Formation of aluminum complexes in the reduction of polyfluorinated olefins with lithium aluminum hydride

Formation of aluminum complexes in the reduction of polyfluorinated olefins with lithium aluminum hydride

IHORG. NUCL. CHEM. LETTERS Vol. 4, pp. 9-14, 1968. Petsmmon Press. Printed in Great Bdtaln. FORMATION OF ALUMINUM COMPLE~ES IN THE REDUC...

226KB Sizes 0 Downloads 109 Views

IHORG.

NUCL.

CHEM.

LETTERS

Vol.

4,

pp.

9-14,

1968.

Petsmmon Press.

Printed

in

Great

Bdtaln.

FORMATION OF ALUMINUM COMPLE~ES IN THE REDUCTION OF POLYFLUORINATED OLd'INS WITH LITHIUM ALUMINUM HYDRIDE Donald J. B u r t o n and Francis J. M e t a l l i c * D e p a r t m e n t oF Chemistry, U n i v e r s i t y oF Iowa Iowa City, Iowa U.S.A. 52240 (Received 2 October 1967)

A l t h o u g h the r e c e n t l t t e r a t ~ e o f compounds L n w h i c h an a l i c y c l t c

has c o n t a i n e d :m- 7 o x u ~ l e s fluoroolo£inwas

metal o r n o n - m e t a l such as a r s e n i c ( 1 ) ,

bo~ted

mmSsnese ( 2 ) ,

to a

phosphorus

(3), silicon (4), and germanium (4), very little is known about similar

compounds c o n t a i n i n g c a r b o n - a l u m i n u m b o n d s .

Hauptschten

( 5 ) has r e p o r t e d t h e F o r m a t i o n o f aluminum complexes c o n t a i n i n g a p e r F l u o r o a l k y l g r o u p , and D t c k s o n ( 6 ) and Chambers ( 7 ) have both recently reported stable pentafluorophenyl ~oups.

aluminum complexes c o n t a i n l n K

The o n l y aluminum complex i n w h t c h t h e

aluminum atom was bonded t o a f l u o r o o l e f i n B a r t o c h a and Bilbo ( 8 ) , who i s o l a t e d

group was r e p o r t e d by

a perfluorovinyl

aluminum

compound as a t r i m e t h y l a m i n e complex. As p a r t o f a c o m p r e h e n s i v e s t u d y oF t h e r e a c t i o n s

of poly-

Fluorinated olefins vlth complex metal hydrides, we have investigated t h e r e a c t i o n

o f i o d i n e - c o n t a i n i n g F l u o r o o l e F l n s ( s u c h as

I - IV) w i t h lithium aluminum hydride.

Compounds I and II were

e x p e c t e d t o g i v e p r e d o m i n a n t l y d i s p l a c e m e n t o f ckLloride ( p r o d u c t s V and VI) as p r e d i c t e d by ParkSs c a r b a n t o n s t a b t l i s a t t o n (9).

hypothesis

However, the only products isolated, a~ter hydrolysis, wore

* N a t t o a ~ l Tdzstitutos o f H e L l t h P r e d o c t o r a l F o l l o w , 9

1966-1968.

10

FORMATION OF ALUMINUM COMPLEXES

~

F -,.

- ~ C-X

gel. 4, No. 1

V,:-2

C-H

II

VI, mm 3

1 . LLAIH~/Et20

2. ~ o / ~ ÷ C-I

VII, m n 2

;(~z).

I, m ~" R, ]( " C1 II, m "

II

VIII, n " 3

3, X " C l

~l, m m m 2

C-I

r

l

Ii

i

X, m"

II,

IVp m 8 3

III,

3

"-2

m . )

VII and V I I I ~ o s p e e t l v o l y o j t h e p ~ o d u o t s o f lod, tdo d~Jplaeomon~. Compounds I I I

and IV vo~o ezpeote4 t o g2ve m L ~ l 7 t h e p~oduots

p~oduoo4 by an n l l y l L o ~oaz~anKemont ~ o a o t i o n ( I I and X ) . sLgn2~Loant &roomers o f X I ~

X I I vo~o 2molatod ~ t o ~

Those ~ e s u l t s suKKosbod t h a t t h o s e Poao~Lon8 v l t h olofins

Hovovo~,

b~ol~rsLmo

lodJJlO-OOntaSJt~J~

( 1 0 ) v e t o p~ooooding v.L.a a n o t h o ~ p a t b ~ s 7 o t h o ~ t h a n s i n p l e

n u e l o o p h l l i o d i s p l s o o m o n t and p~omptod a mo~e d e t a i l e d those ~eaotioluo fluo~o-olefin

study of

T h i s Popo~t p ~ o s e n t s evidolaoe t h a t po~t o f ~ho

f e r n s an aluminum oomplox oontaLnLnK t h e alun~aum

Vol. 4, No. 1

FORMATION OF ALUMINUM COMPLEXES

atom bonded t o t h e o l e f i n i c of this

complex y i e l d s

carbon atom.

