Accepted Manuscript Foundational perspectives on causality in large-scale brain networks
Michael Mannino, Steven L. Bressler
PII: DOI: Reference:
S1571-0645(15)00161-X http://dx.doi.org/10.1016/j.plrev.2015.09.002 PLREV 656
To appear in:
Physics of Life Reviews
Received date: Accepted date:
3 September 2015 8 September 2015
Please cite this article in press as: Mannino M, Bressler SL. Foundational perspectives on causality in large-scale brain networks. Phys Life Rev (2015), http://dx.doi.org/10.1016/j.plrev.2015.09.002
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Highlights • An account of causality in large-scale brain networks is presented. • We clarify the concept of brain-network causality philosophically and scientifically. • A distinction is made between deterministic and probabilistic causality.
Foundational Perspectives on Causality in Large-Scale Brain Networks
Michael Manninoa, Steven L. Bresslera,b* aCenter for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca
Raton, FL 33431 bDepartment
of Psychology, Florida Atlantic University 777 Glades Road. Boca Raton, FL 33431 *Corresponding Author
Abstract
Ǧ
Ǥǡ
ǡ
Ǥdescriptiveprescriptive
Ǧ
Ǥ ǡ
Ǧ
Ǥ
ǡ
ǡ ǡ ǡ
Ǥ
Ǥ ǡ
ȋȌǡ
ǡ
ȋȌǡ
Ǥ ǡ
Ǧ
ǡ
Ǥ
ǣ ȋͳȌ
ǢȋʹȌ
Ǣ ȋ͵Ȍ
Ǥ
Ǥ
ǡ
Ǥ
ǡ Ǧ
Ǧ Ǥ
ǡ
Ǥ
Ǥ ǡ
Ǥ
Keywords: brain; large-scale neurocognitive networks; causality; probability; determinism; brain connectivity
ͳ
The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm. – ȋͳͻͳ͵Ȍ
1. Introduction By virtue of what is one thing or event the cause of another thing or event? ǡ
ǡ
Ǥ
ǣ
ǫ
ǡa fortioriǡ
ǡ
ǫ
ǡ
ǫ ǡǣ
ǫǡ
ǡ
ǫǡ
