IHORG.
NUCL.
CHEM.
LETTERS
Vol.
4,
pp.
9-14,
1968.
Petsmmon Press.
Printed
in
Great
Bdtaln.
FORMATION OF ALUMINUM COMPLE~ES IN THE REDUCTION OF POLYFLUORINATED OLd'INS WITH LITHIUM ALUMINUM HYDRIDE Donald J. B u r t o n and Francis J. M e t a l l i c * D e p a r t m e n t oF Chemistry, U n i v e r s i t y oF Iowa Iowa City, Iowa U.S.A. 52240 (Received 2 October 1967)
A l t h o u g h the r e c e n t l t t e r a t ~ e o f compounds L n w h i c h an a l i c y c l t c
has c o n t a i n e d :m- 7 o x u ~ l e s fluoroolo£inwas
metal o r n o n - m e t a l such as a r s e n i c ( 1 ) ,
bo~ted
mmSsnese ( 2 ) ,
to a
phosphorus
(3), silicon (4), and germanium (4), very little is known about similar
compounds c o n t a i n i n g c a r b o n - a l u m i n u m b o n d s .
Hauptschten
( 5 ) has r e p o r t e d t h e F o r m a t i o n o f aluminum complexes c o n t a i n i n g a p e r F l u o r o a l k y l g r o u p , and D t c k s o n ( 6 ) and Chambers ( 7 ) have both recently reported stable pentafluorophenyl ~oups.
aluminum complexes c o n t a i n l n K
The o n l y aluminum complex i n w h t c h t h e
aluminum atom was bonded t o a f l u o r o o l e f i n B a r t o c h a and Bilbo ( 8 ) , who i s o l a t e d
group was r e p o r t e d by
a perfluorovinyl
aluminum
compound as a t r i m e t h y l a m i n e complex. As p a r t o f a c o m p r e h e n s i v e s t u d y oF t h e r e a c t i o n s
of poly-
Fluorinated olefins vlth complex metal hydrides, we have investigated t h e r e a c t i o n
o f i o d i n e - c o n t a i n i n g F l u o r o o l e F l n s ( s u c h as
I - IV) w i t h lithium aluminum hydride.
Compounds I and II were
e x p e c t e d t o g i v e p r e d o m i n a n t l y d i s p l a c e m e n t o f ckLloride ( p r o d u c t s V and VI) as p r e d i c t e d by ParkSs c a r b a n t o n s t a b t l i s a t t o n (9).
hypothesis
However, the only products isolated, a~ter hydrolysis, wore
* N a t t o a ~ l Tdzstitutos o f H e L l t h P r e d o c t o r a l F o l l o w , 9
1966-1968.
10
FORMATION OF ALUMINUM COMPLEXES
~
F -,.
- ~ C-X
gel. 4, No. 1
V,:-2
C-H
II
VI, mm 3
1 . LLAIH~/Et20
2. ~ o / ~ ÷ C-I
VII, m n 2
;(~z).
I, m ~" R, ]( " C1 II, m "
II
VIII, n " 3
3, X " C l
~l, m m m 2
C-I
r
l
Ii
i
X, m"
II,
IVp m 8 3
III,
3
"-2
m . )
VII and V I I I ~ o s p e e t l v o l y o j t h e p ~ o d u o t s o f lod, tdo d~Jplaeomon~. Compounds I I I
and IV vo~o ezpeote4 t o g2ve m L ~ l 7 t h e p~oduots
p~oduoo4 by an n l l y l L o ~oaz~anKemont ~ o a o t i o n ( I I and X ) . sLgn2~Loant &roomers o f X I ~
X I I vo~o 2molatod ~ t o ~
Those ~ e s u l t s suKKosbod t h a t t h o s e Poao~Lon8 v l t h olofins
Hovovo~,
b~ol~rsLmo
lodJJlO-OOntaSJt~J~
( 1 0 ) v e t o p~ooooding v.L.a a n o t h o ~ p a t b ~ s 7 o t h o ~ t h a n s i n p l e
n u e l o o p h l l i o d i s p l s o o m o n t and p~omptod a mo~e d e t a i l e d those ~eaotioluo fluo~o-olefin
study of
T h i s Popo~t p ~ o s e n t s evidolaoe t h a t po~t o f ~ho
f e r n s an aluminum oomplox oontaLnLnK t h e alun~aum
Vol. 4, No. 1
FORMATION OF ALUMINUM COMPLEXES
atom bonded t o t h e o l e f i n i c of this
complex y i e l d s
carbon atom.
