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that

ðV 001 ðuÞ; V 002 ðuÞÞ ¼ ðV 1 ðuÞ; V 2 ðuÞÞ

! pffiffiffiffiffiffiffiffiffiffiffi h22 f ðuÞ

h11 pffiffiffiffiffiffiffiffiffiffiffi  h22 f ðuÞ

h11

:

Therefore, we obtain the following theorem. ~ h ¼ 0, then x is centroaffinely equivalent to one of the Theorem 4.1. Let x : M ! R4 be a flat centroaffine surface with J ¼ 0 and r following surfaces in R4 : Tran

1. x ¼ ðu2 þ v 2 ; u; v ; 1Þ ; Tran 2. ðcosh u; sinh u; cos v ; sin v Þ ; 3. x ¼ v V 1 ðuÞ þ V 2 ðuÞ, where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying   kðuÞ lðuÞ ; kðuÞ and lðuÞ are arbitrary 1-variable function, and c is constant; ðV 001 ðuÞ; V 002 ðuÞÞ ¼ ðV 1 ðuÞ; V 2 ðuÞÞ 0 c

that

4. x ¼ sinh v V 1 ðuÞ þ cosh v V 2 ðuÞ, where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying that V 001 ðuÞ ¼ ðc þ kðuÞÞV 1 ðuÞ and V 002 ðuÞ ¼ ðc  kðuÞÞV 2 ðuÞ; kðuÞ is an arbitrary 1-variable functions, and c is constant; 5. sin v V 1 ðuÞ þ cos v V 2 ðuÞ, ðV 001 ðuÞ; V 002 ðuÞÞ

where V 1 ðuÞ; V 2 ðuÞ are linearly independent 1-variable vector fields satisfying   c kðuÞ ; kðuÞ is an arbitrary 1-variable function, and c is nonzero constant. ¼ ðV 1 ðuÞ; V 2 ðuÞÞ kðuÞ c

that

Remark. From the centroaffine theorema egregium (2.14), we know flat centroaffine surfaces with vanishing Pick invariant are centroaffine minimal, so the surfaces included in Theorem 4.1 are centroaffine minimal. On the other hand, it is easy to find that all surfaces of Theorem 3.1 are some examples of Theorem 4.1. 5. The examples in Sections 3 and 4 In this section we will calculate the basic invariants for the surfaces appearing in Sections 3 and 4, and give their structure equations. Tran

1. For the surface x ¼ ðu2 þ v 2 ; u; v ; 1Þ

g 11 ¼ g 22

pffiffiffi ¼  2;

, it follows from Eq. (2.2) that

g 12 ¼ g 21 ¼ 0:

ð5:1Þ

By a straightforward computation we get

pffiffiffi Tran Dg x ¼ ð 2; 0; 0; 0Þ : 2

ð5:2Þ

Thus, the structure equations can be written as

pffiffiffiDg x ; xuu ¼ xvv ¼  2 2

ð5:3Þ

xuv ¼ 0;     Dg x Dg x ¼ ¼ 0: 2 u 2 v 2. For the surface x ¼ ðcosh u; sinh u; cos v ; sin v Þ

g 11 ¼ g 22 ¼ 1;

ð5:4Þ ð5:5Þ Tran

, from Eq. (2.2) we can get the centroaffine metric

g 12 ¼ g 21 ¼ 0:

ð5:6Þ

Then we can obtain the second transversal vector field

Dg x 1 Tran ¼ ðcosh u; sinh u;  cos v ;  sin v Þ : 2 2

ð5:7Þ

Therefore, the structure equations are given by

1 Dg x 1 Dg x xuu ¼ x þ ; xuv ¼ 0; xvv ¼  x þ ; 2 2 2 2     Dg x 1 Dg x 1 ¼ xu ; ¼  xv : 2 u 2 2 v 2

ð5:8Þ ð5:9Þ Tran

3. For the surface x ¼ ðcosh u; sinh u; cosh v ; sinh v Þ

g 11 ¼ 1;

g 22 ¼ 1;

g 12 ¼ g 21 ¼ 0:

, from Eq. (2.2) we also get its centroaffine metric

ð5:10Þ

786

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

A direct computation gives

Dg x 1 Tran ¼ ðcosh u; sinh u;  cosh v ;  sinh v Þ : 2 2

ð5:11Þ

Then, we have

1 Dg x 1 Dg x xuu ¼ x þ ; xuv ¼ 0; xvv ¼ x  ; 2 2 2 2     Dg x 1 Dg x 1 ¼ xu ; ¼  xv : 2 u 2 2 v 2 4. For the surface x ¼ ðcos u; sin u; cos v ; sin v Þ

g 11 ¼ 1;

g 22 ¼ 1;