ǡ
ͳ
Ȃ
Ȃ
ǫ
Ǣ
ǡ ǡǡ
ǡ
ǡ
ǡǡ
Ǥǡ
ǡ
ǡ
ǡ
ǡ
Ǥǡ
ǡ
Ǥ ǡ
ǡ
ǡ
ǡ
ǡǣ
ǡ
Ǧ
ǫǡ
ǫ
ǡǡ
ͳ
Ǧ
ǡ
ȋȏͷȐȌǤ
ǦǤ
ʹ
Ǣǡǡ
ǡ
conceptuallyexpandedǡ Ǥ
ǡ
ǡ
ǡ
Ǥ
Ǥ
ǡ
ǡǡ
ǯ
ȋ
Ȍ
Ǥ
ȋȌ
Ǥ ǡ
Ǥǡ
ǡ
a priori Ǥ
ǡǡ
ǡ
ǡ
Ǥ
Ǥ ǡ
Ǥǡ
ǡ
Ǥǡ
Ǧ
ǡ
ǯ
Ǥ
ǡǦ
Ǥ
Ǥ
ǡ
Ǥ
Ǥ
Ǧ
ǡ
Ǥ
ǡ
Ǧ
Ǥ
͵
2. Concepts of Causality2 ǡ
ǡ
ǣ ȋͳȌ Dz
dznecessary
ǡ Ǥǡ
ǡmustȏͳȐǤ
ǡǤǤǡ ǡ
ǡǤ
ǡ
ǡǤǤǡ
ǡǡ
Ǥǡȏʹǡ͵ǡͶȐǤǡDzdz Dz
dzǡǡDz
Ǥdz
ǡ
ǫ ȋʹȌ
Ǥ ȋ͵Ȍ
Ǥ͵ ȋͶȌ
Ǥ ȋͷȌǯ
Ǥ ȋȌ
ǡǡ
Ǥ ȋȌ
ǤͶ
ȋʹȌ
ȋ͵ȌȋȌǫ ǡ
ǫmeanǫ ǡ
ǫ ǡȋͳȌȋ͵Ȍǫ
ǡ
Ǥǡ ǡ
ǡǡǡ
ǡ
Ǥǡ
ǡǡ
Ǥ ǡǡ
ǡ
ǣǡ ǡǤ ʹǮ
ǯǮ
ǯ
ǤǮ
ǯ
ǡǮ
ǯ
Ǥ ͵
ȏͷǡȐǤ Ͷ
ǯ
ǡ
Ǥ
Ͷ
2.1 The Ontology and Epistemology of Causality: Aristotle, Hume, Kant, and Russell
ǡ
ǡ
ȏǡͺȐǤǯ
ǡ
ǡ
ǡǯ
Ǧ
Ǥ ǯ
ǡ
ǡ
Ǥ
Dz
dzǡ
Ǧ
Ǥ
Dz
ǡǡ
dzȋ
ȏͻȐȌǤǡ ǯ
regularity theory of causalityͷȏͳͲǡͳͳǡͳʹȐǤ
ǯ
constant conjunctionsǡǡ
ǡȋȌǤ
ǣ
Ǣ
Ǥǯ
ǣ
ȋȌ
ȋȌǤ
Ǣ
Ǥ ǡ
ǡ
ǡ
ǡ
Ǥ
ǡ
ǡ
Ǥ ǡ
ȏͻǡͳ͵ǡͳͶȐǤǡ
ǡ
ǡ
ǡ
Ǥǯ
ǡ
ǡ
Ǥ ͷ
ǡ
ǡǡ
Ǣǡ Ǥ
ͷ
ǯǡ ȏͳͲǡͳͳǡͳͷǡͳȐǤǡspurious regularities
ǣ
ǡ ǯ
ǡ
Ǥ ǡ
Ǥ
ǡ
ǯ
Ǥ
ǤǡDz
Ǣǥ
dzȏͳʹȐǤ
ǡ
Ǥ ǡ
ǡǡ ǡ
concepts or categories of the understanding,
Ǥ ǡ
a prioriǡǡ
Ǥ
ǡa priori
ȏͳ͵ȐǤ
a prioriǡȋa priori
ȌǤǯ
Ǥ ǯ
Ǯ
ǯǤ ǡ
ǡ
Ǥ ǡOn the Notion of Causeǡ
ȏͳͺȐǤǡ
ǡ
ǡmust
Ǥ ǡǡDz
dzȏͳͺȐǤ
ǡ
Ǥ
Ǥ
Dzdz
ǡ
ǡ
ͳͻͳ͵Ǥ ǡ
Ǥ
ǡ
ǡ
ǡǡ
ǡ
ǡ
Ǥ
ǡ
Ǥǡ ǯ
Ǥ 2.2 Causality in Classical and Modern Physics
ǡ
ǡǡ
Ǣǡ
Ǥ ȋǦȌ
Ǥ
ǡ ǡ
Ǧǡ
ǡǡ
ȋǤǤǡ
ȌȏͳͻǡʹͲǡʹͳȐǤ
ǡ
ǡ
ǡ
ǡ
Ǥ
Ǥ
ǡ
Ǥ
Ǧ
ǡ
ǡ ǡ
ǡ
Ǥ
ǡ
ȏʹʹȐǤ ǣ
ͳȌ
Ǥ
ǡ
Ǥ ʹȌ ȂȂ
Ǥ ǡ
ǡ
Ǥ ͵Ȍ
ǯ
Ǥ
ǡ
ǡ Ǥǡ
Ǥ ͶȌ
ǡ
ǡǤ ͷȌ
Ǥ
ǡ
Ǥ
ǡ
Ǥ
Ǥ
Ǥ ǡ
ǡ
ǡ
ǡǤ ǡ
ǡ ǣ
Ǥ
ǡǤ
ǯǡ
Ǥ ͳͺͳͶǡ ǡ
Ǥ
ǡ
ǡ
ǡ
Ǣ
ȏʹ͵ȐǤ
Ǥǡ
ǡ
ǡ
ǡ
ȋȌǡ
Ǥ
ǡ ȏʹͶȐTesting for Causalityȋ
Ȍ
Ǥ
ǡ
ǯ
ǡǯǡǡ ǡ
ǯǡ ǡ
ȏͳͻǡʹͲǡʹͷǦ͵ͳȐǤ
Ǥǡ ǡ
ȏʹȐǤǡ
ǡǡ
ȏ͵ͲȐǤǡ
ǡ
ǡ
ǡ
ͺ
Ǥ ǡ
Ú
ǡ
ȏʹͳȐǤǡǡǯǡ
ǡ
ǡ
ȋ
ȌȏʹͳȐǤ
ǣ ǡ
Úǡ
ǡ
ǯ
Ǥ
Ǥǡ
ǣǡ ǡǫ
ǡ ȏʹȐǡ ǥ
Ǥ Dz
dzǡǤ Dz
dzǤ
ǣ
Ǥ
ǡ
ǡ
Ǥ ǡ
ǡ
ǡ
Ǥ
ǡ
Ǥ ǡ
Ǥǡ
ǡ
ǡ
Ǥǡ
ǡ
ȏʹͳȐǤǡ
Ǥ
ǡ
ǡ
Ǥ