11
Subsequent hydrolysis
the hydrogen-cemtaining olefins
(VII, Fill,
XI, and XII). Compomad I is a r e p r e s e n t a t i v e tions.
example o f t h e s e i n v e s t i g a -
To a s o l u t i o n c o n t a i n i n g 7 . 1 5 g ( I )
( 0 . 0 2 5 m o l e s ) and
2.815 g ( 0 . 0 2 5 m o l e s ) o f c h l o r o b e n s e n e ( i n t e r n a l
GLPC s t a n d a r d )
in 25 ml of d~y other was slowly (1.25 hr.) added 12.6 ,,1 (0.0125 mole ) o f a 0.996 M l i t h i u m aluminum h y d r i d e s o l u t i o n , t e m p e r a t u r e below 5eC.
keeping the
Hydrogen was e v o l v e d a t a s t e a d y , c o n t i n -
uous r a t e d u r i n g t h e a d d i t i o n o f t h e LiA1H4 s o l u t i o n and a t o t a l of 0.0143 mole of hydrogen (corrected to STP) was evolved. complete addition of the hydride solution, was s t i r r e d
the reaction
After
mixture
a t i c e b a t h t e m p e r a t u r e f o r one h o u r and t h e n a n a l y z e d
by GLPC (lO ft., 10%, fluorosilicon).
GLPC analysis indicated
the presence of 0.0091 mole of (VII) and 0.0031 mole of unreacted (I).
The r e a c t i o n m i x t u r e was t h e n h y d r o l y z e d by t h e a d d i t i o n
o f 1 ml o f d e u t e r i u m o x i d e .
A total
o f 0.0104 mole o f a d d i t i o n a l
h y d r o g e n (corrected t o STP) was evolved.
GLPC analysis, after
hydrolysis, indicated 0.0203 mole of (VII) and 0.0034 mole of unreacted (I).
The reaction mixture was poured into i00 ml of
ice-water, and the aqueous layer separated.
The aqueous layer
was acidified with nitric acid, and the halide ion precipitated with silver nlt~ate. silver iodide
wu
After filtration and drying 0.0201 mole of
obtained.
Most of the ether of the organic layer was removed by distillation and t h e p r o d u c t ( V I I )
wu
analysis of the product olefin
isolated indicated
by p r e p a r a t i v e it
(11).
NF~R
t o be a m i x t u r e composed
of 61% 1 - d o u t e r e c - 2 - c h l o r o t e t r a f l u o r o c y c l o b u t e n s 2-chlorotetrafluorocyclobutene
GLPC.
and 39% 1 - h y d r o -
The i n f r a r e d s p e c t r u m showed
t h e p r e s e n c e o f b o t h compounds w i t h two d i s t i n c t o l e f i n a
absorptions
12
FORMATION OF ALUMINUM COMPLEXES
( -OH n 0 0 1 - a t 1 5 9 0 cm" 1 and -OD - 0 0 1 - a~ l S ~ Thoao ~ o s u l t 8
oan bo ~ a ~ I o n a l l s o d
p~opoaod by Kauptaohlon (5).
Yol. 4, No. 1
on'l).
b y a schomo s l m t l s ~
to that
The o l 0 £ 1 n (A) ~ o a c ~ a w l ~ h ~ho
h ~ d ~ i d o ~o p a ~ d u o o ono n o l o o f hyd~oKom ( 1 2 ) and ~ho t n t o ~ n o d l a t o ( B ) , w h i c h ~hon ~ o a o t l
w i t h t i o o o n d mole o f ( k ) t o p~oduoo a
n o l o o f t h o P o d u o o d olo~SJa (D) and l n ~ o z ~ o d i t ~ o
(¢1~
II
(C)0
Tho 5 J ~ t o e N d i & t o
IJ AI H,I/Ef,aO.
A
B
A+
÷
co
C
D
+3D o
e
(O) I s a ~ a b l o and a o l u b l o rotctton
oondltlon8
o f (D) y t o l d s
until
b~olysls
d o e s no~ r o t o r
Fu~thor.