11

Subsequent hydrolysis

the hydrogen-cemtaining olefins

(VII, Fill,

XI, and XII). Compomad I is a r e p r e s e n t a t i v e tions.

example o f t h e s e i n v e s t i g a -

To a s o l u t i o n c o n t a i n i n g 7 . 1 5 g ( I )

( 0 . 0 2 5 m o l e s ) and

2.815 g ( 0 . 0 2 5 m o l e s ) o f c h l o r o b e n s e n e ( i n t e r n a l

GLPC s t a n d a r d )

in 25 ml of d~y other was slowly (1.25 hr.) added 12.6 ,,1 (0.0125 mole ) o f a 0.996 M l i t h i u m aluminum h y d r i d e s o l u t i o n , t e m p e r a t u r e below 5eC.

keeping the

Hydrogen was e v o l v e d a t a s t e a d y , c o n t i n -

uous r a t e d u r i n g t h e a d d i t i o n o f t h e LiA1H4 s o l u t i o n and a t o t a l of 0.0143 mole of hydrogen (corrected to STP) was evolved. complete addition of the hydride solution, was s t i r r e d

the reaction

After

mixture

a t i c e b a t h t e m p e r a t u r e f o r one h o u r and t h e n a n a l y z e d

by GLPC (lO ft., 10%, fluorosilicon).

GLPC analysis indicated

the presence of 0.0091 mole of (VII) and 0.0031 mole of unreacted (I).

The r e a c t i o n m i x t u r e was t h e n h y d r o l y z e d by t h e a d d i t i o n

o f 1 ml o f d e u t e r i u m o x i d e .

A total

o f 0.0104 mole o f a d d i t i o n a l

h y d r o g e n (corrected t o STP) was evolved.

GLPC analysis, after

hydrolysis, indicated 0.0203 mole of (VII) and 0.0034 mole of unreacted (I).

The reaction mixture was poured into i00 ml of

ice-water, and the aqueous layer separated.

The aqueous layer

was acidified with nitric acid, and the halide ion precipitated with silver nlt~ate. silver iodide

wu

After filtration and drying 0.0201 mole of

obtained.

Most of the ether of the organic layer was removed by distillation and t h e p r o d u c t ( V I I )

wu

analysis of the product olefin

isolated indicated

by p r e p a r a t i v e it

(11).

NF~R

t o be a m i x t u r e composed

of 61% 1 - d o u t e r e c - 2 - c h l o r o t e t r a f l u o r o c y c l o b u t e n s 2-chlorotetrafluorocyclobutene

GLPC.

and 39% 1 - h y d r o -

The i n f r a r e d s p e c t r u m showed

t h e p r e s e n c e o f b o t h compounds w i t h two d i s t i n c t o l e f i n a

absorptions

12

FORMATION OF ALUMINUM COMPLEXES

( -OH n 0 0 1 - a t 1 5 9 0 cm" 1 and -OD - 0 0 1 - a~ l S ~ Thoao ~ o s u l t 8

oan bo ~ a ~ I o n a l l s o d

p~opoaod by Kauptaohlon (5).

Yol. 4, No. 1

on'l).

b y a schomo s l m t l s ~

to that

The o l 0 £ 1 n (A) ~ o a c ~ a w l ~ h ~ho

h ~ d ~ i d o ~o p a ~ d u o o ono n o l o o f hyd~oKom ( 1 2 ) and ~ho t n t o ~ n o d l a t o ( B ) , w h i c h ~hon ~ o a o t l

w i t h t i o o o n d mole o f ( k ) t o p~oduoo a

n o l o o f t h o P o d u o o d olo~SJa (D) and l n ~ o z ~ o d i t ~ o

(¢1~

II

(C)0

Tho 5 J ~ t o e N d i & t o

IJ AI H,I/Ef,aO.

A

B

A+

÷

co

C

D

+3D o

e

(O) I s a ~ a b l o and a o l u b l o rotctton

oondltlon8

o f (D) y t o l d s

until

b~olysls

d o e s no~ r o t o r

Fu~thor.