ǡǡprobabilistic notion of causalityǤ
ǡǡ
Ǥ
ͻ
Ǥ ȏʹͶȐ
ǡDz
ǡ
Ǥdz ǯǦ
ǡ
Ǥ ǡ
Ǥ
ǯ
ǡ
ǡ
ǣ
Ǥǡ
ǡ
Ǥ ǡ
ǡ
ǡ
ǡȏ͵ͳǦ͵͵ȐǤǡ
ǡǤ
ǡ
ǡ
Ǥ
ǡ
ǡ
Ǥ ǡ
ǡ
Ǧ
Ǥ 3. The Distinction Between Deterministic and Probabilistic Causality
ǡ
ǡ ǡ
Ǧ
Ǥ
ȋȌ
ȋȌǤ
ǡ
ǡ
ǤǮ
ǯǡceteris paribusǡǡ Ǥ ǡǡ
ǡ
Ǥǡ lowersǡ
ǣ ǡ
ǡ
ǡ
Ǥ
ȏͳͳǡͳǡ ͵ͶȐǤ
ȏͳͳǡͳȐ ǡ
ǡ
Ǥ
ͳͲ
Ǥ
ǡ
Ǥǡ
Ǥ
ǡ
Ǥ
ǣ
Ǥ ǡ
Ǥ
ǡ
ǡ
Dz
dzDz
dzǤ
Ǥ
Ǥ
ǡǡ ȋ ͳȌǤ
Ǥ
ǡ
Ǥ
Ǥ
ǡ
BȏȋȁȌεȏȋȌȐǤǡDz
dzDz
dzǤǡDz
dz Dz
dzǡȋȁȌεȋȁ̱ȌǤǡǡ
ǣ
Ǥǡ
ǡǤ ǡ
ǯ
ǡ
ǡ ȋȁȌεȋȁ̱Ȍǡ
ȋ
Ȍ
Ǥ Ǧ
ǡ
Dz
dzȏͳȐǤ
ǡǤ
ǡǤǤǡȋȁȋƬȌȌαȋȁȌǤ Dz
dzǡ
Ǥ
Ǧ
ǡ Ǥ
ǯǣƍ
ǯǡǯǡ
ƍ
ǣ
ͳͳ
ͳȌ ȋƍȁȌεȋƍȁ̱Ȍ ʹȌ Ǝǡ
ǡǯǯǡ
ǡ
ƍ Ǥ
Ǥ
ǡ Ǥǡ
Ǥ
Ǥǡ
ǡ
Ǥ
ǣ
Ǥǡ
Ǥ ǡ
ȏ͵ͷȐǤ
ǣǡ
ǤǡDz Ǯ
ǯǥdzȏͳȐǤ
ǡ Dz
dz
ǡ
ȏ͵ȐǤ
Ǥ 4. Causality in Complex Systems
ǡ
ǡ
ǣ Ǯ
ǯ
Ǥ
Ǥ
ȏ͵ȐǤ
Dz
dz
ȏ͵ͺȐǤ
ǡ
ǡ
Ǧ
Ǥ
general accounts
ǡ singular accountsǡ
ǡǤǤǡǮ
ǯǤ
ǡ
ǡ
Dz
ǦdzȏͳȐǤǡ
ǡ
Ǧ
Ǥ
ͳʹ
ǡ
Ǧ
ȏͶͳǡͶʹȐǤ
Ǥ
ǣȋͳȌ
ǢȋʹȌ
Ǣȋ͵Ȍ
ȏͶ͵ǦͶȐǤ
ǡ
ǡ
Ǧ
Ǥ 5. Causality in the Brain
ǡǡǤ
ǡ
ȏͶǦͷͳȐǤ ǡ
ǡ
ǡ
ǡ
Ǥǡ
Ǧ
ȏͷʹȐǤ
ǤȏͶͻȐ
ǡǤ
ȋǦ
Ȍ
ǡ
Ǥǡ
ǡ
ǡǡ
Ǥ
ǡ
ȋ
Ȍ
Ǥ
Ǧ
Ǥ
interact
ǯ
Ǥ
ȏͷͶǡͷͷȐǤ Ǧ
Ǥ
Ǧ
ͳ͵
ǡ
Ǥ
Ǥ
ǡ
ǡ
Ǥ
Ǥ
ǡǡ
Ǥ
ȋ
ǡ
ǡ
Ȍ
Ǥ 5.1 Causality in Large-Scale Brain Networks
ǡ
Ǥ
Ǧ
ȏͷ͵ȐǤ
Ǧ
Ǧ
ȏͷǦȐǤ
ǡ ȏʹǡǦͺȐ
ǡ
ǡ
ǡ
Ǥ
ǡ
ȋ
ȌǤ
ǡǡ ǤǤǡ ǡǤ
ȏͳǡʹǦͷȐǤ
ǡ
Ǥ
Ǧ
ȏͷͺǦͶǡͶǦͻͷȐǤ
ǡǦ
Ǥ
Ǧ
Ǥǡ
Ǥ
ǡ
Ǥ
mutual causalityȏͻȐǤ ǡ
ǡ
ȋ
ȌǤ
ͳͶ
ǡ
ǡ
ǡǡ
Ǥ
convergence
Ǧ
ȏͻǡͻͺȐǤ
Ǥ
ǡ
ǡ
Ǧ
Ǥ
Ǥ
Ǥ
ǡ
Ǥ
Ǥ
ǣ
ȋ
Ȍǡȋ ȌǤDzdz
Ǥ
ǡ
Ǥǡ
ǡ
ǡ
Ǥ
Ǧ
ǡ
Ǥ
ȋ
ȌǤ
ǡ
ȏͻͻǡͳͲͲȐǤǡ
Ǥ
causalityǡ
ȏͷȐǤ
ǡ
Ǧ
Ǥ
ǣ
ǡǤ
ͳͷ
ǡ
ȏͻͻȐǤ
Ǥ
ǡ
ǡ
Ǥ
Ǥ
ǡ
̶
̶
ǡ
ǦǤ
Ǧ
ǡ
ǡ
ǡǤ 5.2 Quantification of Probabilistic Causality in the Brain Ǧ
ǡǦ
ǡ
Ǥ
ȏͳͲͳȐǤ Ǧ
ǡ
Ǧ
ȏͳͲͳǦͳͲͶȐǤ
Ǧ
ȋ ʹȌǤǡ
ǡ
Ǥ
Ǥ
ȏͳͲʹȐǤ
ǣstrength
Ǣ
consistencyǢspecificityǢtemporalityȋ
ȌǤ
Ǥ Ǧ ȋ Ȍǡ
ȋȌǡ ȋȌȏʹͶǡͷǡͳǡͳͲȐǤ
ǡ
ǡ
a priori
Ǥ
ȏʹͶǡͳͲǦͳͲͺȐ
ȏͳͲͻȐ
ȋ
ȌǤ
ǡ
ǡDz
dzȏʹͶȐǤ Ȃ
Ǥ
ͳ
ǯ
ǡǡ
ȏͳͳͲǦͳͳʹȐǤ
ǡͳʹǡ
ʹ ʹͳǡʹǡ ͳ
ʹǤ