( 1 3 ) and undo~ t h e n Subsoquent b~drolysls
tho socond nolo e£ tho roducod oloFln
(eltho~
D o~
E ~F H20 o r D20 i s u s o d f o r h y d r o l y s i s ) . 8tnd18~ rosul~a po~tlnont
data for
t h e e a s e oF I I I
woeo o b t a t J a o d w l ~ h I I ,
llI,
and IV and t h o
t h o s e ~ o a c t l o n m i s aumma~isod i n T a b l o 10
and IV a s m a l l amount o£ ~ko ~ o a ~ a n K o d
In
products
Yol. 4, No. i
FORMATION OF ALUMINUM COMPLEXES
13
TABLE I
Sta]eting Hate~lals
(mmolos)
n X (,c=i
A(He-
II
P = o d u c t s (nnoles)
~~CX
SeVere k ~ , "
cr
cz
U~d. Nvd. 2
cl
25
12.5
9.Z
20.3
3.k
3
cl
25
12.5
I0.I
23.2
0.8
2
e
25
~.5
7.8
33.2
5.5
6.2
3
K
25
12.5
~.i
0.9
8.9
8.7
(IX and X) a~o a l s o p r o d u c e d , b u t t h e prodonLn~mt p r o d u c t aS&4n is the iodide displacement product. Stmce t h e f l ~ s t
mole o f ~oducod o l o £ 4 n e n d / o r roa~ranKod
o l e f t n can be s u l l y
reactions
removed by v a c u u m d l s t l ] l a t l o n ,
those
p ~ o v l d e a c o n v e n i e n t method f o r sez .+stink aluminum
complexes of a l l c y ¢ l t c
fluo~o o l e f l n s .
Furt~
-
ozJuttnAtlon
of
t h o s e c o m p l e x e s I s nov i n p r o s ~ e s s and w111 b~ ~Qported i n f u t u r e publlcatlens. ioknovlodsnomt Tb2s work w u
supported In pa~t bTth.
o f H e a l t h ((]~ 1 1 8 0 9 ) . from the National
Itt£oatZ
laJtitutee
FJX aZso aoknowlodSos f o Z l o w s k i p s u p p o r t
Iast2tutes
o f Ho*3th ( 5 - F 1 - 6 N - ~ ) .
75k).
References .
W. P. CULTlew, P. 8 . DHALZWAL, nnd G. E. 8'L'YAll, .T. 0z'gmmom e t a l Chem., 6= , 3611 ( 1 9 6 6 ) .
14
E.
FORMATION 0P ALUMINUM COMPLEXES
V . I . 4, No. 1
P.W. JOLLY, M. I. BRUCE, and F. G. &. STONE, J. Chem. SOCo,
583o (1965). 3-
W. R. C ~ .
D. S. DAWSON, and P. S. DHALIWAL, Can. J.
Chem., 145 , 683 (1967). m
~.
We R. CUT.T.I~ sad Go E. STY.AN, J. Organomtetal Chem., ~ , 633 (1966).
5.
M. HAUPTSCHI~, A. J. SAGGIOMO, and Co STOKES, J. Am, Chem. S,c., 78 , 680 (1956).
6.
R. 8. DICKSON, Chem. Comm., _~ , 68 (1965).
70
R . D . CHAMBERS and J. CUNNIIiGHAM, Tetrohodron Letters, 2389 (1965).
8.
B. B&RTOCIL& and A. J . BILBO, J . Am. Chem. S . c . , 8~ , 2202 ( 1961 ). i
9.
J.D. PARK. J. Ro LKCHER and J. R. DICK, J. Org. Chem., 31 , 1116 (1966~. '
10.
S i m i l a r o l e f i n s c o n t a i n i n g v i n y l i o f l u o r i n e , c h l o r f ~ e , and b~omine u n d e r g o r e a c t i o n as e x p e c t e d . Only v i n y l i c i o d i n e c o n t a i n i n E o l o f i n n behave d i f f e r e n t l y .
11.
NMR a n a l y s i s w u c a r r i e d o u t by i n t e s t a t e s the vinylic proton r e g i o n v__ls, an i n t e r n a l s t a n d a r d (CHsCN). The d i f f e r e n c e botveen-4~e ealoulated inte~ation u s u m i n E lO0~ o f VII and t h e o b s e r v e d 4nteW~ation w u t&kon a8 a measure o f t h e amount o f d o u t o r & t o d p r o d u c t . C o n t r o l e x p e r i m e n t s h&vo domonatr&tod the validity of this technique.
12o
T h i s e q u a t i o n i8 n o t meant t o intply t h a t (B) and moloculsz, b~droKen a r e f o r m e d d £ r o o t l y . N e a t l i k e l y , HI and a complex oonta4n~ a -&IH ~ o u p a r e f o r m e d fJJ~st and t h e HI sukoquently reaot~ with this kitial complex t o f o r m (B)
and K2.
13.
A l t h o u g h (C) i s s t a b l e 4 , s o l u b l e , an a t t e m p t t o i s o l a t e t h i s m a t e r i a l i n t h e s o l i d s t a t e r e s u l t e d i n an e x p l o s i o n and c a u t i o n s h o u l d be o b s e r v e d i n h a n d l i n g t h e s e m t o r i a l s .