ð5:12Þ ð5:13Þ

Tran

, again from Eq. (2.2) it follows that

g 12 ¼ g 21 ¼ 0:

ð5:14Þ

By a straightforward computation we have

Dg x 1 Tran ¼ ðcos u; sin u;  cos v ;  sin v Þ : 2 2

ð5:15Þ

Then, the structure equations can be written as

1 Dg x 1 Dg x xuu ¼  x  ; xuv ¼ 0; xvv ¼  x þ ; 2 2 2 2     Dg x 1 Dg x 1 ¼ xu ; ¼  xv : 2 u 2 2 v 2 5. For the surface x ¼ ðcosh u cos v ; cosh u sin v ; sinh u cos v ; cosh u sin v Þ

g 11 ¼ g 22 ¼ 0;

g 12 ¼ g 21 ¼ 1:

ð5:16Þ ð5:17Þ Tran

, it is easy to verify from Eq. (2.2) that

ð5:18Þ

A straightforward computation yields

Dg x Tran ¼ ðsinh u sin v ;  sinh u cos v ; cosh u sin v ;  cosh u cos v Þ : 2

ð5:19Þ

Thus, the structure equations can be represented as

  Dg x ; xvv ¼ x; xuu ¼ x; xuv ¼  2     Dg x Dg x ¼ xv ; ¼ xu : 2 u 2 v

ð5:20Þ ð5:21Þ

6. For the surface x ¼ ðu; v ; uv ; 1ÞTran , Similar, from Eq. (2.2) we get

g 11 ¼ g 22 ¼ 0;

g 12 ¼ g 21 ¼ 1:

ð5:22Þ

Then we also get

Dg x ¼ ð0; 0; 1; 0ÞTran : 2

ð5:23Þ

So the structure equations can be give by

  Dg x ; xuu ¼ 0; xuv ¼  2     Dg x Dg x ¼ ¼ 0: 2 u 2 v 7. By taking kðuÞ  1; alent to

xvv ¼ 0;

ð5:24Þ ð5:25Þ

lðuÞ  1; c ¼ 1 in the last item of Theorem 3.1, we can get a surface which is centroaffinely equivTran

x ¼ v ð0; 2eu ; 0; 2eu Þ

Tran

þ ðeu ; ueu ; eu ; ueu Þ

:

ð5:26Þ

Again, we obtain the centroaffine metric of x from Eq. (2.2)

g 11 ¼ g 22 ¼ 0;

g 12 ¼ g 21 ¼ 4:

ð5:27Þ

A straightforward computation shows

Dg x 1 Tran ¼ ð0; eu ; 0; eu Þ : 2 2

ð5:28Þ

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

787

It is easy to deduce the structure equations of x, that is,

xuu ¼ xv þ x;   Dg x ; xuv ¼ 4 2

ð5:29Þ

xvv ¼ 0;   Dg x 1 ¼ xv ; 2 u 4   Dg x ¼ 0: 2 v

ð5:31Þ

ð5:30Þ

ð5:32Þ ð5:33Þ

 Tran Tran 8. The surface x ¼ u; v ; u1v ; 1 is centroaffinely equivalent to x ¼ ðeuþv ; euv ; e2u ; 1Þ . From Eq. (2.2) we obtain its centroaffine metric

6

g 11 ¼

3

1 4

g 22 ¼

2 1

34

;

g 12 ¼ g 21 ¼ 0:

ð5:34Þ

The second transversal vector field

Tran 3 Dg x ¼ 34 euþv ; euv ; e2u ; 0 : 2

ð5:35Þ

Then the structure equations of x are

xuu ¼ xu þ g 11

Dg x ; 2

ð5:36Þ

xuv ¼ xv ; 1 Dg x ; xvv ¼ xu þ g 22 3 2   3 Dg x ¼ 34 xu ; 2 u   3 Dg x ¼ 3  4 xv : 2 v

ð5:37Þ ð5:38Þ ð5:39Þ ð5:40Þ

 Tran 9. The surface x ¼ u2 ; cosu v ; sinu v ; 1 is centroaffinely equivalent to uþv



e

uþ2 v

;e

! ! !Tran pffiffiffi pffiffiffi 3 3 uþ2 v cos  ðu  v Þ ; e sin  ðu  v Þ ; 1 : 2 2