ǡͳGranger-causesʹǤ ǤǡX1(t)X2(t) Ǧǣ
ȋͳȌ
X1(t)X2(t)
Ǧ
ͳʹǢpȋ
ȌǢA
ǡX1(t-j)X2(t-j) ͳʹǡE1(t)E2(t)
ȋ
ȌȋȏͳͳͲǡͳͳͳȐȌǤ
ʹ
ͳǡ
ǡͳ Ǧ
ʹǤ
ǡǦǡǡ
Ǧ ȏͳͳͳȐǤ ȋͳ ʹȌǡ
ȋȌ
ȏͻͺȐǤ
Ǥ ͳǡʹǡ ͵ǡ
ͳʹ
͵ȏͳͲͻȐǤ ǡ
ȋ
ȌǤ
ǡ
ͳʹǡ
ǡ
͵Ǥ ͳʹǡ
͵ǡ
ͳʹ
͵ǡ͵
ȏͳͳͳǡͳͳͶȐǤ
ǡ
ͳʹ ͳ
ʹǡǡ
ǡ
Ǥǡ
Ǧ
ȏͻǦ ͳȐǤ
ͳ
ǣGranger-causescausesǫ
ǡ
ǡ
ǡ
ǡ
Ǥǡ
Ǥ ǡ ȏͳͳȐ
Dz
dzǡǯ
ǡ ǡ
ǡ
Ǥ ǡ
ȏͳͳͳȐ
Ǥ ǡ
ȋ ͵Ȍ
ǯ
ǣ
ǡ
ǡ
Ǥǡ
ǡ
Ǥ
ȏͻǡͻͺȐǡ
ǯ
Ǥ
ǡ ǯ
DzǦǦ
dz
ȏʹͶȐǤ
ǡ
ǡǡ
ǡ
Ǥ
ǡ
Ǥ ǡ
ȋȌ
ǡ
Ǧ
Ǥ ǡ
Ǥ
Ǧ
Ǥ ǡ ǡDz
ǥ ǥ
dzȏͳͳǦͳʹͲȐǤ
ǣ Dz
ȋȌ
dzȏͳʹͳȐǤ
Ǥ
ǡ
ǫ
ǡ Ǥ ǡ
Ǥǡ
ͳͺ
ǡ
Ǥǡ
Ǧ
Ǥǡǡ
ǡ
Ǥ
Ǥ ǡ
ȏͳͳͺȐǤ
ǡ
ǡ Ǥ
ǡ
Ǥ
ȋȌǡǦ
Ǥ
ȏͳͲǡͳʹ͵ȐǤ
ǡ
Ǥʹ ͳ
ʹ
ͳǡ ͳȏͳͲʹȐǤ
ǣ
Ǧ
Ǥ ǡ
Ǥ
ǡ
Ǥǡǡ
Ǥ 6. Conclusions
ȏʹͶȐ
ǣ
Ǥ
ǡ
Ǥ
ͳͻ
ǡprobabilistic causality
Ǥ Ǧ
ǡ
ǡ ǡ
Ǥ
ǤDz
dzDz
dz Ǥ
ǡȋ Ȍ
ǡ ǤDz
dz
Ǧ
Ǥ
ȏͳȐǡ
ǡ
ǡ
ǡǤ
ǤǤ
ǡ
Ǧ
Ǥǡǡ
ǡ
ǡǤǡ
ǡ
ǡ
Ǥ
Ǥ
ǣ
ǡ
ǡ
ǡ
Ǥ
ʹͲ
References [1] Schaffer, J. "The Metaphysics of Causality", The Stanford Encyclopedia of Philosophy (Summer 2014 Edition), Zalta, E. N. (ed.). URL = http://plato.stanford.edu/archives/sum2014/entries/causation-metaphysics/. [2] Williamson, J. (2006a). Dispositional versus epistemic causality. Minds and Machines, 16:259-276. [3] Williamson, J. (2006b). From Bayesianism to the epistemic view of mathematics. Philosophia Mathematica, (III), 14(3):365-369. [4] Williamson, J. (2007a). Causality. In Gabbay, D. & Guenthner, F. (eds.), Handbook of Philosophical Logic, 14, 89-120. Springer. [5] Hill, A. B. (1965). The environment and disease: association or causation? Proceedings of the Royal Society of Medicine, 58(5), 295. [6] Doll, R., & Hill, A. B. (1956). Lung cancer and other causes of death in relation to smoking. British medical journal, 2(5001), 1071. [7] Cameron, R. (2002). The