Fourier series of B-splines

Fourier series of B-splines

Journal of Computational North-Holland Fourier and Applied Mathematics 125 21 (1988) 125-127 series of B-splines B.C. SOH School of Engineering...

111KB Sizes 0 Downloads 87 Views

Journal of Computational North-Holland

Fourier

and Applied

Mathematics

125

21 (1988) 125-127

series of B-splines

B.C. SOH School of Engineering, Received

Keywords:

Science University of Malaysia, Jalan Bandaraya,

30000 Ipoh, Malaysia

27 March 1987

B-splines,

Fourier

series

I feel it is interesting to note that the Fourier series of Schoenberg’s B-splines on the unit circle obtained in [3] by convolution can be derived via difference operators as follows. First, we denote U:= {z E C: 1z 1 = l} and for any z E U, z = e’“; i = m, x E [0, 271) and k a positive integer. Next, let s and v be two positive integers write w = eih where h = 27/k, c k and define the Gaussian binomial coefficients (see [1,2]) by

- l)(tP- 1).** ws“+l-1) s :=(0” [ 1 ( -l)( ‘-1) (( --1) V

w

. . .

w

(J

>

and in particular [G] = 1 and [z] = 0 for v < 0 or v > s. The following basic identities involving the Gaussian binomial coefficients will be useful: (1 -,f)(l-

&$).

. . (I-

Jg

=

y(_l)q n t; 1],.(.-1)/2y

0)

v=o

(for a proof, see [2, p. 188]), ~~~(-1)*[“:Ijwy(ll)/2wi’=o

po(l-w'-')=

vs=o,

l,...,n,

(2) s=o, l,...,n,

~1(-1)'-'["~l],.~~-1~/2vw-'v;

(3)

w=o

P#S A;+*f(z)=

~~'(-l)'["tl]~~~~-"/'f(;~~+l-~),

ZE

,y,

(4)

v=o

where A,f(z)

:=f(ZQ)

-f(Z)>

We define the B-splines on the unit

M;(z):= 0377-0427/87/$3.50

A;f(z) circle

$A;+l+,J~~-(i+n+l)),

0 1987, Elsevier Science Publishers

:= A;-‘f(zw)

- w”-‘A;-‘f(z),

by j=O,

l,.__,k_l,

B.V. (North-Holland)

n = 1,2,.

.. .

B. C. Soh / Fourier series of B-splines

126

where &(zW-“)

I

:=

arc[ 6Y-n-1,

0,

z E

( ZCC” - 1) n,

elsewhere.

w’) >

Then, by (4), we easily obtain

Theorem (Schoenberg

[3]). For any z E U,

(5)

MO”(z) = f c#, -CC where 1

cp =

1 -(/P

n

IL@J n(

/L--s

1 lz 2ai s=o ni

1 - Qs-I*

Proof. For PLE (0, l,..., 27

1 5=2a

=-

/A--s

1’

epipx

1<(_1).[

2’, 5

pE

(0, L...,n},

pe

{O,l)...,

?I}.

n},

MO” (elx)

1o

i ’

?‘I t

dx

l],“(~-l,/z/‘“+l)h(ei(i.-uh) _ 1)”

e--iPX

vh

1

1

n

(by noting P-S

=-nik s=o S#P For ~4 (0, l,...,

(J-P

-

n}, we have

1 CP= -2~ /a-vM:(e’x) _

(2) and (3)).

i

2’, ,‘,

ni’ [n i

edipx dx l]

WV(Y-l)/2~(hn+1’h(ei(x-~h)

_

1)”

ediPx

. v=o

=Further,

1 n 27Ti s=. ni

1 - &P (by noting (1) and (2)). P--s

if we follow Schoenberg b,, = (1 - w-‘)//A

[3], and let

and in particular

we can write (5) in the form MO”(z) = &

E bpbp-1 . . . bp-,,z’Y -cc

b, = 2 IA/k,

0

dx

dx

B.C. Soh / Fourier series of B-splines

127

References [l] S. Karlin, Total Positiuity, Vol. I (Stanford University Press, Stanford, CA, 1968). [2] G. Pblya and Szegii, Problems and Theorems in Analysis I (Springer, Berlin, 1972). [3] I.J. Schoenberg, On polynomial spline functions on the circle I, II, in: Proc. Confer. Functions, Budapest, 1972, pp. 403-433.

Constructive

Theory

of