( 1 3 ) and undo~ t h e n Subsoquent b~drolysls

tho socond nolo e£ tho roducod oloFln

(eltho~

D o~

E ~F H20 o r D20 i s u s o d f o r h y d r o l y s i s ) . 8tnd18~ rosul~a po~tlnont

data for

t h e e a s e oF I I I

woeo o b t a t J a o d w l ~ h I I ,

llI,

and IV and t h o

t h o s e ~ o a c t l o n m i s aumma~isod i n T a b l o 10

and IV a s m a l l amount o£ ~ko ~ o a ~ a n K o d

In

products

Yol. 4, No. i

FORMATION OF ALUMINUM COMPLEXES

13

TABLE I

Sta]eting Hate~lals

(mmolos)

n X (,c=i

A(He-

II

P = o d u c t s (nnoles)

~~CX

SeVere k ~ , "

cr

cz

U~d. Nvd. 2

cl

25

12.5

9.Z

20.3

3.k

3

cl

25

12.5

I0.I

23.2

0.8

2

e

25

~.5

7.8

33.2

5.5

6.2

3

K

25

12.5

~.i

0.9

8.9

8.7

(IX and X) a~o a l s o p r o d u c e d , b u t t h e prodonLn~mt p r o d u c t aS&4n is the iodide displacement product. Stmce t h e f l ~ s t

mole o f ~oducod o l o £ 4 n e n d / o r roa~ranKod

o l e f t n can be s u l l y

reactions

removed by v a c u u m d l s t l ] l a t l o n ,

those

p ~ o v l d e a c o n v e n i e n t method f o r sez .+stink aluminum

complexes of a l l c y ¢ l t c

fluo~o o l e f l n s .

Furt~

-

ozJuttnAtlon

of

t h o s e c o m p l e x e s I s nov i n p r o s ~ e s s and w111 b~ ~Qported i n f u t u r e publlcatlens. ioknovlodsnomt Tb2s work w u

supported In pa~t bTth.

o f H e a l t h ((]~ 1 1 8 0 9 ) . from the National

Itt£oatZ

laJtitutee

FJX aZso aoknowlodSos f o Z l o w s k i p s u p p o r t

Iast2tutes

o f Ho*3th ( 5 - F 1 - 6 N - ~ ) .

75k).

References .

W. P. CULTlew, P. 8 . DHALZWAL, nnd G. E. 8'L'YAll, .T. 0z'gmmom e t a l Chem., 6= , 3611 ( 1 9 6 6 ) .

14

E.

FORMATION 0P ALUMINUM COMPLEXES

V . I . 4, No. 1

P.W. JOLLY, M. I. BRUCE, and F. G. &. STONE, J. Chem. SOCo,

583o (1965). 3-

W. R. C ~ .

D. S. DAWSON, and P. S. DHALIWAL, Can. J.

Chem., 145 , 683 (1967). m

~.

We R. CUT.T.I~ sad Go E. STY.AN, J. Organomtetal Chem., ~ , 633 (1966).

5.

M. HAUPTSCHI~, A. J. SAGGIOMO, and Co STOKES, J. Am, Chem. S,c., 78 , 680 (1956).

6.

R. 8. DICKSON, Chem. Comm., _~ , 68 (1965).

70

R . D . CHAMBERS and J. CUNNIIiGHAM, Tetrohodron Letters, 2389 (1965).

8.

B. B&RTOCIL& and A. J . BILBO, J . Am. Chem. S . c . , 8~ , 2202 ( 1961 ). i

9.

J.D. PARK. J. Ro LKCHER and J. R. DICK, J. Org. Chem., 31 , 1116 (1966~. '

10.

S i m i l a r o l e f i n s c o n t a i n i n g v i n y l i o f l u o r i n e , c h l o r f ~ e , and b~omine u n d e r g o r e a c t i o n as e x p e c t e d . Only v i n y l i c i o d i n e c o n t a i n i n E o l o f i n n behave d i f f e r e n t l y .

11.

NMR a n a l y s i s w u c a r r i e d o u t by i n t e s t a t e s the vinylic proton r e g i o n v__ls, an i n t e r n a l s t a n d a r d (CHsCN). The d i f f e r e n c e botveen-4~e ealoulated inte~ation u s u m i n E lO0~ o f VII and t h e o b s e r v e d 4nteW~ation w u t&kon a8 a measure o f t h e amount o f d o u t o r & t o d p r o d u c t . C o n t r o l e x p e r i m e n t s h&vo domonatr&tod the validity of this technique.

12o

T h i s e q u a t i o n i8 n o t meant t o intply t h a t (B) and moloculsz, b~droKen a r e f o r m e d d £ r o o t l y . N e a t l i k e l y , HI and a complex oonta4n~ a -&IH ~ o u p a r e f o r m e d fJJ~st and t h e HI sukoquently reaot~ with this kitial complex t o f o r m (B)

and K2.

13.

A l t h o u g h (C) i s s t a b l e 4 , s o l u b l e , an a t t e m p t t o i s o l a t e t h i s m a t e r i a l i n t h e s o l i d s t a t e r e s u l t e d i n an e x p l o s i o n and c a u t i o n s h o u l d be o b s e r v e d i n h a n d l i n g t h e s e m t o r i a l s .