ontology of Aristotle's final cause. Apeiron, 35(2), 153179. [8] Falcon, A. "Aristotle on Causality", The Stanford Encyclopedia of Philosophy (Spring 2014 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/spr2014/entries/aristotle-causality/. [9] Morris, R., "David Hume", The Stanford Encyclopedia of Philosophy (Summer 2014 Edition), Zalta, E. N. (ed.), forthcoming URL = http://plato.stanford.edu/archives/sum2014/entries/hume/. [10] Gower, B. (1991). Hume on probability. British Journal for the Philosophy of Science, 1-19. [11] Hitchcock, C. "Probabilistic Causation", The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/win2012/entries/causality-probabilistic/. [12] Kant, Immanuel (1965) Critique of Pure Reason, orig. 1781, trans. N. Kemp Smith. New York: Macmillan Press. [13] De Pierris, M. "Kant and Hume on Causality", The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/fall2008/entries/kant-hume-causality/. [14] Helen B., Hitchcock C., & Menzies P (eds): The Oxford Handbook of Causality, Oxford University Press, pp. 185-212, 2009. [15] Schaffer, J. (2001). Causes as probability raisers of processes. The Journal of philosophy, 98(2), 75-92. [16] Hitchcock, C. (2004). Do All and Only Causes Raise the Probabilities of Effects? MIT Press, 403-417. [17] Dowe, P. "Causal Processes", The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/fall2008/entries/causality-process/. [18] Russell, B. (1913). On the notion of cause. In Proceedings of the Aristotelian society (Vol. 13, pp. 1-26). The Aristotelian Society; Blackwell Publishing.