From Eq. (2.2), it is direct to get

g 11 ¼ g 22 ¼ 0;

g 12 ¼ g 21 ¼

 14 pffiffiffi 27 3 3 : 4 2

ð5:41Þ

A straightforward computation shows

 14 pffiffiffi 27 3 3 Dg x ¼ x  ð0; 0; 0; 1ÞTran : 4 2 2

ð5:42Þ

So the structure equations of x are

xuu ¼ xv ;

ð5:43Þ

xuv ¼ x  ð0; 0; 0; 1ÞTran ;

ð5:44Þ

xvv ¼ xu ;  14 pffiffiffi   27 3 3 Dg x ¼ xu ; 4 2 u 2  14 pffiffiffi   27 3 3 Dg x ¼ xv : 4 2 v 2

ð5:45Þ ð5:46Þ ð5:47Þ

10. For centroaffine umbilical surface x ¼ v V 1 ðuÞ þ V 2 ðuÞ, where V 001 ðuÞ ¼ kðuÞV 1 ðuÞ; V 002 ðuÞ ¼ lðuÞV 1 ðuÞ, and kðuÞ; arbitrary 1-variable functions, if we choose k ¼ 1; l ¼ sin u, the surface is centroaffinely equivalent to

 x¼

v eu 

eu cos u eu cos u ; v eu  ; u; 1 2 2

Tran :

lðuÞ are

788

Y. Yang et al. / Applied Mathematics and Computation 243 (2014) 775–788

Then we obtain

g 11 ¼ g 22 ¼ 0;

3

g 12 ¼ g 21 ¼ 24

ð5:48Þ

and

  3 Dg x ; xuu ¼ ðv þ sin uÞxv ; xuv ¼ 24 2     3 3 Dg x Dg x ¼ xv ; 24 ¼ 0: 24 2 u 2 v

xvv ¼ 0;

ð5:49Þ ð5:50Þ

Acknowledgments The first author would express his gratitude to professor Lihe Wang for his hospitality and helpful discussions during the first author’s visits to Shanghai Jiao Tong University and University of Iowa. The authors would like to thank the referees for their comments which have improved the paper presentation. This work was supported by the Fundamental Research Funds for the Central Universities (No. N130405006) and NSFC (Nos. 11201056 and 11371080), and the first author was financial supported by the China Scholarship Council. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer, Berlin, 1923. H. Furuhata, Minimal centroaffine immersions of codimension two, Bull. Belg. Math. Soc. 7 (2000) 125–134. A.M. Li, U. Simon, G. Zhao, Global Affine Differential Geometry of Hypersurfaces, W. De Gruyter, Berlin-New York, 1993. H.L. Liu, Classification of surfaces in R3 which are centroaffine-minimal and equiaffine-minimal, Bull. Belg. Math. Soc. 3 (1996) 577–583. H.L. Liu, Indefinite equi-centroaffinely homogeneous surfaces with vanishing Pick invariant in R4 , Hokkaido Math. J. 26 (1997) 225–251. H.L. Liu, Equi-centroaffinely homogeneous surfaces with vanishing Pick invariant in R4 , Proceeding of 1-st Non-Orthodox School on Nonlinearity & Geometry, 1998, pp. 335–340. Huili Liu, Seoung Dal Jung, Hypersurfaces which are equiaffine extremal and centroaffine extremal, Bull. Braz. Math. Soc. New Ser. 38 (4) (2007) 555– 571. K. Nomizu, T. Sasaki, Centroaffine immsersions of codimension two and projective hypersuface theory, Nagoya Math. J. 132 (1993) 63–90. K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge University Press, 1994. R. Walter, Centroaffine differential geometry: submanifolds of codimension 2, Result Math. 13 (1988) 386–402. C.P. Wang, Centroaffine minimal hypersurfaces in Rnþ1 , Geom. Dedicata 51 (1994) 63–74. Y. Yang, H.L. Liu, Minimal centroaffine immersions of codimension two, Result Math. 52 (2008) 423–437. Y. Yang, Y.H. Yu, H.L. Liu, Centroaffine translation surfaces in R3 , Result Math. 56 (2009) 197–210. Y. Yang, Y.H. Yu, H.L. Liu, Linear Weingarten centroaffine translation surfaces in R3 , J. Math. Anal. Appl. 375 (2011) 458–466. Y. Yang, Y.H. Yu, H.L. Liu, Flat centroaffine surfaces with the degenerate second fundamental form and vanishing Pick invariant in R4 , J. Math. Anal. Appl. 397 (2013) 161–171. Y.H. Yu, Y. Yang, H.L. Liu, Centroaffine ruled surfaces in R3 , J. Math. Anal. Appl. 365 (2010) 683–693.