ʹͳ
[19] Haque, A. (2013). Causality in Classical Physics. arXiv preprint arXiv:1312.2656. [20] Greene, B. (2011). The hidden reality: Parallel universes and the deep laws of the cosmos. Random House LLC. [21] Griffiths, D. J. (2005). Introduction to quantum mechanics. Pearson Education India. [22] Motz, L., & Weaver, J. H. (1989). The Story of Physics. Springer. [23] Simon, P., de Laplace, M., & Truscott, F. W. (1951). A philosophical essay on probabilities. Dover Publ. [24] Granger, C. W. J. (1980). Testing for causality: A personal viewpoint. Journal of Economic Dynamics and Control, 2, 329-352. [25] Bohm, D. (2004). Causality and chance in modern physics. Routledge. [26] Bohm, D. (2012). Quantum theory. Courier Corporation. [27] Bohr, N. (1948). On the notions of causality and complementarity. Dialectica,2(34), 312-319. [28] Faye, J. "Backward Causation", The Stanford Encyclopedia of Philosophy (Spring 2010 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/spr2010/entries/causation-backwards/. [29] Shimony, A. "Bell's Theorem", The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/win2013/entries/bell-theorem/. [30] Heisenberg, W. (1958). Physics and philosophy: The revolution in modern science. Revised Edition. Prometheus Books. [31] Kim, Y. H., Yu, R., Kulik, S. P., Shih, Y., & Scully, M. O. (2000). Delayed “choice” quantum eraser. Physical Review Letters, 84(1). [32] Karimi, K. (2010). A brief introduction to temporality and causality. arXiv preprint arXiv:1007.2449. [33] Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics.Reviews of Modern Physics, 38(3), 447-452. [34] Earman, J. (2004). Determinism: What we have learned and what we still don’t know. Freedom and determinism, 21-46. [35] Einstein, A. (1939). On a stationary system with spherical symmetry consisting of many gravitating masses. Annals of Mathematics, 40(4), 922-936. [36] Einstein, A. (2015). Relativity: The special and the general theory. Princeton University Press. [37] Suppes, P. (1970). A probabilistic theory of causality. Amsterdam: North-Holland Publishing Company, 7-8. [38] Hájek, A. "Interpretations of Probability", The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Zalta, E. N. (ed.), URL = http://plato.stanford.edu/archives/win2012/entries/probability-interpret/. [39] Fetzer, J. H., & Nute, D. E. (1980). A probabilistic causal calculus: Conflicting conceptions. Synthese, 44(2), 241-246. [40] Cartwright, N. (2004). Causality: One Word, Many Things. Philosophy of Science, 71: 805-19. [41] Cartwright, N. (1979). Causal laws and effective strategies. Nous, 419-437.
ʹʹ
[42] Bishop, R. C. (2003). On separating predictability and determinism. Erkenntnis, 58(2), 169-188. [43] Bishop, R. C. (2011). Metaphysical and epistemological issues in complex systems. Philosophy of Complex Systems, 10, 105. [44] Wagner, A. (1999). Causality in complex systems. Biology and Philosophy, 14(1), 83-101. [45] Ellis, G. F. (2008). On the nature of causality in complex systems. Transactions of the Royal Society of South Africa, 63(1), 69-84. [46] Davies, P. C. W. (2012). The epigenome and top-down causality. Interface focus, 2(1), 42-48. [47] Kelso, J. S. (1997). Dynamic patterns: The self-organization of brain and behavior. MIT press. [48] Wimsatt, W. C. (1994). The ontology of complex systems: levels of organization, perspectives, and causal thickets. Canadian Journal of Philosophy, 20(2), 207-274. [49] Miller, J. H., & Page, S. E. (2009). Complex adaptive systems: an introduction to computational models of social life. Princeton university press. [50] Bressler S.L. (1995). Large-scale cortical networks and cognition. Brain Research Reviews, 20:288-304. [51] Mountcastle, V.B., (1978). An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman, G.M., Mountcastle, V.B. (Eds.), The Mindful Brain. MIT Press, Cambridge, MA, pp. 7–50. [52] Sporns, O. (2011). Networks of the Brain. MIT press. [53] Sporns, Olaf (2007) Brain connectivity. Scholarpedia, 2(10):4695. [54] Tononi, G., & Sporns, O. (2003). Measuring information integration. BMC Neuroscience, 4, 31. [55] Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in auditory cortex. Nature, 404(6780), 841-847. [56] Bressler S.L. (2015). Interareal neocortical actions by neuronal populations. In: Kozma R., Freeman W.J. (eds.), Collective Brain Dynamics: Extending Beyond the Neuron Doctrine. Berlin: Springer. [57] Bressler S.L. (2002). Understanding cognition through large-scale cortical networks. Current Directions in Psychological Science, 11:58-61. [58] Bressler S.L. (2003). Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmocology, 28:S35-S39. [59] Bressler, S. L. (1999). The dynamic manifestation of cognitive structures in the cerebral cortex. In Understanding Representation in the Cognitive Sciences, Springer US:121-126. [60] Bressler S.L. (2004). Inferential constraint sets in the organization of visual expectation. Neuroinformatics, 2:227-238. [61] Bressler S.L., Kelso J.A. (2001). Cortical coordination dynamics and cognition. Trends in Cognitive Sciences, 5:26-36. [62] Bressler S.L., McIntosh A.R. (2007). The role of neural context in large-scale neurocognitive network operations. In: Jirsa VK., McIntosh A.R. (eds.), Handbook of
. Berlin: Springer.
ʹ͵
[63] Bressler S.L., Menon V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Sciences, 14:277-290. [64] Bressler, S.L., Seth, A.K. (2011). Wiener–Granger causality: a well established methodology. Neuroimage, 58(2), 323-329. [65] Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. The Journal of Neuroscience, 28(40), 1005610061. [66] Bressler, S.L. (2008). Neurocognitive networks. Scholarpedia, 3(2):1567 [67] McIntosh, A.R., (2000). Towards a network theory of cognition. Neural Networks,13, 861–876. [68] McIntosh, A.R., (2004). Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics, 2, 175–182. [69] Mesulam, M., (1990). Large-scale neurocognitive networks and distributed processing for attention, language and memory. Annals of Neurology, 28, 597– 613. [70] Mesulam, M.-M., (1998). From sensation to cognition. Brain, 121, 1013–1052. [71] Meehan, T. P., & Bressler, S. L. (2012). Neurocognitive networks: findings, models, and theory. Neuroscience & Biobehavioral Reviews, 36(10), 2232-2247. [72] Seth, A. K., & Edelman, G. M. (2007). Distinguishing causal interactions in neural populations. Neural Computation, 19(4): 910-933 [73] Seth, A. K. (2005). Causal connectivity analysis of evolved neural networks during behavior. Network: Computation in Neural Systems, 16, 35-55. [74] Seth, A.K., (2008). Causal networks in simulated neural systems. Cognitive Neurodynamics. 2, 49–64. [75] Fuster, J. M., & Bressler, S. L. (2012). Cognit activation: a mechanism enabling temporal integration in working memory. Trends in Cognitive Sciences, 16(4), 207218. [76] Fuster, J.M. (2006). The cognit: a network model of cortical representation. Int. Journal of Psychophysiology, 60, 125–132. [77] Fuster, J.M., (1995). Memory in the cortex of the primate. Biological Research, 28, 59–72. [78] Fuster, J.M., (2003). Cortex and Mind: Unifying Cognition. Oxford University Press, New York. [79] Boudjellaba, H., Dufour, J., & Roy, R. (1992). Testing causality between two vectors in multivariate autoregressive moving average models. Journal of the American Statistical Association 87, 1082-90. [80] Breitung, J., & Candelon, B. (2006). Testing for short- and long-run causality: A frequency domain approach. Journal of Econometrics, 132, 363-378. [81] Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., & Bressler, S. L. (2004). Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proceedings of the National Academy of Sciences of the United States of America, 101, 9849-54.
ʹͶ
[82] Wen, X., Yao, L., Liu, Y., & Ding, M. (2012). Causal interactions in attention networks predict behavioral performance. The Journal of Neuroscience, 32(4), 1284-1292. [83] Ryali, S., Supekar, K., Chen, T., & Menon, V. (2011). Multivariate dynamical systems models for estimating causal interactions in fMRI. Neuroimage, 54(2), 807-823. [84] Liang, H., Ding, M., Nakamura, R., & Bressler, S. L. (2000). Causal influences in primate cerebral cortex during visual pattern discrimination. Neuroreport,11, 2875-80. [85] Xiaotong Wen,1 Li Yao,2,3 Yijun Liu,4,5 and Mingzhou Ding. (2012). The Journal of Neuroscience, 32(4):1284 –1292. [86] Pereda, E., Quiroga, R. Q., & Bhattacharya, J. (2005). Nonlinear multivariate analysis of neurophysiological signals. Progress in Neurobiology, 77, 1-37. [87] Freeman, W.J., Burke, B.C., Holmes, M.D., (2003). Aperiodic phase re-setting in scalp EEG of beta–gamma oscillations by state transitions at alpha–theta rates. Human Brain Mapping, 19, 248–272. [88] Freeman, W.J., Rogers, L.J., (2002). Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. Journal of Neurophysiology, 87, 937–945. [89] Freiwald, W. A., Valdes, P., Bosch, J., Biscay, R., Jimenez, J. C., Rodriguez, L. M., Rodriguez, V., Kreiter, A. K., & Singer, W. (1999). Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. Journal of Neuroscience Methods, 94, 105-19. [90] Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage, 25(1), 230-242. [91] Baccala LA, Sameshima K (2001). Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics, 84:463-74. [92] Battaglia, D., Witt, A., Wolf, F., & Geisel, T. (2012). Dynamic effective connectivity of inter-areal brain circuits. PLoS computational biology, 8(3), e1002438. [93] Bernasconi, C., & Konig, P. (1999). On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biological Cybernetics, 81, 199-210. [94] Gourevitch, B., Bouquin-Jeannes, R. L., & Faucon, G. (2006). Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biological Cybernetics, 95, 349-369. [95] Hlaváēková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1-46. [96] Frankel, L. (1986). Mutual causation, simultaneity and event description. Philosophical Studies, 49(3), 361-372. [97] Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35-45.
ʹͷ
[98] Ding, M., Chen, Y., & Bressler, S.L. (2006). Granger causality: Basic theory and application to neuroscience. In Schelter. S., Winterhalder, N., & Timmer, J. Handbook of Time Series Analysis. [99] Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-55. [100] Chornoboy, E. S., Schramm, L. P., & Karr, A. F. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics 59, 265-75. [101] Chatfield, C. (2013). The analysis of time series: an introduction. CRC press. [102] Jansen, B.H. (1991. Time series analysis by means of linear modeling. In: Digital Biosignal Processing, Weitkunat, R. (ed.). Elsevier, Amsterdam, 157-180. [103] Kaminski, M.J., Blinowska, K.J. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65:203-210. [104] Valdes-Sosa, P.A., Roebroeck, A., Daunizeau, J., Friston, K. (2011). Effective connectivity: influence, causality and biophysical modeling. Neuroimage, 58:339361. [105] Wen X, Rangarajan G, Ding M (2013). Is Granger Causality a Viable Technique for Analyzing fMRI Data? PLoS ONE, 8(7): e67428. [106] Barnett L, Barrett AB, Seth AK (2009). Granger causality and transfer entropy are equivalent for Gaussian variables. Physical Review Letters, 103:238701. [107] Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 424-438. [108] Granger, C. W. J. (2001). Essays in Econometrics: The Collected Papers of Clive W.J. Granger. Cambridge: Cambridge University Press. [109] Wiener, N. (1956). The theory of prediction. In Modern Mathematics for Engineers, vol. 1 (ed. E. F. Beckenbach). New York: McGraw-Hill. [110] Cold, C. S. H. P. M., & Cold, C. S. H. H. B. (2007). Observed brain dynamics. Oxford University Press. [111] Tang W, Bressler SL, Sylvester CM, Shulman GL, Corbetta M (2012). Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO. PLoS Computational Biology, 8(5): e1002513. [112] Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77(378), 304313. [113] Chen, Y., Bressler, S. L., & Ding, M. (2006). Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. Journal of Neuroscience Methods, 150, 228-37. [114] Chen, Y., Rangarajan, G., Feng, J., & Ding, M. (2004). Analyzing multiple nonlinear time series with extended Granger causality. Physics Letters A, 324, 26-35. [115] Chicharro, D., & Ledberg, A. (2012). When two become one: The limits of causality analysis of brain dynamics. PloS ONE, 7(3), e32466. [116] Hoover, K. D. (2008). Causality in economics and econometrics. The new Palgrave dictionary of economics, 2. [117] Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273-1302.
ʹ
[118] Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Current opinion in neurobiology, 23(2), 172-178. [119] Friston, K.J., (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2, 56–78. [120] Friston, K.J., (1997). Imaging cognitive anatomy. Trends in Cognitive Sciences, 1, 21–27. [121] Friston, K. (2011). Dynamic causal modeling and Granger causality Comments on: The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution. Neuroimage, 58(2-2), 303. [122] Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. Neuroimage, 49(4), 3099-3109. [123] Schreiber, T. (2000). Measuring information transfer. Physical review letters, 85(2), 461.
ʹ
Figure 1:
ȋǤǤǡǯ
Ȍ
Ǥ
ǡ
Ǥ
ǡʹͲͳʹǤ
ʹ ʹͺ
Figure 2:
ǡ
ǡ
Ǥ
ǡ
Ǧ
ǤǡʹͲͲͶǤ
ʹ ʹͻ
Figure 3:
ȋ ȌǤ ǡʹͲͳʹǤ
͵ ͵Ͳ
Glossary Bi-directionality:
Ǥ Causal asymmetry:
ǡ
Ǥ Causal influence:
Ǥ Complex system:
ǡ
ǡǡ
Ǥ Constant conjunction: ǡ
ǡ
ǡǡǡ
Ǥ Convergence:
Ǥ Deterministic causalityǣ
Ǥ Dynamical Causal Modeling:
Ǥ Effective connectivity:
ǡ
ǡ
Ǥ Functional connectivity:
ǡ
ǡǤ Granger, Clive: ʹͲ
Ǥ Ganger causalityǣ
ǡ
Ǥ Hume, Davidǣͳͺ
Ǥ
͵ͳ
Imperfect regularity:
Ǥ Indeterminism: ǡǡ
ǡ
ǡ
Ǥ Kant, Immanuel: ͳͻ
Dz
dz
ǯ
Ǣ
ǡ
Ǥ Laplace’s demon:
ǡ
ǡǡ
ǡ
Ǥ Large-scale brain network:
ǡ
ǡǡ
ǡ
Ǣ
ǡ ǡ
ǡ
Ǥ Mutual causality:
Ǣ ǡǦ
Ǥ Neural causal influence:
Ǥ Network edge:Ǧ
Ǥ Network node: Ǧ
Ǥ Probabilistic causalityǣ
Ǥ Regularity theory of causality:
Ǥ Russell, Bertrand: ʹͲ
ǡǡ
Ǥ Screening off:
ǡ
ǡ
Ǥ Shannon entropy:
Ǥ
͵ʹ
Spurious regularity:
ǡ
ǡ
ǡ
Ǥ Stationary process:
Ǥ Structural connectivity:
Ǥ Transfer entropy:
ǡ
Ǥ Wide-sense stationarity: ȋȌ
Ǥ
